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1 Introduction

Three-dimensional superconformal field theories (SCFTs) which describe M2-branes have
various UV descriptions. A stack of N M2-branes moving in C4/Zk and in C2×C2/Zk can
be described by the U(N)×U(N) ABJM theory with Chern-Simons level k [1] and by the
U(N) ADHM theory with k flavors [2, 3] respectively.

They are holographically dual to the eleven-dimensional M-theory whose geometry is
realized by certain protected local operators on the moduli space of supersymmetric vacua
of the SCFTs. The ABJM theory has a gauge group U(N)×U(N) and two types of matter
multiplets, a hypermultiplet and a twisted hypermultiplet transforming as the bifunda-
mental representation under the gauge group, which form gauge invariant BPS operators
dressing monopole operators. The two factors C2/Zk in the probed eight-dimensional ge-
ometry are associated to two kinds of branches of vacua, either of which is parametrized by
monopoles only dressed by the hypermultiplet or those only dressed by the twisted hyper-
multiplet. On the other hand, the U(N) ADHM theory is 3d N = 4 U(N) gauge theory
coupled to a single adjoint hypermultiplet and k fundamental hypermultiplets. There are
protected local operators living on the N = 4 Coulomb branch, Higgs branch and mixed
branch. The geometry C2/Zk probed by M2-branes is described by the Coulomb branch
operators [4].

In this paper we examine certain supersymmetric indices for the 3d SCFTs which count
the local operators realizing the geometry C2/Zk probed byN M2-branes. We obtain closed
expressions for the indices in canonical and grand canonical ensembles. The result shows a
combinatorial nature of the indices as they are expressed in terms of generating functions for
plane partitions. For k = 1 we show an exact correspondence between the local operators
describing C2 probed by N M2-branes and plane partitions of trace N . We also obtain
closed expressions for the indices with k = 1 and 2 in the large N limit. It follows that
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the number of the operators parametrizing C2 and C2/Z2 probed by M2-branes have the
asymptotic growth ∼ exp(α∆2/3) at large scaling dimension ∆ where α is some constant.
We find that the grand potential in the high-temperature limit near roots of unity has a
leading trilogarithm term. From the theory of random plane partitions we derive the large
scaling dimension of the local operators describing the C2 probed by N M2-branes. It is
proportional to N3/2 in the large N limit.

The organization of the paper is as follows. In section 2 we study the N -dependent
index, the canonical index for the 3d SCFTs describing the N M2-branes in C2/Zk. We
obtain a closed formula for the index in terms of generating functions for column-strict
plane partitions. From the large N indices we also derive the asymptotic growth of the
numbers of the operators. In section 3 we examine the grand canonical index which leads
to an exact correspondence between the local operators parametrizing C2 probed by N

M2-branes and plane partitions of trace N . We argue that the relation to the column-
strict plane partitions follows from the Frobenius construction. We also construct the
grand potential in the high-temperature limit and derive the scaling dimension of the local
operators describing C2 in the large N limit.

2 Canonical index

2.1 Definition

We consider the 3d SCFTs equipped with the chiral algebra A formed by the local operators
of scaling dimension ∆ on the moduli space of supersymmetric vacua. For such theories
we can define a supersymmetric index

I[T ](q) = TrA(−1)F q2∆ (2.1)

as a graded character of A where F is the Fermion number operator. The index (2.1) can
be obtained from the flavored superconformal index [5–7] as a special fagacity limit [8].

In the following we take A as the chiral algebra formed by the local operators which
describe C2/Zk probed by M2-branes. There are several UV descriptions of the index (2.1).
For example, for the U(N)×U(N) ABJM theory with Chern-Simons level k describing N
M2-branes in C4/Zk, the index (2.1) enumerates the gauge invariant local operators which
are responsible for the C2/Zk consisting of monopole operators only dressed by twisted
hypermultiplet scalars or equivalently those only dressed by hypermultiplet scalars [9]. On
the other hand, for the U(N) ADHM theory with k flavors describing N M2-branes in
C2×C2/Zk, the C2/Zk is parametrized by the N = 4 Coulomb branch operators [4]. Thus
the index (2.1) simultaneously counts the Coulomb branch operators in the ADHM theory.
It can be evaluated by employing the formula proposed in [10]. Hence we get1

IN,k(q) = I[U(N)k ×U(N)−k ABJM](q)
= I[U(N) ADHM with k flavors](q) (2.2)

1More generally, this also counts the gauge invariant operators in the mirror necklace quiver theories [11,
12] and those in theN = 4 circular quiver Chern-Simons matter theories [13, 14] which describe the geometry
C2/Zk probed by N M2-branes. The index (2.2) follows from N = 4 flavored superconformal index [9].
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by choosing A as the chiral algebra formed by the local operators which describe C2/Zk
probed by N coincident M2-branes. We refer to (2.2) as the canonical index as it depends
on the number N of M2-branes. It is the generating function, a.k.a. Hilbert series for
chiral operators on the branch of supersymmetric vacua in the M2-brane SCFT which are
responsible for C2/Zk in M-theory.

In this section we explicitly explain how the canonical index (2.2) can be evaluated in
terms of generating functions for plane partitions and how it counts the local operators in
the M2-brane SCFTs.

2.2 Combinatorial formula

We begin by introducing basic notions of plane partitions (see e.g. [15–17]). A plane
partition of n is an array of non-negative integers

n11 n12 n13 · · ·
n21 n22 n23 · · ·
...

...
...

(2.3)

with
∑
i,j nij = n. The rows and columns in (2.3) are arranged in non-increasing order. The

non-zero entries nij > 0 are called the parts of the plane partition, the sum n =
∑
i,j nij of

all entries is called the norm of the plane partition, the sum
∑
i nii of the diagonal entries is

called the trace of the plane partition. Let λi be parts in the i-th row of the plane partition
in such a way that

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = 0. (2.4)

The partition λ is called the shape of the plane partition. If the entries in the plane
partition strictly decrease in each column, it is called column-strict.

