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1 Introduction

Recent progress on the emergence of spacetime has crucially relied on the geometrization
of quantum information theoretic quantities [1–16]. A relative newcomer to this set of
connections has been the geometrization of computational complexity [11–14], either through
the proposed Complexity=Action [13, 14] or Complexity=Volume duality [12]. The latter,
which is our focus in this article, relates the circuit complexity C of a given holographic
CFTd state |ψ(τ)〉 relative to some reference state |R〉 to regulated bulk spatial volumes:

C
(
|ψ(τ)〉 , |R〉

)
= max

Σ

vol[Σ]
GNL

≡ CV (|ψ(τ)〉) , (1.1)

where Σ a bulk hypersurface that intersects the conformal boundary on the timeslice τ ; L
is a length scale which we will take to be the AdS radius, and CV a convenient shorthand
for the gravitational quantity.

In a recent paper [17], we proved that the complexity of formation CF [14, 18] satisfies

CF (|ψ〉) ≡ CV (|ψ〉)− CV (|0〉) ≥ 0, (1.2)

with equality if and only if |ψ〉 = |0〉, where |0〉 is the vacuum dual to pure AdSd+1. We
established this for asymptotically AdSd+1 spacetimes under the assumption of the weak
curvature condition (WCC):

tatb
(
Rab −

1
2gabR−

d(d− 1)
L2 gab

)
≥ 0, ∀ timelike ta, (1.3)
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which in Einstein gravity reduces to the weak energy condition (WEC): Tabtatb ≥ 0 for all
timelike ta. The result (1.2) implies that among the states with a classical asymptotically
AdSd+1 dual respecting the WCC, the vacuum is the least CV -complex. That is, WCC-
respecting excitations of the vacuum move away from the reference state as measured by
the complexity. The necessity of the WCC is clear from [19, 20], who found examples in
which the vacuum-subtracted volume is negative; in those examples the WCC is violated.

The assumption of the WCC is somewhat unnatural from a holographic perspective:
consistency conditions in the large-N , large-λ limit of the AdS/CFT correspondence are
typically proven using the Null Curvature Condition (NCC) Rabkakb ≥ 0 for null vectors
ka. The latter (strictly weaker) condition is expected to be true for any valid classical
matter; the same, however, is not true for the WCC [21]. Nevertheless, it turns out that
the WCC holds in type II and eleven-dimensional SUGRA (see appendix A): even though
the dimensional reduction of an asymptotically AdSd+1 ×K over the compact dimensions
K may violate the WCC while satisfying the NCC, inclusion of the compact dimensions
restores the WCC. Prima facie, then, it may be tempting to conclude that when working
in full ten or eleven dimensional SUGRA, our results immediately imply that complexity of
formation is always positive. It would then be natural to conclude that C(|ψ〉 , |R〉) should
be identified with CF (|ψ〉), with a reference state |R〉 that is identically the vacuum |0〉.

This naive conclusion, however, suffers from several flaws. First, the Complex-
ity=Volume proposal does not admit an obvious generalization allowing the inclusion
of compact directions. There are (at least) two natural candidates: (1) the volume of the
maximal volume slice Σfull in the full AdSd+1 × K spacetime; or (2) the volume of the
maximal volume slice Σreduced extended in the non-compact directions. It is simple (see
section 2) to show that in general the dimensional reduction of Σfull does not result in
Σreduced, and that consequently

vol[Σfull] 6= vol[Σreduced ×K].

A maximal volume slice in the full spacetime need not be maximal in the AdS directions,
and vice versa.

Our goal here, however, will not be to argue in favor of either (1) or (2) but to
demonstrate that neither candidate can avoid a negative complexity of formation: the
WCC restoration that accompanies the inclusion of compact directions fails to save either
candidate from predicting that certain valid spacetimes in AdS/CFT are simpler than the
vacuum.1 As a consequence, since CF is not positive semi-definite, it cannot be reinterpreted
as the complexity with the vacuum as the reference state. To simplify matters, we will
demonstrate this in a special case where the two candidate proposals coincide: a moment
of time symmetry. In such a case, Σfull reduces in the AdS directions to Σreduced, so that
any conclusions are free of ambiguities relating to a choice between (1) and (2).

This result may at first appear to contradict our proof in [17]. How can the vacuum-
subtracted maximal volume be negative in spacetimes respecting the WCC? The answer is

1By ‘valid’ here we mean a stricter definition than is typically used (which is often just the requirement
of the NEC and global hyperbolicity: here we mean that they are inherited from top down truncations
of SUGRA.

– 2 –



J
H
E
P
0
7
(
2
0
2
2
)
0
3
1

a prime realization of the principle of conservation of misery: while the inclusion of compact
directions restores the WCC, it in turn violates our assumption about AdSd+1 asymptotics.
Thus we have two (mutually exclusive) options: accept violations of WCC in the absence
of compact directions, or accept violations of AdSd+1 asymptotics. As it turns out, either
option leads to states with negative complexity of formation.

In the following, we find a family of AdS4 initial data supported by scalar tachyons
above the Breitenlohner-Freedman bound [22], inherited from a truncation and dimensional
reduction over the compact directions of eleven-dimensional SUGRA. In the full asymptot-
ically AdS4 × S7 data, the WCC is satisfied, but upon dimensional reduction the resulting
spacetimes violate the WCC and satisfy the NCC. These geometries come in two flavors:2
with and without boundary sources. For the former, the inclusion of boundary sources yields
asymptotically AdS4 spacetimes undergoing AdS false vacuum decay; such spacetimes, again
supported by scalar tachyons, have a negatively divergent complexity of formation that de-
creases at late times. Among these spacetimes is a novel cosmological wormhole; even though
the spacetime connects two asymptotic boundaries (with no dS region in between [25]), we
find that the holographic volume complexity is nevertheless smaller than that of pure AdS.
While spacetimes with negative and divergent CF due to boundary sources were previously
considered by [26], our examples without boundary sources are quite distinct, and should
be regarded as the main finding of this paper (although we also expand on examples with
boundary sources, more analogous to the ones discussed in [26]). In this case we find initial
data with arbitrarily negative (but finite) complexity of formation, both when viewed in
eleven and four dimensions. The arbitrarily low complexity in this case is not caused by alter-
ing the boundary theory. Instead, it is obtained by a smooth deformation of the CFT state
away from vacuum, and the low CV is a genuine IR-effect caused by the compact dimensions.

There is however an underlying common denominator to all of our examples: they are
constructed by turning on relevant scalar primaries in the CFT. This pattern together
with the theorems of [17] suggests potential insights into the landscape of low complexity
holographic states. If tachyonic bulk scalars, which are dual to relevant CFT scalar primaries,
happen to be the only WEC-violating fields, then the only way to reduce the “distance”
— as measured by CV — to |R〉 below the fixed nonzero value CV (|0〉) is to turn on VEVs
for relevant scalars. Other operators will be dual to WEC-respecting fields, and so turning
them on will cause CV to increase with respect to the vacuum value. Thus, the presence
of unstable directions of the IR fixed point correlates with the possibility of reducing
complexity below the vacuum value. This could be due to the fact that the vacuum of
a potential gapped phase at the end of the RG flow has significantly fewer correlations,
simplifying the preparation of the state.

