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1 Introduction and summary of results

String theory should contain many non-geometric vacua. Constructing such backgrounds
explicitly is in general a hard task. One possible strategy is to study local supergravity
solutions arising in the low energy limit of string theory and “glue” them together into a
globally non-geometric background using string theoretic dualities. A number of such non-
geometric Minkowski vacua of string theory were constructed in the literature, however
there are relatively few explicitly known AdS non-geometric vacua, see [1] for a review.
Recently a class of non-geometric AdS vacua of type IIB string theory was constructed
in the literature by making use of the non-trivial SL(2,Z)IIB duality group of the theory,
see [2–9]. The backgrounds have the schematic form

AdS4 × S̃1 × Ŝ5 , (1.1)

where the tilde indicates that there is non-trivial SL(2,Z)IIB monodromy around the cir-
cle. The five-dimensional manifold Ŝ5 is topologically a five sphere with squashed metric
threaded by R-R and NS-NS fluxes. These non-geometric backgrounds can be thought of
as arising from geometric AdS4 ×R × Ŝ5 solutions of type IIB supergravity in which all
NS-NS and R-R fields except the dilaton do not depend on R. The dilaton has a linear
dependence on the R direction which can then be compactified into the S̃1 in (1.1) by ap-
propriate shifts of the dilaton and making use of the SL(2,Z)IIB symmetry of string theory.
We refer to this class of string theory backgrounds as J-folds. This moniker is justified by
another vantage point that leads to these non-geometric constructions: the backgrounds
in (1.1) arise as a limit of Janus solutions that are dual to superconformal interfaces in
N = 4 SYM [3, 5, 7, 9]. This in turn offers the exciting possibility to study the AdS/CFT
correspondence for explicit non-geometric string theory vacua.
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There are three distinct methods to construct J-fold backgrounds of string theory.
One can work directly in IIB supergravity and look for suitable AdS4 ×R × Ŝ5 solutions
with linear dilaton which then can be compactified using SL(2,Z)IIB. In general however
this method is often hard to implement in practice. When Ŝ5 has a small isometry group
the supersymmetry variations or equations of motion of IIB supergravity lead to partial
differential equations which are hard to solve in general. Nevertheless, explicit J-fold
solutions withN = 0 orN = 1 supersymmetry and large isometry on Ŝ5 can be constructed
in this way, see [5, 10–12].1 A complementary strategy to construct J-fold backgrounds is to
use the fact that type IIB supergravity admits a consistent truncation to the maximal five-
dimensional SO(6) gauged supergravity. One can then look for AdS4 ×R solutions of the
five-dimensional supergravity in which the dilaton has a linear profile and all other scalar
fields are constants. These solutions can then be uplifted to type IIB supergravity using
the results in [13, 14] and one can then proceed to compactify the R direction into the S̃1

in (1.1) by using SL(2,Z)IIB. The advantage of this method is twofold. First, the problem
of finding the AdS4×R solution in five dimensions is essentially algebraic even when Ŝ5 has
little or no isometry. Second, the J-fold solutions in five-dimensional supergravity arise as
special limits of families of asymptotically AdS5 Janus solutions. This makes it clear that
the 3d SCFT dual to the J-fold AdS4 solution should be closely related to the theory residing
at a conformal interface in N = 4 SYM. Indeed, this strategy was successfully employed
in [5, 7, 8], see also [9, 15], where supersymmetric J-fold backgrounds were constructed as
limits of Janus interface solutions. The third method, which will be the one we employ in
this work, is to use yet another consistent truncation of type IIB supergravity. As shown
in [2] type IIB supergravity on S5 ×R admits a consistent truncation to four-dimensional
maximal gauged supergravity with the non-compact gauge group [SO(1, 1)× SO(6)]nR12

and a dyonic gauging. To construct J-fold backgrounds one then looks for AdS4 vacuum
solutions of the four-dimensional supergravity theory which arise as critical points of the
potential for the 70 scalar fields in the theory. Finding such AdS4 vacua then reduces to
a complicated but purely algebraic problem. Given such an AdS4 vacuum solution it was
shown in [2, 4], using Exceptional Field Theory results from [16, 17], how to uplift it to
type IIB supergravity where one can proceed to use the SL(2,Z)IIB action on the dilaton to
obtain a compact J-fold string theory background. We note that it should be possible to find
a direct way to relate the five-dimensional and four-dimensional supergravity constructions
described above using a Scherk-Schwarz type reduction [18] and it will be very interesting
to establish this in detail.

The goal of this paper is to construct and study a large new family of AdS4 N = 2 J-fold
backgrounds. There are several results in the literature which point to the existence of such
a family of J-folds. It was found in [6] that there is family of N = 2 J-fold backgrounds,
constructed using the maximal four-dimensional supergravity method described above,
which are parametrized by a real parameter χ. We refer to this as Family I in the text
below. For generic values of χ the AdS4 background preserves N = 2 supersymmetry

1Note that in the backgrounds descibed in [5, 11, 12] the Ŝ5 can be generalized to an arbitrary Sasaki-
Einstein manifold.
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and a u(1)F × u(1)R global symmetry. The u(1)R is mapped to the superconformal R-
symmetry in the dual 3d N = 2 SCFT, while u(1)F is mapped to a flavor symmetry. For
χ = 0 there is a symmetry enhancement and the background enjoys su(2)F symmetry.
The cosmological constant for this family of AdS4 solutions does not depend on χ. This
in turns implies that the S3 free energy of the dual family of SCFTs is invariant under
changes of χ which strongly suggests that χ describes an exactly marginal deformation in
the SCFT. Conformal manifolds in 3d N = 2 SCFTs are Kähler2 which suggests that the
real parameter χ should be complexified and thus there has to be a more general family
of J-folds parametrized by (at least) two real parameters. The su(2)F × u(1)R invariant
J-fold solutions has also been independently found in [7] using five-dimensional gauged
supergravity. It was also observed in [7] that the S3 free energy of the SCFT dual to
the su(2)F × u(1)R J-fold is the same as the S3 free energy of the N = 4 su(2) × su(2)
invariant J-fold studied in [2, 3, 7]. It was proposed in [7] that theses special N = 2 and
N = 4 SCFTs belong to the same conformal manifold. This implies that there should be a
family N = 2 of AdS4 J-fold backgrounds that interpolate between the N = 2 and N = 4
solutions found in [6, 7] and [2, 3, 7].

We indeed find that these expectations are confirmed by constructing an explicit family
of J-fold backgrounds described by two real parameters. We first focus on a consistent
truncation of the 4d maximal supergravity which is invariant under a Z3

2 discrete subgroup
of the SO(1, 1) × SO(6) symmetry of the theory. Only 14 out of the 70 reals scalars in
the supergravity theory survive in this truncation. This 14-scalar model is analytically
tractable and one can find that it admits two one-parameter families of analytic N = 2
AdS4 vacua. The first one, parametrized by the real number χ ∈ [0,∞), is the one found
in [6] and dubbed Family I above. The second one, which we call Family II, is a novel
family of analytic solutions parametrized by the real number ϕ ∈ [0,∞). The solutions at
χ = 0 and ϕ = 0 are equivalent and give the su(2)F × u(1)R J-fold of [6, 7]. At ϕ = 1 one
finds the N = 4 su(2)× su(2) invariant J-fold of [2, 3, 7]. We therefore find that Family II
interpolates between the special N = 2 and N = 4 J-fold solutions and explicitly realizes
the proposal made in [7]. Given all this it is natural to expect that Family I and Family
II are one-dimensional sections of a two-dimensional space of J-folds. We confirm this
expectation by constructing this family of solutions. To do this we need to go beyond the
14-scalar truncation described above and include additional scalar fields invariant under the
u(1)F ×u(1)R subgroup of the gauge group of the maximal supergravity theory. Our results
amount to a new two-parameter family of analytic N = 2 AdS4 vacua which are invariant
under u(1)F × u(1)R and smoothly interpolate between the one-parameter Family I and
Family II. These solutions should be the supergravity dual of the conformal manifold of the
dual 3d N = 2 SCFT. In fact, we find that Family I and Family II furnish the boundaries
in the two-dimensional space of solutions. In addition to constructing this two-parameter
space of J-folds we are also able to calculate explicitly the spectrum of masses of all four-
dimensional supergravity fields for all AdS4 solutions. Using the AdS/CFT dictionary we
can map these results to find the spectrum of operator dimensions in the dual SCFT.

