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1 Introduction

Currently, the fundamental problem of moduli stabilisation and the quest for de Sitter
vacua are a subject of intensive research activity in string theory. Despite the continuous
efforts over the last couple of decades, both issues remain open to this day. Possible solu-
tions, if they exist at all,1 are sought beyond the classical level and are based on quantum
corrections which modify the Kähler potential and the superpotential. During the last
few decades, a broad spectrum of perturbative and non-perturbative contributions have
been implemented to confront these issues. Amongst the leading early proposals on this
issue are the KKLT construction [3] and the LARGE volume scenario (LVS) [4]. In these

1The recent literature is vast. For comprehensive analyses and related work on these issues see the
reviews [1, 2].
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scenarios, stabilisation of the Kähler moduli is based on non-perturbative corrections [5]
in the superpotential while D3 contributions [3] or D-terms [6] are introduced to uplift the
AdS vacuum to a de Sitter (dS) space. For the same reasons, the study of non-perturbative
effects has been in the center of (Kähler) moduli stabilisation in the type IIB orientifold
framework and several (new) mechanisms have been proposed in the meantime in order
to induce such corrections in the effective four dimensional theory [7–10]. However, given
the fact that these non-perturbative effects have been proposed in the 4D effective theory
and their higher dimensional origin has not been understood or clear enough yet, there
have been observations regarding some incompatibilities while building realistic models,
especially when the open string moduli are involved, e.g. see [11, 12]. Moreover, there
are some arguments in recent literature [13, 14], which cast further doubts whether non-
perturbative effects usually implemented in the model building are generic and genuine
enough to play the decisive rôle which they have been attributed to. It is therefore reason-
able to contemplate the idea whether an elegant and viable solution could be achieved only
with a minimum number of robust and well defined ingredients. From this perspective, it
would be of particular interest to investigate whether a successful outcome can emerge by
incorporating only perturbative quantum corrections. Therefore, in this work we focus on
a minimal set of quantum contributions which suffice to break the no-scale structure of the
Kähler potential and are more or less model independent.

Various sources of perturbative quantum corrections have been investigated over the
last couple of decades. We first mention the (α′)3 corrections [15] which are proportional to
the Euler characteristic of the internal manifold and lead to a non-vanishing scalar potential
for the Kähler moduli. Also, the rôle of string loop effects in the presence of D-branes
and O-planes for large volume compactifications of toroidal orientifolds and other related
issues have been extensively discussed in references [16–19]. Furthermore there are one-loop
logarithmic corrections in the Kähler potential [20, 21] stemming from configurations of D7
brane stacks and a novel four-dimensional Einstein-Hilbert term (localised within the six-
dimensional internal space) generated from higher derivative terms in the ten-dimensional
string effective action [22–25]. Within this framework, de Sitter minima can be achieved
by virtue of an ‘uplift’ contribution emerging from D-terms associated with the universal
U(1) factors of the D7-stacks. In addition to the two-derivative (F 2) scalar potential effects
arising from the Kähler potential and the superpotential, there have been a new class of
higher derivative contributions found at the F 4-order [26]. These contributions are also
perturbative in nature, and appear with slightly more suppressed powers in terms of the
overall volume of the internal manifold. Let us mention here that (most of) these aforesaid
perturbative corrections are invoked by considering the reduction from a higher dimensional
term, and in that sense their parental origin could be thought of being better understood.
In this regard, using higher dimensional symmetries in the F -theory context, a systematic
analysis of the volume/dilaton dependencies of several α′ as well as gs corrections have been
presented in [27]. Moreover, let us add that these perturbative corrections we mentioned
are quite generic in the sense that they can be (mostly) present in arbitrary CY orientifold
models, unlike the non-perturbative effects which demand some very specific conditions in
order to contribute to the superpotential, e.g. the unit arithmetic genus condition of [5], or
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an “appropriate” choice of fluxes to “rigidify” the non-rigid divisors [10] or about finding
an ample divisor which is rigid as well [9, 28].

In the present work, taking into account the above mentioned perturbative ingredients,
a systematically analytic treatment is performed aiming to obtain a closed simple formula
for the scalar potential. The analysis focuses only on the minimum radiative corrections
which are necessary to guarantee the existence of (anti-) de Sitter vacua in the large volume
regime. In this approach, of primary importance are perturbative (α′)3 as well as string loop
effects, especially the one-loop logarithmic corrections, whereas non-perturbative effects,
for the reasons mentioned above, are assumed to be absent in explicit Calabi Yau orientifold
constructions. The moduli space Kähler metric and its inverse metric are constructed for a
combination of α′ and the string-loop effects using the closed string chiral variables, namely
the axio-dilaton (S), the complexified Kähler moduli (Tα) and the complex structure moduli
(U i) from which a simple analytic form for the scalar potential is obtained while various
limiting cases are considered. In addition, D-terms or D3 contributions must be introduced
to uplift the vacuum to a de Sitter space. In particular the expansions in α′ and the
logarithmic correction are presented and are found to be in accordance with previous
works. A concise description of the model and the quantum corrections implemented is
given in section 2. In incorporating the perturbative corrections into the Kähler potential
we recall that type IIB string theory admits the discrete SL(2, Z) symmetry which implies
invariance of the resulting effective theory under some subgroup Γs ⊂ SL(2, Z). This fact
motivates us to write the α′ corrections in terms of the Eisenstein series E3/2. Then, some
of the quantum corrections appear in different powers of the gs expansion. In section 3,
a simple formula of the effective potential is derived which includes α′ and logarithmic
string loop corrections. Various limiting cases are considered in the large volume regime.
A generic formula of the scalar potential including also the sub-leading terms and higher
derivative F 4 contributions is given in section 4. In section 5 we present a concrete CY
orientifold model which shares many of its properties with the standard six-torus orientifold
case, and hence gets directly applicable to the current scenario. In section 6, the problem of
moduli stabilisation is discussed in detail using the concrete specific data of the global CY
orientifold, along with exploring numerical models with de Sitter vacua. Our conclusions
are presented in section 7.

2 No-scale breaking through string loops

The type IIB Kähler potential receives two kinds of corrections at the perturbative level;
one arising from the α′ series of higher derivatives effects and the other one is induced
through the string-loop (gs) corrections. Using appropriate chiral variables, a generic form
for the Kähler potential incorporating (some of) the perturbative α′ and gs corrections can
be written as the sum of two terms motivated by their underlying N = 2 special Kähler
and quaternionic structure:

K = Kcs +K , (2.1)
where:

Kcs = − ln
(

i
∫
X

Ω3 ∧ Ω̄3

)
and K = − ln

(
−i(S − S)

)
− 2 lnY . (2.2)
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Furthermore, various sub-leading corrections to the overall volume V can be encoded in Y
expressed as Y = Y0 + Y1 and defined in the following manner,

Y0 = V + ξ

2 e
− 3

2φ = V + ξ

2

(
S − S

2 i

)3/2

,

Y1 = e
1
2φ f(V) =

(
S − S

2 i

)−1/2

f(V) , (2.3)

where V is the tree-level CY volume V = 1
6 kαβγ t

α tβ tγ in the Einstein frame and ξ is
proportional to the CY Euler characteristic χ such that ξ = − ζ(3)χ(X)

2 (2π)3 . Here Y0 denotes
the α′ corrected CY volume [15] which is still at the ‘tree’-level in the string-loop series,
while Y1 denotes the one-loop correction which can generically have dependence on the
overall volume V as suggested in [20]. In fact, after including the SL(2,Z) completion
of the α′ corrections of [15] one gets non-holomorphic Eisenstein series E3/2(S, S) defined
as [29],

E3/2(S, S) =
∑

(p,q) 6=(0,0)

(
S − S

) 3
2

(2 i)
3
2 |p+ q S|3

, (2.4)

which in the weak coupling limit includes a constant perturbative term at one-loop order
as can be seen from the expansion below,

E3/2(S, S) = 2 ζ[3]
(
S − S

2 i

)3/2

+ 4
(
S − S

2 i

)−1/2

ζ[2] +
(
S − S

2 i

)1/2

O(e−2πs), (2.5)

where the first term corresponds to the BBHL pieces while the second term is proportional
to s−1/2 where s = Re(S) = g−1

s given that string coupling is defined through gs = e〈φ〉.
The last term corresponds to non-perturbative string-loop effects which we ignore for the
current work. Combining the effects of [20] along with the above mentioned one-loop piece
suggests the following form for the function f(V),

f(V) = σ + η lnV , (2.6)

where we have introduced two parameters σ and η which do not depend on any moduli.
Moreover, let us note that the choice of implicit function f(V) in eq. (2.3) is well consistent
with some more generic situations given that it depends only on the Einstein frame volume
V which does not transform under the SL(2,Z) transformations. Subsequently we have the
following Ansatz for the shifted volume Y appearing in the Kähler potential in eq. (2.2),

Y = V + ξ

2 e
− 3

2φ + e
1
2φ (σ + η lnV) . (2.7)

Comparing the BBHL and 1-loop terms arising from the expansion of the Eisenstein series
in eq. (2.5), along with the logarithmic loop corrections computed in [20, 21, 30–33] one
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can have the following correlations among the various coefficients, namely ξ, σ and η,

ξ = −χ(CY ) ζ[3]
2(2π)3 , σ = −χ(CY ) ζ[2]

2(2π)3 = − η, ξ

η
= −ζ[3]

ζ[2] (2.8)

ξ̂ = ξ

g
3/2
s

, η̂ = g1/2
s η ,

ξ̂

η̂
= − ζ[3]

ζ[2] g2
s

.

