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1 Introduction

In this paper we provide a physical realization of the geometric concept of partial implosion
for hyperKähler manifolds, using moduli spaces of supersymmetric quiver gauge theories. Im-
plosion can be seen as an abelianization procedure: given a hyperKähler manifold M with an
action of a rank n complex Lie group G, its implosionMimpl is a lower dimensional hyperKäh-
ler manifold with an action of the torus (C∗)n. Partial implosion corresponds to an interme-
diate case, where the partially imploded manifold MP,impl has an action of a not necessarily
Abelian subgroup LP of G. Possible partial implosions are labelled by parabolic subgroups
P , or equivalently subsets of simple roots of G, and LP is the corresponding Levi subgroup.

In this paper we focus on the special class of manifolds M = T ∗G for G = SLn :=
SL(n,C) and G = SO2n := SO(2n,C). This is a natural restriction, as the (partial)
implosion of any space can be reduced to the (partial) implosion of these spaces — for that
reason, the spaces (T ∗G)P,impl are called universal partial implosions. Our main result is a
conjecture for magnetic quivers of these universal partial implosions, i.e. we propose quivers
QP such that

C(QP ) = (T ∗G)P,impl , (1.1)

where C(QP ) is the Coulomb branch of the 3d N = 4 theory defined by QP . The quivers QP

are presented in equations (2.4) and (3.4). This generalizes [1, 2] where magnetic quivers
for full implosion spaces were considered. The conjecture (1.1) is backed by dimension
considerations as well as explicit computations for families of parabolics P , corresponding
to hook partitions for SLn and the so-called E6 family (defined in section 3.2) for SO2n.

The paper is organised as follows. In sections 1.1 and 1.2 we review some physical and
mathematical background. In section 2 we study universal partial implosions for G = SLn,
and in section 3 for G = SO2n.
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1.1 Physical background

To a 3d N = 4 quiver gauge theory1 Q we can associate two hyperKähler varieties, the
Coulomb branch C(Q) and the Higgs branch H(Q). While the Higgs branch is simply
a hyperKähler quotient [3], the Coulomb branch is a moduli space of dressed monopole
operators [4, 5], with a mathematical definition in its own right [6, 7]. Its Hilbert series is
computed using the so-called monopole formula [4].

Electric and magnetic quiver. Given a hyperKähler variety V we call Qe an electric
quiver for V, if V = H(Qe), and Qm a magnetic quiver for V, if V = C(Qm). A variety V
may have many electric and magnetic quivers.

Throughout the paper all our quivers contain only unitary, special unitary, (special)
orthogonal and symplectic nodes, as well as hypermultiplets in (bi-)fundamental represen-
tations.

Balance. Given a quiver with gauge nodes2 Gi, for each Gi call Nf the number of
hypermultiplets in the fundamental representation of Gi. E.g. for SQCD we have

U(Nc)

SU(Nf )

USp(Nc)

O(Nf )

(S)O(Nc)

USp(Nf )

. (1.2)

A useful notion is the so called balance bGi of the gauge node Gi. We define

bGi =


Nf − 2Nc if Gi = U(Nc)
Nf − 2Nc − 2 if Gi = USp(Nc)
Nf − 2Nc + 2 if Gi = (S)O(Nc)

. (1.3)

We call a node underbalanced if b < 0, minimally unbalanced if b = −1, balanced if b = 0 and
overbalanced if b > 0. When nodes in the quiver have b < −1 then the monopole formula
fails to compute the Coulomb branch Hilbert series, and the Coulomb branch is generally
not a cone. When b ≥ −1 for all nodes, then the monopole formula works for all quivers in
this paper.

Coulomb branch global symmetry. For every U(Nc) node there is a U(1) factor in
the global symmetry of the Coulomb branch. For orthosymplectic nodes there is only a
discrete factor. If there are balanced gauge nodes, then the global symmetry of the Coulomb
branch enhances. One can perform a hyperKähler quotient of the Coulomb branch by a
subgroup of this global symmetry. Physically this corresponds to a gauging of the global
symmetry. However it is not always easy to implement this hyperKähler quotient, as there
are issues of incomplete Higgsing.

1In a slight abuse of notation we refer to a quiver, and the 3d N = 4 theory it defines, with the same
symbol. In fact, not every 3d N = 4 theory has a quiver description, but in this paper we only consider
those which do.