2This can be shown along the lines of [19], see also [20, 21].
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We perform this calculation explicitly and organize the spectrum of SCFT operators into
unitary representations of the superconformal algebra. We find a mixture of long, semi-
short, and short multiplets for which we compute all quantum numbers. As expected,
the conformal dimensions of short and semi-short multiplets do not depend on the exactly
marginal deformations. The long multiplets however exhibit an intricate dependence on
the two marginal deformation parameters which we describe explicitly. We also observe
multiplet rearrangements at the N = 2 su(2)F × u(1)R and N = 4 su(2) × su(2) J-fold
points which nicely match SCFT expectations. In addition, we compute the supergravity
kinetic terms for the scalar moduli (ϕ, χ) which can be interpreted holographically as the
Zamolodchikov metric on the SCFT conformal manifold. Our holographic results offer a
rare quantitative window into the conformal manifold of strongly coupled SCFTs and we
use them to speculate about the possible global structure of the SCFT conformal manifold
in section 5.

The supergravity discussion above should have a direct counterpart in the dual SCFT
description of the J-fold construction. A concrete proposal for the 3d N = 3 SCFT dual to
the N = 4 J-fold was put forward in [3]. The SCFT is constructed by taking the Gaiotto-
Witten T [U(N)] theory [22] and gauging its U(N)×U(N) flavor symmetry using an N = 4
vector multiplet and introducing a Chern-Simons term at level k for the gauge field. In
the J-fold construction above N is mapped to the number of D3-branes in type IIB string
theory and k is related to the integer that specifies the hyperbolic element of SL(2,Z)IIB
used to make the S̃1 in (1.1) compact. The T [U(N)] theory is a 3d N = 4 SCFT which has
two U(N) flavor current multiplets that contain complex scalar superconformal primary
operators. Each of these complex scalars, usually referred to as moment map operators,
transforms in the adjoint representation of U(N) and we denote them as µC and µH since
they are also associated with the Coulomb and Higgs branch of the theory. The gauging
of the diagonal U(N) subgroup of the U(N) × U(N) flavor symmetry then amounts to
introducing the following superpotential, see [3, 23, 24] for more details,

WN=3
UV = − k

4πTr (Φ2) + Tr (Φ(µH + µC)) . (1.2)

Here Φ is the adjoint complex scalar field in the N = 4 vector multiplet and k is the integer
Chern-Simons level. The theory with superpotential (1.2) is defined in terms of N = 4
ingredients but preserves only N = 3 supersymmetry. It is also not a conformal theory
and it was conjectured in [3], see also [23], that there is supersymmetry enhancement in
the IR where one finds a non-trivial N = 4 SCFT. The effective IR superpotential can be
obtained by integrating out Φ in (1.2) and reads3

WN=4
IR = −2π

k
Tr (µHµC) . (1.3)

To arrive at this result we have made use of the fact that the operators µH,C have nilpotent
properties and obey Tr (µ2

H) = Tr (µ2
C) = 0. The SCFT described by (1.3) is the field theory

3The IR superpotentials we write should be viewed as schematic since the SCFT discussed in [3] does
not admit a known Lagrangian description in the IR.
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dual of the N = 4 J-fold background in string theory. Non-trivial evidence for this claim
was presented in [3] where the S3 partition function of the SCFT at large N was computed
by supersymmetric localization and was shown to agree with the bulk AdS4 on-shell action.

This picture suggests a natural supersymmetric marginal deformation of the N = 4
SCFT. We can use that the operator Tr (µHµC) is marginal in the IR and simply change
the superpotential in (1.3) to

WN=2
IR = −2π

k
Tr (µHµC) + λTr (µHµC) , (1.4)

where λ is a complex number. An alternative way obtain the superpotential in (1.4) is to
add the mass term m2Φ2 to the UV superpotential in (1.2). The continuous parameter m
breaks the supersymmetry from N = 3 to N = 2 and modifies the RG flow. Integrating out
Φ from this mass deformed theory will then lead to the superpotential in (1.4) where the
parameter λ is related to the UV mass m. We conjecture that the conformal manifold of 3d
N = 2 SCFT corresponding to the superpotential in (1.4) is the field theory dual to the two-
parameter family of AdS4 J-fold backgrounds we construct in this work. Note that this is
in harmony with the superconformal index calculations in [24] where it was argued that the
3d N = 4 SCFT described by (1.3) has a one-dimensional complex conformal manifold. We
emphasize that the superpotential in (1.4) should be treated as a schematic representation
of the conformal manifold in the neighborhood of the N = 4 SCFT and should not be used
to draw conclusions about the global structure of the conformal manifold. We note also
that in addition to the u(1)R superconformal R-symmetry which acts on µH and µC with
charge +1, the superpotential (1.4) enjoys also a u(1)F symmetry which acts with equal
and opposite charges on µH and µC . This feature is compatible with the u(1)F × u(1)R
symmetry exhibited by the family of J-fold AdS4 backgrounds we construct.

In the next section we start by presenting two families of analytic J-fold solutions in
four-dimensional gauged supergravity each of which depend on a real parameter. We then
proceed in section 3 to find a larger set of J-fold backgrounds that span a two-dimensional
space of solutions dual to the conformal manifold of the dual 3d N = 2 SCFT. In section 4
we present explicit results about the mass spectrum of all four-dimensional supergravity
fields, show how they are organized into SCFT operator multiplets, and describe how they
depend on the position on the conformal manifold. We conclude with a short discussion in
section 5. In the appendix we collect some useful results about the unitary representations
of 3d N = 2 and N = 4 superconformal algebras.

Note added. In the final stages of the preparation of the manuscript we learned
about [25] in which the authors construct a one-parameter family of AdS4 solutions that
connect the previously known N = 2 and N = 4 J-fold backgrounds using the five-
dimensional gauged supergravity truncation in [26]. Our results appear to be compatible
with those in [25] but are obtained through a different method based on four-dimensional
gauged supergravity. The solutions found in [25] may correspond to what we refer to as
Family II below.
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2 J-fold solutions in the 14-scalar model

The workhorse we use to construct the J-fold backgrounds of interest is the N = 8
[SO(1, 1) × SO(6)] n R12 gauged supergravity in four dimensions. The full structure of
this theory is rather involved, see [2, 4, 27] and [28, 29] for further details. We are in-
terested in AdS4 solutions in this theory and therefore need to look for critical points of
the scalar potential. Finding such critical points is in general an unwieldy task since the
potential is a complicated function of the 70 scalar fields in the supergravity theory which
span an E7(7)/SU(8) coset manifold.4 To render the problem tractable by analytic methods
we can reduce the number of scalar fields by studying a subspace of the scalar manifold
invariant under a subgroup of the symmetry group of the theory.