2.1 Computation of the Kähler metric and its inverse

We are using the following definitions of the chiral variables

U i = vi − i ui, S = c0 + i e−φ, Tα = cα − i τα , (2.9)

where φ is the dilaton, ui’s are the complex structure saxions, and τα’s are the Einstein
frame four-cycle volume moduli defined as τα = ∂tαV = 1

2kαβγt
βtγ . In addition, the C0

and Cα’s are universal RR axion, RR four-form axions respectively while the complex
structure axions are denoted as vi. Here the indices {i, α} are such that i ∈ h2,1

− (CY/O)
while α ∈ h1,1

+ (CY/O). Moreover, we assume that h1,1 = h1,1
+ for simplicity, and hence

there are no so-called odd-moduli Ga which are present in our analysis, and we refer the
interested readers to [34]. Using the Kähler potential pieces given in eqs. (2.2)–(2.3), we
get the following useful relations in the absence of any odd-moduli Ga,

∂St
α = 0 = ∂St

α, ∂SV = 0 = ∂SV, ∂S ξ̂ = −3 i ξ̂
4 s = −∂S ξ̂,

(2.10)

∂Tβ t
α = i

2 k
αβ = −∂Tβ t

α, ∂TαV = i

4 t
α = −∂TαV, ∂Tα ξ̂ = 0 = ∂Tα ξ̂,

∂SY0 = −3 i ξ̂
8 s = −∂SY0, ∂SY1 = i

4 s Y1 = −∂SY1,

∂TαY0 = i

4 t
α = −∂TαY0, ∂TαY1 = i

4 t
α s−

1
2
∂f

∂V
= i

4 t
α ∂Y1
∂V

= −∂TαY1,

where we have introduced shorthand notation such as kαtα = kαβt
αtβ = kαβγt

αtβtγ = 6V
and kαβ = (kαβγtγ)−1 which subsequently satisfies an identity: kαβkβ = tα. As and when
needed we have also used s = e−φ and ξ̂ ≡ ξ s3/2. This also results in the following
relation which can be directly used at various intermediate steps while computing the
Kähler derivatives and the Kähler metric,

∂SY = − i

4 s

(
3 ξ̂
2 − Y1

)
= −∂SY, (2.11)

∂TαY = i

4 t
α
(

1 + ∂Y1
∂V

)
= −∂TαY.

One can observe that ∂SY does not have any tree-level piece and can receive non-zero
contributions only from the α′ and gs induced effects. Subsequently, the Kähler derivatives
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for the quaternionic sector of the Kähler potential (K) given in eq. (2.2) can be generically
expressed as below,

KS = i
2 s

(
1 + 3 ξ̂

2Y −
Y1
Y

)
= i

2 sY
(
V + 2 ξ̂

)
= −KS , (2.12)

KTα = − i tα

2Y

(
1 + s−

1
2
∂f

∂V

)
= − i tα

2Y

(
1 + ∂Y1

∂V

)
= −KTα

.

Using these derivatives, the various Kähler metric components are found to be:

KSS = 1
8 s2 Y2

(
V(Y + V)− 4ξ̂(Y − V) + 4ξ̂2

)
, (2.13)

KTα S
= − tα

8 sY2

(3
2 ξ̂ − s

− 1
2 f + s−

1
2 (V + 2ξ̂) ∂f

∂V

)
= KS Tα

,

KTα Tβ
= 9Gαβ

4Y2

(
1 + s−

1
2
∂f

∂V

)
− s−

1
2
tαtβ

8Y
∂2f

∂V2 ,

where, using our shorthand notation, the metric G and its inverse G−1, can be given by the
following expressions,

Gαβ
36 = kα kβ

4Y (6V − 2Y) −
kαβ
4Y and 36Gαβ = 2 tα tβ − 4Y kαβ . (2.14)

In fact, the true interpretation of the moduli space metric should be consider to be the one
which is corrected by all the α′ and gs effects in a collective manner. Now, to facilitate an
easier inversion of the moduli space metric we can express it in the following formulation,

KSS = P1, KTα S
= tα P2 = KS Tα

, KTα Tβ
= (tα tβ)P3 − kαβ P4 , (2.15)

where the four functions P1,P2,P3 and P4 are collected as below

P1 = 1
8 s2 Y2

(
V(Y + V)− 4ξ̂(Y − V) + 4ξ̂2

)
, (2.16)

P2 = − 1
8 sY2

(3
2 ξ̂ − s

− 1
2 f + s−

1
2 (V + 2ξ̂) ∂f

∂V

)
,

P3 = 1
8Y2

(
1 + s−

1
2
∂f

∂V
− Y s−

1
2
∂2f

∂V2

)
,

P4 = 1
4Y

(
1 + s−

1
2
∂f

∂V

)
.

Actually rewriting the Kähler metric in the above formulation admits the inverse Kähler
metric of the following form,

KSS = P̃1, KTα S = kα P̃2 = KS Tα , KTα Tβ = (kα kβ) P̃3 − kαβ P̃4 , (2.17)

where the four new functions P̃1, P̃2, P̃3 and P̃4 are to be determined by demanding
KABK

BC = δA
B. Now using short hand notations/definitions and identities such as

– 6 –
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kαt
α = 6V, kαβtβ = kα and kαβkβ = tα, one can show that KABK

BC = δA
B results

in the following set of constraints,

P1P̃1 + 6VP2P̃2 = 1, P1P̃2 + P2(6VP̃3 − P̃4) = 0, (2.18)
P2P̃2 + 6VP3P̃3 − P4P̃3 − P3P̃4 = 0, P4P̃4 = 1.

Now, this reduces the task of inverting the complicated Kähler metric into solving a set of
four quadratic equations in four variables. Subsequently, the functions P̃1, P̃2, P̃3 and P̃4
are given as below,

P̃1 = P4 − 6P3V
P1P4 + 6P2

2V − 6P1P3V
, (2.19)

P̃2 = P2
P1P4 + 6P2

2V − 6P1P3V
,

P̃3 = P2
2 − P1P3

P4
(
P1P4 + 6P2

2V − 6P1P3V
) ,

P̃4 = (P4)−1.

Let us mention that it does not appear to be illuminating to give explicit generic expressions
for P̃i’s in terms of the Kähler potential ingredients (such as V, ξ̂ and f(V)) which results
in quite lengthy and complicated expressions, and can nevertheless be directly read-off
from eqs. (2.16)–(2.19). However it is worth to reproduce the known results as a limiting
case of our general formulae. For example, in the absence of both of the α′ as well as gs
corrections, the tree level expressions for Pi and P̃i are given as below [35],

P1 = 1
4 s2 , P2 = 0, P3 = 1

8V2 , P4 = 1
4V , (2.20)

P̃1 = 4 s2, P̃2 = 0, P̃3 = 1, P̃4 = 4V.

Similarly for the case of BBHL’s α′ corrections [15] being included, we have the following
simplified expressions for Pi and P̃i which matches with those claimed in [34, 36, 37],

P1 =
4V2 + ξ̂

(
V + 4ξ̂

)
16 s2 (V + 1

2 ξ̂)2
, P2 = − 3 ξ̂

16 s (V + 1
2 ξ̂)2

, (2.21)

P3 = 1
8 (V + 1

2 ξ̂)2
, P4 = 1

4 (V + 1
2 ξ̂)

,

P̃1 = s2 (4V − ξ̂)
(V − ξ̂)

, P̃2 = 3 s ξ̂
2 (V − ξ̂)

, P̃3 = 4V − ξ̂
4 (V − ξ̂)

, P̃4= 4
(
V + 1

2 ξ̂
)
.

In [34] it was observed that the form of P̃1 remains the same even after including the
odd-moduli, despite a complicated mixing with new terms in the generalized version of P1
in the corresponding KS,S component of the Kähler metric.

