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Abstract: We argue that expanding bubbles of nothing are a widespread feature of
systems of black holes with multiple or non-spherical horizons, appearing as a limit of
regions that are narrowly enclosed by the horizons. The bubble is a minimal cycle that links
the Einstein-Rosen bridges in the system, and its expansion occurs through the familiar
stretching of space in black hole interiors. We demonstrate this idea (which does not involve
any Wick rotations) with explicit constructions in four and five dimensions. The geometries
of expanding bubbles in these dimensions arise as a limit of, respectively, static black hole
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correspond to acceleration horizons of the bubbles. We also explain how a five-dimensional
black hole binary gives rise to a different type of expanding bubble. We then show that
bubble spacetimes can host black hole binaries and black rings in static equilibrium, with
their gravitational attraction being balanced against the background spacetime expansion.
Similar constructions are expected in six or more dimensions, but most of these solutions
can be obtained only numerically. Finally, we argue that the Nariai solution can be regarded
as containing an expanding circular bubble of nothing.
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1 Introduction and summary

Expanding bubbles of nothing are simple but surprising solutions of gravitational theories
with compact dimensions [1]. They provide channels for the non-perturbative decay of
Kaluza-Klein vacua, but they are also interesting as simple time-dependent spacetimes that
share many features with de Sitter cosmologies [2]. This latter view, more than the former,
will be relevant in this article, where we present a suggestive new way of regarding these
bubbles, and investigate their relation to some black hole systems.1

More specifically, we will explain that expanding bubbles of nothing are a pervasive
feature of systems of black holes with multiple or non-spherical horizons.2 To demonstrate
the idea, we will show that expanding bubbles of nothing arise as a limit of static black hole
binaries (in four dimensions) and of black rings (in five dimensions). These systems allow
us to illustrate a general phenomenon using explicit exact solutions of vacuum gravity. We
expect that versions of all the constructions are possible in six or more dimensions, but then
the solutions must be obtained numerically. Other lesser-known kinds of bubbles, in five
or more dimensions, arise from different black hole binaries and will be briefly examined.
Towards the end of the article we will discuss more general configurations using topological

1Other aspects of the relation between black holes and bubbles of nothing have been studied in [3–13].
2The precise notion of the topology that is required will become clearer below.
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arguments, and argue that expanding bubbles are also present in systems such as the
Schwarzschild-de Sitter and Nariai solutions.

We will also study how the expansion in bubble spacetimes acts on gravitationally
interacting systems, in a manner similar to inflation in de Sitter. We will show that bubbles
in four and five dimensions admit within them black hole binaries and black rings in static
(although unstable) equilibrium, their attraction being balanced against the expansion
of the background spacetime. The same mechanism is expected to work in more general
situations for which exact solutions are not available.

Expanding bubbles of nothing from black hole binaries and black rings. The
solution for an expanding bubble of nothing was originally presented in [1] in the form

ds2 = r2
(
−dT 2 + cosh2 T dΩn

)
+ dr2

1− rn
0
rn

+
(

1− rn0
rn

)
r2

0 dφ
2 . (1.1)

This is obtained from the Schwarzschild-Tangherlini solution in n+3 dimensions by rotating
to imaginary values the time coordinate and one polar angle. However, the relation between
black holes and bubbles that we will discuss is of a different kind and does not involve any
such rotation. Since the coordinate φ must be periodically identified, φ ∼ φ+ 4π/n, the
solution has Kaluza-Klein asymptotics, but the latter fact will also be of minor relevance
for our discussion.

To understand the geometry, observe that the time-symmetric section at T = 0 is the
product of a ‘cigar’ along the (r, φ) directions, and spheres Sn of radius r. These spheres
cannot be shrunk to zero size since they reach a minimum radius at r = r0. The minimal
sphere constitutes the bubble of nothing, and when it evolves for T > 0, it expands in a de
Sitter-like fashion.

The coordinates in (1.1) cover the spacetime globally, but we can also write it using
‘static-patch’ coordinates,3 where

ds2 = r2
(
−(1− ξ2)dt2 + dξ2

1− ξ2 + ξ2 dΩn−1

)
+ dr2

1− rn
0
rn

+
(

1− rn0
rn

)
r2

0 dφ
2 . (1.2)

We could set ξ = cos θ to relate it more manifestly to the Schwarzschild-Tangherlini solution
with imaginary t and φ, but the form above makes clearer the existence of a de Sitter-like
horizon at ξ2 = 1. In the full spacetime, this is an infinite acceleration horizon that extends
from the bubble at r = r0 to infinity. Observers who sit on the bubble midpoint between
the horizons, that is, near r = r0 and around ξ = 0, find themselves partly surrounded (but
not enclosed) by a horizon with topology Sn−1 × R2. Like in de Sitter, these observers do
not have access to the entire Sn bubble. They only see the half of it that remains static,
while the portion of the bubble beyond the horizon expands exponentially.

Let us examine the case n = 1 of a four-dimensional expanding bubble. This is seldom
considered when studying Kaluza-Klein spacetimes, but we will give it a new twist. The
sphere Sn−1 now consists of the two endpoints of the interval −1 ≤ ξ ≤ 1, so the observer

3The change is t = arctanh(tanh T/ cosχ), ξ = coshT sinχ, where χ is a polar angle of Sn.
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Figure 1. Bubbles of nothing as limits of black hole systems. The top pictures are illustrative
cartoons, and the bottom ones show time-symmetric spatial sections of the maximally extended
solutions. Left top: the 4D bubble of nothing arises as the geometry in between two black holes, in
the limit when their size is very large. The horizons of the black holes correspond to acceleration
horizons of the bubble. Left bottom: the bubble is a minimal circle (in red) linking the Einstein-
Rosen throats of the two black holes. This circle encloses ‘nothing’, and its expansion occurs as the
throats stretch in the black hole interiors. The angle φ around the rotation axis is suppressed in these
figures. Right top: the 5D bubble is similarly recovered from the central region of a very fat black
ring. Right bottom: the bubble is a sphere (in red) that wraps the portion of the Einstein-Rosen
bridge in the inner ‘hole’ of the ring. In the bottom figure, the ring’s S2 is not represented. In
the solutions we discuss, the black hole binary and the black ring are kept static by semi-infinite
cosmic strings and cosmic membranes (not shown), respectively, which pull them outwards, but
other means of maintaining them in equilibrium are possible.

in the bubble lies between two approximately planar (for r ≈ r0) acceleration horizons.
Such Rindler-type horizons are known to describe the geometry near a black hole, and we
will find that this interpretation is also apt for the bubble geometries (1.2). That is, we will
show that the four-dimensional bubble appears as the geometry in between two black holes,
when they are separated a distance much smaller than their radius (see figure 1).

