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1 Introduction

The study of the singular behaviour of massless-gauge-theory scattering amplitudes in mul-
tiparticle soft/collinear limits has a long history. One of the several important applications
of the results of the analyses is the construction of efficient methods for the evaluation of
cross sections in perturbative QCD defined within dimensional regularisation. Of particu-
lar interest for the present work are subtraction schemes, see e.g. refs. [1, 2] for classic work
at the next-to leading order (NLO). The quest for predictions at ever higher orders of per-
turbation theory has led to the construction of a plethora of schemes. The current frontier
lies between the next-to-next-to (NNLO) and next-to-next-to-next-to (N3LO) order, see
the review ref. [3] and references therein.

The known singular limits of scattering amplitudes can be classified by the order of
perturbation theory of the involved matrix elements, and by the number of unresolved
partons whose presence cannot be detected either because they have vanishingly small
(soft) energies or their momenta are parallel (collinear) to the momentum of a single par-
ton. A complete set of formulae at tree-level for up to three unresolved partons has been
amassed in refs. [4–12]. At the one-loop level, complete information is available for a single
unresolved parton [13–17], while the case of two unresolved partons has attracted much
attention [18–23]. Finally, at the two-loop level only single unresolved limits have been
analysed extensively [24–28].

– 1 –



J
H
E
P
0
7
(
2
0
2
2
)
0
5
2

In the present publication, we are concerned with the triple-collinear limit of one-loop
amplitudes. It is surprising that the known results for this case do not even cover all
possible splitting processes. While ref. [21] provides results for a gluon splitting into three
partons, the much earlier ref. [18] contains the case of a quark splitting into a quark and
a quark-anti-quark pair of different flavor, but the result is incomplete.1 The previously
cited refs. [19, 20] are rather concerned with processes involving a photon. Thus, results
for quark splittings, q → qq′q̄′, q → qqq̄, q → qgg, are either incomplete or not available.
In view of this situation, the following quote from the almost twenty years old ref. [18] is
truly ironic:

“For the sake of brevity, we have limited ourselves, in this letter, to presenting
a few explicit results for the one-loop triple collinear splitting. These results
have mainly an illustrative purpose. The method and the tools (in particular,
the one-loop integrals) used to obtain them are sufficient and can be applied
straightforwardly to evaluate the one-loop splitting matrix of any splitting pro-
cess a→ a1 + a2 + a3”.

There is yet another problem with the available results for the one-loop triple-collinear
splittings. They are restricted to an expansion in the dimensional-regularisation parameter
up to finite terms. Below, we explain that this is insufficient for an application to the
construction of a subtraction scheme. This fact was, unsurprisingly, known to at least the
authors of ref. [21] as can be read in the conclusions to that work.

In the present publication, we resolve the aforementioned issues and provide the com-
plete set of results for triple-collinear splittings, q → qq′q̄′, q → qqq̄, q → qgg, g → gqq̄ and
g → ggg, in the form necessary for the construction of an N3LO subtraction scheme.

We aim at a self-contained but concise publication. In the first section, we provide the
necessary definitions. Subsequently, we present the methods used in the calculation, and
explain the requirements for the construction of a subtraction scheme in relation to the
results for the triple-collinear splittings. In the third section, we discuss the evaluation of
the occurring Feynman integrals and provide several new results. After a short outlook on
future work, we provide more infomation on the special functions involved in this study
in two appendices. The results obtained are lengthy. We believe that it is crucial to
provide them in an easily accessible form, and there is no better form than a set of files as
supplementary material that can be easily manipulated. We use the format of the computer
algebra system Mathematica [29] and describe the files in the last appendix.

2 Splitting operators and splitting functions

2.1 Definitions and properties

We consider QCD with nl massless quark fields, defined through perturbation theory sup-
plemented with conventional dimensional regularisation2 with spacetime-dimension param-

1The authors provide the antisymmetric part of the results with respect to the exchange of the quark
and the anti-quark momenta. The tree-level splitting is symmetric under this transformation.

2Our results assume that gluons have d− 2 polarisation states.
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eter d = 4−2ε and dimension-setting scale µ. Any parton-scattering amplitude viewed as a
vector in color- and spin-space (see ref. [1] for a pedagogical introduction to the formalism)
may be expanded in the bare coupling constant, gBs :

|M〉 ≡ (µ−εgBs )n
(∣∣∣M (0)

〉
+ µ−2εαBs

(4π)1−ε

∣∣∣M (1)
〉

+O
(
α2
s

))
, αBs ≡

(gBs )2

4π . (2.1)

Renormalisation is not essential in the present context, since splitting operators that are the
topic of this work renormalise as ordinary amplitudes. Nevertheless, we use µ−2εαBs /(4π)1−ε

as expansion parameter as it is dimensionless and thus yields fixed-order amplitudes
∣∣∣M (n)

〉
of integer mass dimension, because |M〉 has this property. Furthermore, there are no ln(4π)
terms in the results as in the MS renormalisation scheme.

Consider now an amplitude’s triple-collinear limit for partons f1, f2, f3, where fi may
denote a gluon, a quark or an anti-quark, with outgoing momenta pi, i = 1, 2, 3. The case
of some momenta incoming can be inferred by crossing and analytic continuation of the
Feynman integrals. Our results are provided for a final state splitting for definiteness. In
the present context, it is sufficient to consider two quark flavors denoted generically by q and
q′. The amplitude is known to factorize at leading power in s123 ≡ p2

123 ≡ (p1 + p2 + p3)2

as discussed for the particular case considered here in ref. [18] (see also ref. [30] for a
pedagogical general discussion):3

|Mf1f2f3...(p1, p2, p3, . . . )〉 ∼ Splitf1f2f3(p1, p2, p3) |Mf...(p, . . . )〉
(
s123 → 0) .

(2.2)
Splitf1f2f3(p1, p2, p3) is the splitting operator that we wish to evaluate in a perturbative
expansion up to O

(
αBs

)
:

Splitf1f2f3(p1, p2, p3) =
(
µ−εgBs

)2
(
Split(0)

f1f2f3
(p1, p2, p3) + µ−2εαBs

(4π)1−ε Split
(1)
f1f2f3

(p1, p2, p3) +O
(
(αBs )2

))
.

(2.3)
The splitting operator acts on the color and polarisation indices of the parton f in
|Mf...(p, . . . )〉 and yields a vector in color- and spin-space of the nearly collinear partons
f1,2,3. The splitting parton f is determined from f1,2,3 by flavor conservation, while the
factorization is only valid if f is well defined. The momentum, p, of the splitting parton f
is defined with the help of an auxiliary light-like vector q as follows:

p123 ≡ p+ s123
2 (p123 · q)

q , p2 = q2 = 0 , p · q 6= 0 , p0, q0 > 0 . (2.4)

Suitable p and q may always be uniquely constructed up to normalisation of q, assuming
that the three-vectors, q and p, are parallel, q ‖ p ‖ p123. Since the singularity structure of
one-loop QCD amplitudes is completely known [31], it is possible to derive the singularity

3We use the standard notation for asymptotic expansions throughout this publication.
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Figure 1. 9 diagrams contributing to the splitting operator q → qq′q̄′. The thick incoming lines on
the left side of each diagram correspond to the off-shell splitting parton. The outgoing lines on the
right side of each diagram are on shell. The anti-quark line carries an arrow of direction opposite
to that of the energy flow.

structure of the one-loop splitting operators [18]:

Split(1)
f1f2f3

(p1, p2, p3) =

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

 2
ε2

∑
1≤i<j≤3

Ti ·Tj

(
−2(pi · pj)− i0+

µ2

)−ε

+
(
−s123− i0+

µ2

)−ε 2
ε2

∑
1≤i≤j≤3

Ti ·Tj

(
2−

(
pi · q
p123 · q

)−ε
−
(
pj · q
p123 · q

)−ε)

+1
ε

b0 + γf −
∑

1≤i≤3
γi

 Split(0)
f1f2f3

(p1, p2, p3)

+O
(
ε0
)
,

(2.5)
where Ti are color-space operators corresponding to the generators, T ac′c, of the fundamen-
tal representation for quarks, the generators, −T a ?c′c , of the anti-fundamental representation
for anti-quarks, and the generators, if c′ac, of the adjoint representation for gluons. Further-
more, γq = γq̄ = 3/2CF , γg = b0/2, b0 = (11/3CA − 4/3TFnl), CF = (N2

c − 1)/2Nc = 4/3,
CA = Nc = 3. The presence of the leading coefficient of the QCD β-function, b0, is due to
the lack of renormalisation. We stress that, in the above formula, all terms of O

(
ε0
)
are

arbitrary. For convenience of the reader, we provide the expressions obtained from eq. (2.5)
for each of the splitting operators in the supplementary material attached to this publica-
tion. There, we only keep the pure-pole contributions, proportional to 1/ε2 and 1/ε, in the
pre-factor in eq. (2.5) acting on the tree-level splitting operators Split(0)

f1f2f3
(p1, p2, p3).

The splitting operators for the five possible splittings,4 q → qq′q̄′, q → qqq̄, q →
qgg, g → gqq̄ and g → ggg are obtained from diagrams depicted in figures 1, 2, 3, 4
and 5, 6 respectively. The incoming off-shell line of the splitting parton is contracted
with a massless Dirac spinor u0 ≡ u(p, λ0) for a quark splitting, and with a massless
transverse polarisation vector ε0 ≡ ε(p, λ0) for a gluon splitting, with λ0 the helicity of

4Anti-quark splitting operators are related to those of quarks by charge-conjugation symmetry of QCD.
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Figure 2. 18 diagrams contributing to the splitting operator q → qqq̄. Description as in figure 1.

Figure 3. 30 diagrams contributing to the splitting operator q → qgg Description as in figure 1.

– 5 –



J
H
E
P
0
7
(
2
0
2
2
)
0
5
2Figure 4. 33 diagrams contributing to the splitting operator g → gqq̄. Description as in figure 1.

the splitting parton. This prescription obviously realises eq. (2.2) by approximating the
numerator of the splitting parton’s propagator by a polarisation sum of a product of on-
shell spinor/polarisation vectors. The only non-trivial issue is the necessity of using a
light-cone-gauge gluon propagator:

〈0|Ãaµ(k)Abν(0)|0〉 = iδab

k2 + i0+

(
−gµν + qµkν + qνkµ

q · k

)
, (2.6)

where Aaµ is the free gluon field, tilde denotes Fourier transformation, and q, q2 = 0 is an
auxilliary light-like vector. This is, of course, part of the proof of the factorisation theorem.
For more details we refer the reader again to ref. [30].

Besides splitting operators, one also defines dimensionless splitting functions and av-
eraged splitting functions:

P̂f1f2f3 ≡
(1

2s123

)2
Split†f1f2f3

Splitf1f2f3 ,
〈
P̂f1f2f3

〉
≡ 1
ncfn

s
f

Tr
(
P̂f1f2f3

)
, (2.7)

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
0
5
2

Figure 5. Part of the 68 diagrams contributing to the splitting operator g → ggg. Description as
in figure 1.
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Figure 6. Part of the 68 diagrams contributing to the splitting operator g → ggg. Description as
in figure 1.

where ncf and nsf are the numbers of color and spin degrees-of-freedom of the splitting
parton, ncq = 3, ncg = 8, nsq = 2 and nsg = d − 2. The color- and spin-space operators
P̂f1f2f3 are relevant for the study of the triple-collinear limit of amplitudes squared and
summed over colors and polarisations of the external states. By color conservation, they
are proportional to the identity operator in color space. Due to helicity conservation in
massless QCD, the same holds for spin space in the case of quarks. The corresponding
averages

〈
P̂f1f2f3

〉
are necessary for the determination of the integrated subtraction terms

in the construction of subtraction schemes, see section 2.3. As a result of our work, we
provide:

P̂
(1)
f1f2f3

≡
(1

2s123

)2 (
Split(0) †

f1f2f3
Split(1)

f1f2f3
+ hermitian conjugate

)
, (2.8)

as well as its averaged version.