2In another abuse of notation, we identify a gauge node with its associated gauge group.
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U(Nc)

Nf

U(bNf/2c)

Nf

U(Nf −Nc)

Nf

USp(Nc)

O(Nf )
USp(Nf/2)

O(Nf )

USp(Nf −Nc − 2)

O(Nf )
(S)O(Nc)

USp(Nf )
(S)O(Nf/2)

USp(Nf )

(S)O(Nf −Nc + 2)

USp(Nf )

Figure 1. Effect of FI parameters on the Higgs branch of SQCD theories with incomplete Higgsing
(Nf < 2Nc). Black arrows (respectively red arrows) indicate equality of Higgs branches with zero
(resp. non-zero) FI. If Nf −Nc + ε < 0, where ε = 0 for U(Nc), ε = −2 for USp(Nc), and ε = 2 for
(S)O(Nc), there is no vacuum preserving 8 supercharges with non-zero FI.

(In)complete Higgsing. For a given quiver, one can ask whether the gauge group can
be completely broken. This cannot be achieved on the Coulomb branch as the gauge group
here is at most broken to its maximal torus. On a generic point on the Higgs branch the
gauge group may be: 1) completely broken — this is called complete Higgsing, or 2) broken
to a subgroup — this is called incomplete Higgsing. Mathematically incomplete Higgsing
means, that the group by which one performs a hyperKähler quotient acts non-freely. For
the SQCD theories in (1.2) we have incomplete Higgsing, if Nf < 2Nc.

When there is incomplete Higgsing several complications can arise, and in particular the
Higgs branch Hilbert series is difficult to compute. Furthermore Fayet-Iliopoulos parameters
act in an intricate way.

Fayet-Iliopoulos parameters. Given a quiver as described above there are several
deformation parameters one can turn on. For a U(Nc) node there is a Fayet-Iliopoulos (FI)
parameter which can be turned on in the Lagrangian. For a USp(Nc) or a (S)O(Nc) node
there is no such FI term in the Lagrangian. However there is a conjectured deformation at
the fixed point in the IR, called hidden FI parameter.

Let us consider SQCD theories. When there is complete Higgsing, the FI parameter
lifts the Coulomb branch of the theory and resolves/deforms the Higgs branch. When there
is incomplete Higgsing the FI parameter has a more violent effect, described in figure 1. If
the FI parameter is zero, then the Higgs branch of the theory is equal to the Higgs branch
of a different SQCD theory denoted by a black arrow in figure 1. If the FI parameter is
non-zero then the Higgs branch is not the resolution/deformation of the Higgs branch for
FI = 0, it is the resolution/deformation of the Higgs branch of a different SQCD theory with
smaller dimension, denoted by a red arrow in figure 1. For the unitary case this is discussed
in detail in [8, appendix B] based on [9, 10]. For the orthosymplectic case the FI = 0 case
can be obtained by looking at the partial Higgs mechanism, see e.g. [11], the FI 6= 0 case
is given in [12–14] but in a slightly different context of Seiberg duality of orthosymplectic
SQCD theories in 3d N = 2.
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1.2 Mathematical background

Let us now recall the necessary mathematical preliminaries and review the main definitions
of implosion spaces. The universal hyperKähler implosion [15] associated to a complex
reductive group G = KC is a space of complex dimension dimG+ rankG with an action
of G × TC where TC is the complexification of the maximal torus T of K. Moreover the
hyperKähler reductions by T , or equivalently the complex-symplectic reductions by TC,
gives the Kostant varieties of G — in particular reduction at 0 gives the nilpotent cone N .
The implosion also has a description as a nonreductive Geometric Invariant Theory (GIT)
quotient by the maximal unipotent subgroup N of G. This is summarized in the top part
of figure 3. Note the analogy with (real) symplectic implosion, summarized in figure 2.

We can also consider partial implosions, which by analogy with the symplectic case [16]
we expect to be complex-symplectic quotients of T ∗G by the unipotent radical UP of a
parabolic subgroup P . Explicitly, the partial implosion corresponding to P should be

(T ∗G)P,impl = (G× u◦P ) // UP , (1.4)

where u◦P denotes the annihilator of the Lie algebra of UP , and // denotes the quotient in the
GIT sense. The G×G action on T ∗G is now broken to an action of G×LP where LP is the
Levi subgroup of P (recall that P can be written as the semidirect product UP oLP so LP
normalizes UP ). The explicit matrix descriptions of P , UP , u◦P and LP are given for GL4 in
table 1. The complex dimension of the partial implosion is 2(dimG− dimUP ) = 2 dimP .
The classical universal implosion of course corresponds to taking P to be the Borel subgroup
B, with UP equal to the maximal unipotent N and the Levi being the complex maximal
torus TC. This is summarized in the bottom part of figure 3.