One may wonder in what sense can a black hole binary contain an expanding bubble.
The answer is much the same as for the static-patch metric (1.2). When n = 1, the bubble
is a circle that links the Einstein-Rosen bridges of the black hole pair — a minimal cycle
that encloses nothing (figure 1, bottom left).4 The static observer in between the two black
holes is limited by the horizons to only have access to a portion of this circle, namely,
the segment of the axis between the two horizons. The rest of the circle lies beyond the

4Strictly speaking, the cycle Ω1 in (1.1) need not be a compact S1, but we will take it to be so. In the
binary, we are identifying asymptotic regions to yield the smallest maximal analytic extension.
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horizons. Initially, at T = 0, this other half-circle is another segment between the two
Einstein-Rosen throats. As T evolves, these throats stretch, so the portions of the circle
inside the black holes expand in time. The expansion of the bubble is then the familiar
stretching that occurs in the interior of the black hole.5 The compactification of the φ
direction is a consequence of focusing on a small region around the symmetry axis, so the
radius of the φ circles can only reach a finite maximum.

Exact solutions for a static configuration of a pair of black holes, kept apart by semi-
infinite cosmic strings that pull on them, have been known for long [14, 15]. We will use
them to explicitly exhibit the limit where they reduce to (1.2). We emphasize that there is
no Wick-rotation involved in this connection: the time and angular coordinates retain their
physical meaning throughout the limit.

The five-dimensional bubble, described originally in [1], also admits a similar interpre-
tation. Now the acceleration horizon, with topology S1 × R2, is connected. We will find
that (1.2) with n = 2 arises as the limit of a black ring, with horizon topology S1×S2, when
the size of the S2 is much larger than the inner rim of the ring circle. The static coordinates
only cover the hemisphere of the S2 bubble that consists of the disk of the inner ‘hole’ of
the ring. In global coordinates, the S2 is a minimal sphere that wraps the Einstein-Rosen
bridge in the inner hole of the ring. In this case, we will use the solution, first found in [3],
for a static black ring held in place by an infinite cosmic membrane attached to the outer
rim of the ring. We expect that this construction generalizes to all n ≥ 3, but the required
solutions, with horizons of topology Sn−1 × S2, are only known numerically [17, 18].

We will also briefly discuss how a certain type of five-dimensional black hole binary,
in the limit of small separation, gives rise to a five-dimensional expanding bubble of a
different kind than the n = 2 bubble above: the minimal cycle is not a single sphere S2, but
two S2 that lie on orthogonal spaces and which touch each other at both north and south
poles. They compactify the spacetime on a two-torus (instead of a circle). A more general
discussion of the topology of other configurations will be presented in the concluding section.

Let us mention that the specific mechanism that keeps the black hole pair, or the black
ring, in static equilibrium is not an essential aspect of the construction. Cosmic strings and
membranes, in the form of conical deficits along the outer symmetry axes of the systems,
are easy to work with, but the two black holes could also carry electric charges of opposite
sign (a dihole [19, 20]) and be held in equilibrium by an external electric field, namely, a
fluxbrane. A similar construction is also possible for dipole black rings [21]. As long as the
black holes are not extremal, they will have bifurcation surfaces and there will be expanding
bubbles, with the effects of the electric field becoming negligible in the region between the
horizons, since the external fluxbrane polarizes the system so as to cancel the opposite
fluxbrane-like field between the charged black holes [22]. Other equilibration methods are
possible, but their differences only show up far from the gap between the horizons. In the
limit to the bubble solution, the distinctions between these geometries disappear.

Indeed, the explanation we have given should make clear — and we will elaborate
further on this in the concluding section — that, as long as the black holes in a binary have

5The same effect is responsible for the growth of holographic volume complexity [16].
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Figure 2. Static black hole binaries and black rings obtained by placing them inside expanding
bubbles of nothing, which surround them with acceleration horizons. The binary need not be
symmetrical. These configurations can be regarded as limits of double nested static binaries (four
black holes along a line), and of two coaxial black rings.

bifurcate horizons, expanding bubbles are also present in them even if the horizons are not
static but dynamically merge and collapse — but in these cases the expansion of the bubble
only lasts a finite time.

Black hole binaries and black rings inside expanding bubbles. The previous
remarks bring us to the other main subject of this article, namely, the static equilibrium
configurations of black hole binaries and black rings. Recently, an exact solution was
presented where a static black hole binary is held in balance by the gravitational pull of
distant masses away from the binary axis — these masses being modelled by multipolar
source distributions at infinity [23, 24]. This is one of the few known exact solutions where
a binary is maintained in equilibrium through purely gravitational fields.

Another possibility for balancing the attraction in the binary is the expansion of
spacetime. Indeed, one expects that such binaries in (unstable) equilibrium exist in the de
Sitter universe, but the solutions can only be constructed approximately for very small black
holes, or numerically [25]. Nevertheless, the expansion in a bubble should achieve the same
effect. To prove this, we will construct exact solutions where an expanding bubble hosts a
black hole binary (see figure 2 left) (possibly with different masses) in static equilibrium.
The interpretation of the expanding bubbles given above provides another explanation for
why this is possible: we can introduce a binary of two small black holes in the gap between
two very large black holes, and then tune the distances between them so that the attraction
in the small binary is balanced by the pull of the larger black holes.

The analogues of these configurations involving black rings in five dimensions can also
be readily constructed (see figure 2 right). We will present a solution for a static black ring
inside a five-dimensional bubble of nothing, and show that it can be recovered as the limit
of a concentric, static double black ring system.

All these metrics can be given in exact closed form since they are Weyl solutions,
which admit a systematic construction with an arbitrary number of collinear black holes,
or concentric black rings [3, 14, 15, 26]. The configurations are characterized by their
rod structure [3, 27], which specifies the sources along the different symmetry axes. This
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structure makes transparent the features of all the constructions discussed above and their
limits. Indeed, the connections between the black hole binary and the static black ring, and
the corresponding expanding bubbles in four and five dimensions, have been apparent at
least since the analysis in [3]. Nevertheless, to our knowledge, this connection does not
appear to be widely known, and it has not been examined in detail in the literature.