Our particular examples of low complexity spacetimes also provide potential insight
into the reference state |R〉 implicit in the CV proposal. These examples are constructed

2For computational facility, the examples with boundary sources are not constructed in an exact
dimensional reduction of eleven-dimensional SUGRA, but instead with a slightly modified (but qualitatively
similar) scalar potential, which enables analytical solutions. Analogous one-sided spacetimes were considered
in D = 11 SUGRA reduced to AdS4×S7 in [23, 24], and we expect all of our qualitative findings in section 3
to apply in D = 11 SUGRA.
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by creating pockets of approximately constant scalar field at a moment of time-symmetry
in the bulk, resulting in an effective AdS radius smaller than the asymptotic value L within
the pocket. We find that CF becomes arbitrarily negative as the pocket becomes larger:
that is, the complexity becomes progressively closer to that of |R〉 via this reduction of the
effective AdS radius in an increasingly large region. Since the limit of small AdS radius is
not a well-defined classical geometry, this finding is consistent with the common perspective
that |R〉 is a state without a geometric dual, e.g. a set of factorized qubits.

What is the upshot of our results for the Complexity=Volume proposal? At minimum,
there is need for an unambiguous prescription that accounts for contributions from compact
dimensions. It is clear that volumes can have a qualitatively different behavior when compact
dimensions are included. On a more speculative level, there appears to be a sharp distinction
(in the dimensionally-reduced picture) between operators whose dual is WCC-respecting
and WCC-violating; acting on the vacuum with the former can only increase complexity;
the latter, however, can decrease complexity. It would be interesting to understand this
better in the dual CFT, perhaps using the proposed definitions of complexity in [27–30].

The paper is structured as follows. In section 2 we present our SUGRA maximal
volume asymptotically AdS4 × S7 initial data, together with its dimensional reduction.
Then, to ensure that our constructed initial data gives the unique maximal volume slice
in the evolved spacetime, we derive general properties of maximal volume slices in type
II and D = 11 SUGRA in section B. Next, in section 3 we turn on boundary sources to
study spacetimes undergoing AdS vacuum decay, both one-sided and two-sided. Finally,
we discuss and summarize our findings in section 4. The appendices A, B and C provide
technical details omitted in the main text.

2 Lower unbounded CF in SUGRA

We begin by constructing asymptotically AdS4 × S7 examples with negative complexity of
formation supported by a well-studied truncation of eleven-dimensional SUGRA compactified
on the S7 [31]3

S = 1
8πGN

∫
M

d4x
√
−g

[1
2R+ 3

L2 −
1
2(∇φ)2 − V (φ)

]
, (2.1)

with scalar potential

V (φ) = 1
L2

(
1− cosh

√
2φ
)
. (2.2)

Since V (φ) is unbounded below, this theory violates the WEC (and equivalently the WCC).
However, it is simple to check that the tachyonic scalar mass about the φ = 0 vacuum is
above the BF bound. Furthermore, the null energy condition is satisfied, as always is the
case for minimally coupled scalars.

3This theory was used to construct big crunch geometries in [23, 24]. Our boundary conditions will differ
from [23, 24], so that the boundary dual will be different. The spacetimes in the next section will more
closely resemble the situation in [23, 24].
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A solution to the equations of motion of (2.1) with four-dimensional line element ds2
4

lifts to a solution of eleven dimensional SUGRA with geometry

ds2 = ∆2/3ds2
4 + 4L2

∆1/3

4∑
i=1

X−1
i

(
dµ2

i + µ2
i dψ2

i

)
, (2.3)

where ds2
4 is the four-dimensional metric and

µi = (sin θ, cos θ sinϕ, cos θ cosϕ sin ξ, cos θ cosϕ cos ξ) ,

X ≡ X1 = X2 = e
− φ√

2 ,

X3 = X4 = X−1,

∆ =
4∑
i=1

Xiµ
2
i .

(2.4)

The angles (θ, ϕ, ψ1, ψ2, ψ3, ψ4) run over the range [0, π], while ξ ∈ [0, 2π). If we set φ = 0
(Xi = 1), then the transverse space just becomes a round S7 with radius 2L: turning on
the scalar φ squashes the S7.

We now want to construct initial data on a spherically symmetric maximal volume slice Σ
which has arbitrarily low complexity of formation in the (d+1) = 4 theory (2.1). Furthermore,
upon success of this endeavor, we want to investigate whether considering the full volume
in eleven-dimensional SUGRA restores positivity or boundedness from below. Let us first
note that in the spherically symmetric case, if Σ has embedding coordinates (t(r), r,Ωi)
where Ωi are the angles on the 2-sphere, then Σ can be lifted to a slice Σ̃ in the eleven-
dimensional spacetime with embedding coordinates (t(r), r,Ωi, θ, ϕ, ξ, ψi). However, the slice
Σ̃ is generally not a maximal volume slice (even though Σ is): turning on the scalar φ induces
volume in the compact dimensions, so if ∂tφ 6= 0 on Σ, then we can gain volume in the eleven-
dimensional spacetime (M̃, g̃) by deforming Σ̃. However, letting Kab denote the extrinsic
curvature, if we take a moment of time symmetry, Kab[Σ] = ∂tφ = 0, then we will also be
at a moment of time-symmetry in eleven dimensions, and so Σ̃ is also extremal in (M̃, g̃).

In a moment we will construct explicit initial data, but let us first find an expression
for the volume of Σ̃. We can take our coordinates on Σ so that

ds2|Σ = B(r)dr2 + r2dΩ2,

ds2|Σ̃ = ∆2/3
(
B(r)dr2 + r2dΩ2

)
+ 4L2

∆1/3

4∑
i=1

X−1
i

(
dµ2

i + µ2
i dψ2

i

)
,

(2.5)

for some B(r) > 0. Integrating out the compact dimensions, we find an effective volume
form ε̃ on Σ:

ε̃ = (2L)7f

(
e
− φ√

2

)
ε, (2.6)

where ε is the canonical volume form on Σ induced in the four-dimensional spacetime (M, g)
and

f(X) = π4
9
(
1 +X2/3

) (
2 + 4X2/3 + 8X4/3 + 7X2 + 8X8/3 + 4X10/3 + 2X4

)
70X1/3(1 +X2/3 +X4/3)3 . (2.7)
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When ε̃ is integrated over Σ, it gives the volume of Σ̃. Since f(X) ≥ f(1) = vol[S7],
including the compact dimensions always increases the volume compared to the naive
multiplication of the d = 3 volume with (2L)7 vol[S7]. For large |φ|, to leading order

ε̃ = 27
35(2L)7 vol[S7]e

|φ|
3
√

2 ε. (2.8)

Thus, for large scalar condensates there is generally an exponential difference in |φ| between
the naive (2L)7 vol[S7] vol[Σ] and the true volume vol[Σ̃]. This clearly demonstrates that com-
pact directions can dramatically modify the volume even if the extremal slice is unchanged.