2.2 Evaluation of the diagrams

The calculation proceeds in standard fashion. The diagrams are generated with private
software (although the figures have been produced with FeynArts [32]) and simplified
with the program FORM [33]. Subsequently, we perform a Passarino-Veltman [34] reduc-
tion of the tensor integrals, consisting of expressing integrals with numerators proportional
to lµ1 · · · lµn , with l the loop momentum and n the tensor rank, as sums of symmetric ten-
sors built of products of p1,2,3, q and the metric tensor g, multiplied with scalar integrals
with each lµi contracted with another momentum. The reduction formulae are efficiently
derived with the help of the program Fermat [35]. In the case of Feynman integrals
whose denominators contain up to three different momenta from the set {p1, p2, p3, q}, we
encounter tensors of rank up to four. In the case of integrals whose denominators contain
all four momenta, the maximal tensor rank is two. Since four linearly-independent vectors
form a basis in four-dimensional space, the metric tensor itself can be expressed as a linear

– 8 –
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combination of products of two out of the four momenta. Hence, the procedure is singular
in four dimensions. As we are working in dimensional regularisation, this leads to the
appearance of a pole, 1/ε, in the coefficients of the Passarino-Veltman reduction. It has
been noticed in the study of ordinary (i.e. without linear propagators) tensor pentagon
integrals in ref. [36] that these poles are removed by switching from four-dimensional to
six-dimensional pentagon integrals. The same phenomenon occurs here as well, see sec-
tion 3.2. After Passarino-Veltman reduction, we perform a further integration-by-parts
reduction using the software package Kira [37, 38] for convenience, since it allows for lin-
ear propagators. The number of occurring integrals is reduced to thirty four, see section 3.
The reduction introduces spurious 1/ε poles in coefficients of the bubble integrals eq. (3.8)
and (3.9). This is the price for the removal of triangle integrals, i.e. integrals with three or-
dinary Feynman propagators. Since the bubble integrals are known exactly, these spurious
poles do not constitute a difficulty.

At this point, the results for the splitting operators still have a complicated color and
spin structure. Both of these structures can be simplified by the following two algorithms.
As far as color factors are concerned, we use the formulae:

ifabc = 1
TF

Tr
([
T a, T b

]
T c
)
, T aijT

a
kl = TF

(
δilδkj −

1
Nc
δijδkl

)
, TF = 1

2 , Nc = 3 .
(2.9)

This procedure is commonly referred to as the Cvitanovic algorithm [39]. For definiteness,
we assign the following color indices: c0 to the splitting parton, and ci, i = 1, 2, 3 to the
outgoing partons. This algorithm provides a unique basis of color structures. Below, we
list the occuring ones for each of the splitting functions.

The spin structure is simplified in several steps. First, /q is shifted to the right in any
product of Dirac γ-matrices using the Dirac algebra. If possible, this step is followed by
the application of:

/q u0 = 2(p123 · q)
p2

123
/p123 u0 . (2.10)

Subsequently, equations of motion for spinors ūi ≡ ū(pi, λi), i = 1, 2, v3 ≡ v(p3, λ3):

ū1 /p1 = ū2 /p2 = /p3v3 = 0 , (2.11)

are used, once /p1,2 has been shifted to the left, and /p3 to the right in any product of γ-
matrices. Polarisation vectors /ε0 and /ε

∗
1,2 are shifted to the left. The assumed transversality

of the polarisation vectors to not only the respective momentum, but also to q:

p · ε0 = q · ε0 = pi · ε∗i = q · ε∗i = 0 , i = 1, 2, 3 , (2.12)

is used at each step together with the implied relation:

p3 · ε0 = −(p1 + p2) · ε0 . (2.13)

This last relation breaks the explicit permutation symmetry in the case of the g → ggg

splitting, but is necessary to obtain a basis of spin-space structures without redundancy.
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With the above, the expressions for the splitting operators attain their final unique
representation in dimensional regularisation. The spin structures are, however, not linearly
independent in four dimensions. In ref. [36], it was pointed out that six-dimensional scalar
pentagon integrals disappear from the finite O

(
ε0
)
terms of the ε-expansion of scattering

amplitudes, if four-dimensional relations between spin structures are exploited. The same
happens to hold in our case for six-dimensional integrals containing four ordinary and one
linear propagator discussed in section 3.2. In order to make this fact explicit, we represent
any vector, including γ-matrices in a basis of the four vectors ki ≡ pi, i = 1, 2, 3, k4 ≡ q:

vµ =
4∑

i,j=1
kµi
(
K−1)

ij
kj · v , Kij ≡ ki · kj . (2.14)

The resulting splitting operators are only valid in four dimensions. On the other hand, the
remaining spinor chains in the case of splittings involving quarks are vastly simplified and
can be trivially expressed in the popular spinor-helicity formalism using v3± ∝ u3∓ (up
to a phase factor) and with i, k ∈ {1, 2, 3}, j ∈ {0, . . . , 3}:

ūi± /pk uj± =
(
ūi±uk∓

) (
ūk∓uj±

)
, ūi± /q uj± = 2

√
(pi · q)(pj · q) ,

pi · ε∗j± = ±
(
ūj±ui∓

) (
ūi∓u±(q)

)
√

2ū∓(q)uj±
,

(2.15)

where the subscripts ± denote helicity, while the unlisted cases vanish. As long as there
are spinor chains, this procedure does not yield larger expressions than those valid in
general d dimensions. As splitting operators expanded up to O

(
ε0
)
are useful to subtract

the singularities of exact amplitudes in practical calculations, we also provide them as
supplementary material attached to this publication, just as we do with for the exact
results which are far too lengthy to be useful in printed text.

In order to illustrate the structure of the splitting operators, we now list the occurring
color and spin structures for each of them.

q → q1q′
2q̄′

3

In this case, there are two color structures both at tree- and one-loop level:

δc1c0δc2c3 , δc2c0δc1c3 . (2.16)

At tree level, nevertheless, they are actually generated from a single diagram proportional to
T ac1c0 T

a
c2c3 , which is split into two terms by the Cvitanovic algorithm according to eqs. (2.9).

Furthermore, there are only three distinct spin structures at tree level:

ū1 γ
µ u0 ū2 γµ v3 , ū1 /p2 u0 ū2 /q v3 , ū1 /p3 u0 ū2 /q v3 , (2.17)

while there appear the following additional structures at one-loop level:

ū1γ
µ1 γµ2 γµ3 u0 ū2γµ1 γµ2 γµ3 v3 , ū1γ

µu0 ū2/p1γµ/qv3 , ū1γ
ν1 γν2 /p3u0 ū2γν1 γν2 /qv3 ,

ū1γ
ν1 γν2 /p3u0 ū2/p1γν1 γν2 v3 , ū1/p2γ

µ
/p3u0 ū2γµv3 , ū1/p2γ

µ
/p3u0 ū2/p1γµ/qv3 ,

ū1/p2γ
ν1 γν2 u0 ū2γν1 γν2 /qv3 , ū1/p2γ

ν1 γν2 u0 ū2/p1γν1 γν2 v3 , ū1/p2u0 ū2/p1v3 ,

ū1/p3u0 ū2/p1v3 . (2.18)

– 10 –



J
H
E
P
0
7
(
2
0
2
2
)
0
5
2

Since the singularities of the one-loop splitting operators given in eq. (2.5) have the same
spin structure as the tree-level splitting operators, the coefficients of the structures (2.18)
are regular in ε. Finally, the four-dimensional projection eq. (2.14) transforms the linear
combination of (2.17) and (2.18) into a linear combination of just:

ū1 /p2 u0 ū2 /p1 v3 , ū1 /p2 u0 ū2 /q v3 , ū1 /p3 u0 ū2 /p1 v3 , ū1 /p3 u0 ū2 /q v3 . (2.19)

q → q1q2q̄3

Up to the additional permutation 1↔ 2, the color and spin structures in this case are very
similar to those of the q → q1q

′
2q̄
′
3 case. The occurring color structures are, in fact, the

same:
δc1c0δc2c3 , δc2c0δc1c3 . (2.20)

The number of spin structures at tree-level is doubled:

ū1 γ
µ u0 ū2 γµ v3 , ū1 /p2 u0 ū2 /q v3 , ū1 /p3 u0 ū2 /q v3 ,

ū2 γ
µ u0 ū1 γµ v3 , ū2 /p1 u0 ū1 /q v3 , ū2 /p3 u0 ū1 /q v3 , (2.21)

while the additional spin structures with finite coefficients at one-loop level are:

ū1γ
µ1 γµ2 γµ3 u0 ū2γµ1 γµ2 γµ3 v3 , ū1γ

µu0 ū2/p1γµ/qv3 , ū1γ
ν1 γν2 /p3u0 ū2γν1 γν2 /qv3 ,

ū1γ
ν1 γν2 /p3u0 ū2/p1γν1 γν2 v3 , ū1/p2γ

µ
/p3u0 ū2γµv3 , ū1/p2γ

µ
/p3u0 ū2/p1γµ/qv3 ,

ū1/p2γ
ν1 γν2 u0 ū2γν1 γν2 /qv3 , ū1/p2γ

ν1 γν2 u0 ū2/p1γν1 γν2 v3 , ū1/p2u0 ū2/p1v3 ,

ū1/p3u0 ū2/p1v3 , ū2γ
µ1 γµ2 γµ3 u0 ū1γµ1 γµ2 γµ3 v3 , ū2γ

µu0 ū1/p2γµ/qv3 ,

ū2γ
ν1 γν2 /p3u0 ū1γν1 γν2 /qv3 , ū2γ

ν1 γν2 /p3u0 ū1/p2γν1 γν2 v3 , ū2/p1γ
µ
/p3u0 ū1γµv3 ,

ū2/p1γ
µ
/p3u0 ū1/p2γµ/qv3 , ū2/p1γ

ν1 γν2 u0 ū1γν1 γν2 /qv3 , ū2/p1γ
ν1 γν2 u0 ū1/p2γν1 γν2 v3 ,

ū2/p1u0 ū1/p2v3 , ū2/p3u0 ū1/p2v3 . (2.22)

Finally, the result of the four-dimensional projection eq. (2.14) of the spin structures is
given by:

ū1 /p2 u0 ū2 /p1 v3 , ū1 /p2 u0 ū2 /q v3 , ū1 /p3 u0 ū2 /p1 v3 , ū1 /p3 u0 ū2 /q v3 ,

ū2 /p1 u0 ū1 /p2 v3 , ū2 /p1 u0 ū1 /q v3 , ū2 /p3 u0 ū1 /p2 v3 , ū2 /p3 u0 ū1 /q v3 .

(2.23)

q → q1g2g3

In this case, there are two color structures at tree-level reflecting the symmetry of the
splitting operator with respect to the exchange of the two gluons:(

T c2T c3
)
c1c0

,
(
T c3T c2

)
c1c0

. (2.24)

The one additional structure at one-loop level is already symmetric:

δc1c0 Tr(T c2T c3) . (2.25)

– 11 –
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The spin-structures at tree-level are as follows:

ū1 /ε
∗
2 /ε
∗
3 /p3 u0 , ū1 /p2 /ε

∗
2 /ε
∗
3 u0 , ū1 /ε

∗
2 u0 (p1 · ε∗3) , ū1 /ε

∗
2 u0 (p2 · ε∗3) ,

ū1 /ε
∗
3 u0 (p1 · ε∗2) , ū1 /ε

∗
3 u0 (p3 · ε∗2) , ū1 /p2 u0 (ε∗2 · ε∗3) , ū1 /p3 u0 (ε∗2 · ε∗3) , (2.26)

while the list is extended at one-loop by:

ū1 /p2 /ε
∗
2 /p3 u0 (p1 · ε∗3) , ū1 /p2 /ε

∗
2 /p3 u0 (p2 · ε∗3) , ū1 /p2 /ε

∗
3 /p3 u0 (p1 · ε∗2) ,

ū1 /p2 /ε
∗
3 /p3 u0 (p3 · ε∗2) , ū1 /p2 u0 (p1 · ε∗2)(p1 · ε∗3) , ū1 /p2 u0 (p1 · ε∗2)(p2 · ε∗3) ,

ū1 /p2 u0 (p1 · ε∗3)(p3 · ε∗2) , ū1 /p2 u0 (p2 · ε∗3)(p3 · ε∗2) , ū1 /p3 u0 (p1 · ε∗2)(p1 · ε∗3) ,
ū1 /p3 u0 (p1 · ε∗2)(p2 · ε∗3) , ū1 /p3 u0 (p1 · ε∗3)(p3 · ε∗2) , ū1 /p3 u0 (p2 · ε∗3)(p3 · ε∗2) . (2.27)