The remainder of the paper is organized as follows. In the next section we describe in
detail how the solutions for the static black ring and static black hole binary have a limit
to expanding bubbles of nothing. We also introduce Weyl metrics and discuss how these
limits become very transparent in terms of rod structures. Other, less familiar binaries
and bubbles in five dimensions are briefly discussed. In section 3 we construct static black
holes binaries and black rings inside bubbles of nothing, and show that equilibrium can
be achieved by appropriately tuning the parameters in the configurations. In section 4
we provide a taste of the many possible configurations and limits that are afforded by
generalizing the Weyl constructions in this article. We conclude in section 5 emphasizing the
wide scope and generality (and some limitations) of the constructions we have uncovered,
and mentioning other instances of geometries that contain expanding bubbles of nothing,
such as the Nariai solution.

2 Bubbles as limits of black hole binaries and black rings

We will now show explicitly how the metrics for the bubbles of nothing in 5D and 4D
are recovered as limits of static black ring and binary black hole solutions in the manner
illustrated in figure 1.

2.1 From black ring to bubble

The simplest instance is the relationship between the five-dimensional bubble of nothing
of [1] and the static black ring of [3]. The metric of the latter is6

ds2 = −F (x)
F (y)dt̃

2+ R2

(x− y)2

[
F (x)

(
(y2−1)dψ̃2+ F (y)

y2 − 1dy
2
)

+F (y)2
(

dx2

1− x2 +1− x2

F (x) dφ̃
2
)]

,

(2.1)
with

F (ξ) = 1− µξ . (2.2)

Readers unfamiliar with these (x, y) coordinates are referred to [3] and [28] for a detailed
explanation. Roughly, x ∈ [−1, 1] is the cosine of the polar angle of the ring’s S2, and
−1/y ∈ (0,−1/x) is a radial coordinate away from these spheres. The coordinates ψ̃ and
φ̃ are, respectively, the angle of the S1 and the azimuthal angle of the S2 of the black
ring. The parameter R sets the scale for the size of the black ring, and varying µ ∈ [0, 1)
changes its shape from thin to fat. The horizon lies at y = −∞, and the absence of conical
singularities along the ψ̃ rotation axis at y = −1, and in the inner disk of the ring at x = 1,
is obtained when we identify

ψ̃ ∼ ψ̃ + 2π
√

1 + µ , φ̃ ∼ φ̃+ 2π
√

1− µ . (2.3)
6In appendix A we do this study in the coordinates used in [21].
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In order to make the ring very big and fat, and to blow up the inner disk region, we will
take µ→ 1 and R→∞ while zooming in onto x ≈ 1. For this purpose, we change

x = 1− r2 − r2
0

2R2 , µ = 1− r2
0

2R2 , (2.4)

where r and r0 are a new coordinate and a constant parameter that remain finite as R→∞.
In addition we introduce a coordinate ξ via

y = −1 + ξ2

1− ξ2 , (2.5)

and rescale the Killing coordinates to have canonical normalization,

t̃ = 2Rt , ψ̃ =
√

2ψ , φ̃ = r0√
2R

φ . (2.6)

Then, in the limit R→∞, the metric (2.1) becomes

ds2 → r2
(
−(1− ξ2)dt2 + dξ2

1− ξ2 + ξ2 dψ2
)

+ dr2

1− r2
0
r2

+
(

1− r2
0
r2

)
r2

0 dφ
2 , (2.7)

which is indeed the same as the metric (1.2) of the bubble of nothing for n = 2.
Observe that the φ circles in (2.7) cannot reach arbitrarily large sizes but become a

compact direction at infinity. This is a consequence of focusing on the region close to the
disk at x = 1, which limits the growth of these circles.

One might wonder whether rotating black rings, with the rotation adjusted to balance
the tension and gravitational self-attraction, have a limit to the bubble of nothing. The
answer is no: in the limit where the rotating ring becomes very fat, it approaches a singular,
horizonless solution instead of the non-singular geometry (2.7).

2.2 Weyl metrics and rod structures

All other solutions in this article will be presented as vacuum Weyl metrics, using cylindrical
coordinates

ds2 = f(ρ, z)
(
dρ2 + dz2)+ gab(ρ, z)dxadxb . (2.8)

Readers who are familiar with this class of solutions may skip to section 2.3, but for those
who are not, we provide a brief overview of their structure — for more complete expositions,
we refer to [3, 27, 29, 30]. Their main feature is the presence of D − 2 Killing coordinates
xa: in four dimensions they are (t, φ), and in five dimensions they include an additional
angle, (t, φ, ψ).

For all the solutions presented here, the metric gab(ρ, z) along the Killing directions
will be diagonal. Static and axisymmetric solutions can then be systematically constructed
by specifying a set of rod-like sources along the z axis for the three-dimensional Newtonian
potentials associated to the metric functions gab; they are not physical rods, but coordinate
singularities in the axis ρ = 0 of the Weyl metrics. Their importance derives from the
fact that, given the rod distribution, the form of gab(ρ, z) directly follows from a simple
algebraic construction. Subsequently, f(ρ, z) can be obtained by a line integral in the case
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Schwarzschild black hole 4D expanding bubble of nothing

(a) (b) w1w2w1 w2 zz

t

φ

t

φ

Figure 3. (a) rod diagram for the Schwarzschild black hole. The finite timelike rod defines the black
hole horizon (a sphere S2, from the fibration of the φ parallel circles over the segment w1 < z < w2).
Exchanging t ↔ φ gives (b): rod diagram of the expanding bubble of nothing. The semi-infinite
timelike rods represent the bubble acceleration horizons (two of them, each with topology R2). Here
and in the following figures, acceleration horizons are pictured in blue.

of diagonal metrics, and more generally by the inverse scattering method [29]. The rods
(with linear density 1/2) are specified along each direction xa, in such a way that at every
value of z there is a rod along one and only one of the directions.

The rod structure provides an easy diagrammatic way to interpret static (or more gen-
erally stationary) axisymmetric solutions. On a rod along a direction xa, the corresponding
Killing vector has a fixed point set. When we have an angular Killing vector, such as ∂φ or
∂ψ, then the corresponding circles shrink to zero size at the rod, and the periodicity of the
angle must be appropriately chosen in order to avoid conical singularities. The regularity
condition on xa ∼ xa + ∆xa at any given rod is

∆xa = 2π lim
ρ→0

ρ

√
f

gaa
. (2.9)

When the Killing vector is timelike ∂t, the rod represents a horizon, and through Euclidean
continuation t→ iτ , eq. (2.9) gives its associated temperature T = ∆τ−1. If the rod is finite,
it defines an event horizon, while infinite rods are generically associated to accelerating
horizons, such as Rindler ones.