Let αλ(n) be the number of column-strict plane partitions of n of shape λ with N =∑
i λi. One can define a generating function for αλ(n) by

χλ(q) =
∞∑
n=0

αλ(n)qn−N . (2.5)

It is given by [15, 16, 18, 19]

χλ(q) =
∏
b∈λ

qnλ−N

1− qhλ(b) (2.6)

where

nλ =
c∑
i=1

λ′i + 1
2

 =
r∑
i=1

iλi (2.7)

and

hλ(b) = λi + λ′j − i− j + 1 (2.8)
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is the hook length of a box b at the i-th row and j-th column in the corresponding Young
diagram λ. λ′i is the number of boxes in the i-th column of the Young diagram λ and c is
the number of columns.

The expression (2.6) is a classical limit of the Verma character [20] for the quantized al-
gebra known as the spherical part of the rational Cherednik algebra [21]. So the generating
function χλ(q) is identified with the character of the N -th symmetric product algebra.

For k = 1 one finds that the index (2.2) can be simply expressed in terms of the
generating function (2.1) as

IN,k=1(q) =
∑
λ

χλ(q)2 (2.9)

where the sum is taken over the Young diagram λ with N =
∑
i λi. The Young diagram

corresponds to the isolated massive vacua of the UV gauge theory in which certain operators
get vevs.

For example, when N = 4 and k = 1 we have five terms labeled by the Young diagrams

χ (q) = 1
(1− q)(1− q2)(1− q3)(1− q4) ,

χ (q) = q

(1− q)2(1− q2)(1− q4) ,

χ (q) = q2

(1− q)(1− q2)2(1− q3) ,

χ (q) = q3

(1− q)2(1− q2)(1− q4) ,

χ (q) = q6

(1− q)(1− q2)(1− q3)(1− q4) , (2.10)

Summing over the Young diagrams we get

I4,1(q) = χ (q)2 + χ (q)2 + χ (q)2 + χ (q)2 + χ (q)2

= 1 + q2 + 2q3 + 4q4 + 2q5 + 4q6 + 2q7 + 4q8 + 2q9 + q10 + q12

(1 + q)4(1 + q2)2(1 + q + q2)2(1− q)8 (2.11)

= 1 + 2q + 6q2 + 14q3 + 33q4 + 64q5 + 127q6 + 228q7 + 404q8 + 672q9 + · · ·

It can be checked that (2.11) correctly counts the gauge invariant protected operators
describing Sym4(C2) from the U(4)1 × U(4)−1 ABJM theory or the U(4) ADHM theory
with one flavor.

In the U(4)1×U(4)−1 ABJM theory the monopole operators carry an electric charge be-
cause of the Chern-Simons term. The Gauss law implies that the gauge invariant monopole
operator which contributes to the index has no scaling dimension. The term 2q in (2.11)
counts two kinds of dressed monopole v1,0,0,0;1,0,0,0T and v−1,0,0,0;−1,0,0,0T̃ where v{mi};{mi}
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is the bare monopole with magnetic fluxes {mi}4i=1, and (T, T̃ ) is the bifundamental twisted
hyper. The term 6q2 in (2.11) corresponds to the following six gauge invariant operators:

Tr(T T̃ ), v1,−1,0,0;1,−1,0,0T T̃ ,

v2,0,0,0;2,0,0,0T 2, v1,1,0,0;1,1,0,0T 2,

v−2,0,0,0;−2,0,0,0T̃ 2, v−1,−1,0,0;−1,−1,0,0T̃ 2. (2.12)

Unlike the ABJM model, in the U(4) ADHM theory with one flavor the bare monopole
of magnetic flux {mi}4i=1 has dimension

∑
i |mi|/2 [22]. It is a gauge invariant operator

by itself. The term 2q corresponds to the two fundamental bare monopoles v1,0,0,0 and
v−1,0,0,0. The term 6q2 enumerates six Coulomb branch operators

Trϕ, v1,−1,0,0,

v2,0,0,0 v1,1,0,0,

v−2,0,0,0 v−1,−1,0,0. (2.13)

where ϕ is the vector multiplet scalar field. The order 8 of the pole at q = 1 in the
index (2.11) is equal to the complex dimension of Sym4(C2).

The combinatorial formula (2.9) can be generalized to the case with k > 1 where the
N M2-branes propagate in C2/Zk. Let

0 ≤ N1 ≤ N2 ≤ · · · ≤ Nk−1 ≤ N (2.14)

be a non-decreasing sequence of integers. Let λ(1), λ(2), · · · , λ(k) be k partitions whose
weights are given by ∑

i

λ
(1)
i = N1,∑

i

λ
(2)
i = N2 −N1,∑

i

λ
(3)
i = N3 −N2,

...∑
i

λ
(k)
i = N −Nk−1. (2.15)

We find that the index (2.2) for general N and k can be expressed in terms of the generating
function (2.5) for column-strict plane partitions as

IN,k(q) =
∑

0≤N1≤···≤Nk−1≤N

∑
λ(1),··· ,λ(k)

χλ(1)(qk)2 · · ·χλ(k)(qk)2q2(k−1)N−2
∑k−1

i=1 Ni (2.16)

where the sum is first taken over the k sets of Young diagrams characterized by the parti-
tions (2.15) for the fixed sequence (2.14) and then over the sequences (2.14).
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The formula (2.16) can be also expressed in terms of (2.9). Thus we can write

IN,k(q) =
∑

0≤N1≤···≤Nk−1≤N
IN1,1(qk) · · · IN−Nk−1,1(qk)q2(k−1)N−2

∑k−1
i=1 Ni (2.17)

where we have defined I0,1(q) = 1.
For example, when N = 2 and k = 4 we have

I2,4(q) = I2,1(q4)q12︸ ︷︷ ︸
(N1,N2,N3)=(0,0,0)