In both cases, Bose symmetry is not explicit due to the simplification algorithm. While this
admittedly makes the expressions less elegant, it has no influence on actual calculations
using the splitting operators. Finally, the four-dimensional projection eq. (2.14) yields:

ū1 /p2 u0 (p1 · ε∗2)(p1 · ε∗3) , ū1 /p2 u0 (p1 · ε∗2)(p2 · ε∗3) , ū1 /p2 u0 (p1 · ε∗3)(p3 · ε∗2) ,
ū1 /p2 u0 (p2 · ε∗3)(p3 · ε∗2) , ū1 /p3 u0 (p1 · ε∗2)(p1 · ε∗3) , ū1 /p3 u0 (p1 · ε∗2)(p2 · ε∗3) ,
ū1 /p3 u0 (p1 · ε∗3)(p3 · ε∗2) , ū1 /p3 u0 (p2 · ε∗3)(p3 · ε∗2) . (2.28)

g → g1q2q̄3

The external states for this splitting operator are the same as in the previous case. This
translates into the same color structures up to index permutation. Hence, at tree level, the
color structures are: (

T c0T c1
)
c3c2

,
(
T c1T c0

)
c3c2

, (2.29)

while at one-loop there again appears:

δc2c3 Tr(T c0T c1) . (2.30)

The spin structures are not related in this trivial way, because the simplification algorithm
is not symmetric. We observe, for instance, that there are less spin structures at tree level:

ū2 /p1 /ε
∗
1 /ε0 v3 , ū2 /ε0 v3 (p2 · ε∗1) , ū2 /ε0 v3 (p3 · ε∗1) , ū2 /ε

∗
1 v3 (p1 · ε0) ,

ū2 /p1 v3 (ε0 · ε∗1) , ū2 /q v3 (ε0 · ε∗1) , (2.31)

but more additional spin structures with finite coefficients at one-loop level:

ū2/ε
∗
1/ε0/qv3 , ū2/ε

∗
1v3 (p2 ·ε0) , ū2/p1/ε0/qv3 (p2 ·ε∗1) , ū2/p1/ε0/qv3 (p3 ·ε∗1) ,

ū2/p1/ε
∗
1/qv3 (p1 ·ε0) , ū2/p1/ε

∗
1/qv3 (p2 ·ε0) , ū2/p1v3 (p1 ·ε0)(p2 ·ε∗1) ,

ū2/p1v3 (p1 ·ε0)(p3 ·ε∗1) , ū2/p1v3 (p2 ·ε0)(p2 ·ε∗1) , ū2/p1v3 (p2 ·ε0)(p3 ·ε∗1) ,

ū2/qv3 (p1 ·ε0)(p2 ·ε∗1) , ū2/qv3 (p1 ·ε0)(p3 ·ε∗1) , ū2/qv3 (p2 ·ε0)(p2 ·ε∗1) ,

ū2/qv3 (p2 ·ε0)(p3 ·ε∗1) . (2.32)
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A simple relation between the spin structures for q → qgg and g → gqq̄ is restored after
four-dimensional projection, eq. (2.14), as seen by comparing (2.28) with:

ū2 /p1 v3 (p1 · ε0)(p2 · ε∗1) , ū2 /p1 v3 (p1 · ε0)(p3 · ε∗1) , ū2 /p1 v3 (p2 · ε0)(p2 · ε∗1) ,
ū2 /p1 v3 (p2 · ε0)(p3 · ε∗1) , ū2 /q v3 (p1 · ε0)(p2 · ε∗1) , ū2 /q v3 (p1 · ε0)(p3 · ε∗1) ,
ū2 /q v3 (p2 · ε0)(p2 · ε∗1) , ū2 /q v3 (p2 · ε0)(p3 · ε∗1) . (2.33)

g → g1g2g3

The color structures of the tree-level pure-gluon splitting operator consist, as for ordinary
tree-level gluon-scattering amplitudes, of a trace of a product of fundamental representation
generators in all possible color-index permutations:

Tr(T c0T c1T c2T c3) , Tr(T c0T c1T c3T c2) , Tr(T c0T c2T c1T c3) ,
Tr(T c0T c2T c3T c1) , Tr(T c0T c3T c1T c2) , Tr(T c0T c3T c2T c1) . (2.34)

Disconnected traces appear at one-loop only:

Tr(T c0T c1) Tr(T c2T c3) , Tr(T c0T c2) Tr(T c1T c3) , Tr(T c0T c3) Tr(T c1T c2) . (2.35)

The spin structures consist of various contractions of polarisation vectors amongst them-
selves and with external momenta. With the present algorithm, the list at tree-level reads:

(ε0 · ε∗1)(ε∗2 · ε∗3) , (ε0 · ε∗2)(ε∗1 · ε∗3) , (ε0 · ε∗3)(ε∗1 · ε∗2) ,
(p1 · ε∗2)(ε∗1 · ε∗3)(p1 · ε0) , (p1 · ε∗3)(ε0 · ε∗1)(p1 · ε∗2) , (p2 · ε0)(ε∗1 · ε∗2)(p1 · ε∗3) ,
(p2 · ε0)(ε∗1 · ε∗3)(p1 · ε∗2) , (p2 · ε∗1)(ε0 · ε∗2)(p1 · ε∗3) , (p2 · ε∗1)(ε∗2 · ε∗3)(p1 · ε0) ,
(p2 · ε∗1)(ε∗2 · ε∗3)(p2 · ε0) , (p2 · ε∗3)(ε0 · ε∗1)(p1 · ε∗2) , (p2 · ε∗3)(ε0 · ε∗2)(p2 · ε∗1) ,
(p2 · ε∗3)(ε∗1 · ε∗2)(p1 · ε0) , (p3 · ε∗1)(ε0 · ε∗2)(p2 · ε∗3) , (p3 · ε∗1)(ε0 · ε∗3)(p1 · ε∗2) ,
(p3 · ε∗1)(ε∗2 · ε∗3)(p2 · ε0) , (p3 · ε∗2)(ε0 · ε∗1)(p1 · ε∗3) , (p3 · ε∗2)(ε0 · ε∗3)(p2 · ε∗1) ,
(p3 · ε∗2)(ε0 · ε∗3)(p3 · ε∗1) ,
(p3 · ε∗2)(ε∗1 · ε∗3)(p1 · ε0) , (2.36)

and it is extended at one-loop by:

(p1 · ε0)(p1 · ε∗2)(p1 · ε∗3)(p2 · ε∗1) , (p1 · ε0)(p1 · ε∗2)(p1 · ε∗3)(p3 · ε∗1) ,

(p1 · ε0)(p1 · ε∗2)(p2 · ε∗1)(p2 · ε∗3) , (p1 · ε0)(p1 · ε∗2)(p2 · ε∗3)(p3 · ε∗1) ,

(p1 · ε0)(p1 · ε∗3)(p2 · ε∗1)(p3 · ε∗2) , (p1 · ε0)(p1 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) ,

(p1 · ε0)(p2 · ε∗1)(p2 · ε∗3)(p3 · ε∗2) , (p1 · ε0)(p2 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) ,

(p1 · ε∗2)(p1 · ε∗3)(p2 · ε0)(p2 · ε∗1) , (p1 · ε∗2)(p1 · ε∗3)(p2 · ε0)(p3 · ε∗1) ,

(p1 · ε∗2)(p2 · ε0)(p2 · ε∗1)(p2 · ε∗3) , (p1 · ε∗2)(p2 · ε0)(p2 · ε∗3)(p3 · ε∗1) ,

(p1 · ε∗3)(ε∗1 · ε∗2)(p1 · ε0) , (p1 · ε∗3)(p2 · ε0)(p2 · ε∗1)(p3 · ε∗2) , (p1 · ε∗3)(p2 · ε0)(p3 · ε∗1)(p3 · ε∗2) ,

(p2 · ε0)(p2 · ε∗1)(p2 · ε∗3)(p3 · ε∗2) , (p2 · ε0)(p2 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) , (p2 · ε∗1)(ε0 · ε∗3)(p1 · ε∗2) ,

(p2 · ε∗3)(ε∗1 · ε∗2)(p2 · ε0) , (p3 · ε∗1)(ε0 · ε∗2)(p1 · ε∗3) , (p3 · ε∗1)(ε∗2 · ε∗3)(p1 · ε0) ,

(p3 · ε∗2)(ε0 · ε∗1)(p2 · ε∗3) , (p3 · ε∗2)(ε∗1 · ε∗3)(p2 · ε0) . (2.37)
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The four-dimensional projection eq. (2.14) removes contractions of polarisation vectors
amongst themselves:

(p1 · ε0)(p1 · ε∗2)(p1 · ε∗3)(p2 · ε∗1) , (p1 · ε0)(p1 · ε∗2)(p1 · ε∗3)(p3 · ε∗1) ,
(p1 · ε0)(p1 · ε∗2)(p2 · ε∗1)(p2 · ε∗3) , (p1 · ε0)(p1 · ε∗2)(p2 · ε∗3)(p3 · ε∗1) ,
(p1 · ε0)(p1 · ε∗3)(p2 · ε∗1)(p3 · ε∗2) , (p1 · ε0)(p1 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) ,
(p1 · ε0)(p2 · ε∗1)(p2 · ε∗3)(p3 · ε∗2) , (p1 · ε0)(p2 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) ,
(p1 · ε∗2)(p1 · ε∗3)(p2 · ε0)(p2 · ε∗1) , (p1 · ε∗2)(p1 · ε∗3)(p2 · ε0)(p3 · ε∗1) ,
(p1 · ε∗2)(p2 · ε0)(p2 · ε∗1)(p2 · ε∗3) , (p1 · ε∗2)(p2 · ε0)(p2 · ε∗3)(p3 · ε∗1) ,
(p1 · ε∗3)(p2 · ε0)(p2 · ε∗1)(p3 · ε∗2) , (p1 · ε∗3)(p2 · ε0)(p3 · ε∗1)(p3 · ε∗2) ,
(p2 · ε0)(p2 · ε∗1)(p2 · ε∗3)(p3 · ε∗2) , (p2 · ε0)(p2 · ε∗3)(p3 · ε∗1)(p3 · ε∗2) . (2.38)

In this case, however, the expression for the splitting operator is much larger after projection
than before. Hence, we do not provide it in electronic form. The only advantage of the
projection is the removal of terms proportional to the six-dimensional integral of section 3.2
for six possible permutations of the external momenta. On the other hand, since we know
(and have checked) that these integrals disappear in four dimensions, one can directly set
them to zero in the expanded expression up to O

(
ε0
)
.

2.3 Requirements posed by the construction of a subtraction scheme

If one could obtain the exact ε-dependence of the Feynman integrals occurring in the
expressions of the splitting operators derived with the methods of the previous section,
then this paragraph would not be required. Unfortunately, as we will see in section 3.2,
there is one integral that cannot, at least at present, be obtained in this generality. Hence,
we must understand what is actually required of the results for them to be useful in the
construction of a subtraction scheme. The conclusions of this discussion depend on the
perturbation-theory order at which the said subtraction scheme is to be valid. Here, we
restrict ourselves to N3LO.

To make the argument clear, we begin with the simplest possible subtraction scheme,
namely a scheme at NLO (more details in the classic refs. [1, 2]). Here, the relevant factor in
the dimensionally-regulated phase-space integration measure for a selected massless parton
takes the form: ∫∫ 1

0

dη
ηε

dξ
ξ−1+2ε , (2.39)

where η ≡ 1
2(1 − cos θ) and θ is the angle between the three-momentum of the chosen

parton and that of another massless parton, while ξ is the normalised energy of the chosen
parton. The squared tree-level matrix element has singular asymptotics at vanishing η, if
the two partons are either a quark-anti-quark pair of the same flavor, or one of them is a
gluon: 〈

M (0)
∣∣∣M (0)

〉
≡ f(η)

η
∼ f(0)

η
(η → 0) . (2.40)

We have suppressed the dependence on the remaining variables parameterising the final
state momenta that are irrelevant to the problem. There may also be a singularity at
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vanishing ξ if the energy is that of a gluon, but it is sufficient to restrict to just the
collinear singularity in order to demonstrate the main issue. A subtraction scheme allows
to evaluate the phase space integral of the squared matrix element with the help of:∫ 1

0

dη
η1+ε f(η) =

[∫ 1

0

dη
η1+ε (f(η)− f(0))

]
+
[
f(0)

∫ 1

0

dη
η1+ε

]

=
[∫ 1

0

dη
η1+ε (f(η)− f(0))

]
+
[
−1
ε
f(0)

]
.