The topology of the solutions can also be inferred from the rod structure. If there is a
rod along a direction xa, the other directions xb are fibered along the corresponding portion
of the axis. At a point where rods along xa and xb meet, the two fibers shrink to zero. As
a result, the solutions have a ‘bubbling’ structure.

To illustrate these features we will describe the simplest examples that are relevant to
us here.

4D. The Schwarzschild black hole rod structure is given by a finite timelike rod and
two semi-infinite spacelike rods (figure 3(a)). The four-dimensional bubble of nothing
is the double Wick-rotated version of the Schwarzschild metric, thus its rod structure is
consistently given by exchanging the t and φ rods of the previous solution (figure 3(b)). We
see from their respective timelike rods that in the Schwarzschild solution the horizon is
finite, while the bubble of nothing possesses two infinite acceleration horizons.

– 8 –
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The corresponding metrics are given by

gSchwarz
ab dxadxb = −µ1

µ2
dt2 + ρ2µ2

µ1
dφ2 , (2.10)

gbubble
ab dxadxb = −ρ2µ2

µ1
dt2 + µ1

µ2
dφ2 , (2.11)

and, in both cases,

f = Cf
4µ1µ

3
2

µ12W11W22
. (2.12)

Here, and in the following, we introduce

µi = wi − z +
√
ρ2 + (z − wi)2 , µij = (µi − µj)2 , Wij = ρ2 + µiµj . (2.13)

The parameters wi, chosen in increasing order, specify the rod endpoints, and they define
the physical properties of the metric: the position of the horizons, the size and mass of the
black holes, and the rotation axes. The parameter Cf is an arbitrary gauge constant. It
corresponds to a rescaling of ρ and z, and it can be chosen, without loss of generality, to fix
the normalization of one of the Killing directions, for instance, setting the periodicity of
one of the angles to any prescribed value, such as canonical periodicity 2π.

It is now straightforward to verify that taking

w1 = z0 −
r0
2 , w2 = z0 + r0

2 , Cf = r2
0 , (2.14)

and defining
ρ =

√
r(r − r0) sin θ , z = z0 +

(
r − r0

2

)
cos θ , (2.15)

in (2.10) and (2.12), we recover

gSchwarz
ab dxadxb = −

(
1− r0

r

)
dt2 + r2 sin2 θdφ2 , (2.16)

gbubble
ab dxadxb = −r2 sin2 θdt2 +

(
1− r0

r

)
dφ2 , (2.17)

and
f(ρ, z)

(
dρ2 + dz2) = dr2

1− r0
r

+ r2dθ2 , (2.18)

which are the conventional forms of the Schwarzschild and bubble solutions (up to possible
constant rescalings of the Killing coordinates t and φ). They are obviously equivalent under
t↔ φ. The form of the bubble of nothing in (1.2) is recovered by rescaling φ by r0,7 and
setting cos θ = ξ.

Finally, observe that if in either of the solutions we send one of the rod endpoints, w1
or w2, to infinity while keeping the other fixed, then we recover the geometry of Rindler
space, with an infinite acceleration horizon. The Minkowski spacetime can be obtained
when both the poles are simultaneously pushed infinitely far away in opposite directions,
i.e. w1 → −∞ and w2 →∞.

7We could have achieved this by adequately choosing Cf , but, in general, we will not take φ to be
canonically normalized with φ ∼ φ+ 2π, but rather its periodicity will be suitably adjusted.
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5D black hole 5D expanding bubble of nothing

(a) (b) w1w2w1 w2 zz

t

φ

ψ

t

φ

ψ

Figure 4. (a): rod diagram for the 5D Schwarzschild-Tangherlini black hole. The finite timelike rod
defines the black hole horizon (a sphere S3, fibering φ and ψ circles over w1 < z < w2). Exchanging
t ↔ φ gives (b): rod diagram of the five-dimensional expanding bubble of nothing. The timelike
semi-infinite rod represents the bubble acceleration horizon (which is connected, with topology
S1 × R2: the ψ circles are trivially fibered over −∞ < z < w1).

5D. The previous analysis has a straightforward counterpart in five dimensions. The rod
structures of the Schwarzschild-Tangherlini black hole and the five-dimensional expanding
bubble are given in figure 4, which makes evident that they are related by a double-Wick
rotation that effectively exchanges t and φ.

These rod structures dictate that

gTang
ab dxadxb = −µ1

µ2
dt2 + ρ2

µ1
dφ2 + µ2dψ

2 , (2.19)

g5D-bubble
ab dxadxb = −ρ

2

µ1
dt2 + µ1

µ2
dφ2 + µ2dψ

2 , (2.20)

while f(ρ, z) is again identical for both spacetimes

f = Cf
µ2W12
W11W22

. (2.21)

To express the Schwarzschild-Tangherlini black hole in spherical coordinates

ds2 = −
(

1− r2
0
r2

)
dt2 + dr2

1− r2
0
r2

+ r2dθ2 + r2 sin2 θdφ2 + r2 cos2 θdψ2 , (2.22)

we choose
w1 = z0 −

r2
0
4 , w2 = z0 + r2

0
4 , Cf = 1 , (2.23)

and change
ρ = 1

2r
√
r2 − r2

0 sin 2θ , z = z0 + 1
4
(
2r2 − r2

0
)

cos 2θ . (2.24)

Similarly, the five-dimensional expanding bubble in spherical coordinates takes the form

ds2 = −r2 cos2 θdt2 + dr2

1− r2
0
r2

+ r2dθ2 +
(

1− r2
0
r2

)
dφ2 + r2 sin2 θdψ2 . (2.25)

When we rescale φ by r0 and set sin θ = ξ we recover (2.7).
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(a) w1 w2 w3 w4 z

t

φ
w1 → −∞
w4 →∞

4D Bubble of nothing

(b) w2 w3

t

φ

z

Figure 5. (a) Rod diagram for the Bach-Weyl static binary black hole configuration [14]. The
thick timelike rods represent the two black hole horizons. By sending the rod endpoints w1 → −∞,
w4 →∞, with w2 and w3 fixed, we recover the same diagram as in the bubble of nothing figure 3(b).
This limit makes the two black holes infinitely large, while keeping the separation between them
finite, as is illustrated in panel (b).

