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1 Introduction

Axions are prime and ubiquitous candidates for physics beyond the Standard Model (BSM),
and as such have motivated great theoretical and experimental efforts. Starting with the
Peccei-Quinn (PQ) solution to the strong CP problem [1, 2] and the prediction of the
associated QCD axion [3, 4], numerous axion1 models have been built to address various
formal or phenomenological questions (see [5] for a recent review). Moreover, based on
astrophysical, cosmological and collider data, fair portions of their parameter spaces have
been probed already.

To extract the full information contained in the current experimental bounds, or to
prepare the ground for a hypothetical observation of an axion and its couplings, we must
identify the relevant set of parameters that best describe the axion phenomenology. Due
to the mass gap between the axion and the rest of the UV sector in common axion models,
this is usually done in terms of an axion effective field theory (EFT), where only the
axion is present and interacts via non-renormalizable operators with other light particles
(usually, SM fields). An axion EFT then contains all the necessary and sufficient operators
to capture the axion phenomenology, and it allows one to obtain robust UV-independent
bounds. In this context, two very relevant questions are: (i) what is the most general
shape of the axion EFT? (ii) given an observation of the axion couplings that would fix
some parameters in the axion EFT, what can be inferred about the UV?

The first question can be answered by systematically building all EFT operators al-
lowed by the IR symmetries and the set of IR degrees of freedom (d.o.f.s) [6, 7]. Yet, as
suggested by question (ii), we would also like to get a clear picture of the match between
UV models and their IR EFTs, in order to, for instance, map specific EFTs structures
to UV properties. This can be addressed by studying the explicit matching between UV
theories and the relevant low-energy axion EFTs, either in full generality as in [8], or by
studying precise and well-motivated models [9–12].

Within the EFT, the set of couplings involving the axion and two gauge fields is of
particular interest. Among those, the couplings to massless SM vector bosons, namely
photons and gluons, have been extensively studied. This is justified by the theoretical and
phenomenological interest for the QCD axion, whose coupling to gluons solves the strong-
CP problem and whose decay to photons is generically the only kinematically allowed one.
The photon coupling is also the most relevant EFT coupling in several astrophysical media,
as well as in most current experimental searches.

When studying how the coupling to photons or gluons arises in specific UV-complete
models, one obtains the striking result that they are expressed in terms of the mixed
anomalies between the PQ symmetry and the relevant gauge symmetry in the UV [13].
Those anomalies do not run under the RG flow and yield, in the IR, transparent information
about the UV PQ breaking sector, providing a first answer to question (ii). It is also quite
fortunate that such couplings can be inferred from anomalies only, since they can therefore

1Henceforth, we use the word axion to refer to any axion-like particle (ALP), and call “QCD axion” an
axion which is designed to solve the strong CP problem. We also refer to the axion shift symmetry as a
PQ symmetry, irrespective of the presence of a coupling to gluons.
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be transported from a weakly-coupled UV theory down to the IR, even in the presence of
non-perturbative physics [14, 15].

On the other hand, the couplings to the Z or W bosons are quite irrelevant for QCD
axion physics; they do not affect astrophysical or cosmological studies while their impact at
colliders is negligible. Consequently, less attention has been devoted to axion couplings with
those massive gauge bosons.2 Nevertheless, one may expect that their study would also
yield interesting IR and UV information: Z and W bosons are associated to a constraining
SU(2)L×U(1)Y gauge symmetry, where we denote the gauge group of the SM as SU(3)C×
SU(2)L × U(1)Y , which for instance imposes that mixed PQ anomalies have a particular
structure in UV models. If the axion couplings to the Z or W bosons were again given by
mixed PQ anomalies, the IR phenomenology of the axion would be constrained, answering
question (i). Taking into account the aforementioned direct UV origin of anomalies, that
would give IR constraints before an observation is made and UV information after.

However, the fact that the Z and W bosons are massive invalidates the conclusions
drawn from the case of photons or gluons. In particular, there exist more EFT opera-
tors involving massive gauge bosons than massless ones, due to the possibility that some
symmetries are realized non-linearly in the EFT [7]. This resonates with recent computa-
tions [32, 33] which showed that, in a given UV model, mixed anomalies between the PQ
and the gauge symmetries do not control uniquely the couplings between the axion and
massive chiral gauge fields, even at leading order when all the heavy degrees of freedom lie
at arbitrarily high energy.

Therefore, it seems that questions (i) and (ii) remain open. We reformulate them into
four more specific ones:

1. Are the coefficients that couple an axion to two gauge fields always captured by a
suitable UV PQ anomaly coefficient? If not, how are the UV anomalies represented
in the axion EFT?

2. What is the most general EFT of an axion and massive gauge fields, and how is it
UV completed?

3. Can we tell different UV theories apart when probing axion couplings to SM massive
gauge bosons at low-energies?

4. Are there phenomenologically relevant and viable models that realize the most general
EFT of an axion and electroweak gauge bosons?

Those are the questions we answer in this paper, which is organized as follows.
In section 2, we start by introducing the notion of chirality for massive fermions that

we repeatedly use in this paper. In short, we henceforth call a massive fermion chiral when
its left- and right-handed components do not couple identically to some of the gauge fields.

Then, in section 3, we address questions 1 and 2, in the simple case of an abelian
gauge theory. We show that the axion coupling to the gauge field must correspond to a UV
PQ anomaly coefficient when the gauge field is massless, whereas there exist additional
EFT coefficients when the gauge field is massive, that are not constrained by anomaly

2See [16] for the model-independent contributions to the QCD axion-electroweak bosons couplings, as
well as [7, 17–25] for collider searches and [26–31] for flavour physics studies.
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matching but contribute to the amplitude connecting an axion and two vector bosons.
Although these statements can be made at the EFT level already, we confirm them by
an explicit matching to simple UV theories. It allows us to show that the additional,
non-anomalous coefficients are only generated when there exist heavy fermions with chiral
charges under the gauge symmetry. We also discuss the conditions under which the leading
order axion-vector bosons amplitude is captured by the UV PQ anomaly coefficient: for a
coupling to two given (massless or massive) gauge fields, there always exists a choice of PQ
charges in the UV which identifies the amplitude with the anomaly coefficient. However,
this identification is not always possible for the axion couplings to all pairs of (massive)
gauge fields simultaneously, since the different choices of PQ charges can be incompatible.
Finally, we find insightful to introduce an auxiliary PQ gauge field. It allows to identify
anomalous terms made out of gauge fields only, called Generalized Chern-Simons (GCS)
terms, which bridge the gap between UV PQ anomalies and EFT axion couplings, shedding
a new light on our results.

We extend our analysis in section 4 to the case of a non-abelian gauge theory. We
point out that non-anomalous operators also exist there, and we discuss them in detail
for the specific case of the SM electroweak sector. We find that they allow to evade
phenomenological correlations, which we express as sum-rules among Wilson coefficients
of axion couplings to vector bosons, and which are linked to the structure of the mixed
PQ anomalies with the SU(2)L × U(1)Y gauge symmetry. A violation of those sum-rules
clearly indicates that the UV-completion of the axion EFT contains heavy fermions chiral
with respect to the SM gauge group, answering question 3.

Finally, in section 5, we address question 4, namely we study a phenomenologically
viable extension of the SM with heavy chiral fermion fields as well as an axion emerging
from an extended Higgs sector (see ref. [34] for an attempt to classify the chiral extensions
of the SM compatible with the measured Higgs rates). We present the low-energy EFT
below the mass of the heavy fermions, and verify that the axion couplings to the photon,
Z and W bosons violate the sum rules that would hold if those couplings were given by
the UV PQ anomaly coefficients. Then, we show the compatibility of the model with
current experimental data, in particular electroweak precision tests, bounds on Higgs rates
and direct searches for heavy charged matter. Remarkably, such chiral extensions are still
viable, although direct searches push them at the boundary of perturbativity.

Section 6 presents our conclusions. Two appendices complete this paper. First, ap-
pendix A completes and extends section 3: there, we discuss the couplings of an axion to
several abelian gauge fields, and we present explicitly the one-loop matching between sim-
ple UV theories with chiral fermions and the low-energy axion EFT. Second, appendix B
further discusses the axion couplings, the UV PQ anomalies, as well as their relation, in
the model of section 5.

2 Chirality and chiral extensions of the SM

Chirality and anomalies are often intimately linked. As announced in the introduction,
the axion EFT couplings to massive gauge fields will cease to be fixed by the mixed PQ
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gauge anomalies when chiral matter is integrating out. It is notoriously difficult to build a
SM extension involving new fermions forming a chiral and anomaly-free representation of
electroweak symmetry, especially after the measurement of the Higgs boson production rate
that forbids the simplest option of a fourth generation of quarks and leptons (see ref. [34]
for an attempt to systematically identify such chiral models). However, the anomaly-free
condition only imposes restriction on the charges of the particles in the UV but leaves open
the possibility that particles belonging to a vector-like representation of SU(2)L × U(1)Y
actually acquire a chiral mass spectrum in the IR. In particular, it is perfectly possible to
get a collections of heavy fermions whose left- and right-handed components do not couple
symmetrically to the W and Z, even if, globally, for each right-handed (RH) fermion, there
exists a left-handed (LH) fermion with the same coupling to the W and Z. Indeed, these
paired fermions do not have to be linked by a mass term. In other words, a set of Weyl
fermions whose gauge charges would be called vector-like but which are paired in a chiral
fashion to form massive charged Dirac fermions would automatically be gauge-anomaly free.

A simple example in the case of an abelian U(1) symmetry is the following: consider
four Weyl fermions with charges

ψL : +1 , ψ′L : 0 , ψR : 0 , ψ′R : +1 , (2.1)

where the subscripts indicate their chirality. Since there exists, for each left-handed fermion,
a right-handed one with the same charge, the above spectrum would be called vector-like,
but let us assume that the mass terms in the Lagrangian are as follows,

L ⊃ −yψLψRφ− y′ψ′Lψ
′
Rφ
† + h.c. ⊃ −mψψ −m′ψ′ψ′ , (2.2)

where φ is a scalar field of charge +1 and vev v√
2 , and we defined the Dirac fermions

ψ =
(
ψL
ψR

)
, ψ′ =

(
ψ′
L

ψ′
R

)
with masses m = y v√

2 ,m
′ = y′ v√2 . The gauge invariant bare mass

terms ψLψ′R + h.c., ψ′LψR + h.c. that are not included in (2.2) may be forbidden by global
or discrete symmetries, as we discuss in section 5.1 (vector-like masses will not change the
low energy physics as long as they remain much smaller than the chiral masses m,m′). As
a result, the massive fermions ψ,ψ′ have different gauge charges when projected onto their
left- or right-handed components, and they yield an example of what we refer to as chiral
matter. Note that, due to the presence of the scalar φ, the gauge theory is broken and the
abelian field is massive.

Let us anticipate what follows and make the following remarks. As we will extensively
discuss in section 3, when integrated out, such fermions generate GCS interactions for the
massive U(1) gauge field and the would-be gauge field associated to the PQ symmetry,
would it be gauged. These interactions cope for the PQ anomaly mismatch borne by the
axion-massive photon interactions. Such a construction can be easily generalised to the full
non-abelian SU(2)L×U(1)Y symmetry of the SM. In that case, such chiral fermions give rise
to an axion EFT Lagrangian where the SU(2)L×U(1)Y symmetry is non-linearly realised,
as we discuss in section 4. In particular, if the Yukawa couplings of the new fermions are
large enough compared to the SM gauge couplings, there is an interesting range of energy
where the physics will be described by an EFT including all the SM degrees of freedom
and the axion. The chiral nature of the heavy fermions will then favour a HEFT-like
Lagrangian rather a SMEFT-like one [35].
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3 Axion couplings to gauge fields: the abelian case

In this section, we discuss the (non-)anomalous properties of EFT operators that couple an
axion to two gauge fields,3 insisting on the case of massive chiral gauge fields and restricting
ourselves to weakly coupled UV completions. We focus, to begin with, on a single abelian
gauge field A, both for simplicity and because it already possesses most of the features that
we wish to comment on. For instance, we restrict henceforth our discussion to processes
involving one axion and two gauge fields, which are fully captured by the abelian formulae.
We generalize our discussion to several abelian gauge fields in appendix A and, in the next
section, we turn to phenomenologically relevant non-abelian theories by studying axion
couplings to SM electroweak gauge fields.

