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1 Introduction

Gluodynamics in the ’t Hooft large Nc limit [1] provides an example of a weakly coupled
string theory, which is quite different from any well understood string model. An Axionic
String Ansatz (ASA) for the dynamics of long confining strings both at D = 3 and D = 4
spacetime dimensions was put forward in [2]. This proposal led to a prediction (“the ASA
spectrum”) for the quantum numbers of short string states (glueballs) in D = 3 Yang-Mills
theory [3]. At the time of the proposal the ASA spectrum was in agreement with the
existing lattice data for 14 low lying glueball states corresponding to N = 0, 1, 2 string
levels [4]. Recent lattice results [5] confirmed the ASA spectum for 25 heavier states at
N = 3 level. These results are also in a broad agreement with the ASA for 64 N = 4
states, but more work needs to be done on the lattice side to test the ASA for these states.

We feel that these results provide a sound motivation to take the ASA proposal seri-
ously and to understand it better. In particular, it is natural to ask whether it is possible
to go beyond predicting the glueball quantum numbers, and to calculate also glueball mass
splitings at each level. A natural setting to achieve this at least for some states is provided
by the effective theory of rotating closed strings (see [6] for the treatment of the leading
Regge trajectory in this framework and also [7–10] for other recent closely related work).
Namely, one starts with a glueball of a large spin J on the leading Regge trajectory (i.e., a
state with a minimum energy E in a sector with a fixed angular momentum J). At large
J this state may be described as a folded rotating string and other glueball states close to
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the leading Regge trajectory can be described by considering small perturbations around
this background.

In principle, one may then use the 1/J expansion to calculate perturbatively the masses
of glueball states in the vicinity of the leading Regge trajectory. There is a technical
difficulty though in implementing this program due to the presence of a fold singularity for
the classical rotating rod solution at D = 3.1 In the current paper we will not attempt to
address this difficulty and will pursue a more modest goal. Namely, we will study glueball
quantum numbers coming out from the effective string theory and compare them to the
ASA spectrum.

We start in section 2 with a brief review of the ASA spectrum. To make the paper self-
contained we present there a derivation of the ASA spectrum. This derivation is slightly
different from the one presented in [3], and it is instructive to compare it with the later
closed effective string theory calculation. The latter is presented in section 3. In section 4
we compare the two spectra. We present our conclusions and discuss future directions in
section 5.

2 The ASA recap

There are two major ingredients entering into the derivation of the ASA glueball spectrum.
First, it is assumed that the glueball Hilbert space Hgl can be decomposed into a sum over
string levels labeled by N ,

Hgl =
∞∑
N=0
HL ⊗HR . (2.1)

Here HL and HR are Hilbert spaces of left- and right-moving excitations on the string
worldsheet. For confining strings one expects to find

HL = HR

as a consequence of the charge conjugation C, which acts by exchanging left- and right-
movers

C(ψ ⊗ χ) = χ⊗ ψ .

The decomposition (2.1) may be thought of as a part of a definition of what it means
for glueballs to be closed string states without any additional massive degrees of freedom
on the worldsheet. Note that if the latter were present, the decomposition (2.1) would not
hold due to a possibility to add the corresponding massive excitations at rest.

Of course, for the decomposition (2.1) to be useful in practice, one needs to make
some assumptions about the masses of different states. For critical strings all states at the
same level are completely degenerate. This degeneracy can be traced to the integrability
of the worldsheet theory in the critical case. The worldsheet theory of confining strings
is non-integrable. On the other hand, one of the major motivations for the ASA is the
idea of approximate integrability on the worldsheet of confining strings. Empirically, the

1The same difficulty arises also at D = 4. At D > 4 the singularity can be avoided by considering a
string rotating in two orthogonal planes [6].
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approximate integrability is suggested by a certain intriguing numerological coincidence in
the coupling of the worldsheet axion as extracted from the lattice data [2, 11]. A closely
related coincidence was revealed also by applying the S-matrix bootstrap to the fluxtube
dynamics [12].

Coming from a theory side, low energy integrability arises as a consequence of the
tree level integrability of the Nambu-Goto theory [13]. At high energies integrability can
be understood as a byproduct of asymptotic freedom and confinement [14]. Namely, it
is natural to identify high energy degrees of freedom on the worldsheet with partons.
Asymptotic freedom implies the absence of (hard) particle production in high energy parton
scattering. The presence of a confining string implies that there is a non-trivial phase shift
in the worldsheet scattering. Hence, the worldsheet theory is forced to turn integrable at
high energies rather than to reduce to just a free one.2

Motivated by these considerations the ASA assumes that glueball states corresponding
to the same string level are approximately degenerate. This is a crucial assumption which
makes the decomposition (2.1) practically useful.

The second major step in the derivation of the ASA spectrum relies on the assumption
that left- and right-mover’s Hilbert spaces HL,R are the same as the Hilbert space of open
strings Hopen,

HL = HR = Hopen . (2.2)

Unlike the tensor product decomposition (2.1) we are not aware how to justify (2.2) on
general grounds. The main motivation for (2.2) is that it holds for critical strings.

Once this assumption is accepted, one may explore HL,R perturbatively. Namely,
glueball states at the leading Regge trajectory (i.e., minima of energy E at fixed angular
momentum J) at large J can be described by the classical rotating rod solution. Low lying
excitations above the leading Regge trajectory can be described then by quantizing small
perturbations around the rotating rod.