Assuming the conjecture that these partial implosions exist as algebraic varieties (i.e.
that the ring of invariants for the quotient is finitely generated), we can make conjectures
about their symplectic duals (the SLn case was briefly discussed in [1]).

One test of these conjectures is to consider the reduction of the partial implosion
(G× u◦P ) // UP by the Levi group LP = P/UP . We should obtain the GIT quotient

(G× p◦) // P. (1.5)

Recall that if P is the Borel B we have the Springer resolution

T ∗(G/B) = G×B b◦ = G×B n→ N . (1.6)

Here we use an invariant inner product to identify the annihilator b◦ with the Lie algebra n

of the maximal unipotent N . Moreover N denotes the nilpotent cone, which is the closure
of the regular nilpotent orbit Oreg. The Springer resolution map is

(g,X) 7→ gXg−1. (1.7)

This is surjective, and is injective over the smooth locus Oreg of N . It is an affinisation map,
in the sense that the base is the affine variety which is the Spec of the ring of functions on
the domain — that is, N = (G× b◦) // B, the quotient (1.5).
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T ∗K

=

KC

(T ∗K)impl

=

KC //GIT N
dimR = 2(r + δ)

y x

y x

K K K y T ∗K //sλ K

K T K y(T ∗K)impl //
s
λ T = Oλ

Implosion

Symplectic Implosion Reduced Spaces

Figure 2. Universal symplectic implosion. Here K is a rank r compact simple Lie group with
maximal torus T , and N is a maximal unipotent subgroup of the complex group KC. δ is the
number of positive roots. //sλ denotes the symplectic reduction at level λ ∈ t∗ and Oλ is the orbit of
K through λ.

Partition Diagram P UP u◦P LP
Partial Implosion

(G× u◦P ) // UP
Reduction
by LP

[14]


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1



∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗



∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 dimH = 9 dimH = 6

[2, 12]


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1



∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗



∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 dimH = 10 dimH = 5

[2, 2]


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1



∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 dimH = 11 dimH = 4

[3, 1]


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗




1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1



∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗



∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 dimH = 12 dimH = 3

[4]


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 dimH = 15 dimH = 0

Table 1. List of parabolic subgroups of GL4. Each parabolic is labeled by an ordered partition, or
equivalently a subset of the simple roots, as shown in the second column. The parabolic subgroup,
unipotent radical and Levi subgroup are shown. We then give the quaternionic dimensions of the
partial implosions and their GIT reduction by the Levi. The line shaded in green is the usual
implosion. The blue lines are the hooks. Note that the partition given here is dual to that of the
corresponding Jordan type.
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T ∗KC

=

KC × k∗C

(T ∗KC)impl

=

(KC × n◦) //GIT N
dimR = 4(r + δ)

y x

y x

KC KC

KC
TC

(= B/N) KCy (T ∗KC)impl ///0 T = N

Implosion

HyperKähler Implosion Reduced Spaces

(T ∗KC)P,impl ///0 LP = OP

T ∗KC

=

KC × k∗C

(T ∗KC)P,impl

=

(KC × u◦P ) //GIT UP
dimR = 4(r + δP )

y x

y x

KC KC

KC
LP

(= P/UP ) KCy (T ∗KC)P,impl ///0 L
c
P = OP

Partial Implosion

Partial HyperKähler Implosion Reduced Spaces

Figure 3. Top part: universal HyperKähler implosion. The symbol ///0 denotes HyperKähler
quotient at (0, 0, 0). B is a Borel subgroup and N is the maximal unipotent subgroup of KC. N is
the nilpotent cone in k∗

C. Bottom: partial universal HyperKähler implosion, where δP is the number
of positive roots in the system defined by P . We use LcP to denote the compact form of the Levi.
When P is minimal, i.e. P = B, the partial implosion reduces to the implosion.

For a general parabolic we have an analogous picture, the partial Springer resolution

G×P p◦ = G×P uP → OP . (1.8)

The domain can be viewed as T ∗(G/P ), the cotangent bundle of the variety P of parabolics
conjugate to P .

The orbit OP is the Richardson orbit associated to the parabolic P , which is charac-
terised by the fact that its intersection with the nilradical uP is dense in uP . It is possible
for two non-conjugate parabolics to give the same Richardson orbit. (See [17] for general
background on nilpotent orbits).