We now want to pick initial data leveraging the negativity of V (φ) to minimize the
volume of Σ. The solution of the constraint equations for Einstein-Maxwell-Scalar theory
on a spherically symmetric maximal volume slice at a moment of time symmetry and with
d = 3 is [17]

B(r) =
(

1 + r2 − ω(r)
r

)−1
,

ω(r) = 1
2

∫ r

0
dρρ2e

1
2

∫ ρ
r

dzφ′(z)2 [(
1 + ρ2

)
φ′(ρ)2 + 2− 2 cosh

√
2φ
]
,

(2.9)

where we pick units of L = 1 for brevity. The quantity ω(r) is a quasi-local mass function,
and ω(∞) is proportional to the conserved spacetime mass when ω(∞) is finite [23].

We now pick the scalar profile on Σ to fall off in such a way so that the evolution
of the initial data on Σ does not spoil the AdS asymptotics. Furthermore, we must
ensure that B(r) > 0 everywhere so that Σ is everywhere spacelike. Beyond these two
constraints, we are free to choose the profile for φ.4 The usual near boundary analysis of
the Einstein-Klein-Gordon system constrains the asymptotic behavior of φ:

φ(r,x) = r−∆−
(
φ(0)(x)+φ(2)(x)r−2+. . .

)
+r−∆+

(
ψ(0)(x)+ψ(2)(x)r−2+. . .

)
, (2.10)

where ∆− = 1 and ∆+ = 2. In order to avoid turning on boundary sources and to keep
ω(∞) finite (so the volume divergence structure agrees with that of pure AdS and so the
Balasubramanian-Kraus stress tensor is defined [33]), we take φ(2n) = 0.

Let us construct one-sided initial data with no minimal surfaces, so that one coordinate
patch covers the whole of Σ (this happens when B(r) is nowhere divergent [17]). We choose
the profile

φ(r) = 1− e−a2/r2
, (2.11)

which has the requisite O(r−2) behavior needed to keep ω(∞) finite. In the appendix we
prove that in type II and D = 11 SUGRA, (1) any K = 0 slice is maximal, and (2) there can

4We do not have a guarantee that it is possible to prepare (2.11) via the Euclidean path integral. However,
for our conclusions to fail, it would have to be impossible to construct any qualitatively similar scalar
condensate at a moment of time symmetry, since our findings do not depend on the particular quantitative
details of the condensate (2.11). Any tachyonic scalar condensate should give the same conclusion as long
as we have (1) a pocket where φ is non-zero and approximately constant, (2) the pocket is of size at least
r ∼ L, and (3) the scalar falls off as slowly as is consistent (2.10) and finite energy. It seems unlikely that
such profiles cannot be prepared. In fact, [32] shows perturbatively that such profiles can be prepared using
the Euclidean path integral.

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
0
3
1

only be one maximal slice at a fixed anchoring. Thus, the spacetime obtained by evolving
our initial data cannot possess another maximum volume slice with larger volume.

It can be checked that the profile (2.11) results in 0 < B(r) <∞, so that our assumption
of no minimal surfaces is satisfied. We now proceed to calculate volumes of Σ and Σ̃ relative
a constant−t slice of AdS4 and AdS4 × S7, respectively:

∆VΣ(a) = vol[S2]
∫ ∞

0
drr2

 1√
1 + r2 − ω(r)

r

− 1√
1 + r2

 ,

∆VΣ̃(a) = vol[S2]27
∫ ∞

0
drr2

 f

(
e
− φ√

2

)
√

1 + r2 − ω(r)
r

− vol[S7]√
1 + r2

 ,
(2.12)

(Here the factor 27 appears since the round S7 has radius 2 in units of L = 1.)
In figure 1 we plot the result: we show ∆VΣ and ∆VΣ̃/V (S7)27 plotted against a,

together with the profile ω(r) for the value a = 5. Other values of a give a qualitatively
similar shape for ω(r). We see that the vacuum subtracted volume for Σ becomes negative
as we increase a. We find no signs of this decrease stopping for very large values of a.
However, if we impose a finite cutoff at r ∼ 1

ε , the decrease will saturate at a ∼ 1/ε. Either
way, we see that turning on an increasingly large condensate of our tachyonic scalar field (or
in the CFT language, turning on an increasingly large VEV for a relevant scalar primary)
takes us closer to the reference state |R〉. This is a very distinct behavior which a CFT
dual to volume ought to reproduce.

What is the bulk mechanism leveraged in these examples that allow negative CF ? In
the WEC-violating case (d = 3) it is the absence of a lower bound on the intrinsic Ricci
scalar of maximal volume slices. It is illustrative to look at a conjecture of Schoen (which is
proven for d = 3 [34–36]), which states that5

Conjecture 1 ([37]). Let (Σ, h0) be a closed hyperbolic Riemannian manifold with constant
negative scalar curvature R[h0]. Let h be another metric on Σ with scalar curvature
R[h] ≥ R[h0]. Then vol[Σ, h] ≥ vol[Σ, h0].

While this conjecture pertains to compact rather than conformally compact manifolds,
there are good reasons to believe it holds for conformally compact manifolds with AdS
asymptotics, as discussed in [17]. Now, in our d = 3 data the inequality R[h] ≥ R[h0] with
h0 being the metric of hyperbolic space of radius L = 1 no longer holds as a consequence
of the tachyon condensate, so this is presumably what allows CF < 0. What about the
eleven-dimensional case? Since the WCC allows us to put a lower bound on the intrinsic
Ricci scalar of Σ̃, it might look like the conditions of Schoen’s theorem hold. But this is
not so: the comparison manifold must have a hyperbolic metric h0, and static slices of
AdS4 × S7 are not hyperbolic. Type IIA, IIB and eleven-dimensional SUGRA all satisfy

5The conjecture is phrased in a different but equivalent way in [37]. The version stated here can be found
in [38].
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Figure 1. (a) ω(r) for a = 5, and (b) the vacuum-subtracted volume as function of a in units of L.

(see appendix A)6

tatb
(
Rab[g]− 1

2gabR[g]
)
≥ 0, (2.13)

which through the Gauss-Codazzi equation implies that the intrinsic Ricci scalar of any
extremal hypersurface in every solution of these theories is positive. Thus, hyperbolic volume
comparison theorems no longer apply.7 While we do not know of any volume comparison
results for asymptotically AdSd+1 ×K type manifolds satisfying (2.13), it is instructive to
note that volume comparison results for manifolds of spherical topology tend to imply lower
volume when the Ricci scalar is higher [38].8 This together with our example indicates that,
with respect to volume, deformations that mainly affect the compact dimensions behave
very different from those that mainly deform the non-compact dimensions.