+ I1,1(q4)2q10︸ ︷︷ ︸
(N1,N2,N3)=(0,0,1)

+ I1,1(q4)2q8︸ ︷︷ ︸
(N1,N2,N3)=(0,1,1)

+ I1,1(q4)2q6︸ ︷︷ ︸
(N1,N2,N3)=(1,1,1)

+ I2,1(q4)q8︸ ︷︷ ︸
(N1,N2,N3)=(0,0,2)

+ I1,1(q4)2q6︸ ︷︷ ︸
(N1,N2,N3)=(0,1,2)

+ I1,1(q4)2q4︸ ︷︷ ︸
(N1,N2,N3)=(1,1,2)

+ I2,1(q4)q4︸ ︷︷ ︸
(N1,N2,N3)=(0,2,2)

+ I1,1(q4)2q2︸ ︷︷ ︸
(N1,N2,N3)=(1,2,2)

+ I2,1(q4)︸ ︷︷ ︸
(N1,N2,N3)=(2,2,2)

= 1− q2 + 2q4 + 2q8 − q10 + q12

(1 + q2)2(1 + q4)(1− q2)4

= 1 + q2 + 4q4 + 6q6 + 14q8 + 19q10 + 33q12 + 44q14 + · · · (2.18)

Again we can check that (2.18) reproduces the result obtained from the U(2)×U(2) ABJM
theory with level k = 4 or the U(2) ADHM theory with four flavors.

The term q2 corresponds to the gauge invariant operator Tr(T T̃ ) of dimension 1 in
the U(2)4 × U(2)−4 ABJM theory. Due to the Chern-Simons coupling with k = 4, the
bare monopole carries four units of electric charges so that the fundamental monopole with
(m1,m2) = (1, 0), (−1, 0) can form gauge invariant operators when dressed by fourth power
of T and T̃ . Also the U(2) gauge group allows for single and double trace operators as
gauge invariant operators. So there exist four gauge invariant operators with four units of
canonical R-charge or scaling dimension

v1,0;1,0T 4, v−1,0;−1,0T̃ 4,

Tr(T T̃T T̃ ), Tr(T T̃ )Tr(T T̃ ). (2.19)

These correspond to the term 4q4 in (2.18).
On the other hand, in the U(2) ADHM theory with four flavors, the term q2 comes

from Trϕ. The bare monopole in the U(2) ADHM theory with four flavors has dimension
2
∑2
i=1 |mi| [22] so that the fundamental monopole v±,0 has dimension 2. Besides, there are

single and double trace operators consisting of ϕ. Thus the term 4q4 counts the following
four Coulomb branch operators

v1,0, v−1,0,

Tr(ϕ2), Tr(ϕ)Tr(ϕ). (2.20)

The order 4 at pole q = 1 in (2.18) is the complex dimension of Sym2(C2/Z4).
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We can also write the index (2.2) for k = 1 as

IN,1(q) = PN (q)
(q; q)2

N

. (2.21)

Here PN (q) is a palindromic polynomial in q with non-negative integer coefficient of degree
N(N − 1). We observe that it satisfies a relation

PN (q−1) = q−N(N−1)PN (q). (2.22)

We also observe that the terms qk with k = 0, 1, 2, · · · , N in PN (q) are the same as those
in the following function:

∞∏
n=1

1
(1− qn)n−1 = 1 + q2 + 2q3 + 4q4 + 6q5 + 12q6 + 18q7 + 33q8 + 52q9 + · · · (2.23)

For example, we have

P1(q) = 1,
P2(q) = 1 + q2,

P3(q) = 1 + q2 + 2q3 + q4 + q6,

P4(q) = 1 + q2 + 2q3 + 4q4 + 2q5 + 4q6 + 2q7 + 4q8 + 2q9 + q10 + q12,

P5(q) = 1 + q2 + 2q3 + 4q4 + 6q5 + 7q6 + 8q7 + 12q8 + 12q9 + 14q10

+ palindromic + q20 (2.24)

Another observation is that when q → 1 the polynomial PN (q) turns into an ordinary
factorial

PN (1) = N !. (2.25)

From (2.22), (2.21) and (2.17) it follows that the index (2.2) satisfies a relation

IN,k(q−1) = q2NIN,k(q). (2.26)

Thus the normalized index qNIN,k(q) is invariant under the transformation q → q−1.

2.3 Large N limit

Now consider the large N limit of the index. For k = 1 the index (2.2) has the following
expansions:

# (M2-branes) Expansion
1 1 + 2q + 3q2 + 4q3 + 5q4 + 6q5 + 7q6 + 8q7 + 9q8 + · · ·
2 1 + 2q + 6q2 + 10q3 + 19q4 + 28q5 + 44q6 + 60q7 + 85q8 + · · ·
3 1 + 2q + 6q2 + 14q3 + 28q4 + 52q5 + 93q6 + 152q7 + 242q8 + · · ·
4 1 + 2q + 6q2 + 14q3 + 33q4 + 64q5 + 127q6 + 228q7 + 404q8 + · · ·
5 1 + 2q + 6q2 + 14q3 + 33q4 + 70q5 + 142q6 + 272q7 + 507q8 + · · ·
6 1 + 2q + 6q2 + 14q3 + 33q4 + 70q5 + 149q6 + 290q7 + 561q8 + · · ·
7 1 + 2q + 6q2 + 14q3 + 33q4 + 70q5 + 149q6 + 298q7 + 582q8 + · · ·
8 1 + 2q + 6q2 + 14q3 + 33q4 + 70q5 + 149q6 + 298q7 + 591q8 + · · ·

(2.27)
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As seen from (2.27) the finite-N correction of the index appears from qN+1. This property
is the same as the full supersymmetric index due to the existence of multi-trace operators.
We have numerically confirmed that the index (2.2) for k = 1 in the large N limit is given by