In the SLn case all orbits are Richardson and the partial Springer resolution is injective
over Oreg.
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For other groups the partial Springer map may be finite-to-one rather than injective
on the smooth locus. Moreover, not all nilpotent orbits are Richardson (in particular the
minimal orbit is not Richardson except for SLn). We expect that reduction by the Levi
should still give the closure of the Richardson orbit if this is normal and the partial Springer
map is injective over the smooth locus (these properties are automatic in the SLn case).

2 Unitary partial implosion

In this section, we provide magnetic quivers for the partial implosions for G = SLn. In this
case a choice of parabolic P corresponds to an ordered partition

P ↔ n = n1 + . . .+ nr with n1 ≥ · · · ≥ nr > 0 , (2.1)

and the associated Levi is then

LP = S(GLn1 × . . .×GLnr ). (2.2)

We want therefore a space which has hyperKähler symmetry

SU(n)× S(U(n1)× . . .×U(nr)). (2.3)

We consider the diagram obtained by taking the basic An quiver for the nilpotent cone,
removing the top SU(n) flavour node, and then attaching to the n− 1 dimensional node r
legs, each of them an Ani quiver with the dimension ni node next to the n− 1 node:

(T ∗SLn)P,impl = C

 1
· · ·

n− 1

n1 n1 − 1
· · ·

1
...

...
...

nr nr − 1
· · ·

1


(2.4)

The n− 1 node therefore remains balanced as n = ∑r
i=1 ni. Moreover all the nodes in the

legs are balanced except for the ni nodes: the non-balanced nodes are depicted in black in
the quiver above. Notice that the balance at the non-balanced ni nodes is n − ni − 2 so
these nodes are

• Bad for the trivial partition n, when the parabolic is G itself and no implosion takes
place. We shall not consider this case further.

• Minimally unbalanced if the partition is (n− 1) + 1, with ni = n− 1. In that case the
Coulomb branch of (2.4) reduces to the flat space Hn(n−1).

• Balanced if the partition is (n − 2) + 2 (respectively (n − 2) + 1 + 1), with ni =
n − 2. In this case the symmetry (2.3), SU(n) × SU(n − 2) × SU(2) × U(1) (resp.
SU(n)×SU(n−2)×U(1)2) enhances to SU(2n−2)×SU(2) (resp. SU(2n−2)×U(1)).

• Of positive balance in all other cases, and the symmetry is (2.3).

– 7 –
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In [1] the quaternionic dimension of the partial implosion was shown to be

dimH(T ∗SLn)P,impl = 1
2

(
n2 − 2 +

r∑
i=1

n2
i

)
, (2.5)

which equals the rank of the gauge group in the magnetic quiver in (2.4),

S
(

U(1)× . . .×U(n− 1)×
r∏
i=1

U(1)× . . .×U(ni)
)

(2.6)

in accordance with Nakajima’s equality [18]. The Levi LP has complex dimension

dimCLP = −1 +
r∑
i=1

n2
i , (2.7)

so the quaternionic dimension of the reduction is

dimH [(T ∗SLn)P,impl ///0 L
c
P ] = 1

2

(
n2 − 2 +

r∑
i=1

n2
i

)
−
(

r∑
i=1

n2
i − 1

)

= 1
2

(
n2 −

r∑
i=1

n2
i

)
. (2.8)

The Richardson orbit OP corresponding to the parabolic has Jordan block sizes given by
the dual partition to (n1, . . . , nr). This has complex dimension n2 −

∑r
i=1 n

2
i , agreeing

with (2.8).
Of course we recover the classical implosion by taking the partition n = 1 + · · · + 1,

and this situation has been explored in detail in [1]. The quiver graph in this case is an
example of that in the splaying (or 0-fission) construction introduced by Boalch in [19], but
note that in our case the bouquet nodes are gauge rather than flavour nodes (closed rather
than open in the notation of [19]).

The next step, now that we have checked that the dimensions work out, is to attempt
to compute reductions of the Coulomb branch by the Levi. As we are now quotienting by a
non-Abelian group, this is a much more difficult problem than in the original implosion
situation studied in [1].

In the rest of this section, we perform checks of the main claim (2.4) for a class of
partitions n = k+1+ · · ·+1 dubbed hooks, because of the shape of the corresponding Young
diagram. These partitions allow us to verify through an explicit computation the equality
between the HyperKähler reduced partial implosion and the corresponding nilpotent orbit
closure. We first consider the particular case k = 2, before turning to the general case.