3.1 Non-anomalous EFT terms

Let us first consider axion couplings in the IR, namely using an EFT where the only
remaining part of the PQ breaking sector is the pseudoscalar axion a. It couples to a
light sector, which contains a gauge field in particular. We want to write down the CP-
conserving theory of our single abelian gauge field and a (henceforth, the CP-oddness of
the axion and the CP-invariance of the action are always assumed). What are the lowest-
dimensional EFT operators that mediate a coupling between the axion and the gauge field?
At dimension 5, the answer is unique up to integration by parts, and well known: it is the
“aF F̃” term,

LEFT ⊃ −g2 C
16π2f

aFµνF̃
µν , (3.1)

where Fµν ≡ 2∂[µAν] is the gauge field strength, g is the gauge coupling, F̃µν ≡ εµνρσ

2 Fρσ,
f is a dimensionful scale and C an order one number. The axion is understood as the
Nambu-Goldstone boson (GB) of a spontaneously broken PQ symmetry U(1)PQ, whose
action can be normalized such that δPQa = εPQf , the gauge fields being uncharged. The
axion is not charged under the gauge symmetry U(1)A under which the gauge field shifts
as δAAµ = 1

g∂µεA.
Assuming an observation of this leading axion-gauge field effective interaction, one

may like to deduce from it something about the UV theory that takes over (3.1) at high
energies. There, there are particles charged under U(1)PQ, and the usual statement is that
the coefficient C is the PQ anomaly coefficient DPQAA of the UV theory.4 Indeed, (3.1)

3We should emphasize that the role of axion terms in anomaly matching and their interplay with gauge
field couplings are known facts in the literature, see for instance ref. [36] and references therein. Nevertheless,
such discussions usually concern models of additional broken gauge symmetries, where axions play the role of
longitudinal components of massive gauge fields, while they have not been systematically applied to models
of axions. Therefore, we detail here the important aspects and insist on the treatment and consequences
specific to axion models.

4Namely,
DPQAA ≡

∑
LH fermions ψ

qPQψ (qAψ )2 −
∑

RH fermions ψ

qPQψ (qAψ )2 ,

with qPQ and qA the PQ and gauge charges respectively.
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shifts under the PQ symmetry,

δPQ

(
−g2 C

16π2f
aFµνF̃

µν
)

= −g2εPQ
C

16π2 FµνF̃
µν , (3.2)

and this shift has the correct form to be the anomalous variation of an effective action.
In addition, we know that the EFT keeps track of the anomalies of any heavy fermionic
UV sector that one would have integrated out. This is easily understood in the case of
gauge theories with a spectrum split between heavy and light fermions; if the full spectrum
was anomaly-free, yielding a consistent gauge theory, any low-energy EFT derived from it
should also be consistent. Earlier studies [36–42] indeed showed that the consistency of
the EFT is ensured by non-decoupling Wess-Zumino terms. For our axion EFT, the only
remaining part of the heavy PQ-charged sector at low energies is the axion, whose coupling
to gauge fields is fully captured by (3.1).

Quevillon and Smith [32, 33] recently investigated the one-loop matrix elements be-
tween an axion and chiral gauge fields in simple UV models, and showed that they are not
simply captured by the PQ anomaly coefficient of the UV theory. In our EFT language,
they found that generically C 6= DPQAA, yielding an apparent contradiction with anomaly
matching. Their explanations are phrased in terms of UV models, which we discuss in the
next section. Here, let us simply anticipate that the U(1)PQ symmetry to be considered in
the UV is not always uniquely defined: there could exist a freedom to mix the would-be
U(1)PQ with other global (vector-like) symmetries while keeping δPQa = εPQf , leaving an
ambiguity in properly defining the PQ charges of the fermions contributing to the mixed
DPQAA anomaly. So a more precise question is rather whether it is possible to assign PQ
charges to the UV degrees of freedom such that the coefficient C in (3.1) is given by the
corresponding anomaly. In any case, let us simply notice that we can rewrite (3.1) so that
it does not contribute to the PQ shift of the action anymore, while equally contributing to
the physical amplitudes. For that, we can integrate it by parts to obtain

a

f
FµνF̃

µν int. by parts−−−−−−−→ −2∂µa
f

AνF̃
µν , (3.3)

and the right-hand side is indeed PQ-invariant, so it does not add up to the PQ shift of the
action but still affects the physical amplitudes. Thus, if we integrated by parts a fraction
of (3.1) to write our EFT as follows,

L ⊃ −g2D
PQAA

16π2f
aFµν F̃

µν + g2C −DPQAA

8π2f
∂µaAν F̃

µν , (3.4)

we would obtain the same matrix elements as if we used (3.1), however now we get the
expected shift under U(1)PQ, namely (3.2) with C → DPQAA, consistently with anomaly
matching.

It may be puzzling that we modified an anomalous shift using integration by parts only.
This is however perfectly consistent, since, for a constant εPQ, (3.2) is a total derivative
term. The same is true for the gauge variation of the second term in (3.4). Thus, what
should be understood as the genuine anomalous variation of the axion EFT is unclear at
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this stage. Indeed, it requires a further formal step that we discuss in section 3.3, where
we study anomaly matching when the PQ transformation is made local. There, we also
justify the need for the splitting in (3.4). However, for the time being, we simply performed
this artificial reshuffling of the EFT to suggest that anomalies may not capture all of the
axion-gauge bosons couplings, in particular that they may not be enough to obtain the full
axion decay amplitude when such a decay can occur, as was found in [32].

3.2 UV-IR matching

As a first step towards more quantitative statements, we study in this section the matching
of processes involving an axion and two gauge fields, comparing UV theories and their IR
EFTs. We present general formulae that will be used in the next sections.

We derive the relevant EFT terms from a simple UV toy model, the theory of a charged
massive fermion ψ which obtains its mass from a Yukawa coupling to a Higgs field φ:

Lψ = iψγµ (∂µ − ig[α− βγ5]Aµ)ψ − y(ψLψRφ+ h.c.) , (3.5)

where ψR/L = 1±γ5
2 ψ have charges qR/L = α ∓ β with respect to the gauge field Aµ, and

we choose the Yukawa coupling y to be real. (3.5) also has a global PQ symmetry, under
which ψR/L have charges qPQ

R/L = αPQ ∓ βPQ and φ has charge qPQ
φ = qPQ

L − qPQ
R = 2βPQ.

With those charges, the mixed anomaly coefficient between one PQ current and two gauge
currents reads

DPQAA = 2([α2 + β2]βPQ + 2αβαPQ) . (3.6)

When φ gets a vev 〈φ〉 = f√
2 , which we also choose to be real (both y and f can be made

real by constant phase rotations of the fermions and the Higgs field), ψ acquires a mass
mψ = yf√

2 . By integrating this fermion out,5 we get the low energy EFT of axions and
gauge fields [37, 38] which we can match to our previous EFT discussion.

Before we proceed, let us pause and comment on two aspects of (3.5). The first one
is that we do not enforce gauge anomaly cancellation at the level of (3.5) (which would
mean β = 0), for several reasons. First, anomaly cancellation would impose some relations
between the charges which may hinder or wrongly suggest a rationale for extracting axion
couplings from anomalies. Second, we could be describing non-dynamical gauge fields,
sources for the symmetry currents, so that anomaly cancellation is irrelevant. This will
actually be our interpretation of a PQ gauge field in section 3.3. Finally, there could be
additional light fermions in the theory, or other heavy fermions, or even a fundamental
Green-Schwarz scalar [51–56], so that anomaly cancellation is ensured. Such additional

5To have our computations under control, we focus on perturbative theories, and in parameter spaces
which consistently allow to integrate out the fermions. Namely, we choose Yukawa couplings for the fermions
so that the theory is perturbative (i.e. we take y . 4π [43–46]). Then, the scale mψ ∼ yf defines the UV
cutoff scale of the axion-gauge bosons EFT, and each process we consider involves energies much below this
scale. For the EFT at this scale to still be made out of axions and gauge bosons, we choose small enough
values for the gauge couplings (and for any symmetry-breaking parameter which gives axions a mass). If we
want to keep the radial excitations of the Higgs fields in the EFT, we can also choose their quartic couplings
accordingly. Perturbative unitarity constraints, which forbid certain decoupling limits [47–50], can also be
enforced without affecting our discussion.
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anomalous modes would not affect our computations, which are first order in a perturbative
regime, so that we do not have to be definite about their presence or their properties.

The second comment is related: we leave open the possibility that there are several
Higgs fields, so that the one in (3.5) is not the only one participating in the spontaneous
breaking of the gauge and PQ symmetries. This means that the phase of φ does not need
to be fully absorbed by the gauge field, or fully aligned with a physical axion; we only
assume that it is the only phase which couples to ψ (more general options are not needed
for our purposes). Identifying the massive eigenstates, removing kinetic mixing, or even
fixing the gauge in the bosonic Lagrangian is left for after we integrate out the fermion ψ.

These remarks are important for the reader that may be puzzled by two aspects of (3.5):
first, that there is a gauge anomaly and second, that there is no axion since there is one
unbroken combination of the PQ and the gauge symmetries.6 These two puzzles are solved
by introducing in the UV enough fermions and enough scalars so that there is no physical
gauge anomaly — but only mixed PQ anomalies — and that both the gauge and the
PQ symmetries are spontaneously broken, as would happen in a full UV model. Starting
from (3.5), this is, for instance, easily done by adding another fermion ψ′ and another
scalar φ′ (of vev v′) coupled as in (3.5),

Lψ′ = iψ′γµ
(
∂µ − ig[α′ − β′γ5]Aµ

)
ψ′ − y′(ψ′Lψ

′
Rφ
′ + h.c.) . (3.7)

Then, the physical gauge anomaly is cancelled by choosing 3α2β + β3 + 3α′2β′ + β′3 = 0,
both the gauge and the PQ symmetries are broken, the axion a is the gauge-invariant
combination of the phases θ

v ,
θ′

v′ of φ, φ′ respectively,

a ∝ β′ θ
v
− β θ

′

v′
. (3.8)

Nevertheless, in this simple model, the bosonic effective interactions generated at one-loop
by ψ are insensitive to the presence of the other fermion ψ′ or the other scalar φ′ (indeed,
there is no tree-level mixing between ψ and ψ′, and no tree-level coupling between φ′

and ψ or φ and ψ′, so that diagrams with one loop of fermions, which give the leading
EFT interactions, can be computed in the primed and unprimed sectors independently),
so that we can completely forget about them when integrating ψ out. In particular, its
contributions to the EFT below its mass can be expressed in terms of θ only. Consequently,
in the following part of this section, we consider only (3.5). On the other hand, adding (3.7)
is interesting to show the mismatch between anomalies and axion couplings in the simplest
consistent UV setting.

Let us now derive the relevant couplings of the low-energy EFT below the fermion
mass. Anomalies are extracted by computing triangle loop diagrams of heavy fermions.
Axion-gauge bosons couplings also arise via similar diagrams. Therefore, we compute the
(relevant) leading order, dimension 5 terms which arise in the EFT belowmψ. Writing down
φ = f√

2e
i θ
f , the couplings between the axion θ and the gauge field Aµ is (see appendix A.1

for details)

LEFT ⊃ −g2 3α2 + β2

48π2
θ

f
F F̃ . (3.9)

6Namely, βPQU(1)A − βU(1)PQ under which φ is neutral.
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To connect with section 3.1, it is useful to rewrite (3.9) under the form (3.4). First, we
normalize the PQ charges and fix βPQ = 1

2 so that δPQθ = 2εPQβPQf = εPQf as in
section 3.1, and we identify the two coefficients in (3.4):

DPQAA = 2
(
α2 + β2

2 + 2αβαPQ

)
, C −DPQAA = −2β

(
2ααPQ + β

3

)
. (3.10)

With this expression, we immediately observe the following thing: if the spectrum is vector-
like with respect to A, i.e. if β = 0, the second term vanishes. Consistently, the axion
term (3.9) shifts as

δPQ

(
−g2 α2

16π2
θ

v
F F̃

)
= −g2εPQ

α2

16π2FF̃ , (3.11)

where we recognize in this expression DPQAA = 2α2βPQ = α2, the mixed anomaly co-
efficient between one PQ current and two gauge currents. Thus, the full axion term re-
produces the anomaly, as naively expected. In particular, this holds for a massless gauge
field, in which case the consistency of the couplings demand that β = 0 (otherwise the
vev of φ breaks the gauge symmetry). On the other hand, this changes for a chiral gauge
field, namely one with β 6= 0. In this case, the shift of the axion term in (3.9) does not
generically reproduce DPQAA. Since the vev of φ breaks any gauge symmetry such that
qφ = qL − qR = 2β 6= 0, this chiral gauge field becomes massive together with the fermion.
We will show in section 3.3 that those observations are not specific to our model and hold
whatever UV model we consider.