(2.41)

The integrand of the integral in the first square bracket contains a subtraction term,
−f(0)/η1+ε that makes it integrable even after ε-expansion, while the integral in the second
square bracket is called the integrated subtraction term.

Suppose now, that we would like to evaluate double-real contributions to a cross section
at N3LO. These are cross-section contributions from processes that have two additional
massless partons in the final state with respect to the Born-approximation process. Further-
more, the required matrix elements are evaluated at one-loop order. For simplicity, let us
assume that the process is unpolarised. With these assumptions, the following expression:

−
( 2
s123

)2 [ 〈
M

(0)
f...

∣∣∣P̂ (1)
f1f2f3

∣∣∣M (0)
f...

〉
+ 2 Re

〈
M

(0)
f...

∣∣∣P̂ (0)
f1f2f3

∣∣∣M (1)
f...

〉]
, (2.42)

provides a subtraction term for triple-collinear singularities. Indeed, according to eqs. (2.2),
(2.7) and (2.8), it correctly removes these singularities from:

2 Re
〈
M

(0)
f1f2f3...

∣∣∣M (1)
f1f2f3...

〉
. (2.43)

By extension of eq. (2.41), we also need an integrated subtraction term, which contains
at least one explicit 1/ε pole. Since the integrated subtraction term is evaluated in the
collinear limit (in the example: f(η = 0)), there is no dependence on the transverse
direction, and we can use an averaged splitting function. This is, however, secondary.
More importantly, due to the presence of a 1/ε pole generated by phase-space integration,
we need the splitting functions to at least O(ε), in order for the cross-section contribution
to be correct at O

(
ε0
)
.

There is yet another issue to take into account when evaluating integrated subtraction
terms. Let us, for a moment, return to the example of one parton splitting into two,
but this time at the one-loop level. Whereas the tree-level matrix-element squared is
a rational function of scalar products of momenta, and has the asymptotic (2.40), one-
loop splitting functions for a splitting into two partons scale as s−ε12 when s12 → 0 or,
when expressed through η, as 1/ηε. This must be taken into account when evaluating the
one-loop integrated subtraction term with eq. (2.41), otherwise the coefficient of the 1/ε
pole will be incorrect. In our case of main interest, the subtraction term (2.42) scales as
s−ε123/s

2
123 on purely dimensional grounds. However, the triple-collinear splitting functions

have further singularities themselves. Indeed, let θij be the angle between the momenta of
partons i and j, and let Ek be the energy of parton k, with i, j, k ∈ {1, 2, 3}. Then, in the
worst case scenario of a gluon splitting into three gluons, the following limits are singular
additionally to the triple-collinear singularity already present: 1) θij → 0 (iterated single-
collinear limit); 2) Ei → 0 (single-soft limit); 3) θij → 0, Ek → 0; 4) Ei, Ej → 0 (double-soft
limit); 5) Ei, Ej → 0, Ei/Ej → 0 (iterated single-soft limit); 6) θij → 0, Ek, El → 0; 7)
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θij → 0, Ek, El → 0, Ek/El → 0. Each of these singular configurations requires subtraction
and integrated subtraction terms with the correct scaling in the relevant variables. Up to
four poles are thus generated: one for the triple-collinear limit, and one for each of the
three limits in case 7). Thus, the splitting functions must be known to O

(
ε4
)
. To be more

precise, beyond O(ε) we only need the approximations to the splitting functions valid in
the respective limit.

Let us conclude this discussion by taking a first look at the results for the Feynman
integrals presented in full detail in section 3. The results that are available with exact
dependence on ε consist of terms of the form:

(. . . )−ε 1
ε

2F1(. . . , x) , (. . . )−ε 1
ε2

2F1(. . . , x) ,

(. . . )−ε (. . . )ε 1
ε2

2F1(. . . , x) , (. . . )−ε 1
ε
F1(. . . , x, y) , (2.44)

where 2F1 is the hypergeometric function, see appendix A, and F1 is the Appell function, see
appendix B. The arguments x and y of these functions belong to the unit interval, and the
functions are regular at x→ 0 and y → 0. The dots in the exponential functions represent
kinematic-dependent variables providing the scaling in the singular limits discussed above.
From the structure follows, that the results for the splitting functions will be of sufficient
quality for N3LO for a given limit corresponding to x→ 0, if the hypergeometric functions
are expanded up to O

(
ε5
)
for a single pole 1/ε, or up to O

(
ε6
)
for a double pole 1/ε2 in

the coefficient of the 2F1 function. These expansions are provided in appendix A. In case
a singular limit corresponds to x → 1, the scaling might be changed due to the branch-
point singularity of the 2F1 function. In order to capture the correct behaviour, we provide
expansions about unit argument in appendix A. The situation is more involved for integrals
containing the Appell F1 function. In any of the limits containing a collinear singularity,
the triple-collinear splitting functions must factorize into a product of splitting functions for
one-to-two splittings. These splitting functions may be expressed through hypergeometric
functions as worst, see ref. [15]. Hence, the Appell function should reduce to hypergeometric
functions in these cases. We have verified the correctness of this conclusion. A similar
simplification should take place for limits with a single-soft singularity. The latter has an
even simpler functional form, see ref. [17]. In the remaining, double-soft-singular case, the
Appell F1 functions present in the integrals reduce to hypergeometric functions as well, see
eqs. (3.14), (3.15) and (B.4). In the end, the F1 function with arbitrary arguments is only
needed to O(ε). This expansion is given in eq. (B.2).

There still remains the highly-nontrivial six-dimensional integral of section 3.2. We
have verified that it only contributes to the pure triple-collinear case, as well as to the triple-
collinear/double-soft case. In the latter, one could have expected a non-trivial integral with
a square root of a Gram determinant, just as we have obtained, in view of the general results
for the one-loop double-soft limit presented in ref. [22].5

5The results of ref. [22] are restricted to expansions up to O
(
ε0). Nevertheless, the discussion of the

calculation of the integrals points to the presence of a square root of a Gram determinant at higher orders
in the ε-expansion.
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2.4 A short list of checks

The complexity of the calculation warrants extensive checking. We have successfully per-
formed the following checks:

1. comparison of the predicted singularity structure of the splitting operators, eq. (2.5),
with that obtained from the direct calculation;

2. comparison of the anti-symmetric part of the splitting function for q → qq′q̄′ with
the result given in ref. [18];

3. comparison of the splitting functions for q → qq′q̄′ and q → qqq̄ expanded to O
(
ε0
)

obtained using the methods of section 2.2, with the result of an expansion in the triple-
collinear limit of one-loop matrix-elements squared for the processes V → qq̄q′q̄′ and
V → qq̄qq̄, with V a massive off-shell vector boson;

4. numerical comparison of the triple-collinear limits of one-loopmatrix-elements squared
at O

(
ε0
)
for six-parton processes with the predicted asymptotics, eq. (2.42), using the

software library NJet [40];

5. comparison of the values of the master integrals obtained from analytic formulae and
from Mellin-Barnes representations up to the provided orders of ε-expansion.

3 Master integrals

After Passarino-Veltman reduction and integration-by-parts reduction using the software
package Kira [37, 38], the splitting operators are expressed in terms of 34 master integrals.
However, most of these integrals are related by permutation of the external momenta.
Taking this into account, there remain only 9 master integrals depicted in figure 7. All of
them are generated from the following formula:

I(d)
a1a2a3a4a5 ≡ µ

2ε
∫ ddl
iπd/2

1
(l2)a1 ((l+ p1)2)a2 ((l+ p1 + p2)2)a3 ((l+ p1 + p2 + p3)2)a4 (l · q)a5

= (−1)a+a5Γ
(
a− d2

)∫
R4

+

( 4∏
i=1

αai−1
i dαi
Γ(ai)

)
δ(1−∑4

i=1 αi)(α1 +α2 +α3 +α4)a+a5−d

(−s12 α1α3− s123 α1α4− s23 α2α4− i0+)a−d/2

× 1
((p1 · q) α2 + (p12 · q) α3 + (p123 · q) α4− i0+)a5 ,

(3.1)
where a ≡ a1 + a2 + a3 + a4, pij ≡ pi + pj , sij ≡ p2

ij = 2(pi · pj), p123 ≡ p1 + p2 + p3
and s123 ≡ p2

123 = s12 + s13 + s23. Expressions for missing propagators, i.e. at ai → 0 are
obtained by the simple replacement:

αai−1
i

Γ(ai)
−−−−→
ai → 0

δ(αi) . (3.2)

The results presented in the next subsections are normalised with a universal function of ε:

rΓ ≡
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε) . (3.3)
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Figure 7. Diagrammatic representation of the master integrals. Lines 1, 2 and 3 correspond to
outgoing momenta p1, p2 and p3 respectively. The thick incoming line is off shell with momentum
p123 = p1 + p2 + p3. The red double-line corresponds to a linear (eikonal) propagator introduced
through the use of the lightcone gauge.

With rΓ, the one-loop triangle integral in d = 4 − 2ε is a pure double pole in ε up to
dependence on the momentum-transfer squared dictated by dimensional arguments:

I
(4−2ε)
11100 = rΓ

[(−s12
µ2

)−ε 1
s12

]
1
ε2
. (3.4)

The master integrals depend on a number of kinematics-based variables. It is useful to
define the following dimensionless variables:

x1 ≡
s23
s123

, x2 ≡
s13
s123

, x3 ≡
s12
s123

, zi ≡
pi · q
p123 · q

,

xi ∈ (0, 1) , zi ∈ (0, 1) ,
3∑
i=1

xi =
3∑
i=1

zi = 1 .
(3.5)

There are further restrictions on the possible values of xi and zi. Indeed, consider for
example the restframe of p23 with m2

23 ≡ s23, and let cθ be the cosine of the angle between
the three-vectors p1 and q. Then:

x1 = s23
s123

= m2
23

m2
23 + 2p0

1 m23
= 1

1 + 2p0
1

m23

,

1− z1 = p23 · q
p123 · q

= m23 q
0

p0
1q

0 (1− cθ) +m23 q0 = 1
1 + 2p0

1
m23

(
1−cθ

2

) ≥ 1
1 + 2p0

1
m23

= x1 .

(3.6)

Hence, in general:

0 < xi + zi ≤ 1 , zi
1− xi

≤ 1 , xi
1− zi

≤ 1 . (3.7)
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3.1 Results with exact dependence on the spacetime dimension

The integrals listed in this subsection have been evaluated in d = 4 − 2ε dimensions.
Their dependence on the dimensional regularisation parameter ε is exact, while the results
are expressed in terms of hypergeometric 2F1 functions, see appendix A, and Appell F1
functions, see appendix B. The arguments of these functions belong to the unit interval in
every case due to (3.5) and (3.7). We begin with ordinary Feynman integrals:

I
(4−2ε)
10010 =rΓ

(
−s123

µ2

)−ε 1
ε(1−2ε) , (3.8)

I
(4−2ε)
10100 =rΓ

(
−s12

µ2

)−ε 1
ε(1−2ε) , (3.9)

I
(4−2ε)
11110 =rΓ

(
−s12s23

µ2s123

)−ε 2
s12s23ε2

×
(

(x1 +x2)ε2F1

(
−ε,−ε,1−ε,1− x1

x1 +x2

)
+(x2 +x3)ε2F1

(
−ε,−ε,1−ε,1− x3

x2 +x3

)
+

−((x1 +x2)(x2 +x3))ε 2F1

(
−ε,−ε,1−ε,1− x1

x1 +x2

x3

x2 +x3

))
. (3.10)

The integrals eqs. (3.8) and (3.9) are two cases of the one-loop bubble integral also known
as the B0 function. As such, they are textbook material. The one-loop off-shell box integral
eq. (3.10) has been evaluated in ref. [36]. The following integrals with a linear propagator
can be found in ref. [41]:

I
(4−2ε)
01011 = −rΓ

(−s23
µ2

)−ε 1
(p123 · q) ε (1− 2ε) 2F1 (1, 1− ε, 2− 2ε, 1− z1) , (3.11)

I
(4−2ε)
11101 = −rΓ

(−s12
µ2

)−ε 2
s12 (p12 · q) ε2 2F1

(
1, 1, 1− ε, 1− z1

z1 + z2

)
, (3.12)

I
(4−2ε)
10111 = −rΓ

(−s123
µ2

)−ε 2
(s13 + s23) (p123 · q) ε (1 + ε)

×
(

2F1

(
1, 1, 2 + ε, 1− z3

1− x3

)
− x−ε3

1− z3
2F1

(
1, 1, 2 + ε, 1− z3

1− x3

x3
1− z3

))
.