A relatively simple consistent truncation on the scalar manifold can be found by impos-
ing Z2×Z2×Z2 global symmetry. This truncation was constructed in [6] and comprises 14
real scalar fields.5 The scalar manifold of this 14-scalar model consists of seven commuting
SL(2,R)/U(1). Each SL(2,R) is generated by a positive and negative root generator, e
and f, and a Cartan generator. A simple way to parametrize the SL(2,R)’s is to use

Vi = e
√

2Rez ei · elog Imz [ei,fi] , (2.1)

where i = 1, . . . , 7 runs over the seven SL(2,R)’s. Note that the commutator [ei, fi] is
a simple way to write the correct Cartan generator belonging to each SL(2,R). This
consistent truncation of the maximal supergravity theory can be written as an N = 1
gauged supergravity coupled to 7 seven chiral multiplets. This theory can be written in
terms of the Kähler potential

K = −
∑
i

log(2Imzi) , (2.2)

which determines the kinetic terms for the scalar fields, and the holomorphic superpotential

W = 2g
(
z1z5z6 + z2z4z6 + z3z4z5 + z1z4z7 + z2z5z7 + z3z6z7

)
+ 2gc(1− z4z5z6z7) . (2.3)

The scalar potential can then be written as

V = eK
(
Ki̄DiWD̄W − 3WW

)
, (2.4)

where Dif = ∂if + f∂iK is the Kähler covariant derivative on the scalar manifold and
Ki̄ is the inverse scalar manifold metric obtained from the Kähler potential (2.2). The
real constant g is the gauge coupling in the supergravity theory and determines the scale
of the AdS4 vacuum solutions. The real constant c is related to the type of gauging used
in the maximal supergravity theory with c = 0 corresponding to the “standard” electric
gauging and c 6= 0 yielding a dyonic gauging. When c 6= 0 one can fix c = 1 without loss

4As discussed recently in [30–34] one can efficiently use numerical techniques to construct AdS critical
points in maximal gauged supergravity theories.

5A consistent truncation with the same global symmetry was employed in [31, 34] to find AdS4 vacua
in maximal supergravity theories with different gauge groups.
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of generality. We will be interested in the theory with c 6= 0 since this model admits an
uplift to type IIB supergravity on R × S5, see [2, 4].

It is instructive to study the symmetries of the 14 scalar model. To this end we consider
linear maps on the fields zi that leave the superpotential (2.3) invariant.6 We find that
there is a discrete group of order 24 generated by the following three actions on the zi

f : z1 → z2 → z1 , z4 → z5 → z4 ,

g : z1 → z2 → z3 → z1 , z5 → z7 → z6 → z5 ,

h : z1 → z3 → z1 , z4 → z5 → z6 → z7 → z4 ,

(2.5)

that leave the superpotential in (2.3) invariant. This order 24 group is simply the symmetric
group S4 defined as

S4 =
〈
f, g, h|f2 = g3 = h4 = fgh = e

〉
. (2.6)

Remarkably this is exactly the same symmetry group enjoyed by a 10-scalar consistent
truncation of the maximal SO(6) gauged supergravity in five dimensions [26, 32]. This, to-
gether with the fact that there are a number of AdS4 J-fold solutions in the five-dimensional
10-scalar model [7–9, 15], suggests a non-trivial relation between the two supergravity con-
sistent truncations which will be interesting to explore further.

2.1 AdS4 solutions

Some AdS4 critical points of the 14 scalar model were studied in [6]. They found a family
of N = 1 solutions and a one parameter family of N = 2 solutions. In addition, they found
a large family of non-supersymmetric solutions as well as a single N = 4 point. Some of
these solutions were independently found in five-dimensional supergravity in [7] where it
was noticed that the cosmological constant of the N = 4 and the su(2) × u(1) invariant
N = 2 solution was exactly the same. As discussed in section 1, it was speculated in [7]
that these two solutions lie on the same conformal manifold. Motivated by these results
we revisit the 14-scalar model described above and look for new N = 2 AdS4 vacua. These
solutions should be critical points of the holomorphic superpotential in (2.3), i.e. we need
to solve the system of algebraic equations

DiW = 0 . (2.7)

We find two distinct families of solutions. Both of them are invariant under a Z2 subgroup
of the S4 symmetry group of the 14-scalar model.

The first family of solutions, which we call Family I, is the one found in [6] and recently
analyzed further in [35, 36]. It is invariant under the discrete action Z2 = 〈h2|h4 = e〉. The
7 complex scalar fields take the following constant values

Family I : z =
(
−cχ+ ic√

2
, ic, cχ+ ic√

2
, i,

1 + i√
2
, i,

1 + i√
2

)
. (2.8)

6There is a trivial Z2 symmetry of the potential (2.4) that acts by complex conjugation on all zi, however
this is clearly not a symmetry of the superpotential. Since we are mostly interested in supersymmetric AdS4

solutions which are critical points of the superpotential we will not discuss this Z2 further.
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The real parameter χ ∈ [0,∞) can be thought of as one of the 14 real scalars in this model.
It has vanishing mass and acts as a modulus and a natural coordinate that parametrizes
the space of solutions. The scalar potential for the family of solutions (2.8) takes the value
V = −3g2/c. The complete mass spectrum of all four-dimensional supergravity fluctuations
can be computed for all values of χ using the formulae presented in [37]. We will discuss
this spectrum in detail in section 4. Here we limit ourselves to presenting the gravitino
masses which are

m2
3/2L

2 : 12 , 42 , (2 + χ2)4 , (2.9)

where L is the AdS4 radius and the subscript denotes the degeneracy of each mass and
the masses have been normalized in such a way that m2L2 = 1 denotes an unbroken
supersymmetry. This family of solutions preserves u(1)× u(1) continuous symmetry which
can be deduced from the two massless vector fields present in the supergravity spectrum.
One of the u(1)’s has the interpretation as the superconformal R-symmetry of the dual
conformal field theory while the other is a flavor symmetry. At χ = 0 there are two more
massless vector fields in the spectrum and the symmetry is enhanced to su(2)F ×u(1). This
su(2)F × u(1) invariant N = 2 J-fold solutions was found also in five-dimensional gauged
supergravity in [7].

We also find another distinct family of N = 2 J-fold solutions not discussed in [6]
which we call Family II. It is invariant under an inequivalent Z2 subgroups of S4, namely
the 〈f |f2 = e〉. The 7 complex scalar fields along this family of AdS4 solutions are

Family II : z =
(
ic
√
ϕ2 + 1√

2
,
ic
√
ϕ2 + 1√

2
, ic,

1 + i√
2
,

1 + i√
2
,
−ϕ+ i√
ϕ2 + 1

,
ϕ+ i√
ϕ2 + 1

)
, (2.10)

where the parameter ϕ is a real scalar modulus with range ϕ ∈ [0,∞). The scalar potential
for this family of solutions takes the value V = −3g2/c which is the same as that of Family
I. The spectrum of gravitino masses reads

m2
3/2L

2 : 12 , 42 ,

[
(ϕ2 − ϕ+ 2)2

2(ϕ2 + 1)

]
2
,

[
(ϕ2 + ϕ+ 2)2

2(ϕ2 + 1)

]
2
. (2.11)

For generic values of ϕ we have two massless vector fields in the supergravity spectrum
and thus Family II also preserves u(1)× u(1) symmetry and N = 2 supersymmetry. Com-
paring (2.8) and (2.10) along with the spectrum of supergravity fields we find that the
points χ = 0 and ϕ = 0 are equivalent and thus for ϕ = 0 we recover the su(2)F × u(1)
invariant N = 2 J-fold solution. The value ϕ = 1 is also special since at this point there
are 6 massless vector fields in the supergravity spectrum and the gravitino masses in (2.11)
become (14, 44). Indeed, for ϕ = 1 we find the N = 4 J-fold solution with su(2) × su(2)
global symmetry studied in [2, 6]. We note that the solution with ϕ = 1 is also invariant
under the S3 subgroup of S4 given by

S3 =
〈
f, (hg), (fhg)|(hg)2 = f2 = (fhg)3 = (hg)(f)(fhg) = e〉. (2.12)

We discuss the full spectrum of the four-dimensional supergravity fields for Family II in
section 4. Here we just note that Family I and II exhibit different degeneracies in the
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gravitino spectrum (2.9) and (2.11). The extra degeneracy in Family I is not explained
by the continuous u(1)× u(1) symmetry and is probably due to the discrete Z2 symmetry
discussed above (2.8).