Finally, let us inquire about the fate of our very low CV data upon time-evolution.
A guess, in keeping with earlier work on the same tachyonic scalar theory [23] and the
spacetimes considered in the next section, would be that it collapses into a big crunch
singularity. The negative and unbounded potential V (φ) ∼ 1 − cosh

√
2φ seems to favor

such a collapse. However, our data is different from that of [23] and the next section in a
significant way: ours has only normalizable modes turned on, so that the ordinary definition
of the energy is finite and positive. Furthermore, the source of the decay to a big crunch
in [23, 24] was argued to be the presence of a lower unbounded triple trace term in the dual
theory Hamiltonian caused by the non-normalizable mode, but here this term is not turned
on due to the faster scalar field falloff. It seems likely that our data evolves to eventually
form a black hole.

The skeptical reader may at this point refuse to take such unboundedly low CF in
single-sided spacetimes seriously, pointing out that the CV-proposal was in its original
formulation intended to describe wormholes and the volume in the interior of a horizon.

6Thus any AdS vacuum of these theories will satisfy the WCC (1.3) with the relevant AdS radius.
7Strictly speaking they could apply for some choice of h0, but not when we pick h0 to be a solution of

the maximal-volume constraints in our theory, which is the relevant case for CF .
8Note however that in this case, a bound on just the Ricci scalar is not sufficient for volume comparisons.

Further bounds on Rab must be satisfied [38].
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Possibly, such a reader may concede, there are some subtleties in one-sided geometries; but
surely wormholes — the original motivation for CV — are still safe.

Any such perspective is however about to be disappointed: a small modification of the
construction above allows us to build two-boundary geometries supported by tachyonic
scalars with unboundedly small vacuum-subtracted volumes. To do so, we modify our
construction above by using the following solution to the constraint equations

ω(r) = 1
2e
− 1

2

∫ r
r0

dρρφ′(ρ)2
{
ω0 +

∫ r

r0
dρρ2e

1
2

∫ ρ
r0

dzφ′(z)2 [(
1 + ρ2

)
φ′(ρ)2 + 2− 2 cosh

√
2φ
]}
,

(2.14)
where 1 + r2

0 − ω0
r0

= 0. For any r0 we can use a profile similar to (2.11) to make vol[Σ]
arbitrarily negative compared to two copies of pure AdS. Thus the phenomenon of lower
unbounded CF is equally relevant for wormholes.

3 Negatively divergent CF

The clear culprit for negative CF in section 2 was compact dimensions or tachyonic scalars.
While the main point of interest in this article is the effect of including the compact dimen-
sions, the importance of the scalar tachyons above clearly bears some further investigation.
In this section we provide additional examples of tachyonic scalars causing unusual volume
behavior. Previous work [26] has conducted a near-boundary analysis that found that
turning on boundary sources for these tachyons (thus changing the asymptotic structure, in
contrast with the previous section in which the asymptotics were unmodified) can result in
initial data that has divergent ĊF . Our results in this section support this conclusions and
expand it further by (1) providing a full spacetime evolution to clarify the physical picture
and (2) constructing wormholes with the same properties.

The setting will be unstable asymptotically AdS spacetimes undergoing decay. We will
leverage that there are analytical examples of such spacetimes, rather than just initial data.
The price we pay is that (1) the theory under consideration does not come from a known
realization of AdS/CFT, and (2) the scalar potential is only known numerically. We do
not expect this price to be conceptually meaningful: spacetimes that are entirely analogous
qualitatively can be constructed numerically directly from the SUGRA potential [23, 24].
Here we prefer to work with an analytically known metric, but we do not expect any
of the qualitative features of our analysis to change by the modification of the potential.
As emphasized above, we here deviate from the setup of the previous section: the scalar
field falloff, which is sufficiently slow that boundary sources are turned on, resulting in a
divergent Balasubramanian-Kraus [33] stress tensor. Defining a boundary stress tensor then
requires additional counterterms involving the scalar field [23, 39–43]. As we will see, this
in turn causes the divergence structure of extremal surface volumes to differ from pure AdS,
leading to a UV-divergent CF and dCV

dt .

3.1 AdS vacuum decay

The one-sided spacetimes we consider are given by the one-parameter family of metrics
constructed in [44], parametrized by the real positive parameter c. These geometries are
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covered by two coordinate patches, with patch I having metric

ds2
I = dξ2 + a(ξ)2

(
−dζ2 + cosh2 ζdΩ2

)
, (3.1)

where dΩ2 now is the metric of a d− 1-dimensional sphere, and with

a(ξ) = (1 + c) sinh ξ − 2c sinh ξ2 . (3.2)

The second patch, with coordinates (t, ρ,Ωi), is obtained by the analytic continuation
ξ = it, τ = iρ. Patch I is the causal wedge of the spacetime, with the AdS boundary at
ξ =∞, where the scalar field is in the false vacuum (a local maximum). As ξ approaches 0,
where the edge of the causal wedge lies, the scalar field approaches the true vacuum value.
Patch II is an FRW-region which initially expands with motion away from t = 0 and then
crunches, with a curvature singularity at t = ±t∗, where a(it∗) = 0. Physically, the ζ = 0
slice is a bubble of true vacuum that nucleates inside the false vacuum at a moment of time
symmetry. Forward or backward time-evolution results in the subsequent decay of the false
AdS vacuum. See figure 2 for a conformal diagram drawn for the case c = 1, d = 3 (see
appendix C for the computation).

This spacetime has past and future cosmological singularities, and in the boundary
conformal frame of the static cylinder, the boundary exists only for a finite time. The dual
field theory, if it exists, can either be viewed as living on de Sitter space, or it can be seen
as a field theory on the Einstein static universe whose evolution terminates in finite time —
possibly due to a Hamiltonian that is unbounded below, as discussed in [23].

CF is negative and divergent. Consider again the coordinates

ds2|Σ = 1
1 + r2 − ω(r)

rd−2

dr + r2dΩ2, (3.3)

on Σ. Assume now that ω(r) is divergent at large r, with the leading behavior at large−r
given by ω(r) ∼ ωsr

s for 0 < s < d.9 The leading ω-dependent divergence in the volume
then is given by:

vol[Σ] ∼ vol[Sd−1]
∫ rcut

dr rd−1√
1 + r2 − ω(r)

rd−2

∼ vol[Sd−1]
∫ rcut

drrd−2
[ 1

2rd−sωs + . . .

]

∼ ωs
vol[Sd−1]rs−1

cut
2(s− 1) ,

(3.4)

Comparing with a slice of pure AdS with cutoff at the same area-radius rcut, we find

vol[Σ]− vol[ΣAdS4 ] = ωs
vol[Sd−1]rs−1

cut
2(s− 1) + subleading. (3.5)

We now proceed to show that for our spacetime, we have s = d− 1
2 and ωs < 0, giving that

CF is negative and divergent.
9s ≥ d is incompatible with being asymptotically AdS with radius 1.
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Figure 2. Conformal diagram of the spacetime (3.1) with d = 3 and c = 1. Dashed lines running
vertically are hypersurfaces of constant ρ and ξ, with equidistant coordinate spacing. Dashed lines
running horizontally are hypersurfaces of constant t and ζ, with equidistant coordinate spacing.
The blue line is the spacelike section of a holographic screen, while the red line is the timelike
portion. The darker horizontal dashed lines are the constant−t surfaces at which the FRW region
transitions between expanding and crunching (a′(t) = 0), which are totally geodesic. These are
extremal surface barriers.