(3.13)

These results may be verified by directly integrating the corresponding Feynman-parameter
integrals using the general expression eq. (3.1). In the present work, we have obtained two
more exact results:

I
(4−2ε)
11011 = −rΓ

(−s123
µ2

)−ε 1
(s12 + s13) (p123 · q) ε2

×
(

2 2F1

(
1, 1, 1− ε, 1− z1

1−x1

)
−x−ε1 F1

(
1,−ε, 1, 1− 2ε, 1− z1, 1−

z1
1−x1

))
,

(3.14)

I
(4−2ε)
01111 = −rΓ

(−s23
µ2

)−ε 1
s23 (p123 · q) ε2

F1 (1,−ε, 1, 1− 2ε, 1− z1, 1− z1− z2) . (3.15)
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The values of these integrals in an ε-expansion to O
(
ε0
)
can be found in ref. [41]. These

expansions are, however, insufficient for applications at N3LO. The first integral, eq. (3.14),
can be evaluated starting from the following Mellin-Barnes representation, which can be
derived with standard methods described for example in ref. [42]:

I
(4−2ε)
11011 = −

(−s123
µ2

)−ε 1
s123 (p123 · q) Γ(−2ε)

× 1
(2πi)2

∫∫
C

dz1 dz2 Γ (1 + ε+ z1) Γ (1 + z2) Γ (1 + z1 + z2) Γ (−ε− z1) Γ (−1− ε− z2)

×Γ (−z1) Γ (−z2)
(
s23
s123

)z1 ( p1 · q
p123 · q

)z2

.

(3.16)
Using the method proposed in appendix C of ref. [43], one obtains a one-fold integral, which
straightforwardly yields eq. (3.14). The second integral, eq. (3.15), has the Mellin-Barnes
representation:

I
(4−2ε)
01111 = −

(−s23
µ2

)−ε Γ(1 + ε)
s23 (p123 · q) Γ(−2ε)

× 1
(2πi)2

∫∫
C

dz1 dz2 Γ (−ε+ z1) Γ (1 + z2) Γ (1 + z1 + z2) Γ (−1− ε− z1 − z2)

× Γ (−z1) Γ (−z2)
(
p1 · q
p123 · q

)z1 ( p12 · q
p123 · q

)z2

.

(3.17)

The result follows by comparing with the Mellin-Barnes representation of the Appell F1
function that appears last in eq. (B.1). An analysis of the soft/collinear limits of the
splitting functions shows that the function F1(1,−ε, 1, 1 − 2ε, 1 − x, 1 − y) with general
arguments x 6= y away from the endpoints 0 and 1, is only needed in an ε-expansion to
O(ε). The respective result can be found in eq. (B.2). Indeed, in any soft/collinear limit,
the F1 functions with general arguments cancel, while they are expressible through 2F1
functions in the remaining cases. The appropriate expressions are given in appendix B.

3.2 The light-cone-gauge box integral with one leg off shell

It turns out that the light-cone-gauge box integral I(d)
11111 is convergent in d = 6 dimensions.

This property mostly follows from the well-known fact that there are no soft/collinear
divergences in six dimensions, and from ultraviolet power counting. In the case of ordinary
Feynman integrals, these arguments are sufficient to prove convergence. Due to the presence
of the linear propagator, it is necessary to consider possible rapidity divergences. The
latter make the six-dimensional integrals I(6)

01111, I
(6)
10111, I

(6)
11011 and I(6)

11101 diverge, although
the aforementioned “soft/collinear/ultraviolet argument” applies in their case as well. Since
these rapidity divergences are due to large longitudinal, l+, and transverse, lT , components
of the loop momentum defined with respect to q, with |l+| ∼ l2

T , they only disappear for
integrals with at least four ordinary propagators, e.g. for I(6)

11111. With the help of the
integration-by-parts reduction relations and using the methods of refs. [44, 45], we obtain
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the following dimensional-shift relation:

2s123 I
(d)
11111 = (x1z1−x2z2 +x3z3)2− 4x1x3z1z3

x1x3z1 (1−x3− z3) (d− 4) I(d+2)
11111

+ (x1z1−x2z2 +x3z3) (z1 + z2)− 2x3z1z3

x3z1 (1−x3− z3) I
(d)
01111−

x1z1−x2z2 +x3z3

x1x3z1
I

(d)
10111

+ (x1z1−x2z2 +x3z3)− 2x1x3

x1x3 (1−x3− z3) I
(d)
11011−

(x1z1−x2z2 +x3z3)− 2x1(z1 + z2)
x1 (1−x3− z3) I

(d)
11101

+ (x1z1−x2z2 +x3z3)− 2z1(x1 +x2)
z1 (1−x3− z3)

(
s123

p123 · q

)
I

(d)
11110 . (3.18)

The presence of the factor (d− 4) on the right-hand-side coefficient of I(d+2)
11111 implies that

the integral I(4−2ε)
11111 expanded up to O

(
ε0
)
is entirely given by the integrals of the previous

subsection. In fact, this expansion is given in ref. [41]. On the other hand, since the results
of previous studies of one-loop triple-collinear splittings have been restricted to expansions
up to O

(
ε0
)
, this integral has never been really needed in view of eq. (3.18). Let us note

that the coefficient of I(d+2)
11111 is proportional to the Gram determinant of the momenta

ki = pi, i = 1, 2, 3, k4 = q. Indeed:

∆4 ≡ det(ki · kj) = 1
4s

2
123 (p123 · q)2

(
(x1z1 − x2z2 + x3z3)2 − 4x1x3z1z3

)
≡
(1

2s123 (p123 · q) d4

)2
.

(3.19)

An analysis of the soft/collinear limits of the splitting functions shows that only the value
of I(6)

11111 is required for non-singular configurations, while the double-soft limit p1, p2 → 0,
with z1/(z1 + z2) ∈ (0, 1), i.e. excluding the strongly ordered limits z1 � z2 and z2 � z1
further requires I(6−2ε)

11111 up to O(ε). In order to evaluate I(6−2ε)
11111 , we turn to the Feynman-

parameter representation eq. (3.1):

I
(6−2ε)
11111 =

(
−s123
µ2

)−ε
Γ(1 + ε)

s123 (p123 · q)

∫
R4

+

4∏
i=1

dαi
δ(1−α1) (α1 +α2 +α3 +α4)2ε−1

(α2 z1 +α3(z1 + z2) +α4) (α1(α3 x3 +α4) +α2α4 x1)1+ε

=

(
−s123 (p1·q)
µ2 (p123·q)

)−ε
Γ(1 + ε)

s123 (p12 · q)

∫∫∫ ∞
0

dα2 dα3 dα4
(1 +α2 +α3 y1 +α4 z1) 2ε−1

(α2 +α3 +α4) (α3 u3 +α4(1 +α2 x1))1+ε .

(3.20)
In the first line, we have used the Cheng-Wu theorem to change the δ-function to only
restrict α1. In the second line, we have rescaled the integration variables as follows:

α3 → α3 y1 , α4 → α4 z1 , (3.21)

and defined:
y1 ≡

z1
z1 + z2

∈ (0, 1) , u3 ≡
x3

1− z3
∈ (0, 1) . (3.22)

The integral thus depends on the variables x1, y1, z1 and u3. The purpose of the rescaling
eq. (3.21) is to yield an integrable integrand in the double-soft limit. In this limit, out of
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the four variables x1, y1, z1, u3 only z1 vanishes. Setting p1 = p2 = 0 in the first line of
eq. (3.20) yields an integral in α4 that is not integrable at the lower limit α4 = 0. The
integral on the second line does not suffer from this pathological behaviour. At the same
time, we factor-out the non-trivial scaling in the limit in the pre-factor.

The integrations may now be performed with the software package PolyLogTools [46]
in the order α3, α2, α4, using a fibration basis for generalized polylogarithms corresponding
to the ordering of the variables (α3, α2, α4, z1, x1, y1, u3, r1, r2). The last two variables
are roots of a quadratic polynomial in α4 that must be factorized in order to obtain an
alphabet linear in the integration variables:

r1,2 ≡
x1z1 − x2z2 + x3z3 ∓ d4

2x1z1z3
. (3.23)

Here, d4 is related to the Gram determinant as defined in eq. (3.19). The final result is:

2
√

∆4

((
−s123 (p1 ·q)
µ2 (p123 ·q)

)−ε
Γ(1+ε)

)−1

I
(6−2ε)
11111 =

G(0,−r1)G(0,u3)G
(
u3

r1
,x1

)
+G(0,−r1)G(0,u3)G

(
u3

r1
,y1

)
+

−G(0,−r2)G(0,u3)G
(
u3

r2
,x1

)
−G(0,−r2)G(0,u3)G

(
u3

r2
,y1

)
+G(0,−r2)G(0,x1)G

(
1−x1

r2x1
,z1

)
−G(0,−r1)G(0,x1)G

(
1−x1

r1x1
,z1

)
+G(0,−r1)G(0,y1)G

(
y1−

1
r1
,z1

)
−G(0,−r2)G(0,y1)G

(
y1−

1
r2
,z1

)
+G(0,−r1)G(0,y1)G

(
u3

r1y1
,x1

)
−G(0,−r1)G(0,u3)G

(
u3

r1y1
,x1

)
+G(0,−r2)G(0,u3)G

(
u3

r2y1
,x1

)
−G(0,u3)G(0,y1)G

(
u3

r1y1
,x1

)
+G(0,u3)G(0,y1)G

(
u3

r2y1
,x1

)
−G(0,−r2)G(0,y1)G

(
u3

r2y1
,x1

)
+G(0,−r1)G(0,u3)G

(
y1

u3
− 1
r1
,z1

)
−G(0,−r1)G(0,y1)G

(
y1

u3
− 1
r1
,z1

)
+G(0,u3)G(0,y1)G

(
y1

u3
− 1
r1
,z1

)
−G(0,−r2)G(0,u3)G

(
y1

u3
− 1
r2
,z1

)
+G(0,−r2)G(0,y1)G

(
y1

u3
− 1
r2
,z1

)
−G(0,u3)G(0,y1)G

(
y1

u3
− 1
r2
,z1

)
+

−G(0,0,−r1)G(0,u3)+G(0,0,−r1)G
(

1
r1
,x1

)
−G(0,0,−r1)G

(
1− 1

r1
,z1

)
+

−G(0,0,−r1)G
(
u3

r1
,x1

)
−G(0,0,−r1)G

(
u3

r1
,y1

)
+G(0,0,−r1)G

(
1
r1
,y1

)
+G(0,0,−r1)G

(
u3

r1y1
,x1

)
−G(0,0,−r1)G

(
y1

u3
− 1
r1
,z1

)
+G(0,0,−r1)G

(
y1−

1
r1
,z1

)
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+G(0,0,−r2)G(0,u3)−G(0,0,−r2)G
(

1
r2
,x1

)
+G(0,0,−r2)G

(
1− 1

r2
,z1

)
+G(0,0,−r2)G

(
u3

r2
,x1

)
+G(0,0,−r2)G

(
u3

r2
,y1

)
−G(0,0,−r2)G

(
1
r2
,y1

)
+

−G(0,0,−r2)G
(
u3

r2y1
,x1

)
+G(0,0,−r2)G

(
y1

u3
− 1
r2
,z1

)
−G(0,0,−r2)G

(
y1−

1
r2
,z1

)
+

−G(0,0,u3)G
(
u3

r1
,x1

)
+G(0,−r1)G(0,0,u3)−G(0,−r2)G(0,0,u3)