One important consequence of this computation is that we can read off the choice of
PQ symmetry whose anomaly coefficient reproduces the axion matrix elements. Indeed, in
theories with a chiral gauge field, vector-like symmetries can be anomalous, so that they
represent an irreducible ambiguity when defining the PQ charges of the fermions and it
makes sense to talk about a choice in the PQ symmetry (see [32, 33] for the case of lepton
or baryon numbers). For our case, the ψ-number symmetry ψ → eiεψ is anomalous if A
is chiral, consistently with the fact that the vector component of our PQ symmetry, αPQ,
enters in DPQAA. We can use this freedom to make C−DPQAA vanish: indeed, from (3.10),
we see that choosing 6αPQα + β = 0 is enough. This ensures that the shift of the axion
term fully reproduces DPQAA. When the normalization of the PQ charges is not specified
and βPQ left generic, this becomes 3αPQα + ββPQ = 0, as seen from the PQ variation
of (3.9):

δPQ

(
−g2 3α2 + β2

48π2
θ

f
F F̃

)
= −g2εPQ

(3α2 + β2)qPQ
φ

3
FF̃

16π2 = −g2εPQ
DPQAA

16π2 FF̃

when 3αPQα+ βPQβ = 0 . (3.12)

This prescription for defining the PQ symmetry is general and applicable to any perturba-
tive matching between an anomalous UV sector and an axion EFT. At this stage, we should
pause and wonder if the interplay with gauge anomalies complicates the discussion. Indeed,
the fermion in eq. (3.5) carries a gauge anomaly, and the axion term in eq. (3.9) generates
both a Wess-Zumino-Witten term and a physical axion coupling, since θ is generically a
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combination of the longitudinal component of Aµ and of the physical axion a. Consistently,
C = DAAA

6β , where DAAA = 2(3α2 + β)β is the U(1)3
A anomaly coefficient, therefore C also

corresponds to this UV anomaly coefficient. To clarify the picture, it is useful to consider
the addition of (3.7), so that one integrates out an anomaly free set of fermions. Summing
the different contributions to eq. (3.9), we find the following EFT term

LEFT ⊃ −
1

48π2

(
(3α2 + β2)β′

v2 − (3α′2 + β′2)β
v′2

)
a

V
F F̃ , with V ≡

√
β′2

v2 + β2

v′2
, (3.13)

where the axion in eq. (3.8) has been canonically normalized. It is straightforward to check
that DAAA can vanish (when 3α2β+ β3 + 3α′2β′+ β′3 = 0, as said earlier) while the axion
coupling C remains generically non-zero, so that the latter is not anymore proportional
to the former in the full EFT. In addition, one can compare C with the UV PQ anomaly
coefficient,

DPQAA = 2
([
α2 + β2

]
βPQ + 2αβαPQ +

[
α′2 + β′2

]
β′PQ + 2α′β′α′PQ

)
. (3.14)

Since C does not depend on the PQ charges α(′)
PQ, β

(′)
PQ, while the ambiguity associated to

vector-like contributions to α(′)
PQ modifies DPQAA, both coefficients cannot be matched for

all PQ charge assignments. Nevertheless, one can choose suitably the PQ charges to ensure
C = DPQAA, generalizing eq. (3.12).

We present examples of this matching prescription in appendix B.2, and it can be gen-
eralized to multiple abelian gauge fields and heavy fermions, as explained in appendix A.2.
Let us report here one important output of this analysis: when several gauge fields are
present, an important property of the prescription which generalizes eq. (3.12) is that
there does not always exist a choice of UV PQ charges such that the couplings of the
axion to all pairs of gauge fields match all mixed-PQ anomaly coefficients simultaneously.
This can be anticipated by looking at eq. (3.12): the appropriate choice of PQ charges
depends on the gauge charges, therefore, when there are several of the latter, the require-
ment from (3.12) for different pairs of gauge fields can be contradictory. The results of
appendix B.2 provide such an example, and so does the model of eqs. (3.5)–(3.7) when
the two unbroken vector-like symmetries are gauged. We also comment further on the
prescription in section 3.4.

3.3 PQ anomaly matching

Now that we have established the generic mismatch between the axion EFT couplings and
the UV anomaly coefficients, we discuss in details how the PQ anomaly matching is ensured
when matching between the UV and the EFT.7 This will allow us to justify the splitting
in (3.4) and to rephrase our previous results.

Let us start again by an EFT analysis, continuing section 3.1. As we said above, the
PQ anomalous shift of the EFT in (3.2) is a total derivative for constant εPQ, consistently

7Indeed, although we showed that the UV PQ anomaly coefficient matches the axion EFT coupling for
some PQ charge assignments only, all PQ anomalies must match, irrespective of the charge assignment.

– 11 –



J
H
E
P
0
7
(
2
0
2
1
)
1
8
9

with the fact that (3.1) and the PQ-invariant (3.3) are equal up to a boundary term, since
they are equivalent up to integration by parts. However, in perturbation theory we are only
sensitive to “bulk” physics, namely we cannot tell apart an operator from its counterparts
obtained after integration by parts. To fully grasp the difference between the two terms
in (3.4), we would like to discuss objects which are captured by perturbation theory, and by
the rules of the perturbative matching between EFTs and UV theories. In particular, we
would only allow ourselves to discuss shifts with non-constant εPQ in (3.2), that are usually
considered when discussing gauge theories. Consequently, we couple the UV theory to an
auxiliary gauge field APQ

µ , minimally coupled with a gauge coupling gPQ to all PQ-charged
fields. This field is not associated to a physical propagating particle, it should only be
thought of as a classical source that we use as a device to keep track of the anomalous
shifts of the action, both in the UV and in the IR. In particular, it is not integrated over
in the path integral and is only an argument of the latter, which we can simply put to
zero when discussing the physical EFT. Nevertheless, with APQ

µ the UV action now has
a classical “fake”8 PQ gauge invariance, εPQ can be upgraded to an arbitrary function
of spacetime so that δPQA

PQ
µ = 1

gPQ
∂µεPQ, and (3.2) no longer is a total derivative but

becomes a PQ anomalous gauge transformation.
We can now use the properties of the “fake” gauge theory to constrain the EFT cou-

plings. In particular, when we match a UV theory to an IR EFT and for the kind of
one-loop calculations which are relevant for anomalies, APQ

µ is equivalent to a physical
gauge field from the point of view of the particles that we integrate out. Thus, anomaly
matching must hold between the UV and the IR for consistency of the fake gauge theory.9
Also, the mixed anomaly coefficient DPQAA of the UV fields is the same, irrespective of
whether the PQ symmetry is gauged or global. We conclude from this that the gauge PQ
shift of the EFT must be given by (3.2) with C → DPQAA. Since C 6= DPQAA in some
cases, as was discussed previously and explicitly represented in (3.4), the only consistent
possibility is that, in those cases, there are additional anomalous contributions to the PQ
shift of the effective action, beyond (3.2). Notice that ambiguities due to integration by
parts are not relevant here, since we consider local PQ transformations: both terms in (3.4)
shift so as to reproduce precisely (3.2) in the bulk, with a shift coefficient C and not DPQAA.
Thus, we need something beyond axion terms so that the full PQ anomalous shift in the
EFT is (3.2) with C → DPQAA, otherwise we are back to the contradictory requirement
that C = DPQAA.

In other words, we are left with the question: how can we make the second term in (3.4)
PQ- and gauge-invariant, so that only the first term contributes to the PQ anomaly in the

8Henceforth, we use the words “fake” and “physical” to refer to fields which are understood as external
classical sources such as APQ, and to fields associated to physical particles such as A, respectively.

9To make this new gauge theory consistent at the quantum level, we can add new massless charged
fermions to the theory so as to cancel any (mixed) gauge anomaly. They are charged under the fake PQ
gauge field APQ

µ but also under the physical one A, so they change the IR physics, however in perturbative
theories they do not affect the one-loop calculations that we focus on and which are relevant for anomalies,
provided they do not couple to the axion or the heavy particles. Thus, constraints on the EFT derived
when those light fermions are present also hold without them. On the other hand, when they are present,
their contribution to the anomalies is identical in the UV and in the IR theories, so that the EFT must
retrieve the anomalous contributions of the heavy particles for the consistency of the IR gauge theory.
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EFT? Ensuring the PQ invariance is easy now that we introduced the PQ gauge field, we
simply need to turn the derivative that acts on the axion field into a covariant one:

∂µa

f
AνF̃

µν −→
(
∂µa

f
− gPQA

PQ
µ

)
AνF̃

µν . (3.15)

On the other hand, this modification breaks the gauge-invariance, and we should further
modify (3.15) to restore it. This can be achieved, but only when A is massive, since then
one can use the longitudinal polarisation of the gauge field Aµ [39, 47, 50]. Starting from
a unitary gauge, this is easily seen by performing a Stueckelberg trick, namely reinstating
via a gauge transformation the Goldstone boson θA which makes up for the longitudinal
component of the gauge field:

LEFT ⊃ −
m2
A

2 A2
µ

Aµ→Aµ−
∂µθA
gmA−−−−−−−−−→ − 1

2g2 (∂µθA − gmAAµ)2 . (3.16)

θA is charged under U(1)A, δAθA = εAmA, and the mass term of A is understood as
coming from the kinetic term of θA, as familiar from the Brout-Englert-Higgs mechanism.
By applying the same transformation to the right-hand side of (3.15), it becomes

− 1
g

(
∂µa

f
− gPQA

PQ
µ

)(
∂νθA
mA

− gAν
)
F̃µν , (3.17)

which is now fully gauge and PQ invariant. The existence of (3.17) makes it clear that
anomalies may not capture all of the axion-gauge bosons couplings, in particular that they
may not be enough to obtain the full axion decay amplitude when such a decay can occur,
as was found in [32]. Indeed, (3.17) contributes to the physical amplitudes but not to the
anomalies. When imposing APQ

µ = 0 to recover the physical EFT, (3.17) degenerates to
the right-hand side of (3.3):10 as announced, this shows that the latter has a very different
anomalous structure than the left-hand side. Indeed, it does not shift, neither under the
PQ symmetry nor under the gauge symmetry, consistent with the fact that we obtained
it from (3.17). The two terms in (3.3) differ by a boundary term, whose PQ variation
precisely cancels that of the left-hand side of (3.3) and makes the right-hand side PQ
invariant. Since we cannot constrain boundary terms when building the EFT, using APQ

µ

is a useful trick to sort out what terms carry the anomalies, as we will explicitly see by
matching to a UV theory in a few lines.

Thus, we like to think of the EFT of an axion and a massive gauge field as being split
as follows,

L ⊃ −g2D
PQAA

16π2f
aFµν F̃

µν − gC −D
PQAA

8π2f
∂µa

(
∂νθA
mA

− gAν
)
F̃µν , (3.18)

which is completely equivalent to (3.1) at the level of scattering amplitudes, but which
makes the (non-)anomalous nature of each term explicit as argued above.

10The terms that depend on θA vanish by virtue of the antisymmetry of F̃µν and the Bianchi identity:

−1
g

∂µa

f

(
∂νθA
mA

− gAν
)
F̃µν

int. by parts−−−−−−−−→ 1
g

a

f

(
∂[µ∂ν]θA

mA
− gFµν2

)
F̃µν = − 1

2g aFµν F̃
µν .
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Eventually, coupling the theory to an external PQ gauge field and ensuring that the
PQ symmetry is the only one broken by the anomalies, we have confirmed some of our
previous conclusions, namely

• for a massless gauge field A, there cannot be any non-anomalous EFT term be-
yond (3.1), so this operator generates both the full anomalous shift of the UV theory,
as well as the full (dimension-five) axion-gauge field amplitudes. Anomaly matching
is thus expected to capture its coefficient, in particular anomalies always capture the
dimension-five coupling to photons or gluons,

• for a massive gauge field, the gauge and PQ invariant operator in (3.17) is available,
and generates new contributions to the axion-gauge field amplitudes beyond that
of (3.1). Although it is equivalent to (3.1) from the point of view of scattering
amplitudes, it is not anomalous. Nevertheless, from the EFT, we cannot understand
its precise coefficient.

Let us end this section by a remark which connects to our explicit computation in
section 3.2. We saw there that β = 0 is enough to ensure that the coefficient of the axion
term is simply given by the anomaly. Therefore, the fact that the gauge field is massive
and has a longitudinal part does not suffice to allow for C 6= DPQAA, it also has to be chiral
with respect to some heavy fermion. Note that this last condition implies that the gauge
field has a mass, otherwise the fermion cannot have a mass either11 and there is no notion
of integrating it out.