To calculate ωs, it is useful to know that there is a geometric functional ω[σ,Σ] that
reduces to ω(r) when σ is a symmetric codimension−2 spatial surface and Σ spherically
symmetric [17]:10

ω[σ,Σ] = 1
vol[Sd−1]

(
A[σ]

vol[Sd−1]

) 1
d−1

∫
σ

[
R

(d− 1)(d− 2) −
H2

(d− 1)2 + 1
L2

]
, (3.6)

where H[σ] is the mean curvature of σ inside Σ and R the intrinsic Ricci scalar of σ. Let
now Σ be the ζ = 0 hypersurface, which is a maximal volume slice since it is a moment of
time symmetry. Evaluating ω[σ,Σ] for a constant ξ surface σ, we find

ω(ξ) = a(ξ)d−2
(
1 + a(ξ)2 − a′(ξ)2

)
= − 1

2d−1 c(1 + c)2e(d−
1
2 )ξ +O(e(d−1)ξ). (3.7)

10This is proportional to the so-called Geroch-Hawking mass when d = 3.
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If we were to change coordinates to the form (3.3) we would find r = O(eξ), and so indeed
we have s = d− 1/2, ωs < 0, showing that CF is negative and divergent.

Note that pure AdS-subtracted volume here is somewhat unnatural from the field
theory perspective. The scalar field falls off sufficiently slowly so as to turn on a source
on the boundary: pure AdS is not a solution of the boundary theory dual to (3.1), so the
comparison appears ill-motivated. In this particular setting — though not in the previous
section — the negatively divergent CF should be viewed as a statement purely about volumes
in asymptotically AdS spacetimes, rather than as a statement pertaining to a single field
theory. It is in principle possible that the field theory dual to (3.1), if it exists, has a
preferred state for the volume subtraction, for which CF would be positive.

Complexity change. Let us now compute the leading divergent contribution to the
complexity change for spherically symmetric maximal volume slices. To compute the
change in complexity we must choose the bulk cutoff carefully. Any given conformal frame
induces a unique Fefferman-Graham coordinate system in a neighbourhood of the conformal
boundary [45–47]:

ds2 = 1
z2 [dz2 + γµν(z, x)dxµdxν ], (3.8)

where z = 0 is the conformal boundary and γµν(0, x) the chosen conformal representative.
Given this coordinate system, we can cut off volumes at z = ε.

In the case at hand there are two natural conformal frames; we can either choose the
boundary to be dSd or the static cylinder. With respect to the dSd conformal frame it can
readily be checked that the leading divergence in the volume of the maximal volume slice
anchored at a constant ζ is

vol[Σζ ] = vol[Sd−1] cosh ζd−1

(d− 1)εd−1 +O
(
εd−3/2

)
. (3.9)

This increases to the future and past of ζ = 0 simply because (1) when regulating with a
Fefferman-Graham cutoff, the divergence of maximal volume slices is always proportional
to the boundary volume in the chosen conformal frame, and (2) the volume of constant ζ
slices of de Sitter increases to the future and past.

Next, let us look at the more interesting case of the static cylinder conformal frame. A
computation (see appendix C) of the leading order complexity change with cutoff adapted
to the static cylinder gives

d vol[Σt]
dt = − 1

εd−
3
2

d− 1
d− 3

2

√
c2

2(c+ 1)
sin t

(cos t)3/2 +O(ε−d+2), t ∈
(
−π2 ,

π

2

)
. (3.10)

This is clearly negative and divergent, and so unlike in well known examples of black holes,
the moment of time-symmetry is here a maximum of CV , rather than a minimum. This
is in constrast with the case of the dS conformal frame, and so highlights how extremal
hypersurface volume is an observable whose UV-divergence structure depends strongly
on the choice of boundary conformal frame. This is consistent with [26]’s near-boundary
analysis, which also found a divergent rate of change for tachyonic scalars with boundary
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sources turned on. In our example we have the additional benefit of knowing the spacetime
globally, providing a physical picture of what is happening in the bulk.

The decrease of CV is a UV effect, and the volume behind the horizon is admittedly
increasing towards the future (before the crunch region that is, which is anyway hidden from
all extremal surfaces). However, the volume behind the horizon is not a natural observable
to associate to a boundary state at a fixed time, since turning on sources in the future
would alter the horizon location, and thus also the volume behind it. Nevertheless, it does
seem that the CV proposal needs some modification in the spacetimes considered in this
section. One possibility is some generalized volume functional that includes contributions
from the scalar fields, which from a dimensional reduction perspective this appears natural.

3.2 Decaying cosmological wormholes

Can we find a wormhole with the same properties as the spacetime considered above —
a wormhole with cosmological singularities, negative divergent complexity of formation,
and decreasing late time complexity? That would appear to be in some tension with the
paradigm of wormhole volume corresponding to increasing complexity; such an example
would add urgency in finding an appropriate modification of CV that can accommodate
such spacetimes.

It turns out that we can, in fact, build such a spacetime. The procedure is borrowed
from [48, 49], which constructs a two-boundary wormhole from a single-sided spacetime
containing a marginally trapped surface satisfying certain assumptions. The protocol is
roughly as follows: one fixes the data in the exterior of a given marginally trapped surface
µ; the rest of the initial data is provided on a stationary null hypersurface fired towards
the past interior from µ. This hypersurface eventually develops an extremal surface on it;
at this surface, the initial data is CPT conjugated, resulting in a second boundary. The
initial data is characteristic; in our case, fixing a spherically symmetric marginally trapped
surface means that obtaining the spacetime requires numerical evolution of the spherically
symmetric characteristic Einstein-Klein-Gordon equations. We will not expound on the
details of the numerics here (although they are surprisingly simple), instead just briefly
summarizing our results. Figure 3 illustrates one of these wormholes. On the left, we show
the marginally trapped surface µ used to build the wormhole embedded in the original
spacetime. On the left we see the coarse-grained spacetime in the regions where we are able
to obtain it numerically. We have not obtained any parts of the spacetime in the future
or past of X, since this requires evolution past a shockwave, requiring more sophisticated
methods than our fairly straightforward technique. The upshot of this solution is that
spacetime emergence connecting two asymptotic boundaries via an interior need not feature
a simple complexity growth with time, emphasizing the necessity of a refinement to the
Complexity=Volume proposal that takes into account the different behaviors of deformed
theories. We emphasize that this is qualitatively (as well as quantitatively) different from
the negative CF of the previous section, in which no boundary sources were turned on.
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Figure 3. Black lines show numerically computed features of a coarse-grained spacetime formed
from a marginally trapped (minimar [48]) surface µ on the spacelike section of the holographic screen
shown figure 2. Dashed lines represent apparent horizons, while X is the HRT surface. Grey lines lie
outside the range of our numerics, and are pure sketches representing a qualitative image of how the
full spacetime could look like. For an illustration with additional details, see figure 4 in the appendix.