Let us see how this works in practice. Our analysis here is similar to the one presented
in [3]. A minor technical difference is that we are not restricting to the subspace of fixed
J as was done in [3], but consider all possible perturbations.

Dynamics of a long smooth string is described by the Nambu-Goto action,

SNG = −`−2
s

∫
dτdσ

√
− det ∂αXµ∂βXµ + . . . , (2.3)

where dots stand for higher derivative terms, which will be ignored in our analysis. In
principle, one may work directly with this action. However, as is often the case, it is more
convenient to work with the equivalent Polyakov action

SPol = −`−2
s

∫
dτdσ

√
−h1

2h
αβ∂αX

µ∂βXµ + SPS + . . . . (2.4)

Here SPS is the Polchinski-Strominger (PS) term [15] which has to be introduced given
that we work in a non-critical space-time dimension (see [7] for a nice modern introduction

2Note that one should be careful not to take these arguments too literally. Asymptotic freedom does
not prevent soft particle production. Hence integrability is expected to be found only for a certain subset
of suitably defined inclusive hard observables.
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Figure 1. Open string rotating with angular momentum J.

into the PS formalism). This term is important for calculating next-to-leading (one loop)
effects in the 1/J expansion. For the purpose of the leading order (tree level) analysis
presented here it can be ignored.

For open strings we choose the following range of the σ coordinate

σ ∈ [0, π] .

At the string end-points the embedding coordinates satisfy the Neumann boundary condi-
tions, √

−hhσα∂αXµ(0) =
√
−hhσα∂αXµ(π) = 0 . (2.5)

In general, these get corrected due to higher order dotted terms in (2.3), (2.4), which
include also boundary localized contributions such as the end-point mass. Again, these
effects can be ignored at the leading order in the 1/J expansion.

The classical rotating rod solution of an energy Er and an angular momentum Jr takes
then the following form (see figure 1)

X0
r =

√
2Jr
π
`sτ (2.6)

Xr ≡ X1
r + iX2

r =

√
2Jr
π
`se

iτ cosσ . (2.7)

The corresponding Polyakov metric is flat

hαβ = ηαβ . (2.8)

The energy and the angular momentum of this solution are related by the classical Regge
formula,

E2
r = 2πJr

`2s
. (2.9)

To quantize small perturbations around this solution, we will make use of the first
order formalism (which actually precedes the Polyakov description and goes back to [16];
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its concise pedagogical exposition can be found, e.g., in [17, 18]). In this approach one
replaces the leading Polyakov action with the equivalent first order action

Sfirst order =
∫
dτdσ

(
Πµ∂τX

µ+ 1
2
√
−hhττ

(
`2sΠµΠµ+`−2

s ∂σX
µ∂σXµ

)
+ hτσ

hσσ
Πµ∂σX

µ
)
.

(2.10)
This rewriting makes it clear that the classical Nambu-Goto dynamics is governed by a
trivial Hamiltonian and two Virasoro constraints. The latter are first class constraints, i.e
these are gauge symmetry generators. The advantage of the first order formalism is that
it makes this canonical structure manifest.

In this formalism, it is common to use the light cone gauge for the analysis of the
string spectrum. However, in the context of 1/J expansion, the so-called static gauge is
more convenient. Details of the gauge fixing procedure can be found in appendix A, here
we present the results only. Analogously to the light cone gauge, as a first gauge condition
we fix X0 in the form (2.6). As a second gauge fixing condition we impose

Π0 = −E(τ)
π

. (2.11)

Here E(τ) is the target space energy of the string, which stays constant on-shell.
Then, by varying the action (2.10) w.r.t. Π0 one arrives at

hττ
√
−h = − E

Er
. (2.12)

On the other hand, variation of (2.10) w.r.t. X0 gives

∂σ

(
hτσ

hσσ

)
= −∂τE

E
. (2.13)

By making use of the Weyl symmetry we may set
√
−h = 1 .

Then (2.12) and (2.13) imply that all components of hαβ are independent of σ and the
Neumann boundary condition (2.5) enforces

hτσ = 0 .

Thus, similarly to the treatment of the light cone gauge presented in [18], in the first order
formalism the condition analogous to (2.8) comes about as a result of solving for the non-
dynamical Lagrange multipliers, rather than from direct conformal gauge fixing as in the
conventional Polyakov treatment.

A general perturbation of the rotating rod solution can be parametrized in the following
way in this gauge

X = eiδ(τ)Xr + ei(τ+δ(τ))
(
x(τ) +

√
2
π

∞∑
n=1

χn(τ) cosnσ
)
. (2.14)

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
6

This parametrization is one-to-one provided δ and χ1 are real, x and χn’s with n > 1 are
complex and √

2Jr
π
`s + χ1 > 0 . (2.15)

In this parametrization, we separated the phase δ, which may be thought of as a Gold-
stone mode arising as a result of the spontaneous breaking of time translations and spatial
rotations down to the diagonal subgroup in the presence of the stationary classical back-
ground (2.6), (2.7). The unbroken diagonal combination ensures that the action for pertur-
bations enjoys time translation invariance τ → τ + const. The effective theory around the
leading Regge trajectory treats all excitations perturbatively. Only the Goldstone phase δ
and the average string position x(τ) are not assumed to be small.

In the first order formalism, the momentum

Π = Π1 + iΠ2

enters as an independent field. Its classical background is given by

Πr = `−2
s ∂τXr = i`−2

s Xr .