3.4 UV-IR matching with a gauged PQ symmetry

Now, we perform a one-loop matching in a theory where the auxiliary PQ gauge field
is present, in order to support the conclusions of the previous section. In particular,
this allows to confirm that PQ anomaly matching does hold when matching the UV and
the EFT. For that, since we already computed the EFT terms which correspond to the
restriction of (3.17) to terms that involve one pseudoscalar, and since those which involve
two trivially vanish after integration by parts, we only need to compute the restriction
of (3.17) to gauge fields only: this leads to another anomalous term in the EFT, the GCS
term [36],

gPQg
2APQ

µ Aν F̃
µν . (3.19)

We included three gauge couplings in (3.19) to match with the outcome of the UV com-
putation to be discussed in a few lines. This term generates anomalous shifts under both
the PQ and the gauge symmetries,

δPQ
(
gPQg

2APQ
µ Aν F̃

µν
)

= g2∂µεPQAν F̃
µν int. by parts−−−−−−−→ −g2 εPQ

2 Fµν F̃
µν ,

δA
(
gPQg

2APQ
µ Aν F̃

µν
) int. by parts−−−−−−−→ ggPQ

εA
2 F

PQ
µν F̃µν , (3.20)

11In the vector-like case, the mass of the vector can be sent to zero by adjusting a parameter such as a
Higgs vev without affecting the one-loop EFT below the heavy fermion mass, so that the results must be
the same as for a genuinely massless vector.
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where we made use of the Bianchi identity. In particular, this GCS term is relevant for
PQ anomaly matching: its PQ (and gauge) transformations are precisely what make (3.17)
gauge-invariant. Notice that it could only be written after we introduced APQ

µ .
To obtain the GCS term by a direct computation, we extend the model of (3.5) to

incorporate the minimal coupling to APQ
µ :

∂µ − ig[α− βγ5]Aµ −→ ∂µ − ig[α− βγ5]Aµ − igPQ[αPQ − βPQγ5]APQ
µ , (3.21)

and we define again the charges qiR/L = αi ∓ βi with respect to the gauge field Ai ∈
{Aµ, APQ

µ }. In the one-loop dimension 5 EFT below the fermion mass, we find GCS terms
in addition to the axion term. There are several kinds of GCS terms which are presented
in appendix A.1, however we only need the following EFT terms for our discussion,

LEFT ⊃ −g2 3α2 + β2

48π2
θ

f
F F̃ + gPQg

2

(
αPQα+ 1

3βPQβ
)
β

2π2 APQ,µAνF̃
µν . (3.22)

It is easy to check that the PQ variation of (3.22) reproduces the UV shift, consistently
with anomaly matching:

δPQLEFT = −g2
(

23α2 + β2

3 βPQ + 4
(
αPQα+ 1

3βPQβ

)
β

)
FF̃

16π2 = −g2D
PQAA

16π2 FF̃ .

(3.23)
One remark is in order at this point: one sees from (3.22) that no GCS term is generated
for a vector-like fermion, for which β = 0. In particular, its anomalous variation under the
physical gauge transformation trivially cancels. This is not a surprise, since our compu-
tation has been carried out in such a way that this anomalous variation cancels.12 This
justifies why we demanded that the operator (3.15) be upgraded into a gauge-invariant one
while there were (fake) gauge anomalies in the first place. For a massless gauge field, there
does not exist any counterterm that can balance the gauge transformation of the GCS term
in (3.20), so that the latter cannot be included in the EFT and the axion term (3.1) must
yield the full anomalous shifts, consistently with what we found previously when β = 0
(which is compatible with a vanishing mass for the gauge field). This is not true for a
massive gauge field (in particular, for a chiral gauge field), since we can now write

θA
mA

FµνF̃
µν
PQ , (3.24)

12Indeed, in UV theories, one always has the freedom to choose which symmetry current carries an
anomaly (see e.g. the sections on anomalies of classic textbooks such as [57–59], or [60]). This can be
understood precisely as the freedom to add counterterms such as (3.19), related to momentum shift ambi-
guities in loop diagrams, see appendix A.1 for examples. In particular, in a theory free of gauge anomalies,
one can (and should) always choose the regulator and the counterterms such that the effective action does
not shift under a gauge transformation. It is for instance done when computing the axial anomaly that
determines the pion decay rate to two photons at leading order, and it is a consistency requirement, namely
that our theory must be such that massless vectors couple to exactly conserved currents. The normalization
of the PQ shift in (3.2) depends on this choice.
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whose gauge variation can cancel that of the GCS term. Indeed, using the formulae in
appendix A.1, one can check that in our toy model the EFT contains the term

LEFT ⊃ −g2 3ααPQ + ββ2
PQ

24π2
θ

f
F F̃PQ , (3.25)

whose physical gauge variation cancels that of the GCS term in (3.22). (3.24) is the third
EFT term that adds up to the axion and GCS terms to build up (3.17). Consequently, it is
possible to rearrange the EFT so that it looks like (3.1)+(3.17). This is straightforwardly
done from our explicit formulae, but it is also simply understood from a field redefinition of
the UV theory, as we explain in appendix A.3. (3.24) also has a non-trivial PQ variation,
but we ignore it since it concerns a U(1)2

PQ × U(1)A anomaly which is irrelevant in the
physical theory, indeed it vanishes when APQ

µ is put to zero.
Using the notion of GCS terms, we can also recover one of the results of section 3.2,

namely the fact that there exists a prescription to define a non-generic PQ symmetry that
matches DPQAA with C. We can identify this prescription from the PQ variation of the
GCS term in (3.22): indeed, wee see that choosing 3αPQα + βPQβ = 0 makes the PQ
variation of the GCS term vanish,

δPQ

gPQg
2

(
αPQα+ 1

3βPQβ
)
β

2π2 APQ,µAνF̃
µν

 = −g2 (3αPQα+ βPQβ)β
12π2 εPQFµνF̃

µν = 0 ,

(3.26)
where we integrated by parts in the first equality. Consequently, the axion term must
fully reproduce DPQAA, as we already saw. However, we should mention two subtleties
related to this prescription. One of them, which we also encounter in appendix B.2, is
that constraints such as (3.12) may be too restrictive when applied independently on each
massive fermion, for instance when the UV charges qPQ are constrained so that U(1)PQ
commutes with non-abelian gauge symmetries. In this case, one could as well apply (3.12)
at the level of a subset of the heavy fermions {ψ},∑ψ ∈ subset {ψ}(3α

(ψ)
PQα

(ψ) +β(ψ)
PQβ

(ψ)) = 0,
for instance at the level of a complete gauge representation. This is sufficient to ensure that
the axion couplings in the EFT below the mass of all the fermions in the subset reproduce
the PQ anomalies. This is easily understood using (3.26), since the contributions of all the
fermions add up to the GCS term. Another subtlety arises when θ is not aligned with a
physical axion and must be rotated together with the other pseudoscalars, as for instance
in (3.8). Then, in principle, the condition in (3.12) ensures that the combined PQ shift
of all axion terms reproduce the anomaly, but not that the shift of the physical axion
term alone suffices. One must then also ensure that the other axions, such as longitudinal
components of gauge fields, are PQ neutral. This can usually be ensured by a choice of
PQ symmetry, see the example in section 5.2.

Let us end this section with a remark related to the anomalous shifts of the PQ gauge
field. By our direct computation, we reproduced the structure of the GCS term (3.19),
including the three gauge couplings. This implies that the PQ anomalous variation of the
GCS term does not depend on gPQ and does not decouple if we remove the interactions of
APQ by sending gPQ → 0, so that even in a theory where APQ does not interact, the axion
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term is still not captured by the anomaly. This additional, non-decoupling shift cannot be
easily understood in the EFT unless one introduces APQ.

4 Axion couplings to gauge fields: the Standard Model case

In this section, we continue our line or arguments to include couplings of an axion to the
electroweak gauge bosons of the SM.

4.1 Non-anomalous EFT terms for non-abelian theories

Let us begin by suggesting how the discussion of abelian theories of the previous section can
be generalized to non-abelian gauge fields. The starting point is, as usual, the dimension
five coupling of an axion a to a non-abelian gauge field Aµ = AaµT

a, where T a are the
generators of the gauge group and we denote F the gauge field strength. It reads:

L ⊃ −g2 C
16π2

a

f
Tr
(
FF̃

)
. (4.1)

As for the abelian case, this operator is gauge-invariant and seems to shift under a PQ
transformation, which is nothing but a total derivative when the PQ symmetry is global.
This can be understood given that one can rewrite (4.1) as follows [37]:

L ⊃ g2 C
8π2

∂µa

f
Tr
(
Aν F̃

µν + i

3ε
µνρσAνAρAσ

)
. (4.2)

Nevertheless, both expressions again yield the same PQ transformation when the latter is
local. To make (4.2) gauge-invariant, we again need that the gauge field have a longitudinal
component, so that we can upgrade (4.2) to

∂µa

f
Tr
(
Aν F̃

µν + . . .
)
→ −1

g

(
∂µa

f
− gPQA

PQ
µ

)
Tr
(
[∂νθA − gAν ] F̃µν + . . .

)
, (4.3)

where we remain deliberately sketchy about the non-abelian structure and hid several non-
linear terms. Indeed, the counting of the gauge Goldstone bosons and the structure of their
interactions depend on the precise symmetry breaking pattern, and we do not engage in a
precise discussion of Wess-Zumino terms that arise when integrating out a fermion coupled
to a non-abelian gauge field. Instead, we leave precise examples, as well as the discussion
of their phenomenological implication, to the study of the electroweak gauge bosons of the
SM and the non-linear representation of its gauge group discussed in section 4.2. In the
present section, our aim was simply to insist on the fact that the logic that lead us to define
non-anomalous terms for abelian theories extends to the non-abelian case.

4.2 Non-anomalous EFT terms for the SM and sum rules

Our discussion of abelian theories was mostly about splitting one single operator, the one
in (3.1), into anomalous and non-anomalous parts. However, the phenomenology of the
axion, namely the matrix elements between physical states, are all captured by the only
coefficient C, and there is no difference in the phenomenology predicted by anomalous and
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non-anomalous terms. This remains true when several abelian gauge fields are present
since, for abelian theories, there is one mixed PQ anomaly coefficient associated to each
axion coupling to a given pair of gauge fields. On the other hand, when non-abelian
symmetries are present, things are different, due to the constraining form of the mixed PQ
anomalies with any non-abelian factor. For instance there is no U(1)PQ× SU(2)L×U(1)Y
anomaly. What we show in this section is that, unlike the abelian case, there are differences
in the non-abelian case between the phenomenological predictions of anomalous and non-
anomalous EFT operators.

Let us start by displaying the operators analog to (3.1) that couple an axion to SM
electroweak gauge fields,

L ⊃ −g
2CWW

16π2
a

f
W aW̃ a − g′2CBB

16π2
a

f
BB̃ . (4.4)

We only included two coefficients to respect the SU(2)L × U(1)Y gauge symmetry. This
is consistent with the constraining form of the mixed PQ anomalies with the SU(2) non-
abelian factor of the SM gauge group.

If those operators were the whole story, they would induce correlations between the
different EFT operators when written in terms of the vector massive eigenstates. Indeed,
using the latter, (4.4) becomes

− 16π2

e2 L ⊃ Cγγ
a

f
F F̃ + 2 CZγ

cW sW

a

f
F Z̃ + CZZ

c2
W s

2
W

a

f
ZZ̃ + 2CWW

s2
W

W+W̃− , (4.5)

where the coefficients read

Cγγ = CWW + CBB , CZγ = c2
WCWW − s2

WCBB , CZZ = c4
WCWW + s4

WCBB , (4.6)

and where cW , sW , tW = cos(θW ), sin(θW ), tan(θW ) with θW the Weinberg angle, and we
called F and Z the photon and Z boson field strengths, respectively. The four coefficients
in (4.5) being determined by CBB and CWW only, there must be correlations between the
processes involving one axion and two electroweak gauge fields. This is different from the
abelian case, that would allow independent coefficients for each gauge field pair. Such
correlations can take the form of sum rules between EFT coefficients,13 for instance

Cγγ + s−2
W (1− t2W )CZγ −

1
s2
W c

2
W

CZZ = 0 , Cγγ + s−2
W CZγ − (1 + t−2

W )CWW = 0 . (4.7)

Sum rules can also be written at the level of observable quantities such as partial decay
rates of the axion, see section 5.3.