4 Discussion

We have shown that CF can be negative in asymptotically AdS solutions of eleven-dimensional
SUGRA due to contributions from the compact directions. While there are at least two
natural choices of maximal volume hypersurface in the full eleven-dimensional spacetime, we
find negativity of CF in both. These examples include both one- and two-sided geometries.

What implications does this have for the CV proposal? Most obviously, it shows that the
reference state |R〉 implicit in the CV proposal cannot be the vacuum state. Furthermore,
our results are consistent with |R〉 being a state without a semiclassical dual, such as
a collection of factorized qubits. Next, in theories with gravity duals without compact
dimensions, our results draw a sharp line between field theory operators that are dual to
WEC-respecting and WEC-violating fields. Only the latter kind of operator can act on the
vacuum and take us closer to |R〉 as measured by complexity. The story for gravity duals
with compact dimensions is less obvious given the lack of general theorems on extremal
surface volumes, but extrapolating from our examples, a natural guess is that relevant scalar
operators are qualitatively different from other operators when it comes to the effect on
volumes. Common to both the eleven-dimensional example and its dimensionally reduced
case is that turning on VEVs for relevant scalar operators in the CFT lets us reduce CV below
the vacuum value. This effect could be investigated for prospective field theory duals to CV .

Our eleven-dimensional example also suggests more broadly that volumes have a
qualitatively different behavior when compact dimensions are included. This motivates a
study of maximal volume slices in these theories. Our finding that the volume in eleven-
dimensional SUGRA can differ exponentially (in the scalar field amplitude) from the volume
in the dimensional reduction highlights the importance of this.
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Finally, we provided additional examples of spacetimes sourced by tachyonic bulk
scalars where volumes have unusual behaviors, such as negative divergent CF and a decrease
of CV at late times. In these examples it is not clear that CF would have any field theory
interpretation, given that pure AdS is not a solution of the boundary theory giving rise to
these spacetimes. Possibly, some other background subtraction is more natural. Nevertheless,
it is supporting evidence for the unique effect of tachyonic bulk fields on volumes. The
behaviors found here suggest that the CV proposal needs modifications when matter falloffs
are sufficiently slow so as to turn on boundary sources.
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A The DEC and SEC in type II and D = 11 SUGRA

The DEC and the SEC for p-forms. Consider a stress tensor

Tab = 1
p!

[
pF c2...cp

a Fbc2...cp −
k

2gabF
c1...cpFc1...cp

]
, 1 ≤ k ≤ p, (A.1)

where Fc1...cp is a p-form. For k = 1 this is just the stress tensor of a free (p− 1) form with
curvature Fc1...cp and action S = −1

2
∫
F ∧ ?F . We first check the DEC. Let ua, vb be any

two timelike vectors at a point p. We will normalize them to our convenience, since the
DEC is independent of the choice of normalization. Choose Riemann normal coordinates
at q, so that gµν |q = ηµν and uµ = (∂t)µ, where ηµν is the Minkowski metric in Cartesian
coordinates. Next, we can always rescale v and perform a rotation of our coordinates so that

vµ = (∂t)µ + f(∂x)µ, (A.2)

for some constant f ≥ 0. With this, we now find at q that

vaubTab = Ttt + fTtx. (A.3)
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We compute that

p!Ttt =
∑
µi

(
pF

µ2...µp
t Ftµ2...µp + k

2F
µ1...µpFµ1...µp

)

=
(
p− k

2

)∑
µi

F 2
tµ2...µp + k

2
∑

µi,µ1 6=t
F 2
µ1...µp

≥
(
p− k

2

)∑
µi

F 2
tµ2...µp + k

2
∑
µi

F 2
xµ2...µp ,

(A.4)

and

p!Ttx =
∑
µi

pF
µ2...µp
t Fxµ2...µp = p

∑
µi

Ftµ2...µpFxµ2...µp . (A.5)

And so adding up (A.4) and (A.5) we get

p!Tabuavb ≥ p
∑
µi

[(
1− k

2p

)
F 2
tµ2...µp + 1

2fFtµ2...µpFxµ2...µp + k

2F
2
xµ2...µp

]
+ 1

2pf
∑
µi

Ftµ2...µpFxµ2...µp

≥ p
∑
µi

[(
1− k

2p

)
F 2
tµ2...µp + 1

2fFtµ2...µpFxµ2...µp + k

2F
2
xµ2...µp

]
.

(A.6)

This is non-negative for each term in the sum. If Ftµ2...µpFxµ2...µp ≥ 0 this is obvious,
since we assumed 1 ≤ k ≤ p, giving that each term is manifestly non-negative. So assume
Ftµ2...µpFxµ2...µp < 0. In this case we get a smaller term if we replace (1) f → 2, (2) k → p

in the first term, and (3) k → 1 in the last term:

p!Tabuavb ≥ p
∑
µi

[1
2F

2
tµ2...µp + Ftµ2...µpFxµ2...µp + 1

2F
2
xµ2...µp

]
≥ 0. (A.7)

Thus the DEC holds for the stress tensor (A.1). Together with Gab = 8πGNTab, this implies
the WCC (1.3).

Next, let us turn to the SEC. Set 8πGN = 1. Then

T ≡ T aa = gabGab = (1−D/2)R (A.8)

and so

Rabt
atb =

(
Gab + 1

2gabR
)
tatb = Tabt

atb − 1
2R = Tabt

atb − 1
2−DT. (A.9)

Our stress tensor gives

p!T = 1
2 (2p− kD)F c1...cpFc1...cp . (A.10)
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Choosing again Riemann normal coordinates at our point of interest, we get

p!Rµνtµtν =
(
p− k

2

)∑
µi

F 2
tµ2...µp + k

2
∑

µi,µ1 6=t
F 2
µ1...µp −

1
2

2p− kD
2−D Fµ1...µpF

µ1...µp

≥
(
p− k

2 −
1
2
kD − 2p
D − 2

)∑
µi

F 2
tµ2...µp

≥
(
p− p

2 −
1
2
pD − 2p
D − 2

)∑
µi

F 2
tµ2...µp

= 0,

where we used that 1 ≤ k ≤ p above. Thus the SEC holds for the stress tensor (A.1).

Type IIB. From [50, 51] we have that the gravitational equations of motion of the bosonic
sector of type IIB supergravity in the Einstein frame can be written as

Rab = 1
2∇aφ∇bφ+ 1

2e
2φ∇aχ∇bχ+ 1

96HacdefH
cdef
b + 1

4e
−φ
[
FacdF

cd
b − 1

12gabFcdeF
cde
]

+ 1
4e
−φ
[
LacdL

cd
b −

1
12gabLcdeL

cde
]

(A.11)

where H is a five form and F and L are three-forms. The scalar stress tensors are (up to a
positive rescaling in the case of χ) just stress tensors of massless scalars and so satisfies the
DEC and the SEC. Thus we just need to check that the p-forms. Rewriting the equation in
Einstein form we get stress tensors

T
(H)
ab = 1

5× 96

(
5HacdefH

cdef
b − 5

2gabHcdefgH
cdefg

)
T

(F )
ab = 1

12e
−φ
(

3FacdF cd
b − 1

2gabFcdeF
cde
)

T
(L)
ab = 1

12e
φ
(

3LacdL cd
b −

1
2gabLcdeL

cde
) (A.12)

All of these stress tensors are proportional to (A.1) with a positive coefficient, and so the
DEC and SEC holds.