The momentum field of a general perturbed rotating string can be parametrized as

Π = eiδ(τ)Πr + ei(τ+δ(τ))
(
p(τ)
π

+
√

2
π

∞∑
n=1

πn(τ) cosnσ
)
, (2.16)

where p and πn’s are all complex.
Note that in this parametrization the total physical momentum of the string is given by

pph(τ) = ei(τ+δ(τ))p(τ) (2.17)

rather than by p(τ). Also, as a consequence of Lorentz symmetry, it should be possible
to run the effective field theory analysis without assuming that pph is small. However, for
simplicity, we will not attempt to do it here.

In this parametrization, the canonical part of the action (2.10) (i.e., the part not
including the Virasoro constraints) takes the form

S0 =
∫
dτ

Ω− `s

√
2Jr
π
E + J

 , (2.18)

where
Ω = Re

(
p∗∂τx+

∞∑
n=2

π∗n∂τχn

)
+ ∂τχ1Reπ1 + J∂τδ (2.19)

is the canonical one-form, and

J = Re

ip∗x+ Jr +

√
Jr
2
(
`−1
s χ1 + i`sπ

∗
1

)
+ i

∞∑
n=1

π∗nχn

 (2.20)

is the angular momentum of the string.
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The remaining step is to impose the Virasoro constraints. As a result of the gauge
fixing, these are second class constraints now, and can be imposed simply by eliminating
some of the variables. Before implementing this step in practice, notice that both Vira-
soro constraints are independent of the phase variable δ. Hence, from the form of the
action (2.18) we can conclude right away that the phase δ is canonically conjugate to the
angular momentum,

πδ = J , (2.21)

so that J generates shift symmetry of δ. Given that δ is a 2π-periodic variable, δ ∼ δ+ 2π,
this implies that upon quantization J may take integer values only,

J ∈ Z . (2.22)

Note that up to now our discussion was not relying on any perturbative expansion. Hence,
the quantization condition (2.22) holds unchanged in the full quantum theory. Of course,
this is expected on general grounds for a bosonic Poincaré invariant theory.

On the other hand, the light cone gauge quantization of D = 3 bosonic strings leads
to irrational anyonic states in the spectrum [19] (the same applies also to D = 3 super-
strings [20]). We conclude that the light cone gauge quantization is anomalous for D = 3
(super)strings. Unlike for other non-critical dimensions, at D = 3 this is a global anomaly,
which does not show up in the local Poincaré algebra. Most likely it is related to the use
of the singular string configurations in the light cone gauge. Adding these configurations
distort the proper geometrical structure of the physical phase space responsible for the
quantization condition (2.22).

Let us solve the Virasoro constraints now. This looks hard to do exactly in the gauge
we are using, so at this stage we will resort to the perturbative 1/Jr expansion. Details
of solving the linearized Virasoro constraints are provided in the appendix B. After the
dust settles, the result is that the Hilbert space of open string perturbations around the
classical background is generated by a single tower of oscillator operators a†n with n going
from 1 to ∞, acting on states of fixed internal angular momentum |I〉. Here the internal
angular momentum I is related to the total angular momentum J by (B.18). Both I and
J are conserved, and take integer values. All creation operators a†n commute with both I
and J , so their values are unchanged under the action of a†n.

At the leading order in the 1/J expansion, the energy is found to be

E2 = |p|2 + 2π
`2s
N (2.23)

where we introduced the level operator N given by

N = I +
∞∑
n=1

(n+ 1)a†nan . (2.24)

These results agree with those obtained in [3], where the quantization was performed in the
string rest frame and in the sector with fixed value of I. The canonical treatment of the
theory emphasized in the approach presented here, allows us also to derive the quantization
condition for I (and J).
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The perturbative spectrum (2.23) is accurate for sufficiently low lying excitations above
the leading Regge trajectory with Jr � 1 and I close to Jr. In particular, (2.23) provides
an exact description of the fixed I sector in the limit I →∞. Of course, the same analysis
can be applied starting with a rotating rod solution with a negative angular momentum
which would lead us to the same spectrum (2.23) at large negative angular momentum I,
with I replaced by |I| in (2.24).

Clearly, the 1/J expansion breaks down at J ∼ 1. Perhaps the most controversial step
in the ASA is an assumption that for state counting one may use (2.23) for small values
of I, including even non-rotating I = 0 string states. The ASA closed string Hilbert space
is constructed by plugging Hopen obtained in this way into the tensor square decomposi-
tion (2.1). Remarkably, as we review in section 4, the resulting closed string spectrum
agrees with the glueball spectrum observed in lattice simulations.

3 The spectrum of closed effective strings

As reviewed in the previous section, the ASA spectrum of closed strings is obtained by per-
turbative quantization of open strings around a rotating rod background and then using
the resulting Hilbert space to build the closed string Hilbert space. However, it is also pos-
sible to perform this perturbative quantizaton procedure directly for closed strings. As we
will see, the resulting Hilbert space and spectra differ from the ASA results, although they
coincide close to the leading Regge trajectory. In this section we work out the perturbative
quantization procedure for closed strings.