I∞,1(q) =
∞∏
n=1

1
(1− qn)n+1

= 1 + 2q + 6q2 + 14q3 + 33q4 + 70q5 + 149q6 + 298q7 + 591q8

+ 1122q9 + 2101q10 + 3822q11 + 6848q12 + · · · (2.28)

Noticing that (see [23])

E(q) :=
∞∏
n=1

1
1− qn =

∞∑
n=0

p(n)qn (2.29)

and [24]

M(q) :=
∞∏
n=1

1
(1− qn)n =

∞∑
n=0

Q(n)qn (2.30)

where p(n) is the number of partitions of n and Q(n) is the number of plane partitions of
n, we can write

I∞,1(q) =
∞∑
n=0

n∑
N=0

p(N)Q(n−N)qn. (2.31)

This implies that the large N index (2.28) can be identified with a generating function for
plane partitions of N + n with trace N which is associated to the partition of a diagonal
parts. We will see in section 3 that there is an exact correspondence between the local
operators describing the motion of N M2-branes in C2 and the plane partitions of trace N
in the analysis of the grand canonical ensemble.

One aspect which we can obtain from the expression (2.28) is the asymptotic growth
of the number of operators. When one writes the 3d index (2.1) for a free scalar theory as
an integral over a density ρ(∆) of scaling dimension ∆, then its asymptotic behavior takes
the form [25]2

ρ(∆) ∼ exp
(
α∆2/3

)
(2.33)

where α is some constant. Although much less is known for interacting 3d theories, we
can obtain from (2.28) the asymptotic growth of the number an of the local operators of
dimension ∆ = n/2 in the 3d SCFTs for M2-branes parametrizing C2 in the large N limit.
The following theorem by Meinardus [17, 29] holds the key to the asymptotic growth of
the number of operators:

2For a free scalar theory in d dimensions, the growth of the number of operators of scaling dimension ∆
is given by [25]

ρ(∆) ∼ exp
(
α∆1−1/d) . (2.32)

Also see e.g. [26–28] for further studies of the asymptotic growth.
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Theorem 1 For an infinite product with the form

f(q) =
∞∏
n=1

1
(1− qn)bn = 1 +

∞∑
n=1

anq
n (2.34)

where q = e−β and Reβ > 0, consider an auxiliary Dirichlet series

D(s) =
∞∑
n=1

bn
ns
, s = σ + iτ. (2.35)

Suppose that we have the following conditions:

(i) Condition

D(s) converges for σ > α, a positive number and has an analytic continuation in the
region σ ≥ −C0 with 0 < C0 < 1,

(ii) Condition

D(s) is analytic except for a pole of order 1 at s = s0 with residue R0

(iii) Condition

D(s) → O(|τ |C1) as |τ | → ∞ for a fixed positive number C1.

Then we have

an ∼ Cnκ exp
[
n

s0
s0+1

(
1 + 1

s0

)
(R0Γ(s0 + 1)ζ(s0 + 1))

1
s0+1

]
as n→∞ (2.36)

where

C = eD
′(0) [2π(1 + s0)]−

1
2 [R0Γ(s0 + 1)ζ(s0 + 1)](1−2D(0))/(2+2s0) (2.37)

and

κ =
D(0)− 1− s0

2
1 + s0

. (2.38)

Since the index (2.28) leads to the Dirichlet series
∑∞
n=1(n+1)/ns = ζ(s−1)+ζ(s) with two

poles at s = 1 and s = 2, the second condition is not satisfied. When there exist additional
poles at s = si (< s0) in the Dirichlet series, the sub-leading terms generally appear and we
therefore need a generalization of the Meinardus Theorem. The generalized theorem that
is applicable for multiple poles is presented in [30]. The main idea based on the auxiliary
Dirichlet series remains the same. Applying the generalized Meinardus Theorem to the
index (2.28), we obtain the asymptotic behavior of the number an of the operators

an ∼ Cnκ exp
(
αn2/3 + βn1/3 + γ

)
, n = 2∆ (2.39)
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where

α = 3ζ(3)1/3

22/3 = 2.00944 . . . , (2.40)

β = π2

3 · 24/3ζ(3)1/3 = 1.22790 . . . , (2.41)

γ = 1
12 −

π4

432ζ(3) = −0.10424 . . . , (2.42)

C = ζ(3)13/36

223/36 · 31/2πA
= 0.098354 . . . , (2.43)

κ = −31/36 = −0.86111 . . . (2.44)

and A is the Glaisher-Kinkelin constant. We see that the asymptotic growth (2.39) takes
the same form as (2.33). The leading coefficient α given by (2.40) coincides with that
appearing in the asymptotic growth of the MacMahon function [31]. The exact numbers
N (n) of the local operators and the values an computed from (2.39) are listed as follows:

n N (n) an

10 2139 1931.87
100 3.42106× 1018 3.17747× 1018

1000 9.63125× 1088 9.24720× 1088

5000 1.17082× 10260 1.14167× 10260

10000 1.17013× 10412 1.14657× 10412

(2.45)

We remark that the large N full superconformal index for M2-branes in flat space is
shown to agree with the Kaluza-Klein index IKK [5]. The finite-N full superconformal
index IN for M2-branes which contains contributions from a stack of N M2-branes will
take the form [32, 33]

IN (q) = IKK(q)
(

1 +
∑
conf.