Our focus here is on studying AdS4 solutions with N = 2 and we have not per-
formed an exhaustive search for AdS4 critical points of the scalar potential that are non-
supersymmetric or have only N = 1 supersymmetry. There are certainly many such critical
points of the scalar potential some of which were studied in [6]. For instance a family of
non-supersymmetric solutions with V = −2

√
2g2/c was found in [6]. Curiously, we have

found a large number of different nonsupersymmetric critical points of the 14-scalar model
which have V = −3g2/c. This is the same value of the cosmological constant as the ones
for Family I and II above and there seems to be family of non-supersymmetric smoothly
connected to the two supersymmetric families. These include for example the Z2

2 ⊂ S4
symmetric point

z =
(
ic√

3
,
ic√

3
, i, i

4√3, ic 4√3, i
4√3
,
i

4√3

)
, (2.13)

which enjoys an so(5) continuous symmetry. All gravitinos have normalized mass m2L2 = 2
at this AdS4 vacuum and therefore no supersymmetry is preserved. Unfortunately, this
AdS4 is unstable since there are scalar fluctuations with m2L2 = −4 which is below the BF
bound. More generally, all non-supersymmetric AdS4 critical points we found exhibit BF
instabilities and we refrain from discussing them further here. It will be most interesting
to perform a systematic and exhaustive search to find all AdS4 vacuum solutions in the
14-scalar model along the lines of [31, 34] and study their stability.

3 A two-parameter family of J-folds

Inspired by the two families presented in section 2, and by our QFT discussion in section 1,
we expect a two-parameter family of J-fold solutions with N = 2 supersymmetry that
interpolates between Families I and II. We quickly realize that this 2-parameter family of
AdS4 solutions is not inside the 14-scalar supergravity truncation discussed above. One way
to see this is to study the spectrum of masses of the 14 scalars of the theory on a generic
point on Family I or II and see that only one scalar is massless, i.e. there is only one
candidate modulus which we denoted with χ on Family I and ϕ on Family II. The problem
we face is that the two families constructed above preserve a u(1)F × u(1)R symmetry
that is embedded in different ways in the so(6) symmetry of the four-dimensional gauged
supergravity. One can use so(6) group elements to rotate the solutions in Family I and II
such that they preserve the same u(1)2 symmetry, however this rotation involves turning
on scalar fields that lie outside the 14-scalar truncation described above. This observation
is precisely what allows us to construct a new two-parameter family of solutions as we now
explain in more detail.

We first note that the solutions in Family I and II break some of the elements of the
S4 symmetry of the 14 scalar model (2.6). One can then rotate a given AdS4 solution
with such a broken S4 element into a new “gauge”. This means that the two families
introduced above can be expressed in many equivalent ways by such S4 rotations. Using
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this technique we can rotate both families of solutions such that they preserve a common
u(1)R ⊂ so(6) generator. Each family additionally preserves one more u(1), but those are in
general embedded differently inside so(6). We can act with S4 generators on the solutions
in Family I and II such that they share explicitly the same su(2)F invariant point, i.e. the
su(2)F symmetries for the χ = 0 solution in Family I and the ϕ = 0 solution of Family II
are the same. The result of this operation is the following representation of Family I and
II in a different gauge:

Family I : z =
(
−cχ+ ic√

2
,−cχ+ ic√

2
, ic, i, i,

1 + i√
2
,

1 + i√
2

)
,

Family II : z =
(
ic
√
ϕ2 + 1√

2
,
ic
√
ϕ2 + 1√

2
, ic,

−ϕ+ i√
ϕ2 + 1

,
ϕ+ i√
ϕ2 + 1

,
1 + i√

2
,

1 + i√
2

)
.

(3.1)

Notice that χ = 0 in the equation above gives the same values of zi as ϕ = 0 and so by
definition they preserve the same su(2)F ⊂ so(6). This is to be contrasted with the values
of zi in (2.8) and (2.10) which are permuted among each other at the χ = ϕ = 0 point.

For generic values of χ and ϕ Family I and II preserve u(1)2. The generator u(1) that
is preserved by both families of solutions is given by

gR = 1
2



0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (3.2)

where gR should be thought of as a generator inside so(6). This is dual to the supercon-
formal u(1)R R-symmetry in the dual SCFT. The second u(1) preserved by each family is
dual to the flavor symmetry and is given by distinct so(6) generators. Using (3.1) we find
that the generators take the following form

gI = 1
2



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, gII = 1

2



0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (3.3)

We also find that gI, gII, and [gI, gII] are the three generators of su(2)F at the point
χ = ϕ = 0. We can now use the generator [gI, gII] to rotate one of the two solutions in (3.1)
by the angle π/2 such that it preserves the same two u(1) generators as the other. For
example, we can do this to the Family I solutions explicitly at the level of the scalar coset
element, or 70-bein V. Recall that for the 14 scalar model the scalar coset is given by a
product of SL(2,R)/U(1) elements in (2.1). We will use VI and VII to denote the 70-bein
corresponding to the two solutions (3.1). The vielbein VI and VII can be written as 56× 56
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matrices that only depend on the moduli χ and ϕ, respectively. Using this notation we
can rotate the Family I solutions, using the generator [gI, gII] as

ṼI = e[gI,gII]π/2 · VI . (3.4)

Here the su(2)F generator [gI, gII] should be embedded inside e7(7) using the formulae
in [29]. After performing this rotation, the solution ṼI no longer belongs to the 14-scalar
supergravity truncation. Instead it is part of a larger u(1)2 invariant truncation which is
obtained by keeping only fields that are invariant under the generators gII and gR in so(6).
There are 18 scalars fields in this bigger truncation which span the scalar manifold

M = SL(2,R)
U(1) × SO(4, 4)

SO(4)× SO(4) . (3.5)

We have explicitly parametrized this coset space and computed the scalar potential and
superpotential as a function of the 18 scalars.7 The result is quite unwieldy and we refrain
from presenting it here. Fortunately, we do not need the details of the action for this
18-scalar model to explain how to construct the two-parameter AdS4 solutions of interest.

First we identify the element of the E7(7)/SU(8) scalar coset which can be used to
generate a Family I solution with arbitrary parameter χ by starting from the χ = 0 su(2)F
invariant solution with coset element Vsu(2)F

= ṼI|χ=0. This coset element can be written as

Rχ = ṼI · (Vsu(2)F
)−1 . (3.6)

We can then useRχ to write the scalar coset element for the full Family I as ṼI = Rχ·Vsu(2)F
.

We can also use the matrix Rχ to introduce the parameter χ all along Family II and obtain
the two-parameter family of scalar coset elements

V(χ, ϕ) = Rχ · VII . (3.7)

Remarkably, one can show that the coset element V(χ, ϕ) describes a two-parameter family
of AdS4 solutions of the scalar potential of the four-dimensional supergravity theory. We
have confirmed this explicitly by computing the gradient of the scalar potential along all 70
directions and showing that it vanishes. For the entire family of solutions given by V(χ, ϕ)
the value of the scalar potential is V = −3g2/c which is the same value as for Family I
and II. Indeed, one can show that by setting ϕ = 0 in (3.7) one recovers Family I and by
setting χ = 0 one finds Family II. To establish that this two-parameter family of solutions
is supersymmetric we can look at the gravitino masses which take the form

m2
3/2L

2 : 12 , 42 ,

ϕ2 +
(
ϕ2 + 2

)2 + 2χ2 ± 2ϕ
√

(ϕ2 + 2)2 + 2χ2

2 (1 + ϕ2)


2

. (3.8)

We indeed find two gravitinos with m2L2 = 1 as expected for N = 2 AdS4 vacua. The mass
spectrum of all other supergravity fields in the theory will be discussed in detail in the next

7This 18-scalar truncation is not a full-fledged supergravity theory. The superpotential we have computed
arises from the supersymmetry variations of the 4d N = 8 supergravity and from the perspective of the
truncated theory acts as a convenient way to compute the potential.
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section. Here we only point out that for general values of the parameters (ϕ, χ) we have
two massless vector fields in the spectrum, in harmony with the expected u(1)F × u(1)R
symmetry. The non-trivial gravitino masses in (3.8) can be used as a parametrization of
the two-dimensional space of AdS4 vacua. This is illustrated in figure 1 which makes it
clear that the su(2)F N = 2 and N = 4 J-fold solutions occupy special loci in the space of
solutions. In particular, the gravitino masses are minimized at the N = 4 J-fold solution.