2.3 From binary black hole to bubble

Now let us consider the Bach-Weyl solution, with

gabdx
adxb = −µ1µ3

µ2µ4
dt̃2 + ρ2µ2µ4

µ1µ3
dφ̃2 , f = 16C̃f µ3

1µ
5
2µ

3
3µ

5
4

µ12µ14µ23µ34W 2
13W

2
24W11W22W33W44

,

(2.26)
which describes two Schwarzschild black holes aligned along the z-axis, and whose rod
diagram is pictured in figure 5(a). By appropriately choosing C̃f to be

C̃f = 16(w1 − w2)2(w1 − w3)2(w2 − w4)2(w3 − w4)2 , (2.27)

we make the segment w2 < z < w3 of the axis in between the black holes regular, while
keeping the standard periodicity of the azimuthal angle ∆φ = 2π. On the other hand,
along the semi-infinite axes from the black holes towards z → ±∞ there are conical deficits.
These can be regarded as cosmic strings that keep the black holes apart.

The rod diagram makes manifest how this solution is connected to other black
hole/bubble configurations, either via double-Wick rotations that exchange the t and
φ rods,8 or by taking limits where rod endpoints merge or are sent to infinity. For our
purposes here, we observe that by simply sending the rod endpoints w1 → −∞ and w4 →∞,
with w2 and w3 fixed, we recover the rod diagram of the 4D bubble of nothing, figure 3(b).
When we do so, we make the two black holes infinitely large, while maintaining fixed the
separation between them. This is precisely the type of limit that we discussed in the
introduction (figure 1). The cosmic strings collapse the space along the outer axes creating
a conical deficit angle of 2π, but this is not a problem since this part of the geometry is
pushed away to infinity.

To see that the limit works correctly, not only with the rods but also in the entire
metric, we conveniently place the bubble poles symmetrically at w1 = −zb and w4 = zb.
Then, we rescale

t̃ = (2zb)t , φ̃ = φ

2zb
, (2.28)

8The Bach-Weyl solution is the double-Wick rotation of the single black hole in the bubble [4].
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Black ring 5D Bubble of nothing

(a) (b)w0 w1 w2 w1 w2 zz

t

φ

ψ

t

φ

ψw0 → −∞

Figure 6. (a) Rod diagram for the static black ring. The thick timelike rod represents the black
ring horizon, with topology S1 × S2. (b) By sending the rod endpoint w0 → −∞, with w1 and w2
fixed, we recover the bubble of nothing in figure 4(b). This limit makes the black ring very fat, while
keeping its hole finite, as was illustrated in figure 1.

so that the metric (2.26) remains finite when we send zb →∞. One can readily verify that,
after rescaling C̃f = Cf/4 to take into account that in (2.10) φ has periodicity 4π, the
bubble of nothing in the form of (2.10) and (2.12) is recovered.

We have then proven that the gravitational field of the expanding bubble is indeed the
same as that between two very large black holes.

2.4 From black ring to bubble, Weyl style

It is now easy to see how the rod diagrams also make transparent the limit from the static
black ring to the expanding bubble of nothing, which we discussed using other coordinates
in section 2.1.

Figure 6(a) shows the rod diagram for the static black ring. The Weyl form of the
metric that follows from the diagram is

gabdx
adxb = −µ0

µ1
dt̃

2 + ρ2 µ1
µ0µ2

dφ̃
2 + µ2dψ

2 , f = Cf
µ2W

2
01W12

W02W00W11W22
. (2.29)

The horizon of the black ring, with topology S1×S2, lies at w0 < z < w1, while the ‘hole’ of
the ring is in the region w1 < z < w2. If we send w0 → −∞ keeping all other rod endpoints
fixed — hence making the ring very fat while its hole remains finite — we recover the same
diagram as for the expanding bubble of nothing in figure 4(b). In the metric, this requires
a suitable rescaling of t and φ, similarly to what happens in the 4D case. The required
rescalings are

t̃ =
√

2|w0|t , φ̃ = φ√
2|w0|

. (2.30)

2.5 5D black hole binaries and bubbles

We shall briefly mention how a limit can be taken in a five-dimensional black hole binary
that is asymptotically flat (save for possible conical defect membranes) to yield a different
kind of five-dimensional expanding bubble.

The Weyl formalism allows to combine two five-dimensional Schwarzschild-Tangherlini
black holes with the rod structure in figure 7(a). This system was studied in [31]. Since the
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5D black hole binary Double bubble of nothing

(a) (b)w0 w1 w2 w3 w4 w1 w2 w3 zz

t

φ

ψ

t

φ

ψ

w0 → −∞
w4 →∞

Figure 7. (a) Rod diagram for the five-dimensional black hole binary of [31]. (b) Limit to the
expanding bubble of nothing of section 4.7 in [3], which is asymptotic to a space compactified on
a two-torus. The space in between the horizons, w1 < z < w3, consists of two topological disks
D2, orthogonal to each other and touching at their origins (at z = w2). In the maximal analytic
extension, these become two orthogonal S2 that touch at their poles.

two black holes lie along different axes, they cannot be regarded as collinear. Nevertheless,
the solution is asymptotically flat, as follows from the presence of one semi-infinite rod
along φ and another along ψ. Now take, as in the previous examples, the limit where the
two black holes become infinitely large, making their timelike rods semi-infinite. The result
is the system in figure 7(b).

This geometry was analyzed in [3], where one can find the explicit solution (see
section 4.7 there). Here we shall only describe its main properties. Conical singularities
can be avoided along all the axes, and the solution is identified as an expanding bubble of
nothing. In contrast to the simpler five-dimensional bubble of (2.7) (and (2.20)), where
the minimal cycle (the bubble) is a sphere S2, in this case it is made of two orthogonal
S2, i.e., the meridian lines of one sphere are orthogonal to the meridian lines of the other,
and the parallel lines of one lie along φ and of the other along ψ. The two spheres touch
each other at both their north and south poles. Furthermore, the single bubble in (2.7)
asymptotically has one compact circle, while the double bubble in figure 7(b) has two, and
therefore represents a Kaluza-Klein compactification from five to three dimensions. Each of
the two S2 is responsible for the compactification of one of the two circle directions. The
solution also differs from the four-dimensional bubble (2.17), in that the two acceleration
horizons here are not symmetric: the φ and ψ circles close off at one or the other horizon,
and their accelerations can be different. Indeed, the two S2 can have different sizes.

The two five-dimensional black holes can also be combined in a different fashion with
Kaluza-Klein asymptotics [3, 5]. The configuration has a limit to a ‘bubble string’, i.e.,
the direct product of the 4D expanding bubble and a circle. Ref. [3] showed that the Weyl
formalism allows to generalize all of these solutions to other expanding bubbles in higher
dimensions, which compactify spacetime down to three or four dimensions.