2.1 Subregular case

In this section we consider the subregular case, which is closest to the standard implosion.
We now take

P ↔ n = 2 + 1 + . . .+ 1 (2.9)

as our partition. So we have one A2 leg in our quiver diagram, together with n − 2 one-
dimensional nodes, see the left part of equation (2.11). In the n = 4 case, uniquely, the

– 8 –
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2-dimensional node in the A2 leg is also balanced so we have a symmetry enhancement to
U(6). The (compact form of the) Levi group by which we can hyperKähler reduce is

LcP = S(U(2)×U(1)n−2) ∼= SU(2)×U(1)n−2 . (2.10)

We expect to obtain the closure of the subregular orbit, whose Jordan type [n− 1, 1] is
dual to the above partition (2.9). The complex dimension of this orbit is n2 − n− 2. In
terms of quivers, the hyperKähler quotient takes the following form:3

1

2

n−1

1

1

1 2 3
n−2

n−21 2 3

n−2

n−2

1

n−3

SU(2)×U(1)n−2

hyperKähler Quotient
. . . . . .

(2.11)

The quiver on the right-hand side has Coulomb branch equal to the closure of the subregular
nilpotent orbit of sln, as can be checked by quiver subtraction from the T [SU(n)] quiver.
In order to compute the hyperKähler quotient in (2.11), we use the fact that performing a
hyperKähler quotient by H on a quiver is equivalent to gauging a subgroup H of the global
symmetry of the 3d mirror, as reviewed in section 1.1.

As a check of this procedure, we look at an explicit computation of the Coulomb branch
Hilbert series with n = 5 with Jordan type [4, 1]. The quiver is drawn with the following
fugacities:

1

2

1

1

1 2 3 4
z2

z1

x

q

1

(2.12)

where z1, z2, q are the fugacities of the three U(1) subgroups and x is the fugacity of the
SU(2) subgroup. The Coulomb branch Hilbert series is H̃S[4,1](z1, z2, q, x; t). Note that one
node is ungauged to fix an overall U(1) which is trivially acting. The hyperKähler quotient
takes H̃S[4,1](z1, z2, q, x; t) to HS[4,1](t), in accordance with our conjecture:∮ dz1 dz2 dq dx

(2πi)4z1z2q

1− x2

x
(1− t2)4(1− x2t2)

(
1− t2

x2

)
H̃S[4,1](z1, z2, q, x; t)

= 1 + 24t2 + 299t4 · · · = HS[4,1](t),
(2.13)

3Note that we make a statement on Coulomb branches alone. If the hyperKähler quotient is understood
as a gauging of topological symmetry, then one should supplement the right hand quiver in (2.11) with
n− 2 free hypers. This can be inferred through computing the Higgs branch dimensions of both quivers.
We would like to thank our referee for pointing this out.

– 9 –
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where

H̃S[4,1](z1, z2, q, x; t) = 1 +
(

28 + 1
x2 + x2

)
t2 +

(
406 + 1

x4 + 28
x2 + 28x2 + x4

+ 5
z1

+ 5z1 + 5
z2

+ 5z2 + 5
q2z1z2

+ 5q2z1z2

)
t4 + . . .

(2.14)

Note that the term 24t2 in (2.13) indicates the expected dimension of the global symmetry
group. The Hilbert series (2.13) indeed agrees with that of the expected nilpotent orbit
closure [20].

2.2 Hooks

We next generalise this to consider hook partitions

P ↔ n = k + 1 + . . .+ 1 , (2.15)

for which the quiver is

k−1kn−1

1 1

1 2 3

n−k

. . .
1

. . .

. . .

(2.16)

where the Coulomb branch global symmetry is SU(n)× SU(k)× U(1)n−k. The Levi is now

LcP = SU(k)×U(1)n−k , (2.17)

and on hyperKähler reduction we expect to obtain the closure of the [n− k + 1, 1k−1] orbit,
whose complex dimension is n2 − n− (k2 − k).

Taking the hyperKähler quotients over the k leg unfortunately runs into problems of
incomplete Higgsing. However, the advantage of the hook quivers is that they have known
3d mirrors. The Coulomb branch of (2.16) is the Higgs branch of:

SU(n−1) SU(n−2)
. . .