We close this section by discussing the kinetic terms for the two scalar moduli ϕ and χ.
This can be obtained directly from the scalar vielbein in (3.7). These kinetic terms define
a natural metric on the space of AdS4 solutions which is given by the line element

ds2
K = 1 + 2ϕ2

2(1 + ϕ2)2

(
dϕ2 + 2(1 + ϕ2)dχ2

)
. (3.9)

Note that ∂χ is a Killing vector for the metric. The Ricci curvature of this two-dimensional
space is

Ricci = 4(4ϕ4 + 2ϕ2 − 1)
(1 + 2ϕ2)3 . (3.10)

We will come back to this metric, and its interpretation in the dual field theory in section 5.
Here we note that the Ricci scalar does not have a definite sign and approaches 0 for large ϕ.
We also find a zero of the Ricci scalar at the positive real value ϕ = 1

2

√√
5− 1.

4 Spectroscopy

As discussed in section 1 the two-parameter family of J-fold backgrounds that we con-
structed above should be dual to a conformal manifold of 3d N = 2 SCFTs. These SCFTs
are strongly interacting and holography offers a powerful tool to uncover their physics.
In particular, the mass spectrum of supergravity and string theory excitations around a
given AdS4 background is mapped to the spectrum of conformal dimensions of dual SCFT
operators. To this end we have computed the mass spectrum for all four-dimensional su-
pergravity fields around the AdS4 J-folds. These supergravity modes comprise the spin-2
graviton, 8 spin-3/2 gravitini, 28 spin-1 vector fields, 56 spin-1/2 gaugini as well as the
70 spin-0 scalar modes. To discuss the spectrum we employ the holographic dictionary
to compute the conformal dimensions of the SCFT operators dual to each of these modes
using the standard relations

[0] : m2L2 = ∆(∆− 3) ,

[1
2 ] : mL =

(
∆− 3

2

)
,

[1] : m2L2 = (∆− 2)(∆− 1) ,

[3
2 ] : mL =

(
∆− 3

2

)
.

(4.1)

Here [j] denotes the Lorentz-spin of the CFT operator and ∆ its the conformal dimension,
m is the mass of the supergravity mode, and L is the AdS length scale. The graviton is not
included in (4.1) since it is massless and dual to the ∆ = 3 energy-momentum operator in
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Figure 1. Parametric plot of the two non-trivial gravitino masses in (3.8) across the conformal
manifold. The two curves that bound the blue region denote Family I and Family II. Family
I corresponds to the upper straight line where enhanced degeneracies for the gravitino masses is
observed. The lower curve represents the gravitino masses for Family II. The lowest point on
the lower curve is located at gravitino masses (4, 1) where supersymmetry is enhanced to N = 4,
while the leftmost solid point corresponds to the su(2)F invariant N = 2 J-fold background. The
shaded blue region depicts the allowed gravitino masses given by the analytic expressions in (3.8).
The conformal manifold appears to be non-compact but its global properties are subtle and will be
discussed in section 5.

the SCFT. Equipped with this data we can then organize the SCFT operators into N = 2
superconformal multiplets which allows for a compact presentation of the spectrum. We
denote the N = 2 multiplets as

XȲ [∆; j; r;F ] , (4.2)

where ∆, j, and r denote the conformal dimension, spin, and u(1)R-charge of the super-
conformal primary of the multiplet XȲ and F is its u(1)F flavor charge. More details on
the structure of N = 2 superconformal multiplets can be found in appendix A.

We find that along the entire conformal manifold the spectrum of CFT operators dual
to supergravity fields in the 4D N = 8 theory can be arranged into short, semi-short,
and long multiplets. The short and semi-short multiplets are protected, meaning that the
conformal dimensions of the operators in the multiplet are independent of the position on
the conformal manifold. At a generic point on the conformal manifold we find the following
protected multiplets

A1A1 [2; 1; 0; 0] , LA1
[

5
2 ; 1

2 ; +1; 0
]
, A1L

[
5
2 ; 1

2 ;−1; 0
]
,

A2A2 [1; 0; 0; 0] , LB1 [2; 0; +2; 0] , B1L [2; 0;−2; 0] .
(4.3)
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Here A1A1 is the N = 2 energy-momentum tensor multiplet, and A2A2 is the u(1)F flavor
current multiplet. The remaining multiplets are semi-short including the LB1 and B1L

which contain the two exactly marginal real operators.
The remaining operators are arranged in long multiplets. The conformal dimensions

of the operators in these multiplets are not protected and depend on the position on the
conformal manifold. We find the following eight long multiplets at a generic point on the
two-dimensional manifold

LL
[

1
2 + β1; 0; 0;±2

]
, LL

[
1
2 + β2; 0; 0; 0

]
, LL

[
1
2 + β3; 0; 0; 0

]
,

LL
[

1
2 + β4; 1

2 ; 0;±1
]
, LL

[
1
2 + β5; 1

2 ; 0;±1
]
.

(4.4)

The five real functions βi depend on the two coordinates parametrizing the conformal
manifold and determine the conformal dimensions of all operators in these long multiplets.
When expressed in terms of the coordinates (ϕ, χ) they take the explicit form

β2
1 = 1

4 + 2ϕ2 + 4χ2

1 + ϕ2 ,

β2
2 = 17 + ϕ2

4(1 + ϕ2) , β2
3 = 17 + 33ϕ2

4(1 + ϕ2) ,

β2
4 =

ϕ2 +
(
ϕ2 + 2

)2 + 2χ2 − 2ϕ
√

(ϕ2 + 2)2 + 2χ2

2 (1 + ϕ2) ,

β2
5 =

ϕ2 +
(
ϕ2 + 2

)2 + 2χ2 + 2ϕ
√

(ϕ2 + 2)2 + 2χ2

2 (1 + ϕ2) .

(4.5)

Note that β2,3 depend only on the coordinate ϕ which implies that some long multiplets
have conformal dimensions that stay constant as one varies χ. It is instructive also to
present the functions βi for the two special families of J-fold backgrounds. We find the
following results

βi −→
Family I

(√
1+16χ2

2 ,
√

17
2 ,

√
17
2 ,

√
2 + χ2,

√
2 + χ2

)
,

βi −→
Family II

(√
1 + 8ϕ2

2 ,

√
17 + ϕ2

2
√

1 + ϕ2 ,

√
17 + 33ϕ2

2
√

1 + ϕ2 ,
2− ϕ+ ϕ2√

2(1 + ϕ2)
,

2 + ϕ+ ϕ2√
2(1 + ϕ2)

)
.

(4.6)

We observe that Family I enjoys an additional degeneracy in the spectrum of operators.
This is the unique one-dimensional submanifold of the conformal manifold that exhibts
such a degeneracy. It is natural to conjecture that this degeneracy is due to the nature of
the discrete flavor symmetry present for Family I, see the discussion above (2.8). Family
II on the other hand does not exhibit any extra degeneracy and thus behaves like a generic
one-dimensional subspace of the conformal manifold.