However, (4.4) does not capture all the possible processes, since there also exist non-
abelian analogs of (3.17). Indeed, setting APQ = 0 to focus on physical fields, notice first
that we can rewrite (3.17) as follows,

i

2gf ∂µaDνUU
†F̃µν + h.c. , (4.8)

13The sum-rules are understood to hold at energy scales where theW and Z bosons are dynamical degrees
of freedom.
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provided we define a unitary matrix U ≡ e
i
θA
mA and its covariant derivative DµU = (∂µ −

igAµ)U . This manipulation can be extended to the SM non-abelian gauge fields, namely
we can write the following PQ- and gauge-invariant operators [7],

∂µaTr(TVν) B̃µν , ∂µaTr(Vν W̃µν) , ∂µaTr(TVν)Tr(TW̃µν) , (4.9)

where, using the matrix U containing the longitudinal components πa of the Z and W

bosons and its covariant derivative [7, 61],

U = ei
πa

v
σa , DµU = ∂µU − igWµU + ig′BµU

σ3
2 , (4.10)

we defined
Vµ = DµUU

† , T = Uσ3U
† . (4.11)

The σa are the Pauli matrices and v ≈ 246GeV is the electroweak vev. The terms in (4.9)
generate amplitudes involving one axion and two gauge bosons in addition to that of (4.4),
since

∂µaTr(TVν) B̃µν ⊃ −i∂µa (gW 3
ν − g′Bν)B̃µν

∣∣
lin. ,

∂µaTr(Vν W̃µν) ⊃ − i2∂µa (gW a
ν W̃

a,µν − g′BνW̃ 3,µν)
∣∣
lin. ,

∂µaTr(TVν)Tr(TW̃µν) ⊃ − i2∂µa (gW 3
ν − g′Bν)W̃ 3,µν ∣∣

lin. ,

(4.12)

where we used the same letter to refer to the gauge fields and to their field strengths, and
where W a

µν |lin = ∂µW
a
ν − ∂νW a

µ (the couplings of an axion to two gauge fields are only
sensitive to the linear parts of the field strengths, so we ignore non-linear pieces). Up to
numerical coefficients, those terms respectively integrate by parts to

− c1g
′

16π2f
a(gW 3 − g′B)B̃ , − c2g

16π2f
a(gW aW̃ a − g′BW̃ 3) , − c3g

16π2f
a(gW 3 − g′B)W̃ 3 ,

(4.13)
where all the field strengths are understood to be restricted to their linear pieces, as in
the rest of this paper. Added up and rewritten using the vector massive eigenstates, they
lead to

− e2

16π2
a

f

(
c1 + c2 + c3
cW sW

a

f
F Z̃ + (c2 + c3)c2

W − c1s
2
W

c2
W s

2
W

a

f
ZZ̃ + 2c2

s2
W

W+W̃−
)
. (4.14)

It should be noted that the expression above does not contain any aF F̃ term, consistently
with our previous analysis: anomalous terms capture all the processes involving one axion
and two photons. In addition, the new terms increase the parameter space of axion EFTs,
for instance they generically violate sum rules such as (4.7): using (4.14) we find

Cγγ + s−2
W (1− t2W )CZγ −

1
s2
W c

2
W

CZZ = c1− c2− c3
2c2
W s

2
W

, Cγγ + s−2
W CZγ − (1 + t−2

W )CWW = c1− c2 + c3
2s2
W

.

(4.15)
We will give a precise example of that in section 5.3. This shows that, unlike what happens
in the abelian case, there are genuine differences between the phenomenological predictions
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using only (4.4) and those that also include the terms in (4.14). For instance, the use of
the non-linear realization of the SM gauge group allowed for the axion couplings to go
beyond the SU(2) trace structure in (4.4), so that the non-anomalous terms cannot simply
be integrated by parts to recover the usual phenomenology of the anomalous terms. In
particular, the manipulation in section 4.1 leads to one non-anomalous term within a larger
series.

There are two general properties of the non-anomalous terms in (3.17) and (4.9) that
are worth commenting here, namely: when do those terms arise? and with what coefficient
do they enter the EFT?

The answers to these questions are related, so let us start with the first one. In a pure
EFT approach, the non-anomalous terms in (3.17) and (4.9) only make use of the Goldstone
polarizations of the massive gauge fields, which exist for both vector-like or chiral vectors,
as long as they are massive. However, as we saw in section 3.2, their presence is intrinsically
related to integrating out chiral fermions. As we said, vectors must be massive if there
exist chirally charged massive fermions, but on the contrary, the vector mass is irrelevant
if the charged particles are all vector-like, in which case the non-anomalous terms are not
generated at leading order and the anomalies capture the dimension-5 axion couplings.
That means in particular that a violation of the relations (4.6), for instance, via a violation
of the sum-rule (4.7) is a smoking gun of the presence of heavy chiral matter.

This link with chiral matter explains why we chose to represent the non-anomalous
axion couplings to SM fields as in (4.9). Indeed, it is known that a non-linear representation
of the SM d.o.f.s (i.e. a HEFT [61]) is necessary when one integrates out matter whose mass
comes entirely from Higgs fields [35]. Had we ignored this, we could have instead tried to
write the operators in the right-hand side of (4.12) using the full Higgs doublet of the SM,
since those terms can be obtained as the first ones in an expansion using either linear or
non-linear realizations of the SM gauge group [7]. The latter case corresponds to (4.9),
while in the former case, they arise from

∂µa
(
H†
←→
D νH

)
B̃µν , ∂µa

(
DνH

†W̃µνH −H†W̃µνDνH
)
, ∂µa

(
H†
←→
D νH

) (
H†W̃µνH

)
,

(4.16)
which indeed contain the terms in the right-hand side of (4.12). The terms above are of
dimension 7 and are expected to be suppressed by the third power of the cutoff in the EFT
(the third one is even of dimension 9, hence suppressed by the fifth power of the cutoff). One
could then send (at least formally) the cutoff to infinity while keeping the decay constant f
fixed, thus decoupling those additional terms. However, we saw in section 3.2 that, apart
from the scale f that always accompanies the axion, there is no other scale that suppresses
the non-anomalous terms when they are obtained from heavy chiral matter, in other words
chiral matter generates them as genuine dimension-5 terms. This is an example of non-
decoupling effects when chiral matter is integrated out [37, 38, 62, 63], which make the use
of a HEFT necessary. Consequently, the non-anomalous axion terms must be written using
a non-linear representation of the SM gauge group. We comment further on this point in
section 5.3, when we discuss a precise example of a full realistic model. The bottom line
is that the consistent choice is to use (4.9) with a O(1/f) suppression factor, which imples
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that the coefficient ci in (4.14) are pure numbers, that do not disappear in any decoupling
limit.

5 Axions in chiral extensions of the SM

The formalism developed in the previous sections allows us to properly identify the axion
couplings to massive gauge fields and has a relevant phenomenological application for the
case of the SM-axion effective Lagrangian, when chiral fields (under the spontaneously
broken gauge symmetries) are integrated out.

At tree level, in the UV theory, there are axion interactions with the SM particles. All
of the latter are captured by the following SM-axion effective Lagrangian, keeping up to
d = 5 operators:

Ld≤5
a = 1

2(∂µa)2 − 1
2m

2
aa

2 + ∂µa

f

∑
ψ

ψ̄C(ψ)γµψ

− g2
sCGG
16π2

a

f
GG̃− g2CWW

16π2
a

f
WW̃ − g′2CBB

16π2
a

f
BB̃ , (5.1)

where the sum over ψ is taken over chiral fermions of the SM and C(ψ) is a hermitian
matrix in generation space. Here, the CXX coefficients are the anomaly coefficients of the
PQ symmetry with the gauge group of gauge field X, when it is restricted to the SM fields
only. Note that we work in the basis where the d = 5 axion-Higgs operator ∂µaH†i←→D µH

has been shifted away via an axion field redefinition [6].
Since we are interested in axion couplings to gauge bosons, we could consider integrat-

ing out all SM fermions to end up with a bosonic EFT. However, in the SM, not even the top
can safely be integrated out when considering the axion couplings to W/Z bosons. Hence,
if the axion couples to SM fields, one cannot rely on an EFT analysis when inspecting the
axion couplings to massive gauge bosons and one should compute loop contributions in the
full theory (see e.g. [20]). On the other hand, an interesting EFT limit exists if we consider
the possibility that axion couplings to W/Z bosons are generated by extra fermions that
are chiral under SU(2)L×U(1)Y . SM chiral extensions do not admit a decoupling limit and
are therefore severely constrained by Higgs couplings measurements, electroweak precision
tests and direct searches. These measurements push the lower bound on the mass of these
exotic states to several hundreds of GeV. Consequently, they can safely be integrated out
when discussing the axion couplings to W/Z bosons.

In order to form the full SM-axion EFT below the mass scale of those new fermions,
one should add to the couplings in (5.1) the contributions of the heavy fermions which are
integrated out. This brings additional terms, in particular additional couplings between the
axion and the electroweak gauge fields which do not simply add up to the CXX , as discussed
in section 4.2. Henceforth, we focus on the contribution of the heavy chiral fields, which
we identify later for a specific model, and we keep in mind when discussing phenomenology
that the full amplitudes may include a loop contribution from the SM fermions in (5.1).
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5.1 Minimal SM chiral extensions

We wish to identify phenomenologically viable chiral extensions to SM that can provide a
non-decoupling contribution to the SM-axion effective Lagrangian. To this end, we first
stick to a single Higgs doublet14 and we introduce a set of chiral fermions transforming
irreducibly under SU(3)c×SU(2)L×U(1)Y as (Rc, RL, Y ) and, following ref. [34], we require
the criteria:

1. No massless fermion after EW symmetry breaking, apart for SM gauge singlets;

2. No gauge and Witten [64] anomalies;

3. Compatibility with Higgs coupling modifications;

4. No allowed bare mass terms.

If a bare mass term were to be allowed by the SM gauge symmetry, the mass of the fermions
would be naturally heavier than the EW scale, thus enforcing an automatic decoupling in
all observables, including the axion couplings to W/Z bosons. So either the bare mass
terms are accidentally suppressed compared to the EW scale or they have to be forbidden
by extra discrete gauge symmetries.

Condition 3 restricts the choice of color representations to the trivial one, Rc = 1,
so that SM Higgs production via gluon fusion is not affected by the new chiral sector.
Focussing on renormalizable extensions, since the new chiral fermions need to become
massive after EW symmetry breaking they need to couple to H ∼

(
1, 2, 1

2

)
via a Dirac-like

Yukawa
f̄LfRH or f̄LfRH̃ , (5.2)

with H̃ = iσ2H
∗. The quantum numbers of fL and fR can only be

fL ∼ (1, 2jL + 1, Y ) , fR ∼
(

1, 2jR + 1, Y − 1
2

)
or fR ∼

(
1, 2jR + 1, Y + 1

2

)
, (5.3)

with |jL − jR| = 1/2. The minimal possibility is jL = 1/2 and jR = 0. Since the latter
quantum numbers are reminiscent of the SM doublet and singlet leptons (for Y = −1

2), we
denote them as:15

L1 ∼ (1, 2, Y ) , E1 ∼
(

1, 1, Y − 1
2

)
or N1 ∼

(
1, 1, Y + 1

2

)
. (5.4)

Witten anomaly [64] requires an even number of SU(2)L doublets, so we minimally intro-
duce a second doublet

L2 ∼ (1, 2,−Y ) , (5.5)

where the hypercharge is fixed by the cancellation of the SU(2)2
L × U(1)Y anomaly. At

this point we need to consider U(1)Y -gravitational and U(1)3
Y anomalies. The latter are

already cancelled in the LH sector since L1 + L2 forms a vector-like pair whose bare mass
14The extension to two Higgs doublets, relevant for the axion Lagrangian, will be discussed in section 5.2.
15It is understood that doublets are LH and singlets are RH Lorentz spinors.
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has to be forbidden or suppressed to fulfill criteria 4. So we just need to pair the RH sector
with a fermion with opposite-sign hypercharge:

L1 ∼ (1, 2,+Y ) , E1 ∼
(

1, 1,+Y − 1
2

)
or N1 ∼

(
1, 1,+Y + 1

2

)
, (5.6)

L2 ∼ (1, 2,−Y ) , E2 ∼
(

1, 1,−Y + 1
2

)
or N2 ∼

(
1, 1,−Y − 1

2

)
. (5.7)

Let us consider for instance the case with RH fermions E1,2 (similar conclusions apply for
the other choice). The Yukawas terms are

− LY = yE1L̄1E1H + yE2L̄2E2H̃ + h.c. . (5.8)

After EW symmetry breaking only the T 3
L = −1

2

(
+1

2

)
component of the L1 (L2) doublet

with electric charge Q1 = −1
2 +Y (Q2 = +1

2−Y ) picks up a mass, while the T 3
L = +1

2

(
−1

2

)
component with Q1 = +1

2 + Y (Q2 = −1
2 − Y ) is unpaired and hence, remains massless.