Quantization of small perturbations around the classical rotating rod background for
closed strings proceeds much in the same way as for open strings. However, as will be
discussed shortly, one needs to account for some important subtleties with the gauge fixing.
The classical closed string rotating rod solution of energy Er and angular momentum Jr
can be written in the form (see figure 2)

X0
r =

√
Jr
π
`sτ (3.1)

Xr ≡ X1
r + iX2

r =

√
Jr
π
`se

iτ cosσ . (3.2)

where the range of the σ coordinate is now given by

σ ∈ [0, 2π] .

The corresponding classical Regge formula relating Jr and Er takes form

E2
r = 4πJr

`2s
. (3.3)

As for open strings, in the static gauge X0 is fixed in the form (3.1) and its conjugate
momentum Π0 is fixed to be

Π0 = −E(τ)
2π . (3.4)
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Figure 2. Folded string rotating with angular momentum J .

which differs from its open string counterpart (2.11) only by a multiplicative constant
prefactor.

Importantly, unlike for open strings, this prescription does not fully fix all the available
gauge freedom. Indeed, in the notations of appendix A, gauge transformations with

ξτ = 0

and ξσ being any σ-independent function of τ are compatible with static gauge conditions.
These gauge transformations are absent for open strings. Indeed, ξσ must vanish at the
string endpoints for the transformed Xµ to satisfy Neumann boundary conditions. How-
ever, these transformations are allowed for closed strings. This can also be understood by
noting that on-shell these gauge transformations correspond to constant time-dependent
shifts of σ which are allowed transformations for closed strings.

To take care of this residual gauge freedom, we parametrize a general perturbation of
our classical background as

X = eiδ(τ)Xr + ei(τ+δ(τ))

x(τ) +
√

1
2π

∑
n 6=−1,0

χn(τ)einσ
+

√
1

2πe
i(τ+δ′(τ))χ−1(τ)e−iσ .

(3.5)
For the phases δ and δ′ to be well defined we require χ±1 to be real as well as to satisfy
the positivity conditions √

Jr
2 `s + χ±1 > 0 (3.6)

We may now fix the residual gauge freedom by imposing the condition

δ = δ′. (3.7)

Note however that this condition still leaves a discrete residual gauge freedom to shift σ by
π. At this stage we will keep this remaining Z2 subgroup unfixed. It plays an important
role later.
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The canonical momentum field of the rotating closed string

Π = Π1 + iΠ2

developes a classical background given by

Πr = `−2
s ∂τXr = i`−2

s Xr .

The momentum field of a general closed string configuration is parametrized much in the
same way as for open strings

Π = eiδ(τ)Πr + ei(τ+δ(τ))

p(τ)
2π +

√
1

2π
∑
n 6=0

πn(τ)einσ
 , (3.8)

where p and πn’s are all complex. The canonical part of the action is the same as (2.18),
where now the symplectic one-form is

Ω = Re

p∗∂τx+
∑

n 6=0,±1
π∗n∂τχn

+ ∂τχ1Reπ1 + ∂τχ−1Reπ−1 + J∂τδ (3.9)

and the total angular momentum is given by

J = Re

ip∗x+ Jr +

√
Jr
2
(
`−1
s (χ1 + χ−1) + i`s(π∗1 + π∗−1)

)
+ i

∑
n 6=0

π∗nχn

 . (3.10)

In this setup, we now perform a procedure completely analogous to the one followed
for open strings and solve the Virasoro constraints perturbatively in 1/Jr. The details
are worked out in appendix C. The end result is that we arrive at the “almost physical”
perturbative Hilbert space constructed out of two towers of oscillators an and bn. As before
these commute with the total and internal angular momentum operators J and I. Thus
the “almost physical” perturbative Hilbert space is generated by acting with the creation
operators a†n and b†n on the internal momentum eigenstates |I〉.

To the leading order in the 1/J expansion the energies of the closed string states are
given by

E2 = |p|2 + 4π
`2s
N (3.11)

where the number operator N is

N = I +
∞∑
n=1

(
(n+ 1)a†nan + (n+ 1)b†nbn

)
. (3.12)

As the name implies, the “almost physical” Hilbert space is not yet the physical Hilbert
space of effective strings. The reason is the presence of the residual Z2 gauge symmetry,

σ → σ + π . (3.13)

– 10 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
6

This implies that to construct the physical Hilbert space one needs to project out states
which are not invariant under (3.13). By inspecting the n ± 1 sector, one concludes that
this Z2 transformation corresponds to the shift of the phase δ

δ → δ + π . (3.14)

Then one finds that the an and bn oscillators transform as

am → ame
i(m+1)π (3.15)

bm → bme
i(m+1)π. (3.16)

On the other hand, the trasformation rule for δ implies that eigenstates of I transform as3

|I〉 → eiIπ|I〉. (3.17)

Therefore, if we take a state |Ψ〉 in our “almost physical” Hilbert space

|Ψ〉 =
∏
k≥1

(a†k)
nk
∏
j≥1

(b†j)
mj |I〉, (3.18)

it transforms under Z2 as
|Ψ〉 → eiNπ|Ψ〉. (3.19)

Hence the physical Hilbert space is built up of even N states only. In particular, this implies
that all physical states on the leading Regge trajectory carry even spin I in agreement with
the lattice data. It is interesting that this result comes out in the ASA spectrum in a very
different way — it arises there as an immediate consequence of the tensor square structure.
Let us now perform a detailed comparison of the ASA spectrum, effective closed strings
and the lattice glueball data.