There are two special points with enhanced symmetry on the conformal manifold at
which the spectrum exhibits rearrangements. The point (ϕ, χ) = (0, 0) is the N = 2
J-fold background with su(2)F × u(1)R symmetry. At this point we find that the two
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long multiplets in (4.4) with conformal dimensions determined by β1 decomposes into the
following short and semi-short multiplets:

LL[1; 0; 0;±2]→ A2A2[1; 0; 0;±2] + LB1[2; 0; +2;±2] +B1L[2; 0;−2;±2] . (4.7)

The two A2A2 multiplets combine with the A2A2 multiplet in (4.3) to form the su(2)F
current multiplet. The LB1 and B1L are charged under the su(2)F symmetry and, as
discussed in [38], should appear precisely at special points in the conformal manifold as-
sociated with continuous flavor symmetry enhancement. At (ϕ, χ) = (0, 0) it is of course
possible to reorganize all other superconformal multiplets into su(2)F representations. To
this end we use the notation

XȲ [∆; j; r]⊗ [`] , (4.8)
where ` denotes the su(2)F spin, and find that the spectrum at the point (ϕ, χ) = (0, 0),
including the multiplets presented in (4.7), takes the form

2× LL
[

1+
√

17
2 ; 0; 0

]
⊗ [0] , 2× LL

[
1+2
√

2
2 ; 1

2 ; 0
]
⊗
[

1
2

]
,

LA1
[

5
2 ; 1

2 ; +1
]
⊗ [0] , A1L

[
5
2 ; 1

2 ;−1
]
⊗ [0] ,

LB1 [2; 0; +2]⊗ [1] , B1L [2; 0;−2]⊗ [1] ,
A1A1 [2; 1; 0]⊗ [0] , A2A2 [1; 0; 0]⊗ [1] ,

(4.9)

The A2A2 [1; 0; 0]⊗ [1] multiplet is the short multiplet that contains the su(2)F currents.
The second special point is at (ϕ, χ) = (1, 0) which corresponds to the N = 4 J-

fold solution. At this point we find that the two long multiplets in (4.4) with conformal
dimensions controlled by β4 decompose into the following short and semi-short multiplets

LL
[

3
2 ; 1

2 ; 0;±1
]
→ A1A1

[
3
2 ; 1

2 ; 0;±1
]

+ LA2 [2; 0; 1;±1] +A2L [2; 0;−1;±1] . (4.10)

The two A1A1
[

3
2 ; 1

2 ; 0;±1
]
multiplets above are short multiplets which contains super-

currents which signal the enhancement to N = 4 supersymmetry at this locus on the
conformal manifold. Indeed, the full spectrum discussed above takes a special form at the
point (ϕ, χ) = (1, 0) and can be organized into two N = 4 superconformal multiplets.8
The short N = 2 multiplets recombine into the N = 4 energy-momentum tensor multiplet
as follows

A1A1[2; 1; 0; 0]
A1A1[3

2 ; 1
2 ; 0;±1]

A2A2[1; 0; 0; 0]

→ A2[1; 0; 0, 0] . (4.11)

The semi-short and long N = 2 multiplets recombine into a short N = 4 multiplet
LL[3; 0; 0; 0]
LL[5

2 ; 1
2 ; 0;±1]

LL[2; 0; 0; 0]
LL[2; 0; 0;±2]
LA1[5

2 ; 1
2 ; 1; 0] + A1L[5

2 ; 1
2 ;−1; 0]

LA2[2; 0; 1;±1] +A2L[2; 0;−1;±1]
LB1[2; 0; 2; 0] +B1L[2; 0;−2; 0]


→ B2[2; 0; 1, 1] . (4.12)

8See appendix A for more details on N = 4 superconformal representation theory.
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This concludes our analysis of the mass spectrum of four-dimensional supergravity fields
and its implications for the operator spectrum along the conform manifold in the dual
SCFT. In the next section we will discuss some additional aspects of the properties of the
conformal manifold.

5 Discussion

In this paper we constructed a two-parameter family of N = 2 AdS4 backgrounds of four-
dimensional maximal gauged supergravity with [SO(1, 1)× SO(6)] n R12 gauge group and
a dyonic gauging. The generic solutions in this class preserve u(1)F × u(1)R symmetry
and can be uplifted to J-fold backgrounds of type IIB string theory of the type discussed
around (1.1). As outlined in some detail in section 1 these string theory vacua should be
holographically dual to the conformal manifold of a class of 3d N = 2 SCFT obtained from
the Gaiotto-Witten T [U(N)] by gauging its global symmetry and introducing a Chern-
Simons term for the vector multiplet. This holographic duality passes some non-trivial
consistency checks. First we note that the supersymmetry and the u(1)F × u(1)R sym-
metry of the AdS4 solutions match nicely with those of the family of SCFTs discussed
around (1.4). Moreover the one-dimensional complex conformal manifold parametrized by
the superpotential coupling λ in (1.4) is mapped to the two-parameter space of vacua we
find and on both manifolds there is a special point with N = 4 supersymmetry enhance-
ment. We have also established that the mass spectrum of supergravity excitations around
the whole family of AdS4 solutions can be organized into N = 2 superconformal multiplets
and exhibits the structure expected for an SCFT with a one-dimensional conformal mani-
fold. Yet another non-trivial test of AdS/CFT is provide by comparing the S3 free energy
of the family of SCFTs with the AdS4 on-shell action. For the N = 4 SCFT discussed
around (1.3) the S3 free energy was computed by supersymmetric localization in the large
N limit in [3] and reads

FS3 = N2

2 arccosh(k/2) . (5.1)

Here N is the rank of the gauge group and k is the integer Chern-Simons level. As discussed
in [7] this S3 free energy is not modified by exactly marginal couplings, or equivalently, it
is not affected by introducing the mass term m2Φ2 discussed around (1.4). We therefore
conclude that along the whole 3d N = 2 conformal manifold described by (1.4) the S3

free energy takes the form (5.1). As shown in [3] and [7] the supersymmetric localization
result in (5.1) agrees precisely with the AdS4 on-shell action for the N = 4 and N =
2 su(2)F × u(1)R invariant J-fold solutions, respectively. In type IIB string theory, N
is the number of D3-branes and k determines the SL(2,Z)IIB matrix used in the J-fold
identification. The two-parameter family of N = 2 AdS4 backgrounds we found above all
have the same value for the cosmological constant, V = −3g2/c, as the N = 4 and N = 2
su(2)F × u(1)R invariant J-fold solutions. This in turn translates into the same value of
the on-shell action and we therefore find that for the entire family of supergravity solutions
and for the full SCFT conformal manifold the S3 free energy is given by (5.1).
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Figure 2. The known special points on S. The green dots are different copies of the su(2)F ×u(1)R

N = 2 J-fold background, the red dot is the N = 4 J-fold, and the yellow dots represent different
copies of the AdS4 J-fold solution with KK spectrum degeneracies discussed in [35].

As discussed in section 2 the range of the scalar moduli parametrizing the space of AdS4
J-fold backgrounds is ϕ ∈ [0,∞), χ ∈ [0,∞).9 This naively suggests that the conformal
manifold in the dual three-dimensional N = 2 SCFT is non-compact. It is generally
expected that non-compact conformal manifolds have loci where the SCFT at hand reduces
to a free theory, see [39] for a recent discussion. Based on this line of reasoning we therefore
may conclude that the N = 2 SCFTs described around (1.4) admit a free limit for some
value of the superpotential coupling λ. While this is a logical possibility, it is not clear how
this free SCFT arises from the strongly coupled non-Lagrangian T [U(N)] theory used in
the construction. Moreover, if there is indeed a free SCFT somewhere along the conformal
manifold we need to see hints of this in the SCFT spectrum we computed in section 4. The
expectation is that at a putative free point, all operators should have half-integer conformal
dimensions. From the results in (4.4) and (4.5) it is clear that we find half-integer conformal
dimensions only at the N = 4 J-fold point which is certainly not expected to be dual to
a free SCFT.10 One way to resolve this conundrum is to suppose that the space of AdS4
vacua S parametrized by (ϕ, χ) is the covering space of the SCFT conformal manifold. The
fundamental domain parametrizing inequivalent SCFTs,MF, is then obtained by modding
out S by some discrete group Γ, i.e.MF = S/Γ. Finding such equivalence relations on the
space S using only four-dimensional supergravity does not seem feasible. Strong evidence

9These ranges can be extended to ϕ ∈ (−∞,∞), χ ∈ (−∞,∞) but there is a symmetry of the solution
space under ϕ→ −ϕ and χ→ −χ so we can restrict to the range [0,∞) without loss of generality.