For Y = −1/2 the massless chiral fermions are electrically neutral, but they still retain an
interaction with the Z boson and hence are ruled out. In conclusions, we need to include
both E1,2 and N1,2 pairs in order to not have massless fermions. Therefore the minimal
setup which fulfills criteria 1–4 is16

L1 ∼ (1, 2,+Y ) , E1 ∼
(

1, 1,+Y − 1
2

)
, N1 ∼

(
1, 1,+Y + 1

2

)
, (5.9)

L2 ∼ (1, 2,−Y ) , E2 ∼
(

1, 1,−Y + 1
2

)
, N2 ∼

(
1, 1,−Y − 1

2

)
. (5.10)

The Yukawa sector is then

− LY = yE1L̄1E1H + yE2L̄2E2H̃ + yN1L̄1N1H̃ + yN2L̄2N2H + h.c. , (5.11)

and all chiral fermions pick up a mass after EW symmetry breaking.
Note that gauge anomaly cancellation is immediate since the field content in (5.9)–

(5.10) is vector-like with respect to the SM gauge group. Nonetheless, as we said previously,
we still consider this field content as chiral since we do not write bare mass terms and only
use EWSB to produce the heavy masses. This leads to a theory where the massive states
couple asymetrically when projected onto their LH or RH components, which is what we
took as a definition for “chiral”. We can remain agnostic about the reason that makes the
bare masses suppressed with respect to the couplings to the Higgs field. However, note
that bare mass terms can be forbidden by using discrete gauge symmetries, for instance a
Z2 symmetry under which L1, E1, N1 and all SM leptons are odd, and the other fields even,
is anomaly-free and sufficient to forbid bare mass terms, while allowing for all the Yukawa
couplings. Considering such a discrete gauge symmetry makes the spectrum genuinely
chiral.

16The case Y = 0 needs to be discussed separately, but it does not lead to a more minimal setup. In
principle, one could consider the anomaly free content L1 ∼ (1, 2, 0), E1 ∼

(
1, 1,− 1

2

)
, N1 ∼

(
1, 1,+ 1

2

)
,

L2 ∼ (1, 2, 0). However, in such case the Yukawa sector is −LY = yαE1 L̄αE1H + yαN1 L̄αN1H̃ + h.c., where
α = 1, 2 is a flavour index. Without loss of generality with can do a U(2) flavour transformation in such a
way to align the U(2) vector such that yE1 ∝ (0, 1). Hence the Q = T 3

L = 1/2 component of L1 remains
massless, in contradiction with point 1.
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5.2 A DFSZ-like UV completion

In order to host the axion field as the Goldstone of a spontaneously broken U(1)PQ sym-
metry, we need to properly extend the scalar sector. We here provide a renormalizable UV
completion of the SM-axion Lagrangian which is inspired by the standard DFSZ [11, 12]
axion. The main difference is that we do not require the axion to solve the strong CP
problem; we improperly keep the label PQ, even though the axion does not necessarily has
a QCD anomaly, and we do not forbid that there is an extra source of U(1)PQ breaking
giving an axion mass that is unrelated to the axion decay constant. However, in what
follows we do not discuss any explicit source of PQ breaking, and we derive the axion
couplings from a lagrangian that has an exact PQ symmetry. Indeed, the axion mass is
irrelevant for our one-loop computations with fermion lines.

The scalar sector comprises a complex SM singlet Φ and two Higgs doublets H1,2 ∼(
1, 2,+1

2

)
, with scalar potential

V (H1, H2,Φ) = Vr.i.(|H1|, |H2|, |Φ|, |H†1H2|) + λH†1H2Φ2 + h.c. , (5.12)

which contains all the re-phasing invariant terms allowed by gauge invariance plus a non-
hermitian operator which is responsible for the explicit breaking of the three re-phasing
symmetries U(1)Φ×U(1)H1 ×U(1)H2 into two linearly independent U(1)’s, to be identified
with U(1)Y ×U(1)PQ. Eq. (5.12) implies

X1 −X2 = 2 , (5.13)

where X1,2 denote the PQ charges of H1,2, and we have normalized XΦ = 1.
It turns out that with a single Higgs doublet in the Yukawa Lagrangian of the exotic

fermions (cf. eq. (5.11)), there are no dimension-5 axion-gauge bosons couplings in the
EFT below the exotics mass, as we show in appendix B. In order to obtain an EFT with
non-trivial axion couplings, we modify eq. (5.11) in the following way

− LY = yE1L̄1E1H1 + yE2L̄2E2H̃2 + yN1L̄1N1H̃2 + yN2L̄2N2H1 + h.c. , (5.14)

which implies the following constraints on the U(1)PQ charges:

−XL1 +XE1 +X1 = 0 , −XL1 +XN1 −X2 = 0 ,
−XL2 +XE2 −X2 = 0 , −XL2 +XN2 +X1 = 0 .

(5.15)

We recall that, although gauge symmetry allows the bare mass terms L1L2, E1E2 and
N1N2, they can be forbidden, e.g. via a discrete gauge symmetry, in order to avoid decou-
pling effects. Note also that we could have chosen different assignments of H1,2 in (5.14),
which amount to different choices of PQ symmetry, and induce different axion and/or Higgs
boson phenomenology. Henceforth, we stick to this choice and briefly discuss other cases
in appendix B. We do not specify the Higgs fields assignment in the SM Yukawa couplings,
we simply assume that it only involves H1,2 and no third Higgs doublet, and that it is
done such that there are no tree-level flavour changing neutral currents. One possibility
is to couple them as in the original DFSZ model, in which case (5.1) is simply the usual
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DFSZ axion-SM EFT. As we said, we focus here on the contributions from the extra heavy
fermions.

Next, we proceed to identify the axion Goldstone mode in terms of the scalar compo-
nents

H1 ⊃
v1√

2
e
i
a1
v1

(
0
1

)
, H2 ⊃

v2√
2
e
i
a2
v2

(
0
1

)
, Φ ⊃ vΦ√

2
e
i
aΦ
VΦ , (5.16)

where we have neglected EM-charged and radial modes that have no projection on the
axion field denoted as a. In order to identify the latter in terms of a1,2,Φ let us write down
the classically conserved PQ current, restricted to the scalar sector

JPQ
µ = −Φ†i

↔
∂µΦ−X1H

†
1i
↔
∂µH1 −X2H

†
2i
↔
∂µH2 + . . .

= VΦ∂µaΦ +X1v1∂µa1 +X2v2∂µa2 + . . . , (5.17)

where we only included the scalar terms relevant for the identification of the axion. Fol-
lowing the Goldstone theorem 〈0|JPQ

µ |a〉 ∼ ifpµ, the axion-Goldstone field is defined as

a = 1
f

(VΦaΦ +X1v1a1 +X2v2a2) , f2 = V 2
Φ +X2

1v
2
1 +X2

2v
2
2 , (5.18)

so that JPQ
µ ⊃ f∂µa. Under a PQ transformation a1,2 → a1,2+κX1,2v1,2 and aΦ → aΦ+κvΦ,

the axion field transforms as a→ a+ κf .
Requiring that under a U(1)Y gauge transformation the axion field a remains invariant

yields X1Y1v
2
1 +X2Y2v

2
2 = 0, where Y1,2 = 1/2 are the hypercharges of the Higgs doublets

H1,2. Hence, all the PQ charges in the scalar sector are fixed in terms of tan β = v2/v1:

XΦ = 1 , X1 = 2 sin2 β , X2 = −2 cos2 β , (5.19)

where we have defined v1/v = cosβ, v2/v = sin β, with v =
√
v2

1 + v2
2 ' 246GeV. Substi-

tuting these expressions into eq. (5.18) we obtain:

f2 = V 2
Φ + v2(sin 2β)2 . (5.20)

In the limit VΦ � v we can approximate f ' VΦ.
The axion coupling to the new chiral fermions can be derived by inverting the first re-

lation in eq. (5.18) to express a1,2 in terms of a. This boils down to replace a1/v1 → X1a/f ,
a2/v2 → X2a/f in eq. (5.16) and yields, decomposing the doublets as L1 = (NL1 , EL1)T ,
L2 = (EL2 , NL2)T ,

−LY ⊃ mE1

(
e
iX1

a
f

)
ĒL1E1 +mE2

(
e
−iX2

a
f

)
ĒL2E2

+mN1

(
e
−iX2

a
f

)
N̄L1N1 +mN2

(
e
iX1

a
f

)
N̄L2N2 + h.c. , (5.21)

where we defined the Dirac mass terms mE1,2 = yE1,2
v1√

2 and mN1,2 = yN1,2
v2√

2 . We could go
further and remove the axion field from the mass terms by redefining the fermion fields via a
field-dependent chiral transformation. The non-invariance of the fermion kinetic terms plus
possible anomalous transformations lead in turn to an axion effective Lagrangian similar
to (5.1). However, it is easier to obtain the axion-gauge bosons couplings in the basis
of (5.21). The EFT terms that arise due to anomalous transformations can be found in
appendix B.
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5.3 Axion couplings to gauge bosons and sum-rules

We now derive the axion EFT below the mass of the new fermions. For that, we define the
massive eigenstates Ni = Ni +NLi , Ei = Ei +ELi and extract their gauge couplings from

L ⊃ Liγ
µ
(
g
σa

2 W a
µ + g′(−1)i+1Y Bµ

)
Li + g′Niγ

µ(−1)i+1
(
Y + 1

2

)
BµNi

+g′Eiγµ(−1)i+1
(
Y − 1

2

)
BµEi . (5.22)

Assuming equal masses within a SU(2) doublet for simplicity (mNi = mEi) and using the
formulae in appendix B, the axion couplings in the EFT read

L ⊃ −g′2 (1 + 12Y 2)(X1 −X2)
96π2

a

f
BB̃ − g2X1 −X2

96π2
a

f
W aW̃ a

∣∣
lin. − gg

′X1 −X2
96π2

a

f
BW̃ 3∣∣

lin. ,

(5.23)
where we used the same letter to refer to the gauge fields and to their field strengths, and
whereW a

µν |lin = ∂µW
a
ν −∂νW a

µ (we only compute couplings of an axion to two gauge fields,
which are only sensitive to the linear parts of the field strengths). Although we normalized
X1 −X2 = 2 previously, we kept it in (5.23) to make the charge dependence explicit.

Let us notice that the last term cannot be reproduced by a UV PQ anomaly, since
there is no non-vanishing U(1)PQ ×U(1)Y × SU(2)W anomaly coefficient. In particular, it
does not match the usual ansatz (4.4), but it can be obtained including also a combination
of the EFT terms in (4.9).17 Therefore, the present UV example is a confirmation of a
statement we made previously: the terms in (4.9) appear at dimension 5 in the lagrangian,
and are not suppressed by the mass of the heavy fermions.

We can express (5.23) in terms of vector mass eigenstates, focusing on neutral bosons,

−16π2

e2 L ⊃ (X1 −X2)
(

2Y 2 + 1
2

)
a

f
F F̃ + (X1 −X2)

(
−tW

(
4Y 2 + 1

2

)
+ t−1

W

2

)
a

f
F Z̃

+ (X1 −X2)
(
t2W

(
2Y 2 + 1

6

)
− 1

6 + t−2
W

6

)
a

f
ZZ̃ .

(5.24)
It is evident that these couplings do not derive solely from UV anomalies by noticing that
the sum rules in (4.7) are violated:

Cγγ+s−2
W (1−t2W )CZγ−

1
s2
W c

2
W

CZZ = X1 −X2
12c2

W s
2
W

, Cγγ+s−2
W CZγ−(1+t−2

W )CWW = X2 −X1
12s2

W

.

(5.25)
That means that one cannot define any PQ symmetry whose UV anomalies reproduce (5.24)
(see appendix B for more details18). This breakdown of the sum rules, that can be directly

17It can be checked that one finds c3 = 0 when matching between (5.23) onto (4.4) and (4.9). This is
due to the fact that c3 violates custodial symmetry, while we used the simplifying custodial symmetry limit
(mNi = mEi) in our computation, which is also motivated by electroweak precision tests, as discussed later.

18As we discuss in appendix B, it is possible to understand the precise coefficients in (5.24) by treating
the Z boson as a massive abelian gauge boson, following the prescription at the end of section 3.2.
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tested given an observation of the axion-gauge boson couplings, is a smoking gun of the
presence of a chiral heavy sector charged under the PQ symmetry.