4 Comparison between the ASA and effective string theory spectra

It is often convenient to package numbers of string states PN,J with given level N and spin
J ,4 into a generating function defined as

χ(x, J) =
∑
N,J

xNeiJPN,J . (4.1)

For instance, the generating function for the ASA open string spectrum derived in section 2
takes the following form [3]

χopen(x, θ) =
∞∑
N=0

xNχN (θ) = (1− x)(1− x2)P (x)
1 + x2 − 2x cos θ , (4.2)

3Notice that in the parametrization given by (3.5) and (3.8) both x and p get a phase under the Z2

transformation and J is the canonically conjugate variable to δc, as defined in appendix B, which transforms
under Z2 in the same way as δ. However, upon implementing transformations (B.16) and (B.17), x and p no
longer transform under Z2. In these variables I is canonically conjugate to δc and equation (3.17) follows.

4Here we work in the rest frame, p = 0, so that there is no distinction between J and I.
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where P (x) is the Euler partition function

P (x) =
∞∏
m=1

(1− xm)−1 =
∞∑
m=0

xmPm . (4.3)

Then the generating function for the closed string ASA spectrum is given by

χcl(x, θ) =
∞∑

Nc=0
x2NcχNc(θ)2 . (4.4)

On the other hand, it is straightforward to see that the generating functional for the closed
effective string spectrum takes the following form before the Z2 projection

χeff(x, θ) = (1− x)2(1− x2)P (x)2

1 + x2 − 2x cos θ . (4.5)

As discussed in section 3, the physical closed effective string spectrum is obtained as a
result of the Z2 projection, which amounts to keeping only even powers of x in (4.5).

Clearly, we see that the ASA and effective string spectra are not the same for closed
strings. We illustrate this in figure 3 where we presented the multiplicities of both spectra
for a range of values of J and N . Note that here we label closed strings levels by

Nc = N

2
rather than by N .

A couple of observations can be made by comparing the two spectra. First, the ASA
and effective strings agree in the vicinity of the leading Regge trajectory. This is similar to
how the open string ASA spectrum (which, in our terminology, is the same as the effective
open string spectrum) was found to agree with the light cone spectrum in [3].5 On one side,
this agreement had to be expected, because in the vicinity of the leading Regge tarjectory
effective string theory should be trustworthy. On the other hand it can be considered as an
additional consistency check of the ASA, which relies on the ad hoc assumption (2.2). In
appendix D we prove that this agreement holds for all Nc and J , satisfying Nc ≤ J ≤ 2Nc.

To illustrate which of the two spectra is in a better agreement with the actual glueball
data, we present results of the glueball spin determinations from [5] in figure 4. These
lattice results are in excellent agreement for the states corresponding to Nc = 0, 1, 2, 3
ASA levels (39 states in total). As discussed in more details in [5], lattice results broadly
agree with the ASA spectrum also for 64 states corresponding to N = 4 level, although
more accurate simulations are needed to reach a definitive conclusion for these state.

On the other hand, existing results demonstrate clear contradictions between effective
closed strings and actual glueball spectra starting already from the N = 2 level. Interest-
ingly, when the two spectra disagree, effective strings always predict extra states compared
to the ASA. This is somewhat surprising — naively one might expect that effective the-
ory would miss some states, rather than overpredict them. Perhaps, this is related to the

5Here, by light cone spectrum we mean the spectrum obtained using analytic continuation from D > 3.
Unlike the light cone spectrum of [19], this one is anyon free.
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Figure 3. Multiplicities of states with angular momentum J and level Nc for the ASA spectrum
(the top panel) and for effective closed strings (the bottom panel). Red entries are the same for
both spectra.

constraints (3.6), which are ignored when extrapolating the effective theory results to ar-
bitrary J and N . However, for some reason, neglecting an analogous constraint (2.15) for
open strings in the ASA derivation does not lead to any contradictions (at least, as far as
currently available lattice data is concerned).

Note also that, independently of lattice data, the effective theory spectrum extrapo-
lated to all J and N is incompatible with the tensor square structure. Indeed, the spectrum
constructed in section 3 does not pass even the very basic test — total multiplicities at
fixed N are not always given by integer squared.

Finally, in spite of the difference between the two spectra, they show the same expo-
nential growth of the total number of states at large masses, which is determined by P (x)2
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Figure 4. Lattice results for glueball masses and quantum numbers [5]. For level N = 4 we
included one state only for each set of quantum numbers.

factor. Namely, using the Hardy-Ramanujan asymptotics for the number partitions

Pn ∼ eπ
√

2n
3 ,

we find that both spectra exhibit Hagedorn behavior with the Hagedorn temperature
equal to

T−1
H = `s

√
π

6 .

5 Conclusions and future directions

To summarize, in this work we constructed a perturbative spectrum of closed effective
strings in D = 3, by expanding around a classical folded rotating rod solution with large
spin Jr. This spectrum is expected to be accurate in the vicinity of the leading Regge
trajectory. Indeed, we found that it agrees there with the ASA spectrum and with the
lattice Yang-Mills data. In particular, it correctly reproduces the angular momentum
quantization of the glueball states on the leading Regge trajectory.

On one side, this agreement provides a consistency check for the ASA. On the other
hand, an observation that the two spectra disagree for highly excited states makes it even
more surprising that the ASA spectrum agrees so well with the lattice data. Indeed, the
ASA spectrum is also based on the extrapolation of the high J results to all values of J . As
we see, for some reason though this extrapolation works better at the level of open strings.