– 7 –
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2.2 Some useful no-scale breaking identities

Considering the explicit form of the Kähler derivatives in eq. (2.12) along with the various
components of the inverse Kähler metric in eq. (2.17) supplemented by eq. (2.16) and
eq. (2.19), we find the following useful simplified relations:

KSK
SS = i(V + 2 ξ̂)

2 sY P̃1 = −KSSKS , (2.22)

KSK
STα = i(V + 2 ξ̂)

2 sY kα P̃2 = −KTαSKS ,

KTα K
Tα S = −3 iV

Y

(
1 + ∂Y1

∂V

)
P̃2 = −KS Tα KTα

,

KTα K
TαTβ = − i

2Y

(
1 + ∂Y1

∂V

)(
6VP̃3 − P̃4

)
kβ = −KTβTα KTα

.

In addition, we have the following relations:

KSK
SSKS = (V + 2 ξ̂)2

4 s2 Y2 P̃1 , (2.23)

KSK
STα KTα

= −3V (V + 2 ξ̂)
2 sY2

(
1 + ∂Y1

∂V

)
P̃2 = KTi K

TiSKS ,

KTα K
TαTβ KTβ

= 3V
2Y2

(
1 + ∂Y1

∂V

)2 (
6VP̃3 − P̃4

)
.

Moreover, one can find the following useful relations using eqs. (2.22)–(2.23),

KAK
AS = i(V + 2 ξ̂)

2 sY P̃1 −
3 iV
Y

(
1 + ∂Y1

∂V

)
P̃2 = −KSBKB , (2.24)

KAK
ATα = kα

[
i(V + 2 ξ̂)

2 sY P̃2 −
i

2Y

(
1 + ∂Y1

∂V

)(
6VP̃3 − P̃4

)]
= −KTαBKB .

In addition we have the following identitiy,

KAK
ABKB = (V + 2 ξ̂)2

4 s2 Y2 P̃1 −
3V (V + 2 ξ̂)

sY2

(
1 + ∂Y1

∂V

)
P̃2

+ 3V
2Y2

(
1 + ∂Y1

∂V

)2 (
6VP̃3 − P̃4

)
. (2.25)

These identities can be directly used for deriving the generic formula for the scalar potential.
Moreover, these expressions are given in full generality and it would be worth to present

the particular limiting cases so that to understand and connect with the insights behind
these identities. For example, when α′ corrections are turned off, say via setting ξ̂ = 0
along with the string-loop effects, using eq. (2.20) we get the following well-known tree-level
results:

KS K
SS=2 i s=−KSS KS , KS K

STα =0=KTαS KS , (2.26)

KTα K
Tα S=0=KS Tα KTα

, KTα K
TαTβ =− i kα=−KTβTα KTα

,

KS K
SS KS=1, KS K

STα KTα
=0, KTα

KTαTβ KTβ
=3 .

– 8 –
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For the case of including the BBHL’s α′ corrections, and in the absence of string-loop
effects, the identities in eq. (2.24) and eq. (2.25) take the following simple form,

KAK
AS = (S − S) = −KSBKB , (2.27)

KAK
ATα = (Tα − Tα) = −KTαBKB ,

KAK
ABKB = 4,

where we have used explicit expressions of P̃i as given in eq. (2.21). In fact it was observed
in [34, 37] that the above identities (2.27) which are usually well known to hold at the tree-
level are promoted to hold even after including the BBHL’s α′ corrections. In order to see
some insights of adding the one-loop effects in the identities (2.27), let us consider f(V) = σ

where σ is just some constant parameter which leads to the following modifications:

KAK
AS = (S − S)

(
1 + 2 e

1
2φ σ

Y − 2 e
1
2φ σ

)
= −KSBKB , (2.28)

KAK
ATα = (Tα − Tα)

(
1− 2 e

1
2φ σ

Y − 2 e
1
2φ σ

)
= −KTαBKB .

KAK
ABKB = 4 + 4 e

1
2φ σ

Y − 2 e
1
2φ σ

.

3 Combining BBHL and (logarithmic) string-loop effects

In this section we present a generic formula for the scalar potential which includes α′

corrections of [15, 26] as well as (some of) the string-loop effects [20] via considering the so-
called Gukov-Vafa-Witten’s flux superpotential [38]. We will subsequently use the master
formula to read-off the scalar potentials for a set of Ansätze specific for the function f(V)
as particular cases. Then we will present the moduli stabilisation and de Sitter realisation
in one of the upcoming sections.

3.1 Generic scalar potential

The block diagonal nature of the total Kähler metric (and its inverse) with respect to the
complex structure moduli sector and the remaining moduli sector admits the following
splitting of contributions in the scalar potential,

e−K V = KAB (DAW ) (DBW )− 3|W |2 ≡ Vcs + Vk , (3.1)

where:

Vcs = Kij
cs (DiW ) (DjW ) and Vk = KAB (DAW ) (DBW )− 3|W |2 . (3.2)

Recall that the indices (i, j) correspond to the complex structure moduli U i while the
indices (A,B) run over the remaining chiral variables {S,Ga, Tα} where α ∈ h1,1

+ (CY )
and a ∈ h1,1

− (CY ). However for our current purpose, we assume that the choice of the
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orientifold involution is such that the odd (1, 1)-cohomology sector is trivial, and so there
will be no odd moduli Ga present in the current analysis. Assuming that the complex
structure moduli and the axio-dilaton are fixed by supersymmetric F -flatness condition
using the so-called Gukov-Vafa-Witten flux superpotential W = W (S,U i) we get,

DiW = 0 = DiW, DSW = 0 = DSW. (3.3)

Subsequently, after fixing the complex structure moduli and the axion-dilaton by the lead-
ing order effects, the scalar potential for the Kähler moduli can be generically given as
below,

Vα′+log gs = eK |W |2
(
KTα K

TαTβ KTβ
− 3

)
(3.4)

= eK |W |2
[

3V
2Y2

(
1 + ∂Y1

∂V

)2 (
6VP̃3 − P̃4

)
− 3

]
.

As a warm-up to illustrate the utility of the master formula (3.4) let us quickly consider
the tree-level case.2 From eq. (2.20) we read-off that P̃3 = 1 and P̃4 = 4V while Y1 being a
purely string-loop effect vanishes, along with neglecting the BBHL’s α′ corrections leading
to Y = V. With these pieces of information, one can immediately read-off from eq. (3.4)
that the scalar potential vanishes which is rooted in the so-called no-scale structure.

As a second example, let us consider the BBHL corrections without any string-loop
effects. Subsequently, for this case using eq. (2.3) and eq. (2.21) we read-off the following
details,

Y =
(
V + 1

2 ξ̂
)
, Y1 = 0, P̃3 = 4V − ξ̂

4 (V − ξ̂)
, P̃4 = 4

(
V + 1

2 ξ̂
)
,

which, using the master formula (3.4), recovers the well known BBHL piece given as below,

Vα′ = eK |W |2
3 ξ̂
(
V2 + 7ξ̂ V + ξ̂2

)
4
(
V − ξ̂

) (
V + 1

2 ξ̂
)2

V→∞−−−−→ κ
3 ξ̂

4V3 |W0|2, (3.5)

where κ = gs/(8π), and eKcs = 1 which we set throughout the paper from now onwards.
Here in the last step we have introduced an appropriately normalized flux superpotential
parameter W0 which is given as below [39],

W =
√
gs
8π

〈
e

1
2Kcs

∫
CY

(F3 − SH3) ∧ Ω3

〉
=
√
gs
8π

〈
e

1
2Kcs

〉
W0, (3.6)

where Ω3 is the nowhere vanishing holomorphic three-form of the compactifying Calabi
Yau threefold while (F3, H3) denotes the S-dual pair of RR and NS-NS three-form fluxes.
We also note that the need for appropriately considering this overall factor (which a priory
does not appear to play any role in the moduli dynamics) is the fact that we will be
using not only the two-derivative contributions at order F 2 but also some higher derivative
F 4-corrections, which leads to contributions with an overall factor e2K |W |4.

2Whenever we say tree level, we mean that both the α′ as well as the gs corrections are absent. For us,
tree level should not be confused to be tree level in gs series only, as in that case BBHL corrections which
are tree-level in string-loops can be allowed.
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3.2 Approximating the scalar potential in weak coupling limit

The very fact that the shifted volume in the Kähler potential appearing through Y involves
an implicit function of the overall volume, V, in the form of f(V), through the one-loop
piece Y1, and therefore it is not possible to make an explicit large volume expansion of the
master formula (3.4) at this stage. However given that the gs dependencies are explicitly
known and therefore it is indeed possible to make a weak coupling expansion which gives
the following pieces,

Vα′+log gs =
12κ ξ̂

(
V2 + 7ξ̂ V + ξ̂2

)
(
V − ξ̂

) (
2V + ξ̂

)4 |W0|2 (3.7)

+
3κ√gs(

V − ξ̂
)2 (

2V + ξ̂
)6 |W0|2

7∑
i=0

qi(V)V i +O(g2
s) + · · · ,

where qi(V)’s are implicit functions depending on f(V) and can be given as below,

q0(V) = 16f ξ̂5, (3.8)

q1(V) = 160f ξ̂4 − 16
(
∂f

∂V

)
ξ̂5,

q2(V) = 48
(
∂2f

∂V2

)
ξ̂5 + 128

(
∂f

∂V

)
ξ̂4 + 184f ξ̂3,

q3(V) = 120
(
∂2f

∂V2

)
ξ̂4 + 161

(
∂f

∂V

)
ξ̂3 − 232f ξ̂2,

q4(V) = 147
(
∂2f

∂V2

)
ξ̂3 + 232

(
∂f

∂V

)
ξ̂2 − 160f ξ̂,

q5(V) = 222
(
∂2f

∂V2

)
ξ̂2 + 160

(
∂f

∂V

)
ξ̂ + 32f,

q6(V) = 96
(
∂2f

∂V2

)
ξ̂ + 64

(
∂f

∂V

)
,

q7(V) = 96
(
∂2f

∂V2

)
.