IM5(q)
)

(2.46)

where IM5(q) is the finite-N correction to the index due to the wrapped M5-branes.
From (2.9) and (2.28) we find the following finite-N correction:

IN,1(q)
I∞,1(q) =

∞∏
n=1

(1− qn)n+1∑
λ

χλ(q)2

= (q; q)2
∞

(q; q)2
N

∞∏
n=1

(1− qn)n−1PN (q). (2.47)

Although we do not pursue it here, it would be interesting to explore a generalization of
this relation to the full superconformal index and to understand it from the point of view
of the M5-branes.
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For k = 2 we obtain the index

# (M2-branes) Expansion
1 1+3q2 +5q4 +7q6 +9q8 +11q10 +13q12 +15q14 +17q16 + · · ·
2 1+3q2 +11q4 +22q6 +45q8 +73q10 +119q12 +172q14 +249q16 + · · ·
3 1+3q2 +11q4 +32q6 +75q8 +160q10 +313q12 +562q14 +956q16 + · · ·
4 1+3q2 +11q4 +32q6 +90q8 +210q10 +473q12 +967q14 +1889q16 + · · ·
5 1+3q2 +11q4 +32q6 +90q8 +231q10 +548q12 +1222q14 +2584q16 + · · ·
6 1+3q2 +11q4 +32q6 +90q8 +231q10 +576q12 +1327q14 +2956q16 + · · ·
7 1+3q2 +11q4 +32q6 +90q8 +231q10 +576q12 +1363q14 +3096q16 + · · ·
8 1+3q2 +11q4 +32q6 +90q8 +231q10 +576q12 +1363q14 +3141q16 + · · ·

(2.48)

Again we see that the finite-N correction shows up from qN+1. In this case we numerically
find that the large N index is simply given by

I∞,2(q) =
∞∏
n=1

1
(1− q2n)2n+1 . (2.49)

Applying the generalized Meinardus Theorem in [30] to the index (2.49), we find that the
number an of the operators has the same asymptotic growth as (2.39) with

α = 3ζ(3)1/3

2 = 1.59490 . . . , (2.50)

β = π2

3 · 22ζ(3)1/3 = 0.773529 . . . , (2.51)

γ = 1
6 −

π4

364ζ(3) = −0.0559579 . . . , (2.52)

C = 27/9ζ(3)1/2

31/2πA2 = 0.210049 . . . , (2.53)

κ = −8
9 = −0.888889 . . . (2.54)

We show the exact numbersN (n) of the local operators and the analytic values an evaluated
from (2.39) as well as (2.50)–(2.54)

n N (n) an

10 231 222.798
100 1.07823× 1014 1.00541× 1014

1000 1.91038× 1069 1.80422× 1069

5000 2.03769× 10204 1.94181× 10204

10000 3.17566× 10324 3.03553× 10324

(2.55)

We leave it for future work to present the analytic and numerical treatments of the asymp-
totic growth for k > 2.
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3 Grand canonical index

3.1 Operators and plane partitions

An alternative approach is to consider the grand canonical ensemble. As we will see, this
turns out to be useful to obtain an exact correspondence between the local operators and
plane partitions and to study the asymptotic behaviors.

We define a grand canonical index by

Ξk(z; q) = 1 +
∞∑
N=1
IN,k(q)qkNzN . (3.1)

where z = eµ plays a role of the fugacity and µ is the chemical potential. Then the grand
canonical potential is given by

Jk(z; q) = log Ξk(z; q). (3.2)

We find that the grand canonical index (3.1) is simply given by3

Ξk(z; q) =
∞∏
n=1

k∏
m=1

1
(1− zqkn+2(m−1))n

. (3.3)

For example, for k = 1 the grand canonical index is4

Ξ1(z; q) =
∞∏
n=1

1
(1− zqn)n (3.4)

and the grand potential is

J1(z; q) =
∞∑
l=1

zl

l

ql

(1− ql)2 . (3.5)

From (3.4) one can check that the grand canonical index obeys a relation

Ξ1(zq−1; q) = Ξ1(z; q)
(z; q)∞

. (3.6)

By using the identity [35]

1
(z; q)∞

=
∞∑
n=0

zn

(q; q)n
(3.7)

3We have numerically checked that (3.3) reproduces the canonical indices. It would be nice to prove this
analytically.

4The MacMahon function as the generating function for plane partitions coincides with the partition
function of free conformally coupled scalar on S1 × S2 [34]. The function (3.4) can be also understood as
the partition function of free conformally coupled scalar where z is the fugacity for its angular momentum.
The author thanks Nikita Nekrasov for sharing his idea.
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for |z| < 1 we get from (3.6) a recursion relation

IN,1(q) = 1
1− qN

N−1∑
n=0

qn

(q; q)N−n
In,1(q). (3.8)

Here we observe that the expression (3.4) has a combinatorial interpretation as a
generating function for the number of plane partitions. The R.H.S. of (3.4) is known as a
generating function for the number β(n,m) of plane partitions of n with trace m [15, 16].
So we can write

Ξ1(z; q) =
∞∑
n=0

∞∑
m=0

β(n,m)qnzm. (3.9)

For example, the z2 term in Ξ1(z; q) is

q2 + q4

(1− q)2(1− q2)2 z
2 = (q2 + 2q3 + 6q4 + 10q5 + 19q6 + 28q7 + 44q8 + · · · )z2. (3.10)

While there are Q(4) = 13 plane partitions of 4

4 , 3 1 , 2 2 , 2 1 1 , 1 1 1 1 ,
3
1 ,

2
2 ,

2 1
1 , 1 1

1 1 ,
1 1 1
1 ,

1 1
1
1

,
2
1
1
,

1
1
1
1

, (3.11)

there are β(4, 2) = 6 plane partitions of 4 with trace 2

2 2 , 2 1 1 , 2
2 ,

2 1
1 , 1 1

1 1 ,
2
1
1
, (3.12)

which correspond to the term 6q4 in (3.10). Similarly, one can obtain from (3.10) β(5, 2) =
10. This corresponds to the following 10 plane partitions of 5 with trace 2:

2 1 1 1 , 2 2 1 , 2 1 1
1 , 2 2

1 ,

1 1 1
1 1 ,

2
1
1
1

,
2
2
1
,

2 1
1
1

,

2 1
2 ,

1 1
1 1
1

. (3.13)

– 13 –



J
H
E
P
0
7
(
2
0
2
2
)
0
2
8

Comparing (3.1) and (3.9), we deduce a correspondence between the protected local
operators parametrizing the geometry C2 probed by N M2-branes and plane partitions
with trace N . The scaling dimension ∆ carried by the local operator translates into the
norm n =