Finally, we could envisage starting from a collinear pair of 5D black holes which lie
along a line that is a fixed point of SO(3) rotations (and not SO(2), as above). In this
case, the limit of small separation would result, like in 4D, in a topologically circular S1

bubble. However, these configurations (and their higher-dimensional counterparts) do not
fall within the Weyl class, and they are not known in exact form.
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w0 w1 w2 w3 w4 w5 z

t

φ

Figure 8. Rod diagram for a binary black hole system inside a bubble of nothing. The black
timelike rods (thick lines of the t coordinate) represent the black hole horizons, while the blue
timelike semi-infinite rods correspond to the bubble horizon. This diagram corresponds to the
double-Wick rotation of the three-source Israel-Khan solution [15].

3 Static black hole binaries and black rings in expanding bubbles

In this section, we will explore some configurations in 4D and 5D that can be regularised
by the presence of an expanding bubble of nothing. First, we will consider a 4D static
black hole binary system (a subcase of the Israel-Khan solution [15]). As is well known,
the Bach-Weyl binary in (2.26) necessarily contains conical singularities on the axis ρ = 0,
either in the segment in between the two black holes, or (as we chose above) in the semi-axes
towards infinity — these are, respectively, struts or strings that balance the attraction
between the black holes. We will prove how, by placing the binary within the bubble, we
can remove all these singularities and thus obtain a completely regular system on and
outside the event horizons.

An analogous construction is possible for the 5D static black ring. In the manner we
presented this solution in sections 2.1 and 2.4, the geometry is singular because the tension
and self-attraction of the ring, which would drive it to collapse, need to be balanced by a
conical-defect membrane. Again, immersing the ring in an expanding bubble of nothing
allows to balance the forces and remove all the conical singularities.

In the following we present the metrics for these systems and prove that it is possible
to achieve equilibrium configurations. A more complete analysis of the physical magnitudes
and of the first law of thermodynamics for black hole systems in expanding bubbles will be
the subject of future work [32].

3.1 4D black hole binary in equilibrium inside the expanding bubble

Superposing the rods of the 4D bubble of nothing and the Bach-Weyl binary, we get the
diagram of figure 8.

The solution can be written explicitly in Weyl coordinates (2.8) with

gabdx
adxb = −ρ2µ1µ3µ5

µ0µ2µ4
dt2 + µ0µ2µ4

µ1µ3µ5
dφ2 , (3.1a)

f = 16Cf µ5
0µ

7
1µ

5
2µ

7
3µ

5
4µ

7
5

µ01µ03µ05µ12µ14µ23µ25µ34µ45W 2
02W

2
04W

2
13W

2
15W

2
24W

2
35W00W11W22W33W44W55

.

(3.1b)

In the limit in which the bubble horizon is pushed to infinity, for w0 → −∞ and w5 →∞,
we recover the standard Bach-Weyl binary (2.26). On the other hand the limit to the
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bubble can be obtained in different ways: by focusing on the bubbles in between black holes
as we have done above, e.g. taking w1 → −∞ and w4 →∞, or alternatively by eliminating
the black holes by collapsing their rods, thus w1 = w2 = w3 = w4.

In general, the geometry contains conical singularities on the z-axis in the intervals
(w0, w1), (w2, w3), and (w4, w5), which we eliminate by imposing (2.9) on each interval. As
we mentioned, we can choose Cf (i.e., a rescaling of f) to set ∆φ = 2π without loss of
generality. Then, requiring (2.9) on z ∈ (w0, w1) fixes

Cf = 212(w0−w2)2(w1−w2)2(w2−w3)2(w0−w4)2(w1−w4)2(w3−w4)2(w2−w5)2(w4−w5)2 ,

(3.2)
while for z ∈ (w2, w3) and z ∈ (w4, w5) we get

(w0 − w2)(w2 − w3)(w1 − w4)(w2 − w5)
(w0 − w1)(w1 − w3)(w2 − w4)(w1 − w5) = 1 , (3.3a)

(w0 − w2)(w0 − w4)(w2 − w5)(w4 − w5)
(w0 − w1)(w0 − w3)(w1 − w5)(w3 − w5) = 1 . (3.3b)

These can be solved in terms of the bubble parameters w0 and w5, thus leaving the binary
parameters w1,2,3,4 unconstrained. To this end, we first choose a convenient parametrization
of the rod endpoints in terms of the Komar masses M1, M2 of the two black holes (these
are half the coordinate length of the horizon rod), the coordinate distance between them, d,
and their coordinate distances to the left and right bubble horizons, `1 and `2, so that

w0 = −`1, w1 = 0, w2 = 2M1, w3 = 2M1 + d,

w4 = 2M1 + 2M2 + d, w5 = 2M1 + 2M2 + d+ `2 . (3.4)

We then solve the equilibrium conditions (3.3) for `1 and `2, to find

`i =

√
Ai +B2

i −Bi
2M1M2 + d(M1 +M2) , (3.5)

where we have defined

A1 = d(d+ 2M1)(d+M2)(d+ 2(M1 +M2))(2M1M2 + d(M1 +M2)) , (3.6)
B1 = d2M2 + 2M1M2(M1 +M2) + d(M2

1 + 3M1M2 +M2
2 ) , (3.7)

and A2, B2 are obtained by changing 1↔ 2. Since `1 and `2 in (3.5) are manifestly positive
when M1, M2, d are positive, we have proven that there always exists a unique bubble,
with suitably chosen position and size, that provides the necessary expansion to balance an
arbitrary binary in static equilibrium (even if unstable).

It is interesting to observe that when the two black holes are very close, d�M1,M2,
the bubble distance to them becomes

`1, `2 = d+O(d2) , (3.8)

i.e., as expected, the bubble snugly hugs the binary. When the black holes are instead far
apart, d�M1,M2, we have

`1, `2 = d3/2
√
M1 +M2

(
1 +O(d−1/2)

)
, (3.9)
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5D black ring inside an expanding bubble

w0 w1 w2 w3 z

t

φ

ψ

Figure 9. Rod diagram for the black ring inside the bubble of nothing. A semi-infinite timelike rod
for z < w0 has been added to the ordinary black ring diagram.

which we can easily understand. The Newtonian gravitational potential between the black
holes is

Vg ' −
M1 +M2

d
, (3.10)

and the gravitational potential from the de Sitter-like expanding space between them is
(for `1,2 ' `)

Vexp ' −
d2

2`2 , (3.11)

since 1/`2 acts like a cosmological constant.9 Then (3.9) follows from the equilibrium
condition

∂(Vg + Vexp)
∂d

= 0 . (3.12)

3.2 Black ring in equilibrium inside the expanding bubble

Now we insert a static black ring inside a five-dimensional bubble of nothing. Instead of
the (x, y) coordinates used in (2.1), we will employ Weyl coordinates. For the black ring,
the explicit transformation can be found in [3].