Type IIA and D = 11 supergravity. In the Einstein frame, the stress tensors of the
bosonic matter in type IIA and eleven-dimensional supergravity is just that of free p-form
fields, except for an overall positive factor proportional to an exponential of the dilaton in
the case of type IIA [52]. The exact kind of computation as was carried out above shows
that the WEC holds classically in these theories.

B General properties of K = 0 slices in SUGRA

We here derive and highlight some general results on slices of vanishing mean curvature in
type IIA/B and D = 11 SUGRA. This will justify our statement that the initial data in
section 2 gives the unique maximal volume slice in the evolved spacetime.
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The first observation is the following:

Proposition 1. The bosonic matter fields of type IIA, IIB and D = 11 supergravity in
the Einstein frame satisfies the strong energy condition (SEC) and the dominant energy
condition (DEC):

SEC : Tabu
aub + 1

D − 2T
a
a ≥ 0, ∀ timelike ua,

DEC : Tabu
ava ≥ 0, ∀ timelike ua, va.

(B.1)

This result is known in the literature [53–55], but for convenience we included a derivation
above, as the result is often stated without proof. Note that this result applies to the
standard bosonic fields, and does not include stringy curvature corrections or additional
massive fields. Also, dimensional reduction will in general both break the SEC [55] and the
DEC [21] (although for specific types of compactifications they might survive [54]).

The well known fact that the SEC combined with K = 0 implies maximality [56, 57]
now immediately gives

Proposition 2. Let (M, g) be any classical solution of type IIA, IIB, or D = 11 SUGRA
in the Einstein frame. If Σ is a K = 0 spacelike hypersurface, possibly with boundary, then
Σ is maximal under any variation that leaves its boundary fixed.

This is a manifestation of the well known fact that the SEC ensures focusing of timelike
congruences. The result follows from calculating the second variation of the volume of a
spacelike K = 0 hypersurface, which reads [56, 57]

δ2 vol[Σ] = −
∫

Σ

(
|DN |2 +N2KabK

ab +N2Rabn
ana

)
≤ 0, (B.2)

where τa is the vector field generating the variation of Σ, na a unit normal to Σ, Da the
connection on Σ, and N = τ ·n. It is assumed that the boundary of Σ is kept fixed in (B.2).

As described above, Proposition 2 will generally not be true in dimensionally reduced
spacetime, and so in this case we actually have better control in the full D = 10, 11 spacetime.
This shows a situation in AdS/CFT where the compact dimensions should be viewed as a
resource rather than a nuissance.

Next, [58] has showed that if the SEC holds, then there cannot be two K = 0 slices
anchored at the same boundary time in an asymptotically AdS spacetime (the proof survives
when we also have a compact space). Thus we have the result

Proposition 3. Let (M, g) be an asymptotically AdSd+1 ×X solution of type IIA, IIB, or
D = 11 SUGRA in the Einstein frame for some compact manifold X. Let Σ be a complete
maximal volume slice anchored at boundary time C. Then there is no other maximal volume
slice in the domain of dependence of Σ that is anchored at C.

Proposition 2 and 3 now justifies our assertion from section 2 that our initial data Σ is the
true maximal volume slice.
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Finally, we remark that Proposition 2 and 3 remain true if we add additional SEC-
respecting matter, such p-dimensional branes B with action

S = −
∫
B

dpx
√
−hT +

∫
B
Cp, (B.3)

where T is a non-negative potentially field-dependent scalar and Cp a p-form — both
independent of the induced metric hab on B.

C AdS vacuum decay computations

Kruskal coordinates. Define

â(t) = a(it) = (1 + c) sin t− 2c sin t

2 . (C.1)

Consider the metric (3.1) in the special case of c = 1 and d = 3. Define the functions

R(ξ) =
∫ ξ

ξ0

dξ′
a(ξ′) = 1

3 log
[
f(ξ)
f(ξ0)

]
, T (t) =

∫ t

t0

dt′
â(t′) = 1

3 log
[
f̂(t)
f̂(t0)

]
(C.2)

where

f(ξ) =
cosh

(
ξ
4

)
sinh

(
ξ
4

)3

(
1− 2 cosh

(
ξ
2

))2 =


ξ3

64 +O(ξ5) ξ � 1
1
16 −

3
16e
−ξ − 1

8e
−3ξ/2 +O(e−2ξ) ξ � 1

f̂(t) =
cos

(
t
4
)

sin
(
t
4
)3(

1− 2 cos
(
t
2
))2 =


t3

64 +O(t5) t� 1
1

4
√

3(t∗−t)2 − 1
8(t∗−t) +O(1) t∗ − t� 1

(C.3)

where t∗ = 2π
3 is the location of the future singularity, ie. the maximal value of t. The

constants t0 > 0 and ξ0 > 0 will be chosen later. We have T ∈ R with T =∞ the future
singularity and T = −∞ the future event horizon, so the coordinate T covers only the
future FRW region. We have R ∈ (−∞, R∂) where R = −∞ is the event horizon and R∂
the conformal boundary. Define now Kruskal coordinates

U =

eT (t)−ρ Region II
−e−ζ+R(ξ) Region I

V =

eT (t)+ρ Region II
eζ+R(ξ) Region I

. (C.4)

where we now take Region II temporarily to mean the future part only. This gives

T (U, V ) = 1
2 log(UV ), ρ(U, V ) = 1

2 log(V/U), U > 0, (C.5)

ζ(U, V ) = 1
2 log(−V/U), R(U, V ) = 1

2 log(−V U), U < 0. (C.6)

The future event horizon is now at U = 0 and the past event horizon at V = 0. The octant
V ≥ U ≥ 0 covers the future part of region I, with ρ = 0 at U = V . The singularity lies at
(U > 0, V =∞). The conformal boundary is at V U = −e2R∂ , and region I is covered by
the regions U ≤ 0 and 0 ≤ V ≤ − e2R∂

U .
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Let us now define the functions

t̂(X) = T−1
(1

2 logX
)
, ξ̂(X) = R−1

(1
2 log(−X)

)
, (C.7)

so that t(U, V ) = t̂(UV ) and ξ(U, V ) = ξ̂(UV ). The domain of t̂ is X ∈ (0,∞). Since
R ∈ (−∞, Rmax), we have that the domain of ξ̂ is X ∈ (−e2Rmax , 0). Finally changing the
coordinates, we find that the metric is

ds2 = b(UV )
[
−dUdV +

(
V − U

2

)2
dΩ2

]
, (C.8)

where

b(UV ) =


â(t̂(UV ))2
√
U2V 2 , U > 0, V > 0,

a(ξ̂(UV ))2
√
U2V 2 , U < 0, V > 0.