∑
i,j ni,j of the plane partitions. As will be explained, the vacuum ν in which the

operator gets a vev and the flavor charge f of the operator are also encoded in the plane
partition. The correspondence is summarized as

M2-brane SCFT operators plane partitions relation
rank of gauge group N trace m N = m

scaling dimension ∆ norm n ∆ = (n−N)/2
vacuum ν partition λ of diagonal ν = λ

flavor charge f i-trace τi f =
∑
i>0 τi −

∑
i<0 τi

(3.14)

To illustrate the correspondence (3.14), we work out the previous example that appears
from the z2 term (3.10). Alternatively, we get from (3.10) the canonical index for N = 2

I2,1 = 1 + 2q + 6q2 + 10q3 + 19q4 + 28q5 + 44q6 + · · · (3.15)

The term 6q2 can be found in the U(2)1 × U(2)−1 ABJM model as the gauge invariant
polynomials in the twisted hypermultiplet (T, T̃ ) dressing the monopole

v1,1;1,1T 2, v2,0;2,0T 2, v−1,−1;−1,−1T̃ 2,

v1,−1;1,−1T T̃ , Tr(T T̃ ), v−2,0;−2,0T̃ 2. (3.16)

On the other hand, in the U(2) ADHM theory with one flavor it counts the following six
Coulomb branch operators with dimension 1:

v1,1, v2,0, v−1,−1,

v1,−1, Trϕ, v−2,0. (3.17)

The operators (3.16) in the ABJM theory and (3.17) in the ADHM theory correspond to
the plane partitions (3.12). Analogously, the term 10q3 in (3.15) which corresponds to the
10 plane partitions (3.13) of 5 with trace 2 counts the gauge invariant operators

v3,0;3,0T 3, v2,1;2,1T 3, v2,−1;2,−1T 2T̃ , v1,0;1,0T (1)(T (2)T̃ ),

v1,0;1,0T (2)(T (1)T̃ ), v−3,0;−3,0T̃ 3, v−2,−1;−2,−1T̃ 3, v1,−2;1,−2T̃ 2T,

v−1,0;−1,0T̃ (1)(T T̃ (2)), v−1,0;−1,0T̃ (2)(T T̃ (1)) (3.18)

in the ABJM theory and

v3,0, v2,1, v2,−1, v1,0ϕ(1),

v1,0ϕ(2), v−3,0, v−2,−1, v1,−2,

v−1,0ϕ(1), v−1,0ϕ(2) (3.19)
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in the ADHM theory. Here we have introduced the superscripts of the scalar fields to label
the distinct components which appear as the irreducible representation of the gauge group
broken by the magnetic flux.

We observe that a certain flavor charge f carried by the corresponding operator for a
given plane partition is encoded as the sum of the entries above the diagonal minus the
sum of the entries below the diagonal. Let τi(π) be the i-trace5 which is defined as the
sum of the entries in the i-th diagonal of the plane partition π where i-th diagonal is the
sequence of all entries nkl with i = l − k. Then the flavor charge f is given by

f =
∑
i>0

τi(π)−
∑
i<0

τi(π). (3.20)

The transpose of the plane partition π = {nij} which is defined by π∗ = {nji} can be
interpreted as a conjugation on the operator. For example, in the ABJM theory it flips
signs of the GNO charges of monopoles and exchanges T and T̃ . In the ADHM theory it
just flips signs of the GNO charges.

The plane partition whose entries below the diagonal are zero corresponds to the
operator with the largest positive charge for a given dimension while the plane partition
that has only the entries below the diagonal correspond to the operator with the largest
negative charge. For example, the plane partitions 2 1 1 1 and 2 2 1 whose entries
below the diagonal vanish correspond to the dressed monopole operators v3,0T 3 and v2,1T 3

with the flavor charge +3 in the U(2)1×U(2)−1 ABJM theory and the monopole operators
v3,0 and v2,1 of the GNO charge +3 in the U(2) ADHM theory with one flavor.

A symmetric plane partition satisfying nij = nji for all i, j is invariant under the trans-
pose. It is realized as a certain self-conjugate operator. In (3.12) there are two symmetric
plane partitions 2 1

1 and 1 1
1 1 . They are identified with the self-conjugate operators

v1,−1;1,−1T T̃ and Tr(T T̃ ) in the ABJM theory and v1,−1 and Trϕ in the ADHM theory.
The plane partition that is not invariant under the transpose realizes the operator that

is not self-conjugate. Such a non-symmetric plane partition can be constructed by adding
boxes to a symmetric plane partition. For example, in the ABJM model, one can add
1 and 2 to a symmetric plane partition in the top row. Then the GNO charge of the
corresponding monopole operator is increased by (1, 0) or (1, 1) so that it is dressed by T
or T 2 respectively. Similarly when 1 or 2 is added in the left column, the monopole
operator acquires the GNO charge (−1, 0) or (−1,−1) together with T̃ or T̃ 2 respectively.

Recall that the canonical index can be also obtained from the formula (2.9) in terms of
the generating function (2.6) for column-strict plane partitions. The relation to the previous
formula (2.9) follows from the so-called Frobenius construction [37], that is a bijection
between plane partitions and pairs of column-strict plane partitions of the same shape.

It is shown [37] that for a plane partition π = {nij} of n there exists a pair of two

5The i-trace is defined in [36]. The trace τ is viewed as the 0-trace.
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column-strict plane partitions P = {pij} and Q = {qij} of the shape λ in such a way that6

nij =

|{k : pjk ≥ i− j + 1}| for j ≤ i
|{k : qik ≥ j − i+ 1}| for i ≤ j

(3.21)

where |S| is the cardinality of the set S. It follows that the shape λ is identified with
the diagonal of π and that the largest part of P (resp. Q) is the number of rows (resp.
columns) in π. Also it is shown that π is symmetric if and only if P and Q are equivalent.