Throughout the paper, we focused on counting the state multiplicities for different
values of N and J . In addition, the ASA spectrum predicts also C parity assignments
for string states, which also agree with the lattice data. It is straightforward to obtain
the analogous prediction for the closed effective strings. Namely, C conjugation acts by
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changing an orientation of a closed string, i.e. with the closed effective string theory it
corresponds to the worldsheet parity σ → −σ. This transformation leaves invariant the
folded rotating rod solution (3.2) and acts by exchanging the two towers of oscillators
in (3.12),

C(an) = bn .

We checked that parity assignments agree between the ASA and closed effective strings
when the two spectra predict the same multiplicities.

Assigning the P parity is harder. Indeed, P parity flips a sign of the angular momen-
tum, so the classical background is not invariant under this transformation. A perturbative
quantization is only consistent for excited states whose angular momentum is close to an-
gular momentum of the classical background. As a result, the P parity transformation
necessarily maps one “patch” covered by effective theory into another. For instance, in
order to construct states with definite parity on the leading Regge trajectory one needs to
take linear superpositions of rotating rods of opposite momenta. This makes it problematic
to come up with P parity assignment at the level of effective strings, either closed or open.

Nevertheless, as explained in [3], the ASA allows one to obtain P parity assignments
for the majority of states. First, only spin 0 states need to be considered — all states with
J 6= 0 automatically come in pairs of opposite parity. Furthermore, for the same reason, the
only closed string states whose P parity is left undetermined in the ASA are the J = 0 states
obtained as a tensor product of two open string J = 0 states. The first such state appears at
the Nc = 4 level. Furthermore, this necessarily leads to the appearance of exotic CP = −1
states — and this is the only way such states can (and must) appear. Interestingly, a state
with CP = −1 and P = 1 has indeed been found in lattice simulations [5], with the mass
in the correct ballpark (although, the mass determination for this highly excited state is
quite imprecise). It will be interesting to see whether the ASA can be extended to predict
the P parity of these exotic states.

Our main motivation for performing the semiclassical analysis directly in the closed
string level is to use this as a starting point to calculate mass splittings, coming from either
higher orders in 1/J expansion or from higher dimensional operators. This calculation
is hard to implement within the ASA framework because it is unclear how to determine
interactions between the two components of the tensor square. This problem does not arise
for effective closed string calculations. However, as our results show, this framework allows
to calculate masses only for a limited set of states. Still, it will be interesting to perform
this calculation and to compare the results with the lattice spectrum. To implement this
one needs to overcome the challenge of how to treat the fold singularities of the rotating
rod solution.

Finally, another avenue for future work is to apply these ideas to D = 4. This is
particularly interesting given that the recent lattice simulations [21] provide a new wealth
of high quality data to test against stringy predictions. The major novelty when moving to
the D = 4 case is the presence of a massive excitation on the worldsheet — the worldsheet
axion [2, 22].
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A Details of the gauge fixing for open strings

The action (2.10) includes two first class Virasoro constraints

Vτ = `2sΠµΠµ + `−2
s ∂σX

µ∂σXµ , (A.1)

Vσ = Πµ∂σX
µ . (A.2)

As usual these generate gauge transformations of any physical observable O via Poisson
brackets,

δO =
{∫

dσ (ξτ (τ, σ)Vτ + ξσ(τ, σ)Vσ) ,O
}
. (A.3)

As a result, embedding coordinates and momenta of the string transform as

δXµ = `2sξ
τΠµ + ξσ∂σX

µ (A.4)
δΠµ = `−2

s ∂σ (ξτ∂σXµ) + ∂σ(Πµξσ) . (A.5)

As explained in [17], these transformations reduce to the conventional world-sheet repa-
rametrizations on-shell.

To impose the static gauge conditions we first make use of the Vτ generator to fix X0

to be of the form (2.6). The resulting X0 is invariant under the Vσ generator, and the
latter can be used to fix Π0 in the form (2.11). Note that, as follows from (A.5), the total
momenta

∫
dσΠµ are invariant under gauge transformations (as expected), so we cannot

fix Π0 to be an arbitrary constant, and rather need to keep it as a general function of τ as
we did in (2.11).

B Solving the linearized Virasoro constraints for open strings

By expanding the Virasoro constraints to linear order in perturbations for open strings and
performing the Fourier decomposition, one arrives at the following set of equations

An = Cn+2 (B.1)
Bn = Dn+2 (B.2)

where n = 0, 1, . . . , and

An =

 `2sReπn + n Imχn , n > 0
`2s

√
2
π Re p , n = 0

(B.3)

Bn =

 nReχn − `2s Imπn , n > 0
−`2s

√
2
π Im p , n = 0

(B.4)

Cn = `2s Reπn − n Imχn , n ≥ 2 (B.5)

Dn = nReχn + `2s Imπn , n ≥ 2 . (B.6)
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One more linearized constraint reads

E − Er =
√
π

2
(
Imπ1 + `−2

s χ1
)
. (B.7)

Taking into account the expression (2.20) for the total angular momentum, this last con-
straint (B.7) can be rewritten as

E − Er = `−1
s

√
π

2Jr
(J − Jr) ,

which is simply a local linear approximation to the shape of the leading Regge trajec-
tory (2.9).