SU(k+1)

n k

(2.18)

The action of taking the hyperKähler quotient in (2.16) then translates to gauging
flavour groups in its mirror, as shown in figure 4. Following the gauging procedure of the
mirror quiver, we arrived at the second quiver from the bottom right. This quiver clearly
suffers from issues of incomplete Higgsing for all gauge nodes (except the first one from
the left). However, the Higgs branch of a quiver suffering from incomplete Higgsing is
equivalent to the Higgs branch of a different quiver with no Higgsing issues. To arrive at
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SU(n−1)

SU(n−2)
. . .

SU(k+1)

n k

k−1kn−1

1 1

1 2 3

n−k

. . .
1

. . .

U(n−1)

U(n−2)
. . .

n k

k−1kn−11 2 3
. . .

1

hyperKähler quotient U(1)n−k−1 Gauging U(1)n−k−1

n−k

U(n−1)

U(n−2)
. . .

U(k+1)

n U(k)

n−k1 2 3

hyperKähler quotient U(k)

n−k

Gauging U(k)

n−k

. . .
n−k

. . .

1

k

3d mirror

3d mirror

3d mirror

. . .

. . .

U(n−k)

U(n−k−1)
. . .

U(2)

n U(1)

Same Higgs branch
when FI 6= 0

U(k+1)

Figure 4. HyperKähler reduction for the hook case. The hyperKähler quotients on the left are
obtained by performing gaugings on the 3d mirrors on the right. Note that the left bottom quiver
should be supplemented by (n − k)(k − 1) free hypers, while the right bottom quiver should be
supplemented by (n− k)(k − 1) free twisted hypers.

the mirror quiver on the bottom right, we use the prescription that a U(k) gauge group
with Nf < 2k flavor has the same Higgs branch as a U(Nf − Nc) gauge group with Nf

flavors [9]. However, such a relation only holds when the FI parameters are non-zero. When
the FI parameters are zero, the new quiver with the same Higgs branch takes a different
form [10]. This observation leads us to conclude that only when FI 6= 0 does the mirror
quiver have the expected Higgs branch that is the closure of the [n− k + 1, 1k−1] nilpotent
orbit as predicted from the Levi group, see the bottom right part of figure 4.
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Using the commutativity of the operations shown in figure 4, one concludes that the
HyperKähler reduction of the Coulomb branch of (2.16) by (2.17) is the expected nilpotent
orbit (see the bottom right corner of figure 3), thus confirming the general claim (2.4) for
every hook partition.

3 Orthosymplectic partial implosion

In this section, we look at some other classical groups. It is useful to recall that parabolic
subgroups P , up to conjugacy, are classified by subsets of the Dynkin diagram. The
subdiagram is the Dynkin diagram of the commutator of the Levi subgroup LP .4 The
partial flag varieties for SO2n are of the form5

SO2n
P

= SO(2n)
U(p1)× . . .×U(pr)× SO(2l) , (3.1)

where P is a parabolic, defined by the decomposition

P ↔ l +
r∑
i=1

pi = n, (3.2)

with 0 ≤ l ≤ n. This reflects the fact that subdiagrams of the Dn Dynkin diagram have
components of A type, as well as possibly one D type component.

It follows that P has complex dimension 1
2(n(2n− 1) + l(2l − 1) +∑r

i=1 p
2
i ) and the

quaternionic dimension of the partial implosion is

dimH(T ∗SO2n)P,impl = 1
2

(
n(2n− 1) + l(2l − 1) +

r∑
i=1

p2
i

)
. (3.3)

If l = 0 and pi = 1 for all i then we get the classical implosion with complex dimension 2n2.
We propose, in analogy with (2.4), the following Coulomb branch description for the

orthogonal universal partial implosion:

(T ∗SO2n)P,impl = C


2 2 4 2n−2 2n−2

p1

2

1

2 1pr

2l

2
2



(3.4)

4Note that the Levi subgroups of SO2n are in one to one correspondence with the different phases of n
Dp branes next to an Op− plane.

5Recall that SO2n denotes a non-compact complex group, while SO(2n) denotes a compact real group.
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That is, we take the quiver for the SO2n nilpotent cone, and explode the flavour node into
unitary legs of length pi (i = 1, . . . , r) and (if l > 0) an orthosymplectic leg starting at
SO(2l). As in the unitary case, this keeps the remaining nodes of the nilpotent quiver
balanced, generating an SO(2n) symmetry. The balanced nodes in the legs generate
SU(p1)×SU(pr)×SO(2l) symmetry, and the unbalanced nodes adjacent to the USp(2n−2)
node give the remaining abelian symmetries.