We observe that the shape λ of the column-strict plane partitions (P,Q) is identified
with the massive vacuum ν appearing in the formula (2.9). From the perspective of the
plane partition π it is the partition λ of the 0-th diagonal.

For example, for the plane partitions (3.12) of 4 with trace 2 we have the pairs (P,Q)
of column-strict plane partitions

π P Q

2 2 1 1 2 2

2 1 1 1 1 3 1

2
2 2 2 1 1

π P Q

2 1
1 2 1 2 1

1 1
1 1

2
1

2
1

2
1
1

3 1 1 1

(3.22)

and for the plane partitions (3.13) of 5 with trace 2 we have

π P Q

2 1 1 1 1 1 4 1

2 2 1 1 1 3 2

2 1 1
1 2 1 3 1

2 2
1 2 1 2 2

1 1 1
1 1

2
1

3
1

π P Q

2
1
1
1

4 1 1 1

2
2
1

3 2 1 1

2 1
1
1

3 1 2 1

,

π P Q

2 1
2 2 2 2 1

1 1
1 1
1

3
1

2
1

(3.23)

While in (3.22) there are 5 plane partitions characterized by the shapes of (P,Q) and
a single plane partition characterized by of (P,Q), in (3.23) we have 8 plane partitions
associated to and 2 plane partitions associated to .

6Another bijection between plane partitions and pairs of column-strict plane partitions of the same type
is shown in [38]. This is realized as a conjugate (called aspects in [39]) of this plane partition.
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On the other hand, from the formula (2.9) we can write the canonical index (3.15) as

I2,1(q) = χ (q)2 + χ (q)2 (3.24)

where

χ (q)2 = 1
(1− q)2(1− q2)2

= 1 + 2q + 5q2 + 8q3 + 14q4 + · · · , (3.25)

χ (q)2 = q2

(1− q)2(1− q2)2

= q2 + 2q3 + 5q4 + 8q5 + 14q6 + · · · . (3.26)

The terms 5q2 and 8q3 in (3.25) count the plane partitions labeled by the shape of
(P,Q) in (3.22) and (3.23) respectively. Also the terms q2 and 2q3 in (3.26) count those
for in (3.22) and (3.23) respectively. In this way one can explicitly check that the shape
λ of the pair (P,Q) of the column-strict plane partitions obtained from the Frobenius
construction (3.21) is identified with the massive vacuum ν in the formula (2.9).

Hence we also have the correspondence between the local operators and the pairs (P,Q)
of column-strict plane partitions. Let |P | and |Q| be the norms of the column-strict plane
partitions P and Q respectively. Let λ be the shape of P and Q. From the point of view
of the column-strict plane partitions, the number N of M2-branes and the isolated massive
vacuum ν are encoded by the weight |λ| =

∑
i λi and the shape λ. The sum |P | + |Q| is

equal to the twice the norm n of π, whereas the difference |Q| − |P | encodes the flavor
charge f of the corresponding operator

|Q|+ |P | = 2n = 2N + 2∆, (3.27)
|Q| − |P | = f. (3.28)

An exchange of P with Q corresponds to the conjugation on the operator. The correspon-
dence between the local operators and the pairs of colum-strict plane partitions is given by

M2-brane SCFT operators column-strict p.p.s relation
rank of gauge group N weight |λ| N = |λ|
scaling dimension ∆ norms |P |, |Q| ∆ = (|Q|+ |P | − 2N)/2

vacuum ν shape λ ν = λ

flavor charge f norms |P |, |Q| f = |Q| − |P |

(3.29)

Therefore, according to the correspondence (3.14) or (3.29), the operator counting
problem is translated into the enumeration of the plane partitions. There are ten symmetry
operations on plane partitions and the problem of enumerating plane partitions with the
symmetries [40]. It would be interesting to find further physical implications of these
symmetries and give the holographic interpretation of the correspondence between the
operator and the plane partition.
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3.2 High-temperature limit

The N3/2 behavior [41] of the number of degrees of freedom of N M2-branes is obtained
from the large N analysis of sphere partition functions [42–51], twisted indices [52–55] and
full-superconformal indices [56]. Here we set q = e−β and study the high-temperature limit
β → 0 of the grand potential. We write the grand potential (3.5) as

J1(z; q) = β
∞∑
l=1

zl
ql

lβ(1− ql)2 = β
∞∑
l=1

zlf(lβ) (3.30)

where

f(x) := e−x

x(1− e−x)2 . (3.31)

Note that the function (3.31) can be expanded as

f(x) = −
∞∑

n=−3

(n+ 2)Bn+3
(n+ 3)! zn (3.32)

where Bn are the Bernoulli numbers. We consider the asymptotic property when the
fugacity z is near roots of unity. Let z be a primitive b-th root of unity

z = zab := e
2πia
b . (3.33)

Then the sum in (3.30) is performed by replacing l with bl + j, with l = 0, 1, 2, · · · and
j = 1, · · · , b. So we have

J1(z; q) = β
b∑

j=1
zjab

∞∑
l=0

f

((
l + j

b

)
bβ

)
. (3.34)

The asymptotic behavior of (3.34) can be obtained from the following generalized Euler-
Maclaurin summation formula [57]:

Theorem 2 If f(x) has the asymptotic expansion

f(x) =
∞∑

n=n0

cnx
n (3.35)

for n0 ∈ Z in the domain Dθ = {x = reiα : r ≥ 0, |α| ≤ θ} as x→ 0, then we have
∞∑
n=0

f ((n+ a)x) ∼
−2∑
n=n0

cnζ(−n, a)xn +
I∗f,A
x
− c−1

x
(log(Ax) + ψ(a) + γ)

−
∞∑
n=0

cn
Bn+1(a)
n+ 1 xn (3.36)

as x→ 0 for 0 < a ≤ 1 and some A ∈ R+. Here ζ(s, z) :=
∑∞
n=0 1/(n+ z)s is the Hurwitz

zeta function, ψ(x) := Γ′(x)/Γ(x) is the digamma function, γ is the Euler–Mascheroni
constant, Bn(x) are the Bernoulli polynomials and