10When ϕ→∞, certain modes get an infinite mass, and thus their dual operators get an infinite conformal
dimension. To see if the supergravity approximation is valid in this limit it will be interesting to study the
ten-dimensional uplifted solution.
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for the existence of a non-trivial Γ acting on S was found very recently in [35] by studying
the full type IIB supergravity spectrum of KK modes along the one-dimensional subspace
of S given by Family I. As one increases χ the masses of many of the four-dimensional
supergravity modes increase monotonically. At the same time however, the masses of some
KK modes on the S̃1×Ŝ5 internal space decrease and the spectrum exhibits level crossing at
some finite value of χ. It was found in [35] that the full KK spectrum has a periodicity and
is equivalent for values of χ related by χ→ χ+nχ0, where n is a positive integer and χ0 is
determined by the Chern-Simons level k in (5.1). This non-trivial spectrum rearrangement
means that there are infinitely many copies of the N = 2 su(2)F × u(1)R J-fold located at
nχ0 along the one-dimensional space parametrized by χ. It was also noted in [35] that at
the special values n

2χ0 the KK spectrum exhibits accidental degeneracies and the spectrum
in the range (n2χ0,

n+1
2 χ0) appears to be identical to the one in the range (n+1

2 χ0,
n+2

2 χ0).
This non-trivial structure of the KK spectrum naturally suggests that along Family I the
inequivalent AdS4 solutions lie in the range [0, 1

2χ0) and therefore the fundamental domain
of the conformal manifold in the dual SCFT is obtained by some non-trivial action on S.
In figure 2 we illustrate this structure by denoting the N = 2 su(2)F × u(1)R J-folds with
a green dot and the special values n

2χ0 found in [35] with a yellow dot.
Based on the results of [35] and our discussion above, it seems that to uncover the full

structure of MF = S/Γ using holography, one needs to uplift the family of solutions we
found to ten dimensions and study the full KK spectrum of type IIB supergravity for the
space S.11 In the absence of this explicit calculation we would like to offer a few comments
on the possible structure ofMF. We have clear evidence from supergravity that there are
three special points on S depicted by the green, yellow, and red dots in figure 2. This
suggests that the fundamental domain MF may have a triangular shape as in the dark
blue region of figure 3. It is also possible however that there are additional special points
on S. We have not seen evidence of any symmetry enhancement or spectrum degeneracy in
our four-dimensional supergravity analysis in section 4 that indicate the presence of such
a point. However, it is entirely possible that the full KK spectrum along S exhibits special
features similar to the one uncovered in [35]. This will in turn lead to natural candidates
for other special points that can act as additional vertices for the fundamental domain
MF. We have sketched this possibility in figure 3 with a putative fourth special point
leading to a quadrilateral shape for MF. Settling the question about the full structure
of MF conclusively requires uplifting the two-parameter family of J-folds we found and
calculating the full type IIB KK spectrum and we hope to pursue this calculation in the
future. In addition to helping uncover the structure of MF, the explicit calculation of
the KK spectrum will lead to detailed information about the spectrum of unprotected
operators along the conformal manifold underscoring the unique utility of holography for
addressing hard CFT questions. We note in passing that a similar structure to the one
proposed above is exhibited by the conformal manifold of the three-dimensional N = 2
XY Z model. As shown in [41] the conformal manifold of this strongly interacting SCFT is
an orbifold of CP1 with isolated fixed points and the fundamental domain has a triangular
shape similar to the dark blue region of figure 3.

11The spin-2 KK spectrum of the N = 4 J-fold background was computed in [40].
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su(2)F

ref. [35]

N = 4

?

Figure 3. A sketch for the possible fundamental domain on the conformal manifold MF = S/Γ.

The kinetic terms for the scalar moduli (ϕ, χ) lead to the holographic result for the
Zamolodchikov metric on the conformal manifold presented in (3.9). Such explicit results
for the Zamolodchikov metric are rare and are of interest in their own right. For instance,
the Zamolodchikov metric can be used to study the CFT distance conjecture discussed
in [39]. To this end we have analytically solved the geodesic problem for the metric in (3.9)
and have found that there are both bounded and unbounded geodesic curves. These results
are of course valid on the space S and should be interpreted carefully when applied to the
fundamental domain MF discussed above. Understanding this in detail is an interesting
open problem that we intend to pursue in the future. We hope that this will also offer
some insights into the peculiar structure of the Ricci scalar in (3.10) which does not have
a definite sign on S and vanishes at (ϕ, χ)→∞.

There are a number of possible generalizations and extensions of our work. It is
clear that the four-dimensional maximal [SO(1, 1)×SO(6)]nR12 gauged supergravity has
many interesting AdS4 vacua. It will be most interesting to systematically classify these
solutions by using the analytical and numerical tools developed to search for AdS vacua of
other four-dimensional maximal supergravity theories [30, 31, 34]. It is notable that the
structure of the potential of the [SO(1, 1)× SO(6)] n R12 gauged supergravity appears to
be qualitatively different from that of other gauged supergravity theories with string and
M-theory embeddings. Namely, as exhibited above, there are continuous families of stable
AdS4 vacua in this theory with different amount of supersymmetry. It will be particularly
interesting to study families of N = 1 supersymmetric vacua like the examples constructed
in [6]. These solutions should be holographically dual to conformal manifolds of three-
dimensional N = 1 SCFTs which are hard to find and explore by purely field theory
methods. A preliminary search indicates that the 18-scalar model (3.5) admits new N = 1
AdS4 solutions and it is desirable to study them further.

The type IIB supergravity uplifts of the class of J-fold backgrounds discussed here do
not have singularities on the internal Ŝ5. There should be a vast generalization of these
solutions where one allows for singular D5 and NS5 brane sources on Ŝ5 compatible with
supersymmetry. Such generalizations of the N = 4 J-fold solution were studied in [3]
where they were shown to be holographically dual to quiver gauge theories significantly
more involved than the simple SCFT discussed around (1.3). It will be most interesting
to study N = 2 generalizations of this class of SCFTs and their dual AdS4 string theory
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backgrounds. To this end one should probably extend the classification of AdS4 N = 4
solutions of IIB supergravity discussed in [42, 43] to solutions with only N = 2. This
appears to be a complicated task and it may be instructive to first look for specific examples
of such N = 2 AdS4 vacua in IIB supergravity guided by the uplift of the family of solutions
discussed in this work.
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A Three-dimensional superconformal multiplets

In this appendix we summarize some facts about the representation theory for three-
dimensional superconformal algebras. We follow the notation and conventions in [44].
The superconformal algebra in three dimensions is given by osp(4|N ), where N denotes
the number of supercharges. Here we are interested in discussing N = 2 and N = 4 SCFTs.