Note that the balancing condition at the SO(2l) node of the orthosymplectic leg is

4l = (2l − 2) + (2n− 2) + 2 , (3.5)

that is, l = n− 1. This is the parabolic associated to the symmetric space coadjoint orbit
SO(2n)/U(1)× SO(2n− 2) = SO(2n)/SO(2)× SO(2n− 2), the hyperquadric in CP2n−1. If
this condition holds then there is a symmetry enhancement, whereas if l < n− 1 then the
node has positive balance.

As a first confirmation of the proposal, the rank of the gauge group defining the quiver
in (3.4) is

rank = 2
n−1∑
i=1

i+
r∑
i=1

1
2pi(pi + 1) + l + 2

l−1∑
i=1

i

= 1
2

(
n(2n− 1) + l(2l − 1) +

r∑
i=1

p2
i

)
,

which equals the quaternionic dimension (3.3), as desired.
We now turn to the SO8 example to perform further checks.

3.1 The SO8 example

There are 16 parabolic subgroups corresponding to subsets of the Dynkin diagram D4, but
some of these are equivalent under triality. The diagram in figure 5 displays the 12 nilpotent
orbits, ten of which are Richardson orbits associated to parabolics. The relevant quivers
are depicted in figure 6. (The ‘Levi’ column gives the commutator of the Levi subgroup of
the parabolic).

Some of these examples are equivalent under triality, for example the [42]I and [42]II
orbits and the [5, 13] orbit with Levi D2 ∼= A1 + A1. A similar statement applies in the
other case of a very even partition, the two [24] orbits and the [3, 15] one. Note that the
[32, 12] orbit comes from two distinct parabolics with non-isomorphic Levi subgroups. The
subregular orbit [5, 3] arises from parabolics with isomorphic Levi but which are not related
by triality (corresponding to the central node or a peripheral node of the Dynkin diagram).

The other 2 orbits, given by partitions [3, 22, 1] and the minimal orbit [22, 14], are not
Richardson.
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Partitions
Commutator

of Levi
Diagrams

[7, 1]

[5, 3]

[42]I [42]II

[5, 13]

[32, 12]

[3, 22, 1]

[3, 15]

[24]I [24]II

[22, 14]

[18]

0

A1

A1 +A1

D2

A1 +D2
A2

D3

A3

D4

Figure 5. Hasse diagram of D4 nilpotent orbits, labeled by even integer partitions of 8. Partitions
in black correspond to Richardson orbits, and partitions in red to non Richardson orbits.
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Partitions Bouquets

[7, 1]

[5, 3]

[42]I [42]II

[5, 13]

[32, 12]

[3, 22, 1]

[3, 15]

[24]I [24]II

[22, 14]

[18]

6

1

1

1

2

. . .

6

2

1

1

. . .

1

6

1

1. . .

4 2 2

6

2

2

. . .

1

1

6
. . .

3 2 1

2
6

2

. . .

4 2 2

1

6
. . .

4 3 2 1

6
. . .

1

6 4 4 2 2

6
. . .

6 4 4 2 268

Figure 6. D4 nilpotent orbits and the different bouquets of the SO(8) flavor node according to the
partitions.
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Subregular. For the subregular case of D4, the partition is [5, 3]. This can be obtained
by taking the following hyperKähler quotient:6

2 2 4

2
1

2
6 64

1

hyperKähler quotient

2 2 4 6 44

42

(3.6)

Here, we look at an explicit computation of the Coulomb branch Hilbert series with
n = 4 with Jordan type [5, 3]. The quiver is drawn with the following fugacities:

2 2 4

2
1

2
6 64

1

z2

q

x

z1

(3.7)

where z1, z2, q are the fugacities of the three U(1) subgroups and x is the fugacity of the SU(2)
subgroup. The Coulomb branch Hilbert series is H̃S[5,3](z1, z2, q, x; t). The computation
of the Hilbert series requires the summation of dressed monopole operators with integer
magnetic charges and half-plus integer magnetic charges (see [21]). The hyperKähler
quotient takes H̃S[5,3](z1, z2, q, x; t) to HS[5,3](t):

∮ dz1 dz2 dq dx
(2πi)4z1z2q

1− x2

x
(1− t2)4(1− x2t2)

(
1− t2

x2

)
H̃S[5,3](z1, z2, q, x; t)

= 1 + 28t2 + 405t4 · · · = HS[5,3](t)
(3.8)

where

H̃S[5,3](z1, z2, q, x; t) = 1 +
(

32 + 1
x2 + x2

)
t2

+
(

528 + 1
x4 + 32

x2 + 32x2 + x4
)
t4 + . . .