Note that, while making the weak coupling expansion we have considered V and ξ̂ as
Einstein frame quantities without pulling out the gs factors within them, relating to their
respective string-frame expressions. The main motivation for us has been only to pull out
the “relative” factors for BBHL term appearing at g0

s order and the one-loop effects at
order g1/2

s as compared to BBHL while working with the Einstein frame ingredients.
Now let us make some observations about the form of the function f(V) which we have

taken to be quite generic in our scalar potential formulation. The second (BBHL) piece of
the simplified scalar potential (3.7) can be seen to be of order V−3 while the third piece
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which results from string-loop effects involves two factors; the first of which corresponds
to order V−8 multiplied by an implicit function

(
qiV i

)
which is a septic polynomial in

V along with factors of derivatives and double derivatives of f(V). This analysis has a
very interesting implication about the form of f(V) which is the fact that it cannot be a
polynomial of V with positive powers as in that case the loop effects will start dominating
the BBHL which is tree-level for string-loop series, and hence creating trouble for the whole
perturbative notion of quantum corrections and their effective field theory description. To
be more specific, let us consider

f(V) =
∑
n∈Z

fn Vn. (3.9)

We subsequently find that the volume scaling for various pieces qi’s are as follows:

q0 ∼ q1 ∼ q2 ∼ q3 ∼ q4 ∼ q5 ∼ Vn, q6 ∼ Vn−1, q7 ∼ Vn−2, (3.10)

which shows that the volume factor in the string-loop pieces of (3.7) scales in the follow-
ing form,

V−8 ×
( 7∑
i=0

qi(V) V i
)
∼ Vn−3. (3.11)

Now, given that the BBHL piece can be thought of a correction at tree-level in string-loops
and hence one-loop effects should preferably not overtake it. This suggests that n cannot
be a positive number as

Vgs
V(α′)3

≤ 1 =⇒ n ≤ 0. (3.12)

This simple analysis suggests that the implicit function f(V) should not be a positive
polynomial in V, however polynomials with non-positive powers should be consistent with
the validity of perturbative series expansion. In this regard, it is interesting to note that
the n = 0 case corresponds to f(V) = const., which we have motivated by the SL(2,Z)
completion arguments of BBHL piece. In addition to that, a logarithmic nature of f(V)
is always consistent with these arguments as its derivatives would be polynomials of V
with negative powers. We will get back to the generic scalar potential regarding moduli
stabilisation aspects later on.

3.3 Analysing a set of string-loop scenarios

In this section we will anayse a couple of Ansätze for the function f(V) responsible to
induce the string-loop effects.

Ansatz-1: f(V) = σ. Let us investigate the effects of the simplest string-loop term
in the Kähler potential by considering the function f(V) = σ where σ is some constant
parameter. Also momentarily, let us switch-off the BBHL’s α′ correction. Subsequently,
the functions P̃i’s are given as,

P̃1 = 2s3/2 (2sV2 +
√
sσV − σ2)

V (
√
sV − σ) , P̃2 = −

√
sσ (
√
sV + σ)

V (
√
sV − σ) , (3.13)

P̃3 = 2sV2 +
√
sσV − σ2

2sV2 − 2
√
sσV

, P̃4 = 4
(
V + σ√

s

)
.
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Now, using our master formula (3.4) gives the scalar potential of the following form,

V (1)
gs = eK |W |2

[
3σ (
√
sV + 2σ)

2 (sV2 − σ2)

]
V→∞−−−−→

3κ√gs σ
2V3 |W0|2. (3.14)

Let us make an observation that the scalar potential arising from this type of string-loop
effect results in a scalar potential contribution which is similar to the BBHL’s α′ correction
as given in eq. (3.5), though it has an additional string-loop suppression as expected, and
can be seen from the large volume expansions leading to,

V
(1)
gs

Vα′
'

2√gs σ
ξ̂

= g2
s

2σ
ξ
, (3.15)

where we have used ξ̂ = g
−3/2
s ξ in the last step. Thus we can see clearly that the 1-loop

effects are suppressed by a factor of g2
s as compared to the classical BBHL piece. This

new term V
(1)
gs as given in eq. (3.14) may be useful for moduli stabilisation in some special

circumstances. Moreover, if we include the BBHL contributions along with the string-loop
terms having f(V) = σ, then eq. (3.14) generalises to the following form,

V
(1)
α′+gs = eK |W |2

3
(
ξ̂3s+ ξ̂

(
sV2 − 8

√
sσV − 4σ2)+ 7ξ̂2sV + 2σV (

√
sV + 2σ)

)
(
V − ξ̂

) (
4sV2 + 4ξ̂sV + ξ̂2s− 4σ2

)
 .
(3.16)

Ansatz-2: f(V) = σ+η ln V. Now we investigate the effects of a bit less simple string-
loop term in the Kähler potential by considering the function f(V) = σ + η lnV where σ
and η are some constant parameters. To begin with, let us again switch-off the BBHL’s α′

correction. Subsequently, the simplified scalar potential can be given as below,

Vlog gs = eK |W |2

X

[
3(−η + σ + η lnV) (3.17)

×
(
2sV2 +

√
sV(4σ − 7η) + 2η lnV

(
2
√
sV − η

)
− 2ησ

)]
,

where

X = 2ησ2 + 4s3/2V3 + 10ηsV2 +
√
sV
(
−3η2 + 15ησ − 4σ2

)
(3.18)

+η lnV
(
4ησ +

√
sV(15η − 8σ) + 2η lnV

(
η − 2

√
sV
))
.

Taking the weak coupling limit of eq. (3.17) we get

Vlog gs '
3κ |W0|2(σ̂ − η̂ + η̂ lnV)

2V3 − 9κ η̂ |W0|2(σ̂ − η̂ + η̂ lnV)
V4 + · · · , (3.19)

where we have introduced the new parameters σ̂ = √gs σ and η̂ = √gs η similar to our
α′ parameter earlier redefined as ξ̂ = g

−3/2
s ξ. Analogously, expanding the total scalar
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potential obtained from the master formula (3.4) in the presence of BBHL’s α′ corrections,
we get the following form of the leading order pieces,

Vα′+log gs =
12κ |W0|2 ξ̂

(
V2 + 7ξ̂V + ξ̂2

)
(
V − ξ̂

) (
2V + ξ̂

)4 + 6κ |W0|2(
V − ξ̂

) (
2V + ξ̂

)6

[
16V4(σ̂ − η̂ + η̂ lnV) +

−16 ξ̂ V3(4σ̂ − η̂ + 4η̂ lnV)− 3ξ̂2V2(60σ̂ − 7η̂ + 60η̂ lnV) +

−4 ξ̂3 V (22σ̂ − 7η̂ + 22 η̂ lnV)− 8ξ̂4(σ̂ − 4η̂ + η̂ lnV)
]

+O(g2
s) (3.20)

Now we can also make another expansion for the large volume regime which leads to the
following simplified form of the scalar potential,

V
(1)
α′+log gs = 3κ ξ̂

4V3 |W0|2 + 3κ (σ̂ − η̂ + η̂ lnV)
2V3 |W0|2. (3.21)

Note that the overall factors for the two terms in the string-loop effects are such that
σ = −η, or equivalently σ̂ = −η̂ as mentioned in eq. (2.8) which results in the following,

V
(1)
α′+log gs = 3κ ξ̂

4V3 |W0|2 −
3κ (2 η̂ − η̂ lnV)

2V3 |W0|2. (3.22)

We will utilise this scalar potential for moduli stabilisation purpose in the next section.