(C.9)

Note that the inverse functions T−1 and R−1 must be computed numerically, and so the
same is also true of b.

In order for b(X) to be continous at X = 0 we need to choose ξ0, t0 appropriately. For
small arguments we have

log(−UV )
2 = R(ξ) = log

(
ξ

4

)
− 1

3 log f(ξ0) +O(ξ2),

logUV
2 = T (t) = log

(
t

4

)
− 1

3 log f̂(t0) +O(t2),
(C.10)

which at small t and ξ gives the relation

ξ = 4f(ξ0)1/3√−UV ,

t = 4f̂(t0)1/3√UV .
(C.11)

Now, near the horizon we have that â(t) = t+ . . . and a(ξ) = ξ + . . ., so the function b near
the horizon reads

b(UV ) =

16f̂(t0)2/3 + . . .

16f(ξ0)2/3 + . . .
. (C.12)

Thus, continuity of b requires t0 and ξ0 to be related by

f(ξ0) = f̂(t0). (C.13)

The conformal diagram. The metric (C.8) is just conformal to Minkowski, and so
drawing the conformal diagram is just as for Minkowski, with two exceptions:

• In the region of negative U , −UV ≥ e2R∂ is excised since it lies beyond the conformal
boundary.

• The part which corresponds to null infinity in Minkowski (and which is not in the
excised region) is here instead a singularity at a finite proper distance.

From these observations, we easily find figure 2. In our representation have chosen t0 = 1
and rescaled the null coordinates by a convenient overall factor in order to bring the
holographic screen closer to the center of the diagram.

– 20 –



J
H
E
P
0
7
(
2
0
2
2
)
0
3
1

The holographic screen. Consider the radial null vectors

ka = 1√
2â(t)

[
(∂t)a + 1

â(t)(∂ρ)a
]
, `a = â(t)√

2

[
(∂t)a −

1
â(t)(∂ρ)a

]
, (C.14)

which are normalized so that k ·` = −1 and so that ka∇akb = 0. Calculating the expansions,
we find

θk =
√

2
â(t)2

(
â′(t) + 1

tanh ρ

)
θ` = −

√
2
(
−â′(t) + 1

tanh ρ

) (C.15)

For times where â′(t) < −1, we have marginally trapped surfaces at

ρ(t) = arctanh
(
− 1
â′(t)

)
. (C.16)

The unnormalized tangents to the screen that are orthogonal to the marginally trapped
leaves are

ηa = (∂t)a + ρ′(t)(∂ρ)a = (∂t)a + â′′(t)
1− â′(t)2 (∂ρ)a. (C.17)

Its norm is given by

η2 = −1 + â(t)2â′′(t)2

(â′(t)2 − 1)2 , (C.18)

which starts out being positive and then transitions to negative at late times.

Timelike geodesics must cross the horizon. Consider a timelike geodesic in region
II, which by spherical symmetry can be taken to lie at θ = π/2 without loss of generality.
The effective Lagrangian for a geodesic is

L = gµνu
µuν = ξ̇2 − a(ξ)2ζ̇2 + a(ξ)2 cosh2 ζϕ̇2. (C.19)

Parametrizing by proper time, so that L = −1, gives

− ζ̇2 + cosh2 ζϕ̇2 = −1 + ξ̇2

a2 . (C.20)

Then the geodesic equation for ξ can then be written

0 = ξ̈ − aa′
(
−ζ̇2 + cosh2 ζϕ̇2

)
= ξ̈ + a′

a
(1 + ξ̇2). (C.21)

Interestingly the angular momentum makes no presence here, so there is no angular moment
barrier between the horizon and the conformal boundary. Since a′(ξ)/a(ξ) > 1 everywhere,
this equation effectively describes a particle subject to friction and a force always pushing
in the direction of negative ξ. Thus no geodesic can avoid reaching ξ = 0. After this, it
enters region II, where it is doomed to encounter the singularity in finite time. Thus, every
timelike geodesic ends up in the singularity, and so the singularity is rightfully described as
cosmological.
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Computing ĊV . Let us consider the static cylinder conformal frame. Defining ξ = − log z,
the metric in the causal wedge becomes

ds2
I = 1

z2

[
dz2 + f(z)2

(
dζ2 + cosh2 ζdΩ2

)]
f(z) = [1− z]

[
1 + c(

√
z − 1)2 + z

]
2 = 1 + c

2 − c
√
z +O(z).

(C.22)

Next we introduce new coordinates (w, t) through:

ζ = 2 arctanh
(

tan t

2

)
,

z = w
c+ 1
2 cos t .

(C.23)

To subleading order in w, this transforms the metric into Fefferman-Graham coordinates of
the static cylinder:

ds2
I = 1

w2

[
dw2 + h(w, t)2

(
−dt2 + dΩ2

)
+O(w)

]
,

h(w, t) = 1−
√
w

√
2c2

(c+ 1) cos t ,
(C.24)

where t lies in the finite range |t| < π/2. Consider now a hypersurface Σt0 with embedding
coordinates (w, t(w),Ωi), and where t(0) = t0. Its volume reads

vol[Σt0 ] = vol[Sd−1]
∫

dwh(w, t)d−1

wd

√
1− h(w, t)t′(w)2. (C.25)

Expanding near the boundary,

t(w) = t0 + t1w +O(w3/2), (C.26)

we find that extremality imposes t1 = 0. Consequentially, the divergence of the volume to
subleading order is

vol[Σt0 ] = vol[Sd−1]
∫
ε
dw

(
w−d − w−d+1/2(d− 1)

√
2c2

(c+ 1) cos t0
+O(w−d+1)

)

= vol[Sd−1]
[

1
(d− 1)ε

−d+1 − d− 1
d− 3

2
ε−d+ 3

2

√
2c2

(c+ 1) cos t0
+O(ε−d+2)

]
.

(C.27)

This implies that the leading order complexity change with cutoff adapted to the static
cylinder is given by (3.10).

Plot of the cosmological wormhole. Figure 4 shows the domain for which the numer-
ical determination of the coarse grained spacetime has been carried out, together with data
on null expansions and area-radii in the geometry.
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Figure 4. To the left, we have zoomed into the outer wedge OW [µ] of a marginally trapped
surface µ on the spacelike section of the holographic screen in figure 2. On the right, we show the
coarse-grained spacetime corresponding to µ in the regions where we have been able to obtain the
metric numerically. The black contour lines show surfaces of constant area radius, saturating at r = 5
and with spacings of δr ≈ 0.2. The colored contours show the product of the null expansions θkθ` for
constant−r surfaces, with gray regions corresponding to θkθ` > 4. The shockwave passing through
the HRT surface X carries no null energy, but does source a discontinuity in the inaffinity of `a, which
is the null vector along the direction of the shockwave. The quantity `a∇aφ is discontinuous at X.
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