We start with the representation theory for N = 2. To label the states in the SCFT we
use the notation [∆; j; r], where ∆ is the conformal dimension, j denotes the su(2) Lorentz
spin, and r is the charge under the u(1) R-symmetry. There are four real supercharges
with the following quantum numbers

Q ∼
[

1
2 ; 1

2 ;−1
]
, Q ∼

[
1
2 ; 1

2 ; +1
]
. (A.1)

Unitarity imposes bounds on the quantum numbers of SCFT operators. Generic uni-
tarity multiplets obey these bounds and are usually referred to as “long”. When the uni-
tarity bounds are saturated the multiplets contain less states and are called “short”. There
are various possible shortening conditions that give rise to different superconformal mul-
tiplets. Since the shortening conditions are determined by Q and or Q the corresponding
multiplets can be categorized by two labels. To this end we use the following notation

XȲ [∆; j; r] . (A.2)

For N = 2 there are eight distinct kinds of multiplets listed below.

• long multiplets, LL̄ [∆; j; r], for which there is no shortening and one has the bound,

∆ > 1 + j + |r| . (A.3)

• semi-short multiplets:

� LĀ1
[
∆; j ≥ 1

2 ; r > 0
]
and A1L̄

[
∆; j ≥ 1

2 ; r < 0
]
with

LĀ1 : ∆ = 1 + j + r , A1L̄ : ∆ = 1 + j − r . (A.4)
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� LĀ2 [∆; 0; r > 0] and A2L̄ [∆; 0; r < 0] with

LĀ2 : ∆ = 1 + r , A2L̄ : ∆ = 1− r . (A.5)

� LB̄1
[
∆; 0; r > 1

2

]
, and B1L̄

[
∆; 0; r < −1

2

]
with

LB̄1 : ∆ = r , B1L̄ : ∆ = −r . (A.6)

• short multiplets:

� A1Ā1
[
∆; j ≥ 1

2 ; r = 0
]
with

∆ = 1 + j . (A.7)

� A2Ā2 [∆; j = 0; r = 0] with
∆ = 1 . (A.8)

� A2B̄1
[
∆; j = 0; r = 1

2

]
and B1Ā2

[
∆; j = 0; r = −1

2

]
with

A2B̄1 : ∆ = 1
2 , B1Ā2 : ∆ = 1

2 .
(A.9)

� B1B̄1 [∆; 0, 0; 0] is the identity operator with conformal dimension

∆ = 0 , and r = 0 . (A.10)

For theories with N = 4 supersymmetry the R-symmetry is su(2)r1 × su(2)r2 . The rep-
resentations can therefore be labelled by four quantum numbers [∆; j; r1, r2], where ri are
the spin labels of the two su(2)’s. There are eight supercharges that transform as

Q ∼
[

1
2 ; 1

2 ; 1
2 ,

1
2

]
(A.11)

The long and short superconformal multiplets can be labelled with one letter and we use
the notation

X[∆; j; r1, r2] . (A.12)

The shortening conditions result in four distinct kinds of multiplets

• long multiplets, L [∆; j; r1, r2],

∆ > 1 + j + r1 + r2 . (A.13)

• short multiplets:

� A1
[
∆; j ≥ 1

2 ; r1, r2
]
with

∆ = 1 + j + r1 + r2 . (A.14)

� A2 [∆; 0; r1, r2] with
∆ = 1 + r1 + r2 . (A.15)
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[1](0)

Q̄

��
Q

��
[3
2 ](+1)

Q

��

[3
2 ](−1)

Q̄

��
[2](0)

[0](0)

Q̄

��
Q

��
[1
2 ](+1)

Q

��

[1
2 ](−1)

Q̄

��
[1](0)

Diagram 1. The A1Ā1 [2; 1; 0] and A2Ā2 [1; 0; 0] multiplets.

[0](2)

Q

��
[1
2 ](1)

Q

��
[0](0)

[0](−2)

Q̄

��
[1
2 ](−1)

Q̄

��
[0](0)

Diagram 2. The LB̄1 [2; 0; r] and B1L̄ [2; 0; r] multiplets.

Q Q2 Q3 Q4

[0](0,0) [1
2 ](1/2,1/2) [1](1,0) [3

2 ](1/2,1/2) [2](0,0)

[1](0,1)

[0](0,0)

Table 1. The A2[1; 0; 0, 0] multiplet.

� B1 [∆; 0; r1, r2] with
∆ = r1 + r2 , (A.16)

Below we give an explicit representation of all states in the N = 2 and N = 4 multiplets
that appear in the discussion in the main text. The N = 2 multiplets are organized in
diagrams according to the Q, and Q descendants, while the N = 4 multiplets are simply
organized in tables according to the Q descendants. In order to save space we do not
indicate the conformal dimension of individual states in the diagrams and tables and use
the notation [j](r) and [j](r1,r2) for N = 2 and N = 4, respectively.
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[1
2 ](1)

Q̄

��
Q

��
[1](2)

Q

��

[1](0) ⊕ [0](0)

Q̄

��
Q

��
[3
2 ](1) ⊕ [1

2 ](1)

Q

��

[1
2 ](−1)

Q̄

��
[1](0)

[1
2 ](−1)

Q̄

��
Q

��
[1](0) ⊕ [0]0

Q̄

��
Q

��
[1
2 ](1)

Q

��

[1](−2)

Q̄

��
[3
2 ](−1) ⊕ [1

2 ](−1)

Q̄

��
[1](0)

Diagram 3. The LĀ1
[ 5

2 ; 1
2 ; 1
]
and A1L̄

[ 5
2 ; 1

2 ;−1
]
multiplets.

[0](1)

Q̄

��
Q

��
[1
2 ](2)

Q

��

[1
2 ](0)

Q̄

��
Q

��
[1](1) ⊕ [0](1)

Q

��

[0](−1)

Q̄

��
[1
2 ](0)

[0](−1)

Q̄

��
Q

��
[1
2 ](0)

Q̄

��
Q

��
[0](1)

Q

��

[1](−2)

Q̄

��
[1](−1) ⊕ [0](−1)

Q̄

��
[1
2 ](0)

Diagram 4. The LĀ2 [2; 0; 1] and A2L̄ [2; 0;−1] multiplets.

[1
2 ](r)

Q̄

��
Q

��
[1](r+1) + [0](r+1)

Q̄

��
Q

��
[1
2 ](r+2)

Q

��

[1](r−1) + [0](r−1)

Q̄

��
Q

��
[1
2 ](r) + [3

2 ](r) + [ 1
2 ](r)

Q̄

��
Q

��
[1](r+1) + [0](r+1)

Q

��

[1
2 ](r−2)

Q̄

��
[1](r−1) + [0](r−1)

Q̄

��
[1
2 ](r)

[0](r)

Q̄

��
Q

��
[1
2 ](r+1)

Q̄

��
Q

��
[0](r+2)

Q

��

[1
2 ](r−1)

Q̄

��
Q

��
[0](r) + [1](r) + [0](r)

Q̄

��
Q

��
[1
2 ](r+1)

Q

��

[0](r−2)

Q̄

��
[1
2 ](r−1)

Q̄

��
[0](r)

Diagram 5. The LL̄
[
∆; 1

2 ; r
]
and LL̄ [∆; 0; r] multiplets.
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Q Q2 Q3 Q4 Q5 Q6

∆ = 2 5/2 3 7/2 4 9/2 5
[0](1,1) [1

2 ](3/2,1/2) [1](1,0) [3
2 ](1/2,1/2) [1](0,1) [1

2 ](1/2,1/2) [0](0,0)

[1
2 ](1/2,1/2) [1](1,1) [1

2 ](3/2,1/2) [1](0,0)

[1
2 ](1/2,3/2) [1](0,1) [1

2 ](1/2,3/2) [1](1,0)

[0](2,0) 2× [1
2 ](1/2,1/2) [0](1,1)

[0](1,1) [0](0,0)

[0](0,2)

[0](1,0)

[0](0,1)

[0](0,0)

Table 2. The B1[2; 0; 1, 1] multiplet.
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