I∗f,A =
∫ ∞

0
du

[
f(u)−

−2∑
n=n0

cnu
n − c−1e

−Au

u

]
. (3.37)
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Applying Theorem 2 to (3.34), we find7

J1(z; q) ∼ β
b∑

j=1
zjab

[
ζ(3, jb )
(bβ)3 +

I∗F,A
bβ

+ 1
12bβ

(
log(Abβ) + ψ(j

b
) + γ

)

+
∞∑
n=0

(n+ 2)Bn+3
(n+ 1)(n+ 3)!Bn+1

(
j

b

)
(bβ)n

]

=
b∑

j=1
zjab

ζ(3, jb )
b3β2 + 1

12b

b∑
j=1

zjabψ

(
j

b

)
+O(|β|)

= Li3(zab)
β2 + 1

12 log(1− zab) +O(|β|) as β → 0 (3.38)

where the first equality follows from the fact that the sum of roots of unity vanishes and
the second equality is obtained from the relation [59]

b∑
j=1

zjabζ

(
3, j
b

)
=

b∑
j=1

zjab

∞∑
n=0

b3

(bn+ j)3 = b3Li3(zab) (3.39)

where Lip(z) =
∑∞
k=1 z

k/kp for |z| < 1 is the polylogarithm function and the relation [57]

b∑
j=1

zjabψ

(
j

b

)
= b log(1− zab). (3.40)

We remark that the leading trilogarithm Li3(z) in the grand potential (3.38) also appears
in the grand potential for the sphere partition function of the ABJM theory [45] and the
ADHM theory [4, 60, 61]. It is crucial for the N3/2 growth of the free energy. It would be
interesting to investigate the phase diagram by analyzing more details of the asymptotic
behavior upon varying the chemical potential.

3.3 Large N scaling dimension

Since the grand canonical index (3.4) for k = 1 is a generating function for plane partitions
of n with trace N , the combinatorics can give an alternative approach to the asymptotic
behavior of the index.

The asymptotics of plane partitions can be studied in the theory of random plane
partitions by assigning the probability 1/Q(n) for each partition of n and introducing the
uniform probability measure P on the set of plane partitions of n. Let τ(n) be the trace of
a plane partition of n. In terms of the probability measure, we can write the generating
function (3.9) or equivalently the grand canonical index (3.4) as

Ξ1(z; q) = 1 +
∞∑
n=1

Q(n)qn
n∑

N=1
P(τ(n) = N)zN

= 1 +
∞∑
n=1

Q(n)ϕn(z)qn (3.41)

7The same result is also obtained in [58].
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where

ϕn(z) =
n∑

N=1
P(τ(n) = N)zN (3.42)

is a probability generating function. Since we can get an expectation value 〈N〉 of trace
τ(n) of plane partitions of n with respect to the probability measure P by differentiating
ϕn(z) with respect to z

〈N〉(n) = dϕn(z)
dz

∣∣∣
z=1

=
n∑

N=1
NP(τ(n) = N), (3.43)

we get from (3.41)
∂

∂z
Ξ1(z; q)

∣∣∣
z=1

=
∑
n=1

Q(n)〈N〉(n)qn. (3.44)

On the other hand, from (3.4) we have

∂

∂z
Ξ1(z; q)

∣∣∣
z=1

= M(q)
∞∏
n=1

nqn

1− qn (3.45)

where M(q) is the MacMahon function (2.30). We can obtain the mean value 〈N〉(n) by
expanding (3.45) with respect to q and comparing it with (3.44). The asymptotics can be
obtained from the following theorem [62]:

Theorem 3 Let

M(q)F (q) =
∞∑
n=0

Cnq
n (3.46)

where M(q) is the MacMahon function and F (q) is a function which satisfies

(i) Condition

lim
n→∞

F (rneiθ)
F (rn) = 1 for |θ| ≤ δ(rn) (3.47)

where rn is a solution to the equation rM ′(r)/M(r) = n and δ(r) is some function
defined over r ∈ (R0, ρ) ⊂ (0, ρ) for some ρ in which M(r) > 0.

(ii) Condition

F (q) = O(eC/(1−|q|)D) (3.48)

for some C > 0 and D ∈ (0, 2/3) as |q| → 1.

Then we have
Cn
Q(n) = F (e−dn) (1 +O(1)) +O(e−cn2/9/ log2 n) (3.49)

as n→∞. Here {dn}n≥1 is a sequence with the following expansion as n→∞

dn =
(2ζ(3)

n

)1/3
− 1

36n + · · · (3.50)

and c > 0 is some constant.
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The proof of Theorem 3 can be found in [62] where Hayman’s theorem [63] and the Cauchy
integral are employed. For our purpose we take F (q) as

∏
n nq

n/(1 − qn) in (3.45).8 Ap-
plying Theorem 3 we get

〈N〉(n) ∼ F (e−dn) = d−2
n

∞∑
k=1

kdne
−kdn

1− e−kdn dn

∼ d−2
n

∫ ∞
0

x

ex − 1dx = d−2
n ζ(2) = π2

6

(
n

2ζ(3)

)2/3
as n→∞. (3.51)

Since (3.14) relates the norm n of plane partitions to the scaling dimension ∆ carried by the
local operators, (3.51) gives rise to the asymptotic behavior of the large scaling dimension

∆ ∼ ζ(3)63/2

π3 N3/2. (3.52)

For example, from the perspective of the U(N) ADHM theory with one flavor, (3.52)
would imply that the scaling dimension, i.e. the canonical R-charge of the Coulomb branch
operators, follows the N3/2 growth in the large N limit. The growth (3.52) of the large
scaling dimension is expected to characterize the local operators in the 3d SCFT of N
M2-branes moving in C2.
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