+G(0,0,u3)G
(
u3

r2
,x1

)
−G(0,0,u3)G

(
u3

r1
,y1

)
+G(0,0,u3)G

(
u3

r2
,y1

)
+G(0,0,u3)G

(
u3

r1y1
,x1

)
−G(0,0,u3)G

(
u3

r2y1
,x1

)
−G(0,0,u3)G

(
y1

u3
− 1
r1
,z1

)
+G(0,0,u3)G

(
y1

u3
− 1
r2
,z1

)
−G(0,0,x1)G

(
1−x1

r1x1
,z1

)
+G(0,0,x1)G

(
1−x1

r2x1
,z1

)
+G(0,0,y1)G

(
u3

r1y1
,x1

)
+G(0,0,y1)G

(
y1−

1
r1
,z1

)
−G(0,0,y1)G

(
y1−

1
r2
,z1

)
+

−G(0,0,y1)G
(
u3

r2y1
,x1

)
−G(0,0,y1)G

(
y1

u3
− 1
r1
,z1

)
+G(0,0,y1)G

(
y1

u3
− 1
r2
,z1

)
+

−G(0,−r1)G(1,0,u3)+G(0,−r2)G(1,0,u3)−G(0,−r1)G(1,0,x1)

+G(1,0,x1)G
(

1−x1

r1x1
,z1

)
−G(1,0,x1)G

(
1−x1

r2x1
,z1

)
+G(0,−r2)G(1,0,x1)+

−G(0,−r1)G(1,0,y1)+G(0,−r2)G(1,0,y1)+G(0,−r1)G
(

1− 1
r1
,− 1
r1
,z1

)
+G(0,−r1)G

(
1
r1
,0,x1

)
+G(0,−r1)G

(
1
r1
,0,y1

)
−G(0,−r2)G

(
1− 1

r2
,− 1
r2
,z1

)
+

−G(0,−r1)G
(
u3

r1
,0,x1

)
−G(0,−r2)G

(
1
r2
,0,x1

)
−G(0,−r2)G

(
1
r2
,0,y1

)
+G(0,u3)G

(
u3

r1
,0,x1

)
−G(0,−r1)G

(
u3

r1
,0,y1

)
+G(0,u3)G

(
u3

r1
,0,y1

)
+G(0,−r2)G

(
u3

r2
,0,x1

)
−G(0,u3)G

(
u3

r2
,0,x1

)
+G(0,−r2)G

(
u3

r2
,0,y1

)
+

−G(0,u3)G
(
u3

r2
,0,y1

)
−G(0,x1)G

(
1−x1

r1x1
,0,z1

)
−G(0,−r1)G

(
1−x1

r1x1
,− 1
r1
,z1

)
+G(0,x1)G

(
1−x1

r2x1
,0,z1

)
+G(0,−r2)G

(
1−x1

r2x1
,− 1
r2
,z1

)
−G(0,−r1)G

(
y1−

1
r1
,− 1
r1
,z1

)
+G(0,y1)G

(
y1−

1
r1
,y1,z1

)
+G(0,−r2)G

(
y1−

1
r2
,− 1
r2
,z1

)
−G(0,y1)G

(
y1−

1
r2
,y1,z1

)
+

−G(0,u3)G
(
u3

r1y1
,0,x1

)
+G(0,y1)G

(
u3

r1y1
,0,x1

)
+G(0,−r1)G

(
u3

r1y1
,0,x1

)
+G(0,u3)G

(
u3

r2y1
,0,x1

)
−G(0,y1)G

(
u3

r2y1
,0,x1

)
−G(0,−r2)G

(
u3

r2y1
,0,x1

)
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+G(0,u3)G
(
y1

u3
− 1
r1
,
y1

u3
,z1

)
−G(0,y1)G

(
y1

u3
− 1
r1
,
y1

u3
,z1

)
+G(0,−r1)G

(
y1

u3
− 1
r1
,− 1
r1
,z1

)
+

−G(0,u3)G
(
y1

u3
− 1
r2
,
y1

u3
,z1

)
+G(0,y1)G

(
y1

u3
− 1
r2
,
y1

u3
,z1

)
−G(0,−r2)G

(
y1

u3
− 1
r2
,− 1
r2
,z1

)
+

−G(−1,0,0,−r1)+G(−1,0,0,−r2)+G(0,0,0,−r1)−G(0,0,0,−r2)+G
(

1− 1
r1
,1,0,z1

)
+G

(
1− 1

r1
,− 1
r1
,0,z1

)
+G

(
1
r1
,0,0,x1

)
+G

(
1
r1
,0,0,y1

)
−G

(
1− 1

r2
,1,0,z1

)
+

−G
(

1
r2
,0,0,x1

)
−G

(
1
r2
,0,0,y1

)
−G

(
1− 1

r2
,− 1
r2
,0,z1

)
−G

(
u3

r1
,0,0,x1

)
+G

(
u3

r2
,0,0,x1

)
+

−G
(
u3

r1
,0,0,y1

)
+G

(
u3

r2
,0,0,y1

)
−G

(
1−x1

r1x1
,− 1
r1
,0,z1

)
+G

(
1−x1

r2x1
,− 1
r2
,0,z1

)
+

−G
(
y1−

1
r1
,− 1
r1
,0,z1

)
−G

(
y1−

1
r1
,y1,0,z1

)
+G

(
y1−

1
r2
,− 1
r2
,0,z1

)
+G

(
u3

r1y1
,0,0,x1

)
+

−G
(
u3

r2y1
,0,0,x1

)
+G

(
y1−

1
r2
,y1,0,z1

)
+G

(
y1

u3
− 1
r1
,− 1
r1
,0,z1

)
+G

(
y1

u3
− 1
r1
,
y1

u3
,0,z1

)
+

−G
(
y1

u3
− 1
r2
,− 1
r2
,0,z1

)
−G

(
y1

u3
− 1
r2
,
y1

u3
,0,z1

)
+ζ2

(
−3G

(
u3

r1
,x1

)
+3G

(
u3

r2
,x1

)
+

−3G
(
u3

r1
,y1

)
+3G

(
u3

r2
,y1

)
−G

(
1−x1

r1x1
,z1

)
+G

(
1−x1

r2x1
,z1

)
+3G

(
u3

r1y1
,x1

)
+

−3G
(
u3

r2y1
,x1

)
−3G

(
y1

u3
− 1
r1
,z1

)
+3G

(
y1

u3
− 1
r2
,z1

)
+3G

(
1
r1
,x1

)
−3G

(
1
r2
,x1

)
+3G

(
y1−

1
r1
,z1

)
−3G

(
y1−

1
r2
,z1

)
+3G

(
1
r1
,y1

)
−3G

(
1
r2
,y1

)
−3G

(
1− 1

r1
,z1

)

+3G
(

1− 1
r2
,z1

)
−3G(−1,−r1)+3G(−1,−r2)+4G(0,−r1)−4G(0,−r2)

)
+O(ε) , (3.24)

where the multiple polylogarithms are defined recursively as follows:

G(a1, . . . , an, z) ≡
∫ z

0

dt
t− a1

G(a2, . . . , an, t) , G(0, . . . , 0︸ ︷︷ ︸
n

, z) ≡ 1
n! lnn(z) , (3.25)

and can be numerically evaluated with PolyLogTools through its interface to the soft-
ware package GiNaC [47, 48]. The right-hand-side of eq. (3.24) is regular in z1 by con-
struction. The double-soft limit may be easily obtained with PolyLogTools using the
function ExpandPolyLogs to expand in z1 to O

(
z0

1
)
. The result may then be simplified

using the shuffle algebra of the multiple polylogarithms with the function ShuffleG. It
turns out that the occurring multiple polylogarithms may be rewritten in terms of clas-
sical polylogarithms up to weight three only by simply transforming the expression with
the function GToLi. Of course, the result eq. (3.24) may also be rewritten in terms of
classical polylogarithms up to weight three, since arbitrary multiple polylogarithms up to
this weight have this property. Apart from the double-soft limit, however, the result is not
simpler, but involves even more polylogarithms than there are multiple polylogarithms in
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eq. (3.24). Finally, we relegate the lengthy expression for the O(ε) term of the expansion of
the left-hand-side of eq. (3.24) in the double-soft limit to supplementary material attached
to this publication, see appendix C.

4 Outlook

The present publication completes the study of one-loop triple-collinear splitting operators
and the related splitting functions. The results are sufficient for the construction of an
N3LO subtraction scheme. In fact, the only missing input for complete generality is the
exact ε-dependence of the six-dimensional light-cone-gauge box integral discussed in sec-
tion 3.2. Should this result be derived in the future, it can be readily substituted in the
provided expressions.

For applications at N3LO, there still remains the need to provide the double-soft
asymptotics of one-loop matrix-elements squared to sufficient order in the ε-expansion. Of
course, even with the knowledge of all the limits, the construction of an N3LO subtraction
scheme remains a daunting task.
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A Definition, representations and expansions of hypergeometric 2F1

functions

The hypergeometric functions occurring in the expressions of the splitting operators have
been chosen to have arguments 0 < x < 1, which ensures that their defining series converge:

2F1(a, b, c, x) ≡
∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)
Γ(a)Γ(b)Γ(c+ n)

xn

n!

= Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tx)−a

= 1
2πi

∫
C

dz Γ(a+ z)Γ(b+ z)Γ(c)Γ(−z)
Γ(a)Γ(b)Γ(c+ z) (−x)z

= 1
2πi

∫
C

dz Γ(a+ z)Γ(b+ z)Γ(c)Γ(c− a− b− z)Γ(−z)
Γ(a)Γ(b)Γ(c− a)Γ(c− b) (1− x)z .

(A.1)

For completeness, we have also recalled the standard ordinary integral representation of
the 2F1 function and two of its Mellin-Barnes representations. The integration contours, C,
in the latter case should be chosen along the imaginary axis and separate the poles of the
Γ-functions Γ(· · ·+z) and Γ(· · ·−z). If this cannot be achieved for the desired value of the
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dimensional regularisation parameter ε, then the correct representation may be obtained
with the help of an analytic continuation, for example using the software package MB [49].
However, this is not needed for any of the functions listed below. The behaviour of the
functions at the endpoint x = 1 requires an asymptotic expansion which may be derived
with the help of a direct consequence of the integral representation on the second line
of eq. (A.1):

2F1(a, b, c, x) = Γ(c− a− b)Γ(c)
Γ(c− a)Γ(c− b) 2F1(a, b, a+ b− c+ 1, 1− x)

+ Γ(a+ b− c)Γ(c)
Γ(a)Γ(b) (1− x)c−a−b 2F1(c− a, c− b, c− a− b+ 1, 1− x) .

(A.2)

The ε-expansions of the hypergeometric functions required by the present work may be
obtained with the help of the software package HypExp [50–52]. Below, we reproduce
them retaining terms up to transcendental weight six as necessary for applications at N3LO.
The results are given in terms of Riemann’s ζn, classical polylogarithms Lin(x) and Nielsen
polylogarithms Sn,p(x):

Sn,p(x) ≡ (−1)n+p−1

(n− 1)!p!

∫ 1

0
dt lnn−1(t) lnp(1− tx)

t
, Lin(x) = Sn−1,1(x) , ζn = Lin(1) .