It is useful to reformulate the sum rules in (4.7) in terms of observable quantities, for
instance in terms of partial decay rates of the axion. Assuming that ma > 2mZ so that all
decays are allowed, and ignoring the SM contributions, the rates read (see e.g. [65])

Γ(a→ γγ) = C2
γγ

α2m3
a

64π3f2 , Γ(a→WW ) = C2
WW

α2m3
a

32π3s4
W f

2 ,

Γ(a→ ZZ) = C2
ZZ

α2m3
a

64π3s4
W c

4
W f

2 , Γ(a→ Zγ) = C2
Zγ

α2m3
a

32π3s2
W c

2
W f

2 ,

(5.26)

where the couplings CXX are defined in (4.5). Using the first identity in (4.7), one sees
that the following holds

SR-1:
[

Γ(a→ ZZ)
Γ(a→ γγ) − 1−

(
t2W − 1

)2
2t2W

Γ(a→ Zγ)
Γ(a→ γγ)

]2

− 2
(
t2W − 1

)2
t2W

Γ(a→ Zγ)
Γ(a→ γγ) = 0 , (5.27)

which is a relation between two quantities that can be traced on a plane. Another sum
rule that follows from both identities in (4.7) is

SR-2: Γ(a→ γγ) + 1
2
(
t−2
W − 1

)
Γ(a→WW )− t−2

W Γ(a→ ZZ) + 1
2
(
1− t−2

W

)
Γ(a→ Zγ) = 0 .

(5.28)
By performing a low-energy measurement, one can test those sum-rules; if at least one of
them is violated, we can conclude that the fermionic UV completion is chiral, whereas a
vector-like one (e.g. a KSVZ-like model) always satisfies them. The violation of the sum
rules in our specific model is displayed in figure 1, where one can check that the model
only satisfies both sum rules when |Y | =∞.

We should stress the caveat that SM loop contributions also violate the naive sum
rules, so they should be taken into account. In particular, the axion-fermion couplings
in (5.1), which are responsible for the SM loop corrections to the sum rule, should be
reconstructed from low-energy data in order to extract the bosonic EFT terms on which
the sum rule can be tested.

5.4 Phenomenology of SM chiral extensions

Due to their non-decoupling nature, SM chiral extensions have an interesting phenomenol-
ogy that we summarize in the following. The aim of this section is to show that the minimal
chiral setup in section 5.1 is strongly constrained, but not yet ruled-out.
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Non-Linear EFT
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Figure 1. Plot of the ratio of decay rates Γ(a→ZZ)
Γ(a→γγ) as a function of the ratio of decay rates

Γ(a→Zγ)
Γ(a→γγ) , assuming that the decays are kinematically allowed. The anomaly-based sum rule SR-1,
given in (5.27), corresponds to the purple curve. The sum rule SR-2, given in (5.28), can only be
traced on a plane if a ratio of partial rates is fixed. We therefore fix Γ(a→WW )

Γ(a→γγ) to its value derived
from (5.24) as a function of Y . Each gray line then corresponds to the linear relation in (5.28) when
we scan values of Y . Finally, the blue curve uses the explicit couplings in (5.24).

5.4.1 Electroweak precision tests

The contribution of the new exotic fermions in eqs. (5.9)–(5.10) to the S and T parameters
is [34]

S = 1
6π

[(
1− 2Y log

m2
N1

m2
E1

)
+
(

1 + 2Y log
m2
N2

m2
E2

)
+O

(
m2
Z

m2
N,E

)]
≈ 1

3π , (5.29)

T = 1
16πc2

W s
2
Wm

2
Z

(
m2
N1 +m2

E1 − 2
m2
N1
m2
E1

m2
N1
−m2

E1

log
m2
N1

m2
E1

)

+ 1
16πc2

W s
2
Wm

2
Z

(
m2
N2 +m2

E2 − 2
m2
N2
m2
E2

m2
N2
−m2

E2

log
m2
N2

m2
E2

)
≈ 0 , (5.30)

where the approximation in the last steps holds in the custodial limits yN1 = yE1 and
yN2 = yE2 . Recent fits for oblique parameters, e.g. from Gfitter [66], yield

S = 0.05± 0.11 , T = 0.09± 0.13 , (5.31)

which are easily satisfied in the custodial limit.

5.4.2 Higgs couplings

We now study the constraints from Higgs couplings measurements. In particular, we assess
the impact of the new heavy fermions on the decay rate of the Higgs boson to two photons,
or to a photon and a Z boson.
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The useful formulae are the following. Consider a fermion ψ of massmψ with couplings
given by the following Lagrangian,

Lψ = ψ(i/∂−mψ)ψ− xψmψ

v
hψψ+eQψψγ

µψAµ+ e

cW sW
ψγµ

(
T 3
ψ

2 −Qψs
2
W −

T 3
ψ

2 γ5

)
ψZµ ,

(5.32)
where h is the 125GeV Higgs, Aµ and Zµ the photon and Z boson fields, T 3

ψ is the eigenvalue
of the third generator of SU(2)L when it acts on the left-handed component of ψ (ψL =
1−γ5

2 ψ), so that T 3
ψ = ±1

2 when ψL arises from a doublet in the fundamental of SU(2)L,
and xψ is a number. Its one-loop contributions to the amplitudes h → γγ and h → γZ

are [67]

Aψγγ ≈
4
3xψQ

2
ψ , AψZγ ≈ −

1
3xψQψ

T 3
ψ − 2Qψs2

W

cW
, (5.33)

where we assumed that ψ is much heavier than the Higgs and the Z boson, which holds
for the heavy fermions we consider here. In the SM, these amplitudes are dominated by
the loop of the W gauge boson interfering negatively with the loop of the top quark and
they amount to ASM

γγ ≈ −6.5 and ASM
γZ ≈ 5.7 at LO (the dominant QCD NLO corrections

give a correction of order 5%).
We can apply these formulae to the case of our model in (5.14). However, the quantity

xψ in (5.32) depends on the entries of the scalar potential of the two Higgs doublets. Indeed,
the generic vacuum of a 2HDM is parametrized by two angles α, β (see for instance [68] for
a review). For a SU(2)L doublet QL = (uL, dL) and a singlet dR, the Yukawa couplings to
the light Higgs, which we choose to be the known 125GeV particle for definiteness, read,

QLdRH1 + h.c. ⊃ md

(
1− sinα

cosβ
h

v

)
dd , QLdRH2 + h.c. ⊃ md

(
1 + cosα

sin β
h

v

)
dd , (5.34)

and the couplings of uL to a singlet uR are similarly obtained. Couplings of the light Higgs
to the vector bosons are given by their SM values times sin(β − α).

To get a SM-like light Higgs, one can go to the alignment limit β − α = π/2, in which
case the couplings to vector bosons is SM-like, as well as the Yukawa couplings since then
− sinα/ cosβ = cosα/ sin β = 1. The Higgs signals are therefore modified as if there
was a single Higgs doublet, namely as if the model was given by the Yukawa couplings in
eq. (5.11). One must then use xψ = 1 in (5.32) for all the heavy fermions, and this yields
Anew
γγ ≈ 4

3(1 + 4Y 2). Writing the modified Higgs width to photons as

Rγγ =

∣∣∣ASM
γγ +Anew

γγ

∣∣∣2∣∣∣ASM
γγ

∣∣∣2 , (5.35)

a recent ATLAS analysis finds Rγγ = 1.00±0.12 [69]. There is only the possibility that the
new contribution interferes negatively with the SM amplitude, namely Anew

γγ ≈ −2ASM
γγ ≈

13.0. In such a case the allowed 2σ range is 1.43 . |Y | . 1.53 (cf. figure 2).
A correlated signal in the γZ channel is Anew

γZ ≈ −2
3cW [1 − (1 + 8Y 2)t2W ], leading to

a large deviation in the region where |Y | ≈ 1.5 compatible with the diphoton channel (cf.
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Figure 2. Rγγ and RZγ as a function of |Y | for the model in (5.14) in the alignement limit. The
horizontal solid and dashed purple lines show the experimental value of Rγγ and the 1σ boundaries,
respectively. The pink ones correspond to projections of RZγ at HL-LHC.

figure 2). The γZ decay channel of the Higgs has not been observed yet and HL-LHC
is expected to measure κγZ within a 10% precision [70]. Future lepton colliders would
not offer any improvement on that bound and only FCC-hh could reach a precision below
1% [71].

The alignment limit of the model in (5.14) therefore predicts a strong departure of
RZγ from its SM-value. However, this conclusion can be evaded in other limits of the
2HDM. In particular, the modifications to the Higgs signals can be strongly suppressed in
the so-called wrong-sign limit [72–74]. This limit uses the fact that only the sign of the
top Yukawa has been measured. That means that, defining the labelling such that the top
quark couples to H̃2, we must enforce cosα = sin β =⇒ α = ±

(
π
2 − β

)
. The minus sign

gives the alignment limit, but there exists another viable option: the plus sign gives the
wrong-sign limit, α + β = π

2 , so called because in this limit, the bottom-Higgs coupling
is −mb/v, i.e. −1 times its SM value. The gauge bosons couplings of the Higgs are not
SM-like either, and are

sin(β − α) = sin
(

2β − π

2

)
= − cos(2β) = −cos2 β − sin2 β

cos2 β + sin2 β
= tan2 β − 1

tan2 β + 1 (5.36)

times their SM values. At large tan β, this goes to 1, but differs from it at fixed tan β.
Current measurements of the Higgs couplings then impose tan β & 4 at 68% C.L. [75],
while the limit is expected to increase to tan β & 12 at HL-LHC [70]. In this limit, heavy
fermions coupled to H1 have xψ = −1 in (5.32), whereas those coupled to H2 have xψ = 1,
so that cancellations are possible in (5.33). For instance, in the case of our model in (5.14)
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Figure 3. Drell-Yann cross-section and experimental bounds for the exotic leptons at LHC (13TeV)
as a function of their mass M for |Q| = 1 (left panel) and |Q| = 2 (right panel). The purple lines
with circle shaped markers are the cross section for 1 exotic lepton with mass M and the cyan lines
with star-shaped markers are for 2 degenerate exotic leptons with the same |Q|. The cross-sections
were computed at LO (see e.g. [77, 78]) with MSTW2008 PDFs [79]. The curves without markers
show the experimental results obtained by CMS [76] using only the tracker (continuous dark red
line) and the tracker+TOF technique (dot dashed dark blue line).

the partial amplitudes in (5.33) simply vanish, and the modifications to the Higgs signals
are those of a 2HDM in the wrong-sign limit without extra chiral matter.

5.4.3 Stable charged particles and direct searches

Except for |Y | = 3/2, the exotic leptons do not mix the SM ones and the lightest state
of the spectrum is electrically charged (Q = Y ± 1/2) and stable due to exotic lepton
number (which arises accidentally due to Y ). Charged relics are cosmologically dangerous
and largely excluded. To avoid cosmological problems one has to invoke low-scale inflation
max{HI , TRH} .TeV, such that charged relics are either diluted by inflation or never
thermally produced. On the other hand, stable charged particles yield striking signatures
at colliders in the forms of charged track, anomalous energy loss in calorimeters, longer
time of flights, etc. Current bounds for Q . 2 are of order 700GeV [76], which correspond
to an electroweak contribution to their mass with Yukawas which saturate the perturbative
unitarity limit.

The exotic leptons can be produced at hadron colliders through the Drell-Yann process.
We show in figure 3 the production cross sections and experimental limits [76] on the cross
section at LHC for exotic leptons with |Q| = 1, 2, which corresponds to Y = 3/2. For the
fully degenerate case, one must consider the production of 2 indistinguishable leptons with
the same |Q| and in that case, the bound on their mass is M & 840GeV, which comes from
the states with |Q| = 2.

If one of the families is heavier than the other but each doublet is still degenerate, the
bound relaxes toM & 720GeV. The situation of different masses in the doublet, unfavoured
by EW precision data as explained before, would relax the bound for the |Q| = 1 lepton in
80GeV. Although the experimental results allow to further relax the bound for |Q| = 1 in
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around 40GeV, this would allow the decay of the |Q| = 2 lepton via W boson. We leave
the phenomenological analysis of such case, together with the case of mixing among exotic
lepton families, for future work.

Finally, if Y = 3/2 (exactly), some exotic fermions can mix with SM leptons ` (unless
other discrete symmetries are imposed). In such a case the phenomenology is rather dif-
ferent: Q = 2 states can decay into a W and a Q = 1 fermion, while the latter can mix
with SM leptons and decay into Z` or h`. The lower bounds for these scenarios at LHC
are around 500GeV [80].

6 Conclusions

In this paper we have investigated the structure of axion EFTs, focussing in particular
on axion couplings to massive chiral gauge fields (most notably, SM electroweak gauge
bosons) and their connection with UV models. Against naive expectations, ref. [32] found
that axion couplings to electroweak gauge bosons are not entirely captured by the mixed
anomalies between the PQ and the gauge symmetries, even in the EFT limit when all the
heavy fermionic degrees of freedom have been integrated out. This has to be compared,
instead, with the more standard case of axion couplings to massless gauge fields (e.g.
photons and gluons) which are constrained by anomaly matching to always be linked to a
UV PQ anomaly.