The rod diagram for the black ring is represented by the black lines in figure 9, and we
add the bubble by putting an extra pole and the blue line representing the bubble horizon.
Incidentally, this diagram is the double Wick-rotated version of the static black Saturn [33]
(see also figure 11).

The metric corresponding to figure 9 is

gabdx
adxb = −ρ2 µ1

µ0µ2
dt2 + µ0µ2

µ1µ3
dφ2 + µ3dψ

2 , (3.13a)

f = Cf
µ3W

2
01W03W

2
12W23

W 2
02W13W00W11W22W33

. (3.13b)

We must eliminate conical singularities by tuning the parameters of the solution to sat-
isfy (2.9) at every spacelike rod. If we choose ∆ψ = 2π, we find that (2.9) is satisfied along
the segment z ∈ (w3,∞) by setting Cf = 1. Next, imposing (2.9) on the φ direction along

9The two potentials can be read from gtt in the weak field regime.
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z ∈ (w0, w1) and along z ∈ (w2, w3), we obtain

(w1 − w0)2(w3 − w0)
(w2 − w0)2 = 1

2

(∆φ
2π

)2
, (3.14a)

(w3 − w0)(w3 − w2)
w3 − w1

= 1
2

(∆φ
2π

)2
. (3.14b)

In order to solve these equations, we parametrize the rod endpoints as

w0 = −` , w1 = 0 , w2 = 2µR2 , w3 = (1 + µ)R2 . (3.15)

Here ` characterizes the bubble size, while µ ∈ [0, 1) and R are the same parameters for the
shape and radius of the ring as in (2.1). Eqs. (3.14) are solved with

` = R2
(

1− µ+
√

1− µ2
)
, (3.16)

and10 (∆φ
2π

)2
= 2R2

(
2 +

√
1− µ2

) 1− µ
1 + µ

. (3.17)

Thus, we can always choose, in a unique way, the bubble size ` so as to balance into
equilibrium an arbitrary static black ring.

To finish this section, we shall mention that, with a straightforward exercise in rodology,
which we leave to the reader, one can insert the five-dimensional binary of figure 7(a) inside
the bubble of figure 7(b), and then obtain the corresponding solution (which is a limit of
the ones in [31]). Given our previous analyses, it is natural to expect, and consistent with
parameter counting, that the bubble parameters can be adjusted to balance an arbitrary
binary of this kind.

4 Other configurations

We can extend the discussion of the previous sections to more general configurations, and
play with the rods to move from one solution to another. There are plenty of examples
that can be considered, both in four and five dimensions, and even in higher dimensions [3].
We will consider some of them, just to give a taste of the many possibilities that are offered
by the rod diagram machinery. The limits presented below on the rods diagrams work
faithfully on the corresponding metrics.

4D. One obvious extension of the binary system studied above is the three-black hole
configuration contained in the Israel-Khan solution and represented in figure 10(a). To get
the Schwarzschild black hole inside the bubble of nothing, we extend the peripheral timelike
rods to infinity, taking the limits w → −∞ and w5 →∞.

From the black hole in the bubble we can also generate a metric describing a point-like
Curzon-Chazy particle embedded in the bubble. The procedure is similar to the one

10We could absorb a scale ∝ R in the definition of φ to make it dimensionless, as we have done before.
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Three black holes

(a) w0 w1 w2 w3 w4 w5 z

t

φ
w0 → −∞
w5 →∞

Single black hole inside a bubble

(b) w1 w2 w3 w4

t

φ

z

w5 →∞

t

φ

z(c) w0 w1 w2 w3 w4

Two accelerating black holes

w 0
→
−∞

w1 → w0

t

φ

z(d) w2 w3 w4

w1 → −∞

One accelerating black hole

Figure 10. (a) Rod diagram for a collinear three-black hole system (an Israel-Khan solution). The
limit w0 → −∞ and w5 →∞ gives (b) the single black hole in the expanding bubble. When sending
w5 →∞ in (a) we obtain (c) two accelerating black holes. Collapsing one timelike rod in the latter
gives (d) the C-metric for a single accelerating black hole. The rod limits commute, so from the two
accelerating black holes in (c), the limit w0 → −∞ gives (b) a single black hole in a bubble.

used to obtain the Bonnor-Swaminarayan solution from an accelerating binary black hole
system [34].

Moreover it is very clear, in the 4D setting, how to generate accelerating black hole
metrics from the black holes in the bubble, for any number of collinear black holes. It is
sufficient to push away only one of the two poles defining the bubble, for instance w0 → −∞
in the binary configuration of section 3.1. In figure 10 we picture the single black hole
case. The limiting process, however, introduces irremovable conical singularities, unless an
external background field is introduced, as in [34]. It is clear that this procedure cannot
be pursued in 5D. In this case, there is only a single rod determining the bubble horizon,
but more importantly, the five-dimensional C-metric for a uniformly accelerating black hole
would have different symmetry (SO(3) rotations, rather than U(1)2) and not be in the Weyl
class of solutions.

5D. It is interesting that all the five-dimensional configurations studied in this paper can
be obtained by performing limits in the black di-ring configuration of figure 11(a).

For instance, to recover the black ring-bubble of nothing of figure 11(b) (which also cor-
responds to figure 9), we simply send w1 → −∞ in the black di-ring diagram. Furthermore,
one can also obtain the black hole inside the bubble from the latter by taking w5 → w4 to
remove a spacelike finite rod.

On the other hand, if we take w5 → w4 in the di-ring diagram, we recover the black
Saturn [33] of figure 11(c). From this diagram, we can send w1 → −∞ to obtain the 5D
black hole-bubble of nothing, which corresponds to the superposition of the two diagrams
of figure 4.
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Black di-ring

(a) w1 w2 w3 w4 w5 z

t

φ

ψ w1 → −∞

Black ring inside a bubble

(b) w2 w3 w4 w5 z

t

φ

ψ

w5 → w4

(c) w1 w2 w3 w4 z

t

φ

ψ

Black Saturn

w1 → −∞

(d) w2 w3 w4 z

t

φ

ψ

Black hole inside a bubble

w5 → w4

Figure 11. (a) Rod diagram for a coaxial double black ring system. The limit w1 → −∞ gives
(b) the single black ring in the expanding bubble. The limit of (a) for w5 → w4 gives (c) the black
Saturn. Its limit for w1 → −∞ gives (d) the five-dimensional black hole in an expanding bubble.
The rod limits commute, so the latter diagram can also be obtained from (b) for w5 → w4.