3.4 Perturbative LVS

With the master formula (3.4) and the simplified versions derived so far, e.g. eq. (3.22), we
are now in a position to perform the study of moduli stabilisation for the overall volume
mode. For this purpose, the main idea is to fix the overall volume by the leading order
O(V−3) terms arising from BBHL and logarithmic-loop effects, and then fix the remaining
moduli by O(V−3−n) effects which will be a collective contributions induced from BBHL,
string-loop effects as well as the F 4-terms as we will show later on. So we consider the
simplified version of the scalar potential in eq. (3.22) given as below,

V1 ' C1

(
ξ̂ − 4 η̂ + 2 η̂ lnV

V3

)
+O(V−4) + · · · , C1 = 3κ

4 |W0|2; κ =
(
gs
8π

)
. (3.23)

Thus using the leading order effects, the derivative of the scalar potential and the Hessian
with respect to the overall volume V can be given as,

∂V1
∂V
' C1

2η̂ (7− 3 lnV)− 3ξ̂
V4 + · · · , (3.24)

∂2V1
∂V2 ' −C1

2η̂ (31− 12 lnV)− 12ξ̂
V5 + · · · ,

where · · · denotes the sub-leading pieces. Subsequently, the extremisation of the scalar
potential gives the following constraint,

2η̂ (7− 3 ln 〈V〉) ' 3ξ̂ =⇒ 〈V〉 ' e
14η̂−3ξ̂

6η̂ , (3.25)
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which shows that the overall volume can be dynamically stabilised to exponentially large
values by considering small values of string coupling, for a set of given natural values for
the ξ̂ and η̂ parameters provided that the ratio ξ/η is negative. In fact in [21, 31–33] it has
been already found that ξ/η < 0. For numerical estimates if one takes ξ̂ = 8 and η̂ = −1/2,
one gets 〈V〉 ' 30740.

Further, using the extremisation condition (3.25) in (3.24) one can eliminate ξ̂ and
subsequently can ensure that the solution corresponds to an AdS minimum as seen from
the expressions below,

〈V1〉 '
2η̂ C1
3〈V〉3 ,

〈
∂2V1
∂V2

〉
' −6 η̂ C1

〈V〉5
. (3.26)

Given that C1 > 0 as seen from eq. (3.23) and one needs η̂ < 0 for a positive VEV of the
Hessian component which subsequently corresponds to an AdS minimum, similar to the
standard LVS [4].

In this way, using eq. (2.8) and eq. (3.25) one finds that the overall volume V can be
dynamically stabilised to exponentially large values (by using the leading order perturbative
effects) in the following manner:

〈V〉 ' ea/g2
s+b, a = ζ[3]

2ζ[2] ' 0.365381, b = 7
3 · (3.27)

As a side remark, let us mention that this AdS minimum obtained in perturbative LVS
framework involves two (α′)3 pieces at the leading order: (i). the BBHL piece which is at
tree level in gs series and (ii). the logarithmic loop piece which is at the 1-loop level but
still embedded within the same (α′)3 order contributions to the scalar potential. Therefore
one may be concerned with the viability of such solutions against higher order terms in the
string-loop series. In this regard, let us mention that while this problem can be a priory
considered as a possible concern but practically one can easily avoid it by considering small
enough region of string coupling, say gs ≤ O(0.3) or so. For example, using gs = 0.2 in
eq. (3.27) results in 〈V〉 = 95593.3 while gs = 0.1 corresponds to 〈V〉 = 7.61463 · 1016.
Given that the (un-)known string loop effects of the higher order are anticipated to be
further suppressed in powers of CY volume V and string coupling gs, so we think that the
AdS vacua we have in perturbative LVS scheme should be viable against these corrections
in the sense that they will not be washed out, and such sub-leading effects can at most
produce a shift into the moduli VEVs or make the minima a bit shallower. In fact these
arguments are well demonstrated in table 3 in which one can see that the presence of
additional string-loop effects along with the higher derivative F 4 corrections can indeed
shift the VEVs significantly for the choice of larger gs values, however the AdS minimum
is not washed out. We expect similar things for the other (un-)known sub-leading α′ and
gs corrections as well.

4 A generic formula for the perturbative scalar potential

We have used the scalar potential effects of the order V−3 so far, in order to dynamically
fix the overall volume modulus V. We argue that it is likely to be possible to fix the
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remaining moduli by using the sub-leading effects, and some well known approaches are
already available, for example using sub-leading string-loops effects [16, 17, 19, 40, 41] as
compared to the ones we discussed in earlier sections, along with the higher derivative F 4

corrections [26].

4.1 Sub-leading string-loop effects

Apart from the leading order string-loop effects which contribute at the same order in the
volume scaling as the BBHL correction, there are some other string-loop corrections to the
Kähler potential which have been computed for toroidal models through various routes [16,
17, 40, 41], and have been subsequently conjectured for generic CY orientifolds [19]. It turns
out that the scalar potential is protected against the leading order pieces of such corrections
due to the so-called “extended” no-scale structure [19, 42] which subsequently results in
making these corrections appear at order V−10/3.

These additional corrections can be classified into two categories; one is called as the
KK-type correction while the other one as winding-type corrections. After a series of
works [16, 17, 19, 40, 41], these corrections have been conjectured to take the following
form in the Einstein frame,

KKK
gs = gs

∑
α

CKK
α tα⊥
V

, KW
gs =

∑
α

CWα
V tα∩

, (4.1)

where CKK
α and CW

α are some functions which can generically depend on the complex struc-
ture moduli and open-string moduli. The two-cycle volume moduli tα⊥ denote the transverse
distance among the various stacks of the non-intersecting D7-brane and O7-planes, whilst
tα∩ denotes the volume of the curve sitting at the intersection loci of the various non-trivially
intersecting stacks of D7-branes such that the intersecting curve is non-contractible. This
also justifies the appearance of tα∩ in the denominator as the corresponding curves being
non-contractible ensures that it cannot be shrinked to zero size. Some concrete realisations
of these Ansätze ensuring the string-loop effects have been presented in explicit Calabi-Yau
orientifold settings in [43, 44]. The scalar potential contributions arising from these Kähler
potentials in eq. (4.1) are given as [19]:

V KK
gs = κ g2

s

|W0|2

V2

∑
αβ

CKK
α CKK

β K0
αβ , (4.2)

V W
gs = −2κ |W0|2

V2 KW
gs = −2κ |W0|2

V3

∑
α

CWα
tα∩

; κ =
(
gs
8π

)
,

where K0
αβ is the tree-level Kähler metric which using eq. (2.20) in eq. (2.13) results in the

well known form as given below,

K0
αβ = 1

16V2

(
2 tα tβ − 4V kαβ

)
. (4.3)

4.2 Higher derivative F 4-corrections

Apart from the BBHL and string-loop corrections, there is a different type of higher deriva-
tive correction which appear at O(F 4) in the scalar potential and it is not captured at the
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level of two-derivative approximations [26]. This correction is argued to be generic for a
given Calabi-Yau orientifold compactification and takes the following simple form,

VF 4 = −κ2λ |W0|4

g
3/2
s V4

Πα t
α ; κ =

(
gs
8π

)
, (4.4)

where tα’s are the volume of the 2-cycles for the generic CY manifold X while λ is defined
to be a quantity which does not capture any dependence on the volume moduli, and Πα

are topological numbers defined as:

Πα =
∫
X
c2(X) ∧ D̂α . (4.5)

Here c2(X) is the CY second Chern class, D̂α is a basis of harmonic 2-forms such that
the Kähler form can be expanded as J = tα D̂α and λ is an unknown combinatorial factor
which is expected to be between 10−2 and 10−3.

4.3 Master formula

Combining all the perturbative effects collected so far, namely the BBHL’s (α′)3 correc-
tions [15], the perturbative string-loop effects of [20] as well as the higher derivative F 4

corrections of [26], a master formula for perturbative scalar potential using Gukov-Vafa-
Witten’s flux superpotential W0 can be generically given by the following pieces,

Vpert = Vα′+log gs + V KK
gs + V W

gs + VF 4 + . . . (4.6)

' κ

Y2

[
3V
2Y2

(
1 + ∂Y1

∂V

)2 (
6VP̃3 − P̃4

)
− 3

]
|W0|2

+κ g2
s

|W0|2

16V4

∑
α,β

CKK
α CKK

β

(
2 tαtβ − 4V kαβ

)
+

−2κ |W0|2

V3

∑
α

CWα
tα∩
− κ2λ |W0|4

g
3/2
s V4

Πα t
α + . . . ,

where just to recall again, we have set eKcs = 1 and κ =
( gs

8π
)
. Let us note that this master

formula of the scalar potential is quite general and can be applied to various possible
scenarios. In fact considering the possible contractions in mind we can anticipate that the
generic extremisation conditions can be derived to be of the following form,

∂TαV = h1 t
α + h2 Πβ κ

αβ , (4.7)

where hi’s are some scalar functions depending on the volume moduli tα which may involve
contractions among quantities like kαβ , tα and kα, and hence will depend on the overall
volume as well. Given the implicit nature of P̃i’s in terms of the Kähler potential ingre-
dients, it is not very illuminating to present the generic form of the h1 and h2 functions.
However one should also recall that both the terms in eq. (4.7) are not designed to be
generically competing which is also desirable as one piece appears at two-derivative (F 2)
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approximation while the other one is generated at F 4-order, and therefore, the leading
order extremizations may be approximated by the vanishing of the leading order pieces
in h1 function alone, at least for some simple form of Ansätze for the string-loop effects
entering via Y1 or f(V) as we will present later on.