We make use of these constraints to express the energy E and all Cn, Dn variables in
terms of the remaining physical phase space variables (x, p, δ, J , An, Bn) with n ≥ 1. By
plugging the result into the canonical one-form (2.19) we arrive at the following expression
for the reduced canonical structure (up to a total derivative)

Ωred = pi∂τ x̃
i + J∂τδc +

∞∑
n=1

Pn∂τQn , (B.8)

where we defined the following canonical variables on the reduced phase space,

x̃ = x− i`2s
4π p (B.9)

δc = δ − A1
2`s
√
Jr

(B.10)

Qn = 1
(n(n+ 2))1/2Bn (B.11)

Pn = n+ 1
`2s(n(n+ 2))1/2An (B.12)

To calculate the full quadratic action and the mass spectrum of open strings we need to
evaluate the constraint (B.7) to the second order in perturbations (because the energy E
enters linearly in the action). In fact, the resulting mass shell condition looks the simplest
without performing any expansion,

E2 = |p|2 + 2π
`2s

(
J + Im

(
p∗x+

∞∑
n=1

π∗nχn

)
+ 1

2

∞∑
n=1

(
`2s|πn|2 + `−2

s n2|χn|2
))

. (B.13)

To deduce the leading order physical spectrum we need to rewrite (B.13) in terms of the
canonical variables on the reduced phase space. This results in the following expression for
the energy,

E2 = |p|2 + 2π
`2s

(
J + Im (p∗x̃) + `2s

2

∞∑
n=1

(
P 2
n + (n+ 1)2

`4s
Q2
n

))
. (B.14)

The quadratic Hamiltonian for open strings in the reduced phase space reads

H = `s

√
2Jr
π
E − J. (B.15)
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From these expressions it is clear that J is conserved, given that its conjugate variable δc
does not appear in the Hamiltonian. Furthermore, it is clear that J is quantized in units
of 1/2π since δc is 2π periodic.

However, the conservation of neither |p|2 nor of the center of mass angular momentum
Im (x∗p) is manifest yet. These conservations can be shown by performing the change of
variables

x→ ei(τ+δc)x (B.16)

p→ ei(τ+δc)p, (B.17)

which leaves |p|2 and Im (x∗p) invariant. After this change of variables, the canonically
conjugate variable to δc is the internal angular momentum

I = J − Im (x∗p) . (B.18)

Notice that under this time-dependent transformation the Hamiltonian also changes and
becomes

H = `s

√
2Jr
π
E − I. (B.19)

In these variables it is immediate that I is quantized in units of 1/2π and conserved by
the same argument as before for J . This then implies that the orbital angular momentum
Im (x∗p) is also conserved and quantized. Furthermore, using I as a canonical variable
we see that the redefined x no longer appears explicitly in the Hamiltonian, and thus the
redefined p is conserved.

To summarize, the reduced phase space may be parametrized by the canonical pairs
{x, p}, {δc, I} and {Qn, Pn}n>0. Up to quadratic order in the perturbations the energy is
given by

E2 = |p|2 + 2π
`2s

(
I + `2s

2

∞∑
n=1

(
P 2
n + (n+ 1)2

`4s
Q2
n

))
. (B.20)

which reduces to (2.23) by switching to the creation/annihilation variables.

C Solving the linearized Virasoro constraints for closed strings

Fourier decomposition of the linearized Virasoro constraints for closed strings results in the
following set of equations

An = C ′n+2 (C.1)
Bn = D′n+2 (C.2)
A′n = Cn+2 (C.3)
B′n = Dn+2 (C.4)

χ1 + `2s Im (π1) = χ−1 + `2s Im (π−1) , (C.5)
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where n = 0, 1, . . . , and

An =

 `2sReπn + n Imχn , n > 0
`2s
2

√
2
π Re p , n = 0

(C.6)

Bn =

 nReχn − `2s Imπn , n > 0
− `2s

2

√
2
π Im p , n = 0

(C.7)

Cn = `2s Reπn − n Imχn , n ≥ 2 (C.8)

Dn = nReχn + `2s Imπn , n ≥ 2 (C.9)

A′n =

 `2sReπ−n + n Imχ−n , n > 0
`2s
2

√
2
π Re p , n = 0

(C.10)

B′n =

 nReχ−n − `2s Imπ−n , n > 0
− `2s

2

√
2
π Im p , n = 0

(C.11)

C ′n = `2sReπ−n − n Imχ−n , n ≥ 2 (C.12)

D′n = nReχ−n + `2s Imπ−n , n ≥ 2 . (C.13)

Yet another constraint reads

E − Er =
√
π

2
(
`−2
s (χ1 + χ−1) + Im (π1 + π−1)

)
.

As a consequence of (C.5), this reduces to

E − Er =
√

2π
(
`−2
s χ1 + Imπ1

)
. (C.14)

Given the expression (3.10) for the total angular momentum, (C.14) can be rewritten as

E − Er = `−1
s

√
π

Jr
(J − Jr) ,

which is simply a local linear approximation to the shape of the leading Regge trajec-
tory (3.3).