5 Discussion and outlook

Black holes and bubbles of nothing are some of the most elementary solutions in General
Relativity, and in this article we have argued that their properties are closely interrelated.
By revealing how bubbles are present in black hole systems, we have learned that the
spacetime expansion in the bubble is driven by the same phenomenon that makes the
volume inside a black hole grow.

The basic idea is simple enough to lend itself to easy generalization. Whenever a small
gap region appears between black hole horizons in a maximally extended geometry, it will
contain an expanding bubble of nothing. The bubble is a minimal cycle that links the
Einstein-Rosen bridges of the system. In the simplest instance, namely, the four-dimensional
black hole binary in section 2.3, the topology of a Cauchy slice is S1 × S2 − {0} (the point
at infinity is removed), and the bubble is the minimal S1 in it. Similarly, for the black
ring, the spatial topology is S2 × S2 − {0}, and the bubble is the minimal S2. In the more
general ‘ringoids’ of [17, 18] with spatial topology Sd−3 × S2 − {0} we find Sd−3 bubbles.
We have even considered more complex bubbles topologies, such as the double S2 bubble in
section 2.5, and we have identified that a collinear black hole binary in d dimensions, with
Cauchy slices that are S1 × Sd−2 − {0}, must have an S1 bubble.

Such solutions for binary black holes are not known explicitly in arbitrary dimensions,
but we can easily find configurations with two disconnected horizons which can be regarded,
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in the sense explained above, as possessing expanding bubbles of nothing. The Schwarzschild-
de Sitter solution

ds2 = −
(

1− µ

rd−3 −
r2

L2

)
+ dr2

1− µ
rd−3 − r2

L2

+ r2dΩd−2 (5.1)

with

0 < µ < µN ≡
2

d− 3

(
d− 3
d− 1

) d−1
2
Ld−3 (5.2)

has a cosmological horizon and a black hole horizon. In the maximal analytic extension (and
identifying regions beyond the horizons to form a spatial circle) the spatial sections have
topology S1×Sd−2. The S1 expands in time, inside the black hole and in the time-dependent
region beyond the de Sitter horizon. The analogue of the bubble limit is the limit µ→ µN ,
in which (after rescaling t) we recover the Nariai solution

ds2 = L2

d− 1

[
−(1− ξ2)dt2 + dξ2

1− ξ2 + (d− 3)dΩd−2

]
(5.3)

with horizons at ξ = ±1. We can change coordinates in this metric (see footnote 3) to
the form

ds2 = L2

d− 1
[
−dT 2 + cosh2 Tdχ2 + (d− 3)dΩd−2

]
(5.4)

with 0 ≤ χ ≤ 2π. Here we recognize the essential features of the n = 1 circular bubble (1.1),
only that now the inhomogeneous, non-compact (r, φ) cigar is replaced by a round Sd−2.
Thus, bubble-of-nothing-like expansion is indeed pervasive and connected in wide generality
to the phenomenon of spacetime expansion.

It is now clear, given the plethora of black hole topologies and multi-black hole
configurations that are possible in higher dimensions [35], that we can expect a large variety
of expanding bubbles of nothing, even in vacuum gravity. Many of them are unlikely to
admit a closed exact solution, but it is intuitively useful to first conceive of them as black
hole configurations, as this helps identify new possibilities. It would be interesting to know
how general the converse is, that is, whether for any expanding bubble one can find a black
hole configuration that contains it as a limit.

We have also proven, with explicit examples, that the bubble expansion acts on
gravitating systems in much the same way as de Sitter-type inflation: it counteracts the
gravitational attraction between localized objects and allows novel static multi-black hole
configurations. Again, this phenomenon is likely valid for all the expanding bubbles that
we have mentioned above, and more generally for other bubbles.

Our arguments show that the expanding bubble of nothing is already present in the
binary or black ring even before taking the small-gap limit, in the sense that there is a
minimal cycle that links the system of Einstein-Rosen bridges and which expands because
it stretches inside the black holes. Taking the small-gap limit makes the bubble more
symmetric and uniform, and its expansion becomes asymptotically uniform and eternal,
since in the limit the interior black hole singularity is pushed away to infinitely late time. If
the black hole system were of finite size, or if it were to merge or collapse, the duration of

– 20 –



J
H
E
P
0
7
(
2
0
2
2
)
0
0
7

the expansion would instead be limited, ending on a singularity. But expanding bubbles
of nothing, in the above sense, seem pervasive in black hole systems with multiple or
non-spherical horizons.11

Does this mean that we should expect bubbles of nothing in astrophysical, dynamical
binaries more realistic than the static ones we have studied? Unfortunately, the answer
is no. The topology of a binary where the black holes formed from collapsing matter is
different than in the maximal analytic extensions we have considered. Collapsing black
hole geometries do not have bifurcation surfaces nor Einstein-Rosen bridges. Even though
space expands inside a collapsing black hole, the topology of the Cauchy slices is trivial,
and these binaries will not contain any minimal cycle.

However, even if expanding bubbles of nothing may not be present in the sky above,
their connection to more conventional black hole systems provides a new, illuminating
perspective on their properties and makes them seem more accessible. Since they behave
in many ways like de Sitter space — but without a cosmological constant, and with non-
compact horizons — they may provide new venues in which to investigate the holographic
description of expanding spacetime, possibly exploiting their relation to Einstein-Rosen
bridges and the interiors of black hole systems.
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A Another limit to the 5D bubble

The static black ring can be written in the coordinates introduced in [21] in the form

ds2 =−F (y)
F (x)dt̃

2 + R2

(x−y)2F (x)
[
(y2−1)dψ̃2 + 1

F (y)
dy2

y2−1 + 1
F (x)

dx2

1−x2 +(1−x2)dφ̃2
]
,

(A.1)
where now

F (ξ) = 1 + νξ , (A.2)

with 0 ≤ ν < 1. In the rotating metric in [21], we have set λ = ν to obtain a static solution.
The ring becomes fatter as ν → 1. Then, the bubble of nothing (2.7) is obtained taking the
limit ε→ 0 with

ν = 1− ε , y = −1− ε ξ2 , x = −1 + 2r2
0

r2 , (A.3)

11However, this does not mean that they must admit a good limit to a bubble solution; we already
mentioned in section 2.1 that the equilibrium rotating black ring does not admit it, even though at any
finite radius it has a bubble in the sense explained above.
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where r0 = R, and rescaling

t̃ = r0

√
2
ε
t , ψ̃ = 1√

ε
ψ , φ̃ = 1√

2
φ . (A.4)
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