(A.3)
We also provide expansions at x = 1 and, in one case where it is needed, at x = 0. The
following functions are present in the expressions of master integrals:

2F1(−ε,−ε,1−ε,x)=

1+ε2Li2(x)+ε3
(
−ζ3 +Li3(1−x)+Li3(x)−Li2(1−x)ln(1−x)− 1

2 ln(x)ln2(1−x)
)

+ε4
(
−S2,2(x)+ζ4−Li4(1−x)+Li4(x)− 1

2Li2(1−x)ln2(1−x)+Li3(1−x)ln(1−x)+

− 1
6 ln(x)ln3(1−x)

)
+ε5

(
S2,3(x)−S3,2(x)−ζ5 +Li5(1−x)+Li5(x)− 1

6Li2(1−x)ln3(1−x)

+ 1
2Li3(1−x)ln2(1−x)−Li4(1−x)ln(1−x)− 1

24 ln(x)ln4(1−x)
)

+ε6
(
−S2,4(x)+S3,3(x)+

−S4,2(x)+ζ6−Li6(1−x)+Li6(x)− 1
24Li2(1−x)ln4(1−x)+ 1

6Li3(1−x)ln3(1−x)+

− 1
2Li4(1−x)ln2(1−x)+Li5(1−x)ln(1−x)− 1

120 ln(x)ln5(1−x)
)

+O
(
ε7
)

=1+ ε2

1−εx+O
(
x2)

=
(

Γ(1−ε)Γ(1+ε)+O
(
1−x

))
+(1−x)εO

(
1−x

)
, (A.4)
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2F1(1,1−ε,2−2ε,x)=

1
x

(
− ln(1−x)+ε

(
2Li2(x)+ 1

2 ln(1−x)(ln(1−x)+4)
)

+ε2
(
−2ζ3 +2Li3(1−x)+4Li3(x)+

−2Li2(1−x)ln(1−x)−2Li2(x)(ln(1−x)+2)− 1
6 ln3(1−x)− ln(x)ln2(1−x)− ln2(1−x)

)

+ε3
(
−4S2,2(x)+4ζ3 +2ζ4−4Li3(1−x)−8Li3(x)−2Li4(1−x)+8Li4(x)

+Li2(1−x)ln(1−x)(ln(1−x)+4)+Li2(x)ln(1−x)(ln(1−x)+4)−4Li3(x)ln(1−x)

+2ζ3 ln(1−x)+ 1
24 ln4(1−x)+ 2

3 ln(x)ln3(1−x)+ 1
3 ln3(1−x)+2ln(x)ln2(1−x)

)

+ε4
(

8S2,2(x)+4S2,3(x)−8S3,2(x)+4ln(1−x)S2,2(x)−4ζ4−2ζ5 +4Li4(1−x)−16Li4(x)

+2Li5(1−x)+16Li5(x)− 1
3Li2(1−x)(ln(1−x)+6)ln2(1−x)+

− 1
3Li2(x)(ln(1−x)+6)ln2(1−x)+2Li3(x)ln2(1−x)+8Li3(x)ln(1−x)−8Li4(x)ln(1−x)+

−ζ3 ln2(1−x)−4ζ3 ln(1−x)−2ζ4 ln(1−x)− 1
120 ln5(1−x)− 1

4 ln(x)ln4(1−x)+

− 1
12 ln4(1−x)− 4

3 ln(x)ln3(1−x)
)

+ε5
(
−8S2,3(x)−4S2,4(x)+16S3,2(x)+8S3,3(x)+

−16S4,2(x)−2ln2(1−x)S2,2(x)−8ln(1−x)S2,2(x)−4ln(1−x)S2,3(x)+8ln(1−x)S3,2(x)

+4ζ5 +2ζ6−4Li5(1−x)−32Li5(x)−2Li6(1−x)+32Li6(x)

+ 1
12Li2(1−x)(ln(1−x)+8)ln3(1−x)+ 1

12Li2(x)(ln(1−x)+8)ln3(1−x)+

− 2
3Li3(x)ln3(1−x)−4Li3(x)ln2(1−x)+4Li4(x)ln2(1−x)+16Li4(x)ln(1−x)+

−16Li5(x)ln(1−x)+ 1
3ζ3 ln3(1−x)+2ζ3 ln2(1−x)+ζ4 ln2(1−x)+4ζ4 ln(1−x)

+2ζ5 ln(1−x)+ 1
720 ln6(1−x)+ 1

15 ln(x)ln5(1−x)+ 1
60 ln5(1−x)+ 1

2 ln(x)ln4(1−x)
)

+O
(
ε6
))

=
((
− 1
ε

+2
)

+O
(
1−x

))
+(1−x)−ε

(
(1−2ε)Γ(1−2ε)Γ(1+ε)

εΓ(1−ε) +O
(
1−x

))
, (A.5)
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2F1(1,1,1−ε,x)=

1
1−x

(
1−ε ln(1−x)+ε2

(
Li2(x)+ 1

2 ln2(1−x)
)

+ε3
(
−ζ3 +Li3(1−x)+Li3(x)+

−Li2(1−x)ln(1−x)−Li2(x)ln(1−x)− 1
6 ln3(1−x)− 1

2 ln(x)ln2(1−x)
)

+ε4
(
−S2,2(x)+ζ4−Li4(1−x)+Li4(x)+ 1

2Li2(1−x)ln2(1−x)+ 1
2Li2(x)ln2(1−x)+

−Li3(x)ln(1−x)+ζ3 ln(1−x)+ 1
24 ln4(1−x)+ 1

3 ln(x)ln3(1−x)
)

+ε5
(
S2,3(x)+

−S3,2(x)+ln(1−x)S2,2(x)−ζ5 +Li5(1−x)+Li5(x)− 1
6Li2(1−x)ln3(1−x)+

− 1
6Li2(x)ln3(1−x)+ 1

2Li3(x)ln2(1−x)−Li4(x)ln(1−x)− 1
2ζ3 ln2(1−x)+

−ζ4 ln(1−x)− 1
120 ln5(1−x)− 1

8 ln(x)ln4(1−x)
)

+ε6
(
−S2,4(x)+S3,3(x)−S4,2(x)+

− 1
2 ln2(1−x)S2,2(x)− ln(1−x)S2,3(x)+ln(1−x)S3,2(x)+ζ6−Li6(1−x)+Li6(x)

+ 1
24Li2(1−x)ln4(1−x)+ 1

24Li2(x)ln4(1−x)− 1
6Li3(x)ln3(1−x)+ 1

2Li4(x)ln2(1−x)+

−Li5(x)ln(1−x)+ 1
6ζ3 ln3(1−x)+ 1

2ζ4 ln2(1−x)+ζ5 ln(1−x)+ 1
720 ln6(1−x)

+ 1
30 ln(x)ln5(1−x)

)
+O

(
ε7
))

=(1−x)−1−ε
(

Γ(1−ε)Γ(1+ε)+O
(
1−x

))
+O

(
(1−x)0) , (A.6)

2F1(1,1,2+ε,x)=

1
x

(
− ln(1−x)+ε

(
−Li2(x)− 1

2 ln(1−x)(ln(1−x)+2)
)

+ε2
(
−ζ3 +Li3(1−x)+Li3(x)+

−Li2(1−x)ln(1−x)−Li2(x)(ln(1−x)+1)− 1
6 ln3(1−x)− 1

2 ln(x)ln2(1−x)+

− 1
2 ln2(1−x)

)
+ε3

(
S2,2(x)−ζ3−ζ4 +Li3(1−x)+Li3(x)+Li4(1−x)−Li4(x)+

− 1
2Li2(1−x)ln(1−x)(ln(1−x)+2)− 1

2Li2(x)ln(1−x)(ln(1−x)+2)+Li3(x)ln(1−x)+

−ζ3 ln(1−x)− 1
24 ln4(1−x)− 1

3 ln(x)ln3(1−x)− 1
6 ln3(1−x)− 1

2 ln(x)ln2(1−x)
)
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+ε4
(
S2,2(x)+S2,3(x)−S3,2(x)+ln(1−x)S2,2(x)−ζ4−ζ5 +Li4(1−x)−Li4(x)+Li5(1−x)

+Li5(x)− 1
6Li2(1−x)(ln(1−x)+3)ln2(1−x)− 1

6Li2(x)(ln(1−x)+3)ln2(1−x)

+ 1
2Li3(x)ln2(1−x)+Li3(x)ln(1−x)−Li4(x)ln(1−x)− 1

2ζ3 ln2(1−x)−ζ3 ln(1−x)+

−ζ4 ln(1−x)− 1
120 ln5(1−x)− 1

8 ln(x)ln4(1−x)− 1
24 ln4(1−x)− 1

3 ln(x)ln3(1−x)
)

+ε5
(
S2,3(x)+S2,4(x)−S3,2(x)−S3,3(x)+S4,2(x)+ 1

2 ln2(1−x)S2,2(x)+ln(1−x)S2,2(x)

+ln(1−x)S2,3(x)− ln(1−x)S3,2(x)−ζ5−ζ6 +Li5(1−x)+Li5(x)+Li6(1−x)−Li6(x)+

− 1
24Li2(1−x)(ln(1−x)+4)ln3(1−x)− 1

24Li2(x)(ln(1−x)+4)ln3(1−x)

+ 1
6Li3(x)ln3(1−x)+ 1

2Li3(x)ln2(1−x)− 1
2Li4(x)ln2(1−x)−Li4(x)ln(1−x)

+Li5(x)ln(1−x)− 1
6ζ3 ln3(1−x)− 1

2ζ3 ln2(1−x)− 1
2ζ4 ln2(1−x)−ζ4 ln(1−x)+

−ζ5 ln(1−x)− 1
720 ln6(1−x)− 1

30 ln(x)ln5(1−x)− 1
120 ln5(1−x)− 1

8 ln(x)ln4(1−x)
)

+O
(
ε6
))

=
((

1
ε

+1
)

+O
(
1−x

))
+(1−x)ε

(
− (1+ε)Γ(1−ε)Γ(1+ε)

ε
+O

(
1−x

))
. (A.7)

The following functions are either special cases or occur in the asymptotic behaviour of the
Appell F1 function discussed in appendix B:

2F1(1,1−ε,1−2ε,x)=

1
1−x

(
1−εln(1−x)+ε2

(
2Li2(x)+ 1

2 ln2(1−x)
)

+ε3
(
−2ζ3 +2Li3(1−x)+4Li3(x)+

−2Li2(1−x)ln(1−x)−2Li2(x)ln(1−x)− 1
6 ln3(1−x)− ln(x)ln2(1−x)

)

+ε4
(
−4S2,2(x)+2ζ4−2Li4(1−x)+8Li4(x)+Li2(1−x)ln2(1−x)+Li2(x)ln2(1−x)+

−4Li3(x)ln(1−x)+2ζ3 ln(1−x)+ 1
24 ln4(1−x)+ 2

3 ln(x)ln3(1−x)
)

+ε5
(

4S2,3(x)+

−8S3,2(x)+4ln(1−x)S2,2(x)−2ζ5 +2Li5(1−x)+16Li5(x)+
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− 1
3Li2(1−x)ln3(1−x)− 1

3Li2(x)ln3(1−x)+2Li3(x)ln2(1−x)−8Li4(x)ln(1−x)+

−ζ3 ln2(1−x)−2ζ4 ln(1−x)− 1
120 ln5(1−x)− 1

4 ln(x)ln4(1−x)
)

+ε6
(
−4S2,4(x)

+8S3,3(x)−16S4,2(x)−2ln2(1−x)S2,2(x)−4ln(1−x)S2,3(x)+8ln(1−x)S3,2(x)

+2ζ6−2Li6(1−x)+32Li6(x)+ 1
12Li2(1−x)ln4(1−x)+ 1

12Li2(x)ln4(1−x)+

− 2
3Li3(x)ln3(1−x)+4Li4(x)ln2(1−x)−16Li5(x)ln(1−x)+ 1

3ζ3 ln3(1−x)

+ζ4 ln2(1−x)+2ζ5 ln(1−x)+ 1
720 ln6(1−x)+ 1

15 ln(x)ln5(1−x)
)

+O
(
ε7
))

=(1−x)−1−ε
(

Γ(1−2ε)Γ(1+ε)
Γ(1−ε) +O

(
1−x

))
+O

(
(1−x)0), (A.8)

2F1(1,−ε,1−2ε,x)=

1+εln(1−x)+ε2
(
−2Li2(x)− 1

2 ln2(1−x)
)

+ε3
(

2ζ3−2Li3(1−x)−4Li3(x)

+2Li2(1−x)ln(1−x)+2Li2(x)ln(1−x)+ 1
6 ln3(1−x)+ln(x)ln2(1−x)

)
+ε4

(
4S2,2(x)+

−2ζ4 +2Li4(1−x)−8Li4(x)−Li2(1−x)ln2(1−x)−Li2(x)ln2(1−x)+4Li3(x)ln(1−x)+

−2ζ3 ln(1−x)− 1
24 ln4(1−x)− 2

3 ln(x)ln3(1−x)
)