5 A concrete example for the global model building

In this section we start by presenting an explicit CY threefold example which possesses a
toroidal like volume form given as below,

V = a t1 t2 t3 = 1√
a

√
τ1 τ2 τ3 . (5.1)

The main motivation behind the above toroidal looking volume form follows from the
proposal of [20, 21, 30–33, 45] where some symmetries between the various volume moduli
were needed for the setting of the overall mechanism. For this purpose, we explored the CY
dataset of Kreuzer-Skarke [46] with h1,1 = 3 and find that there are at least two geometries
which could suitably give this volume form. One such CY threefold corresponding to the
polytope Id: 249 in the CY database of [47] can be defined by the following toric data:

Hyp x1 x2 x3 x4 x5 x6 x7
4 0 0 1 1 0 0 2
4 0 1 0 0 1 0 2
4 1 0 0 0 0 1 2

K3 K3 K3 K3 K3 K3 SD

The Hodge numbers are (h2,1, h1,1) = (115, 3), the Euler number is χ = −224 and the SR
ideal is:

SR = {x1x6, x2x5, x3x4x7} .

This CY threefold was also considered for exploring odd-moduli and exchange of non-
trivially identical divisors in [48]. Moreover, a del-Pezzo upgraded version of this example
which corresponds to a CY threefold with h1,1 = 4 has been considered in for chiral global
embedding of Fibre inflation model in [44].

The analysis of the divisor topologies using cohomCalg [49, 50] shows that they can be
represented by the following Hodge diamonds:

K3 ≡

1
0 0

1 20 1
0 0

1

, SD ≡

1
0 0

27 184 27
0 0

1

. (5.2)
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Considering the basis of smooth divisors {D1, D2, D3} we get the following intersection
polynomial which has just one non-zero classical triple intersection number:3

I3 = 2D1D2D3, (5.3)

while the second Chern-class of the CY is given by,

c2(CY ) = 5D2
3 + 12D1D2 + 12D2D3 + 12D1D3. (5.4)

Subsequently, considering the Kähler form J =
∑3
α=1 t

αDα, the overall volume and the
4-cycle volume moduli can be given as follows:

V = 2 t1 t2 t3, τ1 = 2 t2t3, τ2 = 2 t1t3, τ3 = 2 t1t2 . (5.5)

This volume form can also be expressed in the following form:

V = 2 t1 t2 t3 = t1τ1 = t2τ2 = t3τ3 = 1√
2
√
τ1 τ2 τ3 . (5.6)

This confirms that the volume form V is indeed like a toroidal case with an exchange
symmetry 1↔ 2↔ 3 under which all the three K3 divisors which are part of the basis are
exchanged. Further, the Kähler cone for this setup is described by the conditions below,

Kähler cone: t1 > 0 , t2 > 0 , t3 > 0 . (5.7)

For the classical triple intersection numbers we have, the tree-level Kähler metric in eq. (4.3)
takes the following form,

K0
αβ = 1

4V2

 (t1)2 0 0
0 (t2)2 0
0 0 (t3)2

 . (5.8)

Now given that there are no rigid divisors present, a priori this setup will not receive
non-perturbative superpotential contributions from instanton or gaugino condensation. In
fact because of the very same reason this CY could be naively considered to be not well
suited for doing phenomenology in the conventional sense, pertaining to the obstacles in
stabilising the Kähler moduli. However we will show that this is not the case when we
include all the perturbative effects arising from the α′ as well as gs series.

Further in order to cancel all D7-charges, we shall introduce Na D7-branes wrapped
around suitable divisors (say Da) and their orientifold images (D′a) such that [51]:∑

a

Na
(
[Da] + [D′a]

)
= 8 [O7] . (5.9)

3There is another CY threefold in the database of [47] which has the intersection polynomial of the
form I3 = D1 D2 D3, however that CY threefold (corresponding to the polytope Id: 52) has non-trivial
fundamental group.

– 19 –



J
H
E
P
0
7
(
2
0
2
2
)
0
4
7

D7-branes and O7-planes also give rise to D3-tadpoles which receive contributions also
from background 3-form fluxes H3 and F3, D3-branes and O3-planes. The D3-tadpole
cancellation condition reads [51]:

ND3 + Nflux
2 +Ngauge = NO3

4 + χ(O7)
12 +

∑
a

Na (χ(Da) + χ(D′a))
48 , (5.10)

where Nflux = (2π)−4 (α′)−2 ∫
X H3 ∧ F3 is the contribution from background fluxes and

Ngauge = −
∑
a(8π)−2 ∫

Da
trF2

a is due to D7 worldvolume fluxes. For the simple case
where D7-tadpoles are cancelled by placing 4 D7-branes (plus their images) on top of an
O7-plane, (5.10) reduces to:

ND3 + Nflux
2 +Ngauge = NO3

4 + χ(O7)
4 . (5.11)

As a consistency check for a given orientifold involution, one has to ensure that the right-
hand-side of (5.11) is an integer.

To begin with looking for the suitable brane settings we note that there are six equiv-
alent reflection involutions corresponding to flipping first six coordinates, i.e. xi → −xi for
each i ∈ {1, 2, . . . , 6}. So now let us take the involution x1 → −x1, which leads to the fixed
point set having two O7-plane components given as {O71 = D1, O72 = D6} while there
are no O3-planes present. This results in non-intersecting stacks of D7-branes only, and
hence cannot produce the string-loop effects of winding-type, although this may induce
KK-type string loop effects. However, given the fact that GLSM charges corresponding
to D1 and D6 divisors are the same, this situation is like putting a single stack of all the
D7-branes on top of the O7-plane itself, and hence KK-type corrections should not play
any rôle in the low energy dynamics. Subsequently one can consider the following brane
setting involving 2 stacks of D7-branes wrapping the divisors {D1, D6} in the basis,

8 [O7] = 4
(
[D1] + [D′1]

)
+ 4

(
[D6] + [D′6]

)
. (5.12)

The D3 tadpole condition reads as

ND3 + Nflux
2 +Ngauge = 0 + 24 + 24

12 + 4(24 + 24)
48 + 4(24 + 24)

48 = 12 . (5.13)

Although, this involution does help in providing support for non-existence of some of the
well known string-loop effects, this does not result in enough scalar potential contributions
to have interesting phenomenological implications.

Now considering the involution x7 → −x7 leads to the only fixed point set being
given as {O7 = D7} as there are no O3-planes present. Subsequenlty we consider the
following brane setting involving 3 stacks of D7-branes wrapping each of the three divisors
{D1, D2, D3} in the basis,

8 [O7] = 8
(
[D1] + [D′1]

)
+ 8

(
[D2] + [D′2]

)
+ 8

(
[D3] + [D′3]

)
. (5.14)

The D3 tadpole condition reads as

ND3 + Nflux
2 +Ngauge = 0 + 240

12 + 8 + 8 + 8 = 44 , (5.15)
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D1 D2 D3 D4 D5 D6 D7

D1 ∅ T2 T2 T2 T2 ∅ H9

D2 T2 ∅ T2 T2 ∅ T2 H9

D3 T2 T2 ∅ ∅ T2 T2 H9

D4 T2 T2 ∅ ∅ T2 T2 H9

D5 T2 ∅ T2 T2 ∅ T2 H9

D6 ∅ T2 T2 T2 T2 ∅ H9

D7 H9 H9 H9 H9 H9 H9 H97

Table 1. Intersection curves of the two coordinate divisors. Here Hg denotes a curve with Hodge
numbers h0,0 = 1 and h1,0 = g, and hence H1 ≡ T2, while H0 ≡ P1.

which shows some flexibility with turning on background flux as well as the gauge flux.
Let us note that the volume form can be given as,

V = t1 τ1 = t2 τ2 = t3 τ3, (5.16)

which means that the transverse distance for the stacks of D7-branes wrapping the divisor
D1 is given by t1 and similarly t2 is the transverse distance for D7-branes wrapping the
divisor D2 and so on. Moreover the divisor intersection curves are given in table 1 which
shows that all the three D7-brane stacks intersect at T2 while each of those intersect the
O7-plane on a curve H9 defined by h0,0 = 1 and h1,0 = 9. These properties about the
transverse distances and the divisor interesting on T2 is perfectly like what one has for the
toroidal case, though the divisors are K3 for the current situation unlike T4 divisors of
the six-torus. These symmetries are consistent with the basis requirement for generating
logarithmic string-loop effects as elaborated in [20, 21, 30–33, 45].