(3.9)

Note again the t2 coefficient in HS[5,3] gives the dimension of the global symmetry group SO8.

3.2 The E6 family

For the unitary quivers, the hook quivers offer a nice family for us to test the hyperKähler
quotients using their mirror theories. However, for partial implosion of orthosymplectic
quivers, it is more difficult to find a family of quivers with known mirror duals.

6Note that analogously to the unitary case, one should supplement the right hand quiver by 4 free hypers,
if one views the hyperKähler quotient as a gauging of topoplogical symmetry.
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In this section we look at a particular orthosymplectic example that has interesting
links with another space. A family of moduli spaces, denoted E(k)

6 , defined by [22]

E
(k)
6 := H5d,gYM→∞


SU(k+1)± 3

2

2k+3


= H5d,gYM→∞


Sp(k)

D2k+3



= C3d

 1
· · ·

2k +
1

k +
1

1

k + 1 1
 (3.10)

= C3d

 2 2
· · ·

2k +
2

2k +
2

2k +
2

· · ·
2 2

1


That is, we have the conjectured partial implosion for SO(2k + 4), with, in the notation
of (3.2),

n = k + 2, l = k + 1, r = 1, p1 = 1. (3.11)

As l = n − 1 the SO(2l) = Dk+1 node is now balanced and we get a global symmetry
enhancement from SO(2k+ 4)×SO(2k+ 2)×U(1) to SO(4k+ 6)×U(1). Consider the Levi
subgroup SO(2k + 2)×U(1) ∼= SO(2k + 2)× SO(2) and take the hyperKähler quotient:

X(k) = E
(k)
6 /// (SO(2k + 2)× SO(2)) . (3.12)

We conjecture that X(k) is the closure of the next to minimal nilpotent orbit of Dk+2 for
k ≥ 1. This conjecture leads to

X̃(k) = T ∗
( SO(2k + 4)

SO(2k + 2)× SO(2)

)
, (3.13)

where X̃(k) is the Springer resolution of X(k). One can check that the dimensions of the
various spaces involved are in agreement with this conjecture. We would like to make
more checks.

Note that X(k) has an SO2k+4 action with complex moment map µC valued in so2k+4.
Equivariance of the moment map means that orbits are mapped onto coadjoint orbits in
so2k+4. So the moment map is either a diffeomorphism onto the next-to-minimal orbit or
maps orbits onto the minimal orbit.

We write out the hyperKähler quotient (3.12) explicitly in figure 7, following the
reasoning pictured in figure 4. The Coulomb branch of the quivers on the left (from top to
bottom) are the Ek6 , [22k+2, 12] orbit closure of SO4k+6 and [3, 12k+1] orbit closure of SO2k+4
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. . .

2k+2

4k+6

hyperKähler quotient U(1)

hyperKähler quotient SO(2k+2) Gauging (S)O(2k + 2)

3d mirror

3d mirror

. . .

1

2k + 2

2k + 22k + 2

2 2 2 2

. . .. . .

2

2k + 2

2k + 22k + 2

2 2 2 2

. . .
3 22 2

1

. . .
32 2

3

3

2k+1

2k+2

2k+4

(S)O(2k+2)

2

2k+4

2

E
(k)
6

[22k+2, 12]SO(4k+6)

[3, 12k+1]SO(2k+4)

Same Higgs branch
when hidden FI 6= 0

Figure 7. HyperKähler reduction of E(k)
6 . The hyperKähler quotients on the left are obtained by

performing gaugings on the 3d mirrors on the right. Note that the bottom two quivers should be
supplemented by 2k free (twisted) hypers.

respectively. The last equality uses the fact that the (hidden) FI parameters for the theories
on the right column are taken to be non-zero, using the results recalled in section 1.1. In
conclusion, we have obtained a proof of the claim (3.13), which is an argument in favor of
our general conjecture (3.4).

Conclusion. We have provided a conjectured realization of universal partial implosions
for G = SLn and G = SO2n in terms of Coulomb branches, respectively in equations (2.4)
and (3.4). In both cases, we have been able to check the conjectures by dimension
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computations and explicit calculations for certain parabolics. The phenomenon of non-
complete Higgsing is responsible for the difficulty in proving the conjectures in the general
case. We also leave for future work the determination of universal partial implosions for
other simple groups.
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