We follow the same approach as for open strings to express the energy E and all Cn,
Dn, C ′n, D′n variables in terms of the remaining physical phase space variables (x, p, δ, J ,
An, Bn, A′n, B′n) with n ≥ 1. By plugging the result into the canonical one-form (3.9), one
arrives at the following reduced canonical structure (up to a total derivative)

Ωred = pi∂τ x̃
i + J∂τδc +

∞∑
n=1

(Pn∂τQn + P ′n∂τQ
′
n) , (C.15)
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where we defined the following canonical variables on the reduced phase space,

x̃ = x− i`2s
8π p (C.16)

δc = δ − (A1 +A′1)
2`s
√

2Jr
(C.17)

Qn = 1
(n(n+ 2))1/2Bn (C.18)

Pn = n+ 1
`2s(n(n+ 2))1/2An (C.19)

Q′n = 1
(n(n+ 2))1/2B

′
n (C.20)

P ′n = n+ 1
`2s(n(n+ 2))1/2A

′
n (C.21)

The full quadratic action and the mass spectrum of closed strings can be evaluated by
the constraint (C.14) to the second order in perturbations (because the energy E enters
linearly in the action). Without performing any expansion, the mass shell condition will be

E2 = |p|2 + 4π
`2s

J + Im

p∗x+
∑
n 6=0

π∗nχn

+ 1
2
∑
n 6=0

(
`2s|πn|2 + `−2

s n2|χn|2
) . (C.22)

Rewriting (C.22) in terms of the canonical variables on the reduced phase space, one arrives
at the following leading order physical spectrum

E2 = |p|2+ 4π
`2s

(
J+Im (p∗x̃)+ `2s

2

∞∑
n=1

(
P 2
n+ (n+1)2

`4s
Q2
n+P ′2n+ (n+1)2

`4s
Q′

2
n

))
. (C.23)

The quadratic Hamiltonian for closed strings in the reduced phase space reads

H = `s

√
Jr
π
E − J. (C.24)

From here an argument identical to that performed for open strings at the end of appendix B
yields formula (3.11) for the “almost physical” spectrum of closed strings at the quadratic
order in perturbations.

D Some algebra with generating functions

We start from the ASA prescription for open string states, whose degeneracies are encoded
in the generating function

χopen =
∑
J∈Z

x|J |(1− x)P (x)eiJθ, (D.1)

where P (x) denotes the Euler generating function

P (x) =
∞∏
m=1

(1− xm)−1 =
∞∑
m=0

xmPm. (D.2)
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In order to construct the closed string ASA generating function, we need to extract the
spin content from χopen at each level. Simple manipulations yield

χopen = 1 +
∞∑
N=1

xN

 N∑
J=−N

PN−|J |e
iJθ −

N−1∑
J=−(N−1)

PN−|J |−1e
iJθ

 . (D.3)

From here, the ASA level matching prescription implies that the ASA closed string gener-
ating function is then

χcl = 1 +
∞∑
N=1

xN

 N∑
J=−N

PN−|J |e
iJθ −

N−1∑
J=−(N−1)

PN−|J |−1e
iJθ

2

. (D.4)

Our objective is to extract the coefficients χcl(N,L) from here. These are defined as

χcl = 1 +
∞∑
N=1

∑
N∈Z

xNeiLθχcl(N,L). (D.5)

By taking the square in (D.4) it can be shown that

χcl(N, 2N) = P 2
0 = 1 (D.6)

χcl(N, 2N − 1) = 2P1P0 − 2P 2
0 = 0 (D.7)

and for 0 < L ≤ 2N − 2

χcl(N,L) =
N∑

J=L−N
PN−|J |PN−|L−J | +

N−1∑
J=L−(N−1)

PN−1−|J |PN−1−|L−J |

− 2
N∑

J=L−(N−1)
PN−|J |PN−1−|L−J |. (D.8)

This last expression simplifies considerably close to the leading Regge trajectory. Namely,
if we take L = 2N − a, then in the range a ≤ N we have

χcl(N, 2N − a) =
a∑
l=0

PlPa−l +
a−2∑
l=0

PlPa−l−2 − 2
a−1∑
l=0

PlPa−l−1. (D.9)

On the other hand, before the Z2 projection, the closed effective string generating
function corresponds to the one generated by the two towers of oscillators an and bn
described in equation (3.12). Thus it is given by

χeff =
∞∑

L=−∞
eiLθx|L|(1− x)2P (x)2, (D.10)
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which can be written as

χeff =
∞∑
N=0

N∑
J=−N

N−|J |∑
M=0

xNeiJθPMPN−M−|J |

+
∞∑
N=2

N−2∑
J=−(N−2)

N−|J |−2∑
M=0

xNeiJθPMPN−M−|J |−2

− 2
∞∑
N=1

N−1∑
J=−(N−1)

N−|J |−1∑
M=0

xNeiJθPMPN−M−|J |−1. (D.11)

In order to implement the Z2 projection and get the generating function corresponding to
the physical Hilbert space, we need to keep only even powers of N in expression (D.11).
After some manipulations we obtain

χZ2
eff = 1 +

∞∑
N=1

xNe2Niθ +
∞∑
N=1

2(N−1)∑
J=−2(N−1)

xNeiJθ

2N−|J |∑
l=0

PlP2N−|J |−l

+
2N−|J |−2∑

l=0
PlP2N−|J |−l−2 − 2

2N−|J |−1∑
l=0

PlP2N−|J |−l−1

 . (D.12)

Defining χZ2
eff (N,L) analogously by

χZ2
eff =

∞∑
L=−∞

∞∑
N=0

eiLθxNχZ2
eff (N,L), (D.13)

it is straightforward to check that

χcl(N, 2N − a) = χZ2
eff (N, 2N − a) (D.14)

in the range 0 ≤ a ≤ N .
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