Further we note that there are no non-intersection D7-brane stacks and the O7-planes
along with no O3-planes present as well, and therefore this model does not induce the
KK-type string-loop corrections to the Kähler potential. However, given the fact that D7-
brane stacks intersection on non-shrinkable two-torus, one will have string-loop effects of
the winding-type to be given as below,

V W
gs = −

(
gs
8π

) |W0|2

V3

3∑
α=1

CWα
tα

, (5.17)

Note that we have used table 2 for the volume of a given two-torus tα∩ at the intersection
locus of any two D7-brane stacks as given below,∫

CY
J ∧D1 ∧D2 = 2t3,

∫
CY

J ∧D2 ∧D3 = 2t1,
∫
CY

J ∧D3 ∧D1 = 2t2, (5.18)

where the Kähler form is taken as J = t1D1 + t2D2 + t3D3.
Finally let us note that the topological quantities Πi’s appearing in the higher derivative

F 4 corrections are given as,

Πi = 24 ∀ i ∈ {1, 2, . . . , 6}; Π7 = 124. (5.19)
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D1 D2 D3 D4 D5 D6 D7

D1 0 2t3 2t2 2t2 2t3 0 4t2 + 4 t3

D2 2t3 0 2t1 2t1 0 2t3 4t1 + 4 t3

D3 2t2 2t1 0 0 2t1 2t2 4t1 + 4 t2

D4 2t2 2t1 0 0 2t1 2t2 4t1 + 4 t2

D5 2t3 0 2t1 2t1 0 2t3 4t1 + 4 t3

D6 0 2t3 2t2 2t2 2t3 0 4t2 + 4 t3

D7 4t2 + 4 t3 4t1 + 4 t3 4t1 + 4 t2 4t1 + 4 t2 4t1 + 4 t3 4t2 + 4 t3 16(t1 + t2 + t3)

Table 2. Volume of the two-cycles at the intersection local of the two coordinate divisors Di

presented in table 1. This shows, for example, that the curve intersecting at divisors D1 and D2
has a volume along t3, like in the usual toroidal scenarios.

Thus, we observe that although this CY have several properties like a toroidal case, the
divisor being K3 implies their corresponding Π = 24 unlike the T4 case which has a
vanishing Π, and hence no such higher derivative effects. Subsequently we find the following
scalar potential corrections,

VF 4 = −
(
gs
8π

)2 λ |W0|4

g
3/2
s V4

24
(
t1 + t2 + t3

)
. (5.20)

6 Moduli stabilisation and de Sitter vacua

We take a two step strategy to do moduli stabilisation, first in an AdS vacuum and then
uplift the same to de Sitter via means to adding D-term effects.

6.1 Fixing all moduli in perturbative LVS

With the master formula and simplified versions derived so far, we are now in a position
to perform the study of moduli stabilisation. For this purpose, the main idea is to fix the
overall volume by the leading order O(V−3) terms arising from BBHL and logarithmic-
loop effects, and then fix the remaining moduli by a combination of winding string-loop
effects at order O(V−10/3) and some more volume suppressed terms, e.g. the higher order
F 4 effects with volume scaling O(V−11/3) etc. So we consider the simplified version of the
scalar potential in eq. (4.6) given as below,

V ' C1

(
ξ̂ − 4 η̂ + 2 η̂ lnV

V3

)
+ 6 C1

(
3η̂ξ̂ + 4η̂2 + ξ̂2 − 2η̂ξ̂ lnV − 2η̂2 lnV

V4

)
(6.1)

+ C2
V3

( 1
t1

+ 1
t2

+ 1
t3

)
+ C3

(
t1 + t2 + t3

)
V4 +O(V−5) + . . . ,

where the first line descends from our master formula in eq. (3.4), and first piece in the
second line corresponds to the winding-type string loop effects as collected in eq. (5.17)
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Sample gs ξ̂ η̂ 〈Vapprox〉 〈tα〉 〈V〉 −〈V 〉
S1 0.10 17.1634 −0.234870 7.615·1016 336422.0 7.61522·1016 1.06·10−52

S2 0.12 13.0566 −0.257287 1.07899·1012 8143.59 1.08014·108 4.88·10−40

S3 0.14 10.3612 −0.277902 1.28657·109 865.908 1.29851·109 3.55·10−31

S4 0.16 8.48054 −0.297089 1.62898·107 203.686 1.6901·107 1.98·10−25

S5 0.18 7.10714 −0.315111 814671.0 76.479 894656.0 1.62·10−21

S6 0.20 6.06818 −0.332156 95594.5 38.553 114605.0 9.29·10−19

S7 0.25 4.34204 −0.371362 3566.85 14.2864 5831.68 1.10·10−14

S8 0.30 3.30310 −0.406806 597.723 8.73428 1332.63 1.34·10−12

S9 0.35 2.62121 −0.439401 203.576 6.56959 567.081 2.36·10−11

Table 3. Benchmark models presented for a range of values of string coupling. Other parameters
are taken as: W0 = 1, CW1 = CW2 = CW3 = −1 and λ = −0.01.

while the second piece in the second line corresponds to the higher derivative F 4 effects as
given in eq. (5.20). Subsequently the coefficients Ci’s are given as below:

C1 =
(
gs
8π

) 3 |W0|2

4 , C2 =
(
gs
8π

)
|W0|2, C3 = −

(
gs
8π

)2 λ |W0|4

g
3/2
s

· (6.2)

Note that we have set eKcs = 1, and we set CW1 = CW2 = CW3 = −1. For the current global
model candidate, the Euler characteristic is: χ(CY ) = −224, and using eq. (2.8) we have,

ξ̂ = 14 ζ[3]
π3 g

3/2
s

, η̂ = −
14√gsζ[2]

π3 ,
ξ̂

η̂
= − ζ[3]

ζ[2] g2
s

. (6.3)

Note that the approximate VEV of the overall volume V can still be given as in eq. (3.27)
which has been obtained by using the leading order terms in the large volume approxima-
tion and minimising the potential in the weak coupling regime. In fact, using the scalar
potential in eq. (6.1)–(6.2), it is possible to stabilise the overall volume by the first term
which is leading order with O(V−3) while the remaining Kähler moduli can be stabilised
by the combination of winding-type string-loop effects and the higher derivative F 4 correc-
tions appearing at O(V−10/3) and O(V−11/3) respectively. We have performed a numerical
analysis for a collective stabilisation of all the three moduli tα by using the full scalar
potential in eq. (6.1) and the relevant details are given in table 3.

From table 3 we note that the approximated values of the CY volume V at the minimum
receives significant corrections from the sub-leading sources arising from the winding-type
and F 4-type effects. However the corresponding shifts in V are much smaller for smaller
values of the string coupling, the reason being the fact that smaller string coupling corre-
sponds to larger volume with an exponential growth in the inverse square of gs, as can be
seen from eq. (3.27). Moreover we also note that the second piece of eq. (6.1) (which is
sub-leading as compared to the first term) does not depend on any other Kähler moduli
except the overall volume, and hence the remaining moduli can be stabilised by the string-
loops and higher derivative F 4-terms similar to [26, 52]. In fact, using the generic CY
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orientifolds, one should be able to possibly fix all the remaining (h1,1
+ − 1) Kähler moduli

through the sub-leading effects from BBHL, string-loops and F 4-corrections.

6.2 On de Sitter uplifting

Let us note that in our present concrete CY construction the choice of orientifold involution
which leads to having three stacks of D7-branes intersecting at three T2’s is such that there
are no O3-planes present, and therefore anti-D3 uplifting proposal of [53] is not directly
applicable to our case. However, there can be various other ways of inducing uplifting term
which can result in de-Sitter solution. In this regard we consider the D-term potential
associated with the anomalous U(1)’s living on the stack of D7-branes wrapping the O7-
planes (say corresponding to divisor class Dh), which can be expressed as below,

VD = 1
2 Re(fD7)

(∑
i

qϕi
|ϕi|2

Re(S) − ξh

)2

. (6.4)

Here fD7 = Th/(2π) denotes the holomorphic gauge kinetic function expressed in terms of
complexfied four-cycle volume of the divisor Dh, and qϕi denotes the U(1) charge corre-
sponding to the matter field ϕi. These may correspond to, for example, the deformation of
divisors wrapped by the respective D7-brane stacks and hence can be counted by h2,0(D)
of a suitable divisor of the CY threefold. The FI-parameters ξh are defined as,

ξh = 1
4π V

∫
Dh

F ∧ J = 1
2π
∑
α

qhα
2
tα

V
= − i

2π
∑
α

qhα
∂K

∂Tα
, (6.5)

where in the last equality the Kähler derivatives have been introduced according to the
eq. (2.12). Moreover, F denotes the gauge flux turned on the Divisor class Dh, and J is
the Kähler form expressed as J = t1D1 + t2D2 + t3D3. The U(1) charge corresponding to
the closed string modulus Tα is denoted as qhα and can be given as below,

qhα = 1
l4s

∫
Dh

D̂α ∧ F , (6.6)

where ls denoted the string length parametrised as: ls = 2π
√
α′.