+ε5
(
−4S2,3(x)+8S3,2(x)+

−4ln(1−x)S2,2(x)+2ζ5−2Li5(1−x)−16Li5(x)+ 1
3Li2(1−x)ln3(1−x)+ 1

3Li2(x)ln3(1−x)+

−2Li3(x)ln2(1−x)+8Li4(x)ln(1−x)+ζ3 ln2(1−x)+2ζ4 ln(1−x)+ 1
120 ln5(1−x)

+ 1
4 ln(x)ln4(1−x)

)
+ε6

(
4S2,4(x)−8S3,3(x)+16S4,2(x)+2ln2(1−x)S2,2(x)

+4ln(1−x)S2,3(x)−8ln(1−x)S3,2(x)−2ζ6 +2Li6(1−x)−32Li6(x)− 1
12Li2(1−x)ln4(1−x)+

− 1
12Li2(x)ln4(1−x)+ 2

3Li3(x)ln3(1−x)−4Li4(x)ln2(1−x)+16Li5(x)ln(1−x)+

− 1
3ζ3 ln3(1−x)−ζ4 ln2(1−x)−2ζ5 ln(1−x)− 1

720 ln6(1−x)− 1
15 ln(x)ln5(1−x)

)
+O

(
ε7
)

=
(
2+O

(
1−x

))
+(1−x)−ε

(
− Γ(1−2ε)Γ(1+ε)

Γ(1−ε) +O
(
1−x

))
, (A.9)
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2F1(−ε,1+ε,1−ε,x)=

1+εln(1−x)+ε2
(
−2Li2(x)− 1

2 ln2(1−x)
)

+ε3
(
−2ζ3 +2Li3(1−x)−2Li3(x)+

−2Li2(1−x)ln(1−x)+ 1
6 ln3(1−x)− ln(x)ln2(1−x)

)
+ε4

(
−2S2,2(x)−2ζ4 +2Li4(1−x)+

−2Li4(x)+Li2(1−x)ln2(1−x)−2Li3(1−x)ln(1−x)− 1
24 ln4(1−x)+ 1

3 ln(x)ln3(1−x)
)

+ε5
(
−2S2,3(x)−2S3,2(x)−2ζ5 +2Li5(1−x)−2Li5(x)− 1

3Li2(1−x)ln3(1−x)

+Li3(1−x)ln2(1−x)−2Li4(1−x)ln(1−x)+ 1
120 ln5(1−x)− 1

12 ln(x)ln4(1−x)
)

+ε6
(
−2S2,4(x)−2S3,3(x)−2S4,2(x)−2ζ6 +2Li6(1−x)−2Li6(x)+ 1

12Li2(1−x)ln4(1−x)+

− 1
3Li3(1−x)ln3(1−x)+Li4(1−x)ln2(1−x)−2Li5(1−x)ln(1−x)− 1

720 ln6(1−x)

+ 1
60 ln(x)ln5(1−x)

)
+O

(
ε7
)

=
(

2Γ(1−ε)2

Γ(1−2ε) +O
(
1−x

))
+(1−x)−ε

(
−1+O

(
1−x

))
. (A.10)

B Definition, representations and expansions of the Appell F1 function

The Appell F1 function is defined as follows:

F1(a, b1, b2, c, x, y) ≡
∞∑
m=0

∞∑
n=0

Γ(a+m+ n)Γ(b1 +m)Γ(b2 + n)Γ(c)
Γ(a)Γ(b1)Γ(b2)Γ(c+m+ n)

xm

m!
yn

n!

= Γ(c)
Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1(1− tx)−b1(1− ty)−b2

= 1
(2πi)2

∫∫
C

dz1 dz2
Γ(a+ z1 + z2)Γ(b1 + z1)Γ(b2 + z2)Γ(c)Γ(−z1)Γ(−z2)

Γ(a)Γ(b1)Γ(b2)Γ(c+ z1 + z2) (−x)z1(−y)z2

= 1
(2πi)2

∫∫
C

dz1 dz2
Γ(a+ z1 + z2)Γ(b1 + z1)Γ(b2 + z2)Γ(c− a− b1 − z1)Γ(c)

Γ(a)Γ(b1)Γ(b2)Γ(c− a)Γ(c− b1 + z2)

× Γ(−z1)Γ(−z2)(1− x)z1(−y)z2

= 1
(2πi)2

∫∫
C

dz1 dz2
Γ(a+ z1 + z2)Γ(b1 + z1)Γ(b2 + z2)Γ(c− a− b1 − b2 − z1 − z2)Γ(c)

Γ(a)Γ(b1)Γ(b2)Γ(c− a)Γ(c− b1 − b2)

× Γ(−z1)Γ(−z2)(1− x)z1(1− y)z2 .

(B.1)
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As in the case of the hypergeometric function appendix A, the integration contours of the
Mellin-Barnes representations starting with the third equality, C, should be chosen along
the imaginary axis and separate the poles of the Γ-functions Γ(· · · + z) and Γ(· · · − z). It
turns out that only one Appell function is actually needed in the present case. We choose
it to have arguments 0 < x ≤ y < 1 ensuring the convergence of the series representation
eq. (B.1):

F1(1,−ε,1,1−2ε,1−x,1−y)=

1
y

(
1+ε(ln(x)−2ln(y))+ 1

2ε
2
(

4Li2
(
x

y

)
−4Li2(y)−4ln(x)ln(y)−4ln(y)ln(y−x)

+4ln(x)ln(y−x)− ln2(x)+6ln2(y)−4ln(1−y)ln(y)
)
+ 1

6ε
3
(
−12ζ3−12Li3

(
1− 1−y

1−x

)
+

−24Li3
(

1− x
y

)
+12Li3

(
1− x(1−y)

(1−x)y

)
−12Li3

(
1−y
1−x

)
+12Li3

(
x(1−y)
(1−x)y

)
+

−12ln(x)Li2
(

1−y
1−x

)
−12ln(x)Li2

(
x

y

)
−12Li2(y)ln(x)−12Li3(x)+12Li2(x)ln(x)

+24Li3(1−y)+24Li3(y)+24ζ2 ln(x)−12ln2(1−x)ln(y)+6ln2(x)ln(y)+

−6ln2(x)ln(y−x)−12ln(1−x)ln2(y)+6ln2(y)ln(y−x)

+12ln(1−x)ln(x)ln(y)+12ln(1−x)ln(1−y)ln(y)−12ln(x)ln(1−y)ln(y)

+12ln(1−x)ln(y)ln(y−x)−12ln(1−y)ln(y)ln(y−x)+ln3(x)−12ζ2 ln(y)−8ln3(y)

+18ln(1−y)ln2(y)
)

+O
(
ε4
))

.

(B.2)

The above result has been obtained with the software package PolyLogTools [46] by
direct integration of the integral representation after remapping the integration region from
[0, 1] to [0,∞). The series expansion has been truncated after enough terms to match the
requirements of N3LO applications as discussed in the main part of the text. Care has been
taken, so that the arguments of all functions belong to the unit interval. The following
special cases are also required with deeper ε-expansions:

F1(1,−ε, 1, 1− 2ε, 1− x, 1− x) = 2F1(1, 1− ε, 1− 2ε, 1− x) ,
F1(1,−ε, 1, 1− 2ε, 1− x, 0) = 2F1(1,−ε, 1− 2ε, 1− x) .

(B.3)

The corresponding ε-expansions of the hypergeometric functions are given in eqs. (A.8)
and (A.9), while the above expressions are a direct consequence of the integral representa-
tions in eqs. (B.1) and (A.1). Finally, the following asymptotics of the Appell F1 function
are needed as well:

F1(1,−ε, 1, 1− 2ε, 1−x, 1− y) ∼ 2 2F1(1, 1, 1− ε, 1− y)− x
−εΓ(1− 2ε)Γ(1 + ε)

yΓ(1− ε) (x→ 0) ,

F1(1,−ε, 1, 1− 2ε, 1−x, 1− y) ∼ y−1−εΓ(1− 2ε)Γ(1 + ε)
Γ(1− ε) 2F1

(
−ε, 1 + ε, 1− ε, 1− x

y

)
(y → 0) .

(B.4)
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These results can be obtained by an asymptotic expansion of the Mellin-Barnes representa-
tions eq. (B.1), while the two hypergeometric functions are given in eqs. (A.6) and (A.10).

C Description of the results provided in supplementary material

The following files are provided:

• integrals.m, expandedIntegrals.m — substitution lists for the exact (integrals)
and expanded up to O

(
ε0
)
(expandedIntegrals) master integrals, eqs. (3.8), (3.9),

(3.10), (3.11), (3.13), (3.14) and (3.15), divided by rΓ, eq. (3.3), including the results
with required permutations of the external momenta; the notation for the integrals
in the substitutions matches the occurrences in the files containing the splitting op-
erators and splitting functions listed below; the result for the light-cone-gauge six-
dimensional box integral of section 3.2 is not provided here but rather substituted as
LCGBox[pi,pj,pk,d+2], where pi,pj,pk correspond to a permutation of p1, p2 and
p3 for which the result is provided in eq. (3.24) and in the file LCGBox.m;

• AppellF1.m — substitution giving the ε-expansion of the Appell function eq. (B.2);

• LCGBox.m, LCGBoxDoubleSoft.m — right-hand side of eq. (3.24) named LCGBoxEp0, and
its double-soft limit atO

(
ε0
)
(LCGBoxDoubleSoftEp0) andO(ε) (LCGBoxDoubleSoftEp1);

• Pggg.m, Pgqqbar.m, Pqgg.m, Pqqqbar.m, Pqqpqpbar.m — exact results at tree and
one-loop level, the latter expressed through the master integrals, for the splitting
(P0Pol and P1Pol) and averaged splitting (P0Avg and P1Avg) functions, eq. (2.7),
for the processes g → ggg, g → gqq̄, q → qgg, q → qqq̄ and q → qq′q̄′ respectively;
the tree-level results, P0Pol and P0Avg, additionally contain the singularities, propor-
tional to the tag Ioperator, of the one-loop splitting and averaged splitting functions
obtained using eq. (2.5) that has been partially expanded in ε as described in the text
after the equation; the one-loop level results, P1Pol and P1Avg, defined in eq. (2.8),
are given without the hermitian conjugate;

• P1gggExp.m, P1gqqbarExp.m, P1qggExp.m, P1qqqbarExp.m, P1qqpqpbarExp.m —
one-loop splitting (P1PolExp) and averaged splitting (P1AvgExp) functions from the
files listed in the previous item, expanded up to O

(
ε0
)
after substitution of the master

integrals from expandedIntegrals, which implies that they are divided by rΓ as well;

• ggg0l.m, gqqbar0l.m, qgg0l.m, qqqbar0l.m, qqpqpbar0l.m, ggg1l.m, gqqbar1l.m,
qgg1l.m, qqqbar1l.m, qqpqpbar1l.m — exact splitting operators at tree (*0l.m)
and one-loop (*1l.m) level, the latter expressed through the master integrals; each
operator has been multiplied with 1/2 s123 to make it dimensionless and easier to
relate to the respective splitting function; the operators are named correspondingly
to the file name (without the extension .m of course); the tree-level results contain the
singularities, tagged with the factor Ioperator, of the one-loop splitting operators
obtained using eq. (2.5) that has partially been expanded in ε as described in the
text after the equation;
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• gqqbar0l4D.m, qgg0l4D.m, qqqbar0l4D.m, qqpqpbar0l4D.m, gqqbar1l4D.m, qgg1l4D.m,
qqqbar1l4D.m, qqpqpbar1l4D.m — four-dimensional projections, obtained using
eq. (2.14), of the results listed in the previous item at tree and one-loop level; the
projections of the pure-gluon splitting operators are not provided, since they are
lengthier than the original expressions and lack usefulness;

• README — notation used in the files.

Although the splitting operators and splitting functions are not renormalised, subtract-
ing from them the singularities given in eq. (2.5) as provided in the above files, gives
the expressions needed to correctly subtract the triple-collinear limit of one-loop ampli-
tudes according to eq. (2.42), in the ’t Hooft-Veltman scheme (four-dimensional external
gluon polarisation vectors, but d-dimensional internal virtual gluon fields). These expres-
sions thus match the default conventions of the majority of software one-loop amplitude
providers, e.g. NJet [40].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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