For realising de-Sitter solution we present two scenarios; one in which we introduce
D-term uplifting via Fayet-Iliopoulos term assuming that matter fields receive vanishing
VEVs and the second one being a scenario of the so-called T -brane uplifting in which matter
field have non-zero VEVs [54]. Both of these scenarios present a different volume scaling
in the scalar potential term inducing the uplifting of the AdS we have realised before.

6.2.1 Scenario 1: D-term uplifting via matter fields of vanishing VEVs

Assuming that matter field receive vanishing VEVs along with each one of the D7-brane
stack being appropriately magnetised by suitable gauge fluxes so to that generate a moduli-
dependent Fayet-Iliopoulos term, one can generically have the following D-term contribu-
tions to the scalar potential,

VD ∝
3∑

α=1

 1
τα

∑
β 6=α

qαβ
∂K

∂τβ

2
 ' 3∑

α=1

dα

f
(3)
α

, (6.7)
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Figure 1. The uplifted scalar potential V (V) plotted for overall volume V . Here d′ = 108 d and
scalar potential is scaled with a factor 1020.

where f (3)
α denotes some homogeneous cubic polynomial in generic four-cycle volume τβ .

However, given the underlying toroidal-like symmetry the chosen CY threefold possesses
it is easy to naturally enforce this symmetry in the moduli VEVs as well, via choosing
parameters in a symmetric manner. For example, given the t1 ↔ t2 ↔ t3 symmetry of
the F -term scalar potential (6.1), we can take the model dependent parameters dα as
d1 = d2 = d3 ≡ d which self consistently leads to τ1 = τ2 = τ3 ≡ τ , i.e. f (3)

α ∼ τ3, and
hence can facilitate an uplifting of the AdS vacua as presented in table 3 to some de Sitter
vacua a la [20]. Subsequently we find that adding this D-term effects to the previously
analysed scalar potential given in eqs. (6.1)–(6.2), one can indeed have de Sitter uplifting.
In figure 1 we present the AdS solutions along with its uplifted Minkowskian and de Sitter
version for sampling S6 of table 3. In this case the numerical parameters and the moduli
VEVs corresponding to nearly Minkowskian minimum can be given as below:

gs = 0.2, ξ̂ = 6.06818, η̂ = −0.332156, d = 1.24711 · 10−8,

〈tα〉 = 48.0191 ∀α, 〈V〉 = 221447.96, 〈V 〉 = 1.54074 · 10−31,

Eigen(Vij) = {5.04286 · 10−22, 5.04286 · 10−22, 5.04286 · 10−22}. (6.8)

6.2.2 Scenario 2: T -brane uplifting via matter fields of non-vanishing VEVs

In the presence of non-zero gauge flux on the hidden sector D7-branes, a non-vanishing
Fayet-Iliopoulos term can be induced leading to the so-called T -brane configuration. It
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has been shown in [54] that after expanding the D7-brane action around such T -brane
background with three-form supersymmetry breaking fluxes, one can get a positive definite
uplifting piece to the scalar potential. Considering such an T -brane uplifting case, matter
field ϕ receive VEVs of the following kind [54–56],

|ϕ|2 ' cϕ
V2/3 , (6.9)

where cϕ is a model depending quantity which involves U(1) charges corresponding to the
matter fields. This subsequently leads to an uplifting term to the scalar potential induced
as a hidden sector supersymmetry breaking F -term contribution achieved through the D-
term stabilization of the matter field, and subsequently the soft-term arising as F -term
effect can be given as [54–56],

Vup = m2
3/2|ϕ|

2 =
(
gs
8π

) Cup |W0|2

V8/3 ≥ 0, (6.10)

where m3/2 denotes the gravitino mass, and Cup denotes a model dependent coefficient
which also involves the U(1) charges corresponding to the matter fields. One can subse-
quently use this positive semidefinite piece to uplift the AdS solution of the perturbative
LVS to a de-Sitter minimum. In this case, using the uplifting piece in eq. (6.10) the nu-
merical parameters and the moduli VEVs corresponding to nearly Minkowskian minimum
corresponding to the sampling S8 of table 3 can be given as below:

gs = 0.3, ξ̂ = 3.3031, η̂ = −0.406806, Cup = 0.0814039,
〈tα〉 = 19.5862 ∀α, 〈V〉 = 15027.3, 〈V 〉 = 3.74709 · 10−30

Eigen(Vij) = {6.81793 · 10−18, 4.68145 · 10−19, 4.68145 · 10−19}. (6.11)

In figure 2 we present the modified version of the AdS solution along with its T -brane
uplifted Minkowskian and de Sitter version for a set of Cup values. We note that the
typical values for this parameter can be around Cup ' O(0.1) as reported in [55, 56], and
this is the reason why we report the sampling S8 corresponding to gs = 0.3. For lower
values of gs the required value of Cup parameter turns out to be quite small, say smaller
than 0.01. Moreover we also observe that the including the T -brane uplifting term as given
in eq. (6.10) helps in realizing a larger volume for a relatively larger string coupling regime
as compared to what can be typically realized in perturbative LVS condition (3.25).

Finally let us mention that we have analysed the uplifting of the full scalar potential
resulting in the perturbative LVS using eq. (6.1), which not only includes the leading
order BBHL and log-loop pieces but also the subleading terms arising from the sources
such as Winding-type string loop effects as well as higher derivative F 4 corrections, and
therefore one does not need to perform a modified uplifting given that it is not only the
overall volume modulus V but all the three Kähler moduli which are included in the overall
numerical dynamics.

7 Conclusions

In this work, the moduli stabilisation problem has been re-examined in the framework
of type IIB string theory. As is well-known, tackling this issue requires the inclusion
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Figure 2. The uplifted scalar potential V (V) plotted for overall volume V. Here the scalar potential
is scaled with a factor 1016.

of quantum contributions in the Kähler potential beyond the classical level. The main
objective of this article is to investigate this issue taking into account only perturbative
contributions and consider their implications in the effective field theory limit. In this
context, we have parametrised the string loop effects in terms of a generic function and
derived a master formula for the scalar potential including also the contribution of α′

corrections. We exemplified this generic formula by several paradigms including the case of
logarithmic corrections which appear due to local tadpoles induced by the localised gravity
kinetic terms stemming from the reduction of R4 terms of the effective ten-dimensional
string action. Subsequently, we further considered a generalisation of our master formula
for the scalar potential by including sub-leading string loop corrections which -according
to recent conjectures- appear to be generic in Calabi-Yau compactifications. Finally, the
implications of a higher derivative effects appearing at order O(F 4) in the scalar potential
have been considered. Therefore, our most general expression for the scalar potential
includes all the essential perturbative corrections in type IIB string theory and consequently
can be applied to a wide class of models.

We illustrated the presence of various such (sub-)leading corrections to the scalar
potential in a concrete K3-fibred CY orientifold example chosen from the Kreuzer-Skarke
dataset with h1,1 = 3. This CY threefold is quite unique in the sense that it possesses
several properties like those of a toroidal orientifold, say for example T6/(Z2 × Z2) case,
such that the volume V is given by the product of three 2-cycle moduli tα, i.e., V ∝ t1 t2 t3.
Moreover intersection of the three K3-divisors which are wrapping the three stacks of D7-
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branes intersect on three T2’s similar to the toroidal case. In this explicit construction
we have found that only winding-type string loop corrections can be generated while the
KK-type corrections are absent because there are neither non-intersecting D7/O7 stacks
nor any O3-planes which are needed for inducing such corrections. However, unlike the
toroidal case, this CY has K3 surfaces as divisors unlike the T4 divisors of the six-torus, and
therefore the topological quantity Π(D) =

∫
CY c2(CY )∧D̂ characterising the F 4 corrections

are non-trivially present as well. Using all these corrections, first we have shown that one
can have a perturbative large volume minimum realised at exponentially large values in
the weak coupling regime. Subsequently the remaining two Kähler moduli are lifted by
the combined effects of sub-leading corrections arising from the BBHL, string-loops and
the Higher derivative F 4-corrections. This way we have stabilised all the Kähler moduli
in a perturbative LVS framework which turns out to be an AdS minimum. Finally, we
have discussed possible Fayet-Iliopoulos D-terms associated with the intersecting D7 brane
stacks magnetised with gauge fluxes which could generate the necessary uplifting terms
to obtain de Sitter vacua in two possible scenarios, first using vanishing VEVs for matter
fields and the second being the so-called T -brane uplifting method.
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