In this work, we have provided a new understanding of this phenomenon. The key
point is that massive gauge fields have longitudinal parts that can be used to write down
non-anomalous gauge-invariant operators which contribute to the physical amplitudes but
not to the anomalies. This is exemplified first in an abelian toy model, both within an
EFT approach and an explicit matching between UV and IR dynamics upon integrating
out heavy chiral fermions. In fact, the non-anomalous and non-decoupling terms are gen-
erated when the massive gauge fields are chiral with respect to some heavy fermions, which
(dominantly) acquire their mass from the same source of symmetry breaking that gives
mass to the chiral gauge fields.

The generalization to the non-abelian case (relevant for the SM) brings in an impor-
tant new feature: if axion couplings to vector bosons were solely determined by UV PQ
anomalies, SU(2)L ×U(1)Y invariance would induce correlations among the different EFT
interactions. These can be expressed in terms of sum-rules for axion couplings to vec-
tor mass eigenstates (cf. eq. (4.7)), which could be tested at low-energy within the EFT
approach. On the other hand, non-anomalous gauge-invariant operators are generically
expected if the electroweak symmetry is realized non-linearly and they allow to evade the
above mentioned sum-rules for axion couplings to vector bosons. Hence, a violation of
those sum-rules would clearly represent a smoking-gun signature for a UV-completion of
the axion EFT which contains heavy fermions that are chiral with respect to the SM gauge
group.

We finally provided an explicit example of a phenomenologically relevant chiral exten-
sion of the SM, featuring an extended Higgs sector with an axion field whose couplings
are induced by new heavy fermions whose mass is dominated by electroweak symmetry
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breaking vevs. In such a case, we verified that the general expectations discussed above
about axion couplings to electroweak gauge bosons are met in the EFT limit, such as e.g.
the breaking of the sum-rules for axion couplings to vector mass eigenstates. We further
assessed the phenomenological viability of such a setup by inspecting electroweak preci-
sion tests, Higgs couplings and direct searches. As a side result, we showed that a certain
class of chiral extensions of the SM (broadly understood as heavy fermions whose mass
is dominantly due to electroweak symmetry breaking) is still viable, and thanks to an
extended Higgs sector it could also hide from further scrutiny at the HL-LHC, although
direct searches push it at the boundary of perturbativity.
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A EFT matching with a product of abelian gauge groups

In this appendix, we provide explicit loop computations to match a model with a collection
of heavy chiral fermions coupled to a product of abelian gauge bosons to an EFT Lagrangian
of the type discussed in section 3, involving axion terms as well as GCS operators.19 In this
appendix, gauge couplings will be absorbed in the gauge fields, and they can be reinstated
by making the replacement Ai,µ → giAi,µ for each gauge field in all the formulae.

Such computations have already been performed in the literature, for instance in
ref. [36] whose approach we follow closely (see also ref. [82] for a recent and similar com-
putation relevant for radiative decays of the Z boson). However, those discussions usually
concern models of additional gauge symmetries, and to our knowledge rarely models of ax-
ions. Therefore, as in section 3, we repeat the necessary details and insist on the treatment
proper to axion models.

A.1 Explicit loop computation

We consider a heavy (chiral) fermion, ψ, coupled to several Abelian gauge fields, Ai,µ.
It will acquire its mass via a Yukawa interaction to a scalar field, φ, whose imaginary
component gives rise to an axion, θ. The Lagrangian of the model is as follows:

Lψ = iψγµ (∂µ − i[αi − βiγ5]Ai,µ)ψ − y(ψLψRφ+ h.c.) , (A.1)
19We followed a traditional approach with an explicit calculation of one-loop Feynman diagrams to match

the UV-model onto the EFT Lagrangian. It would be interesting to re-derive the results more directly from
the universal one-loop effective action, see ref. [81] and references therein for a recent review.
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Figure 4. One-loop contributions to the axion-gauge field coupling.

where ψR/L = 1±γ5
2 ψ (resp. φ) have charges qiR/L = αi ∓ βi (resp. qiφ = qiL − qiR = 2βi)

with respect to the gauge field Ai, which again can be the “fake” PQ gauge field (hence-
forth, hatted indices ı̂, ̂, k̂ will denote physical gauge symmetries, in particular not the PQ
symmetry).

As we explicitly show below, at energies below the mass of the heavy fermion, the
interactions between the axions and the gauge fields can be matched to the following EFT
Lagrangian,

LEFT ⊃ −
3αiαj + βiβj

48π2
θ

f
FiF̃j + Eij,k

8π2 Ai,µAj,νF̃k
µν
, (A.2)

where the sum over i, j(, k) is implicit and we wrote φ = f√
2e
i θ
f . The GCS coefficients that

are needed for our discussion are given by

EPQ ı̂,̂ = 2
(
αPQαı̂ + 1

3βPQβı̂

)
β̂ , Eı̂̂,PQ = 2(αı̂β̂ − βı̂α̂)αPQ . (A.3)

Actually, only EPQ ı̂,̂ is relevant for PQ anomaly matching since Eı̂̂,PQ does not contribute
to the mixed PQ-gauge anomaly, but the value of the latter will be needed to check the
invariance of the EFT Lagrangian under a physical gauge transformation.

A.1.1 Axion terms

The axion terms in the EFT arise via the (off-shell) diagrams of figure 4 (note that, when
computing the one-loop EFT below the fermion masses, we should not compute diagrams
with axions or gauge bosons propagators, since this would be a double counting with respect
to amplitudes computed in the EFT).

Cutting off the external legs and matching with the Lagrangian coefficient −cij,µν θv
·Ai,µAj,ν , we get

cij,µν = mψ

f

∫
d4k

(2π)4 Tr
(
γ5

���k + p+mψ

(k + p)2 −m2
ψ + iε

Γµi
�k +mψ

k2 −m2
ψ + iε

Γνj
���k − q +mψ

(k − q)2 −m2
ψ + iε

)
+(i, µ, q ↔ j, ν, q) , (A.4)

where we defined Γµi ≡ γµ(αi−βiγ5). To extract from this expression the piece proportional
to the Levi-Civita tensor εµνρσ, it is enough to focus on terms with one or three γ5 in the
trace. The corresponding expression is finite, and when evaluated in the mψ →∞ limit it
corresponds to the first term written in (A.2).
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Figure 5. One-loop contributions to the triple gauge field coupling.

Note also that, if we kept the chiral fermion mass finite, the form factors in (A.4)
(and below in (A.5)) map to a tower of higher-dimensional operators in the EFT, see, e.g.,
appendix D of ref. [83] for an explicit example.

A.1.2 Generalised Chern-Simons terms

To compute the GCS couplings, the relevant diagrams are that of figure 5.
They read∫
d4k

(2π)4 Tr
(

����k+ aijk +mψ

(k+ āijk)2−m2
ψ + iε

Γρk ������k+ āijk− q+mψ

(k+ āijk− q)2−m2
ψ + iε

Γµi ������k+ āijk + p+mψ

(k+ āijk + p)2−m2
ψ + iε

Γνj

)

+ (j, ν, p, āijk ↔ k, ρ, q, b̄ijk) .
(A.5)

We kept track of the momentum routing ambiguity by introducing two shift vectors āijk, b̄ijk
in the computation since, although the GCS are associated to finite terms, each diagram
will contribute via a linearly divergent expression and shifts of k in one diagram have
consequences. For the axion couplings, each of the two diagrams in (A.4) is at most
logarithmically divergent (due to the Dirac trace, there is no k3 term in the numerator),
so there was no need to introduce shift vectors.

To extract the GCS terms, we focus again on the terms with odd numbers of γ5 in
the trace. Furthermore, we only care about non-decoupling EFT terms in the mψ → ∞
limit, which must be of the form A3 or ∂AA2 since any higher dimensional operator has
to be suppressed by mψ, the only large scale which enters in the computation. Thus, it is
enough to look at the zeroth and first order of (A.5) in p, q, a, b. The end result is

−ε
µνρσ

4π2

(
pσ

[
αjαkβi +αiαkβj −αiαjβk + βiβjβk

3

]
− qσ

[
αjαkβi−αiαkβj +αiαjβk + βiβjβk

3

]

+(b̄ijk− āijk)σ
2 [αjαkβi +αiαkβj +αiαjβk +βiβjβk]

)
.

(A.6)
To be consistent with anomaly computations, see e.g. ref. [58], we must relate the two shift
vectors as

− b̄ijk = āijk = a
(p)
ijkp+ a

(q)
ijkq . (A.7)

This allows one to match (A.6) to the amplitude obtained from the GCS term Eij,kAiAjF̃k,
of the effective Lagrangian (A.2), which in momentum space reads

− εµνρσ

4π2 ((Ejk,i − Ekj,i)(−p− q)σ + (Eki,j − Eik,j)pσ + (Eij,k − Eji,k)pσ) . (A.8)
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The GCS couplings Eij,k are then uniquely determined in terms of the charges αi, βi and
the shift vectors aijk(p) by requiring that they obey the following two conditions:

(i) Eij,k = −Eji,k , (ii) Eij,k + Ejk,i + Eki,j = 0 . (A.9)

The first relation follows from the symmetric property under the exchange of i and j of
the quantity AiAjF̃k, while the second relation is a consequence of the fact that AiAjF̃k +
AjAkF̃i + AkAiF̃j is a total derivative. The two expressions (A.6) and (A.8) will then be
equivalent for arbitrary momenta p and q and arbitrary charges αi and βi provided that
the shift vectors satisfy:

aijk ≡ a
(p)
ijk = −a(q)

kij , aijk = ajik , aijk + akij + ajki = 1 . (A.10)

It then follows that

Eij,k = (aikj − ajki)
(
αiαj + 1

3βiβj
)
βk + (1− aijk)(αiβj − βiαj)αk . (A.11)

The shift vectors are chosen in order to enforce that the physical gauge symmetries are
conserved, namely that the EFT is invariant under the physical gauge symmetries. Let us
consider the following transformation of the fields,

ψL/R → e
iεiq

i
L/RψL/R , θ → θ + εi(qiL − qiR)f , Ai,µ → Ai,µ + δij∂µεj . (A.12)

Using the expression (A.11) of the GCS coefficients Eij,k in terms of the shift vectors, the
variation of the EFT Lagragian (A.2) reads20

δiLEFT = −(1− ajki)Dijk

32π2 εiFjF̃k , (A.13)

where Dijk ≡ qiLq
j
Lq

k
L − qiRq

j
Rq

k
R = 2βiβjβk + 2(αiαjβk + αjαkβi + αkαiβj) is nothing

else but the U(1)i × U(1)j × U(1)k anomaly polynomial. By considering i and j to be
gauge symmetries and k the PQ symmetry, which has possible non-vanishing mixed gauge
anomalies, the consistency of the EFT Lagrangian at the quantum level, namely δı̂LEFT =
0, forces to choose

aPQı̂̂ = 1 , aı̂̂PQ = −1 , (A.14)
where the last equality follows from (A.10). Plugging back these values of the shift vectors,
we arrive at the expression of the GCS coefficients announced in (A.3).

It can be checked in particular that these results guarantee that the whole EFT La-
grangian remains invariant under the action of an unbroken symmetry, i.e., a symmetry
under which the scalar field φ is neutral, qı̂φ = βı̂ = 0. In that case the axion θ itself does
not shift under the action of Aı̂. The individual GCS terms do, but in a correlated way.
Indeed, when βı̂ = 0, from (A.3), we obtain

LEFT ⊃
αPQαı̂β̂

2π2

(
APQ,µAı̂,νF̃

µν
̂ +Aı̂,µA̂,νF̃

µν
PQ

)
= −αPQαı̂β̂

2π2 APQ,µA̂,νF̃
µν
ı̂ + tot. derivative ,

that is gauge invariant with respect to Aı̂, as it should.
20Our results are a factor of 2 off with respect to the ones in [36], so that anomaly cancellation holds

in the low-energy EFT in our case. It can be verified by an explicit computation in the UV model that
the r.h.s. of (A.13) corresponds to the variation of the quantum effective action associated to the heavy
fermion, see for instance ref. [58]. This holds irrespective of the fact that i corresponds to a genuine gauge
symmetry or the PQ one.
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A.2 Anomaly matching with axion terms only

In the main text, we argued that, contrary to the simple case of the axion decay into two
photons, in general the phenomenology of an axion coupled to gauge fields is not uniquely
specified by the knowledge of mixed gauge-PQ UV anomalies as, indeed, the latter are only
reproduced when combining the axion and the GCS terms. Still, it is interesting to ask
how particular is the case of photons and when it can be generalised, i.e., what are the
conditions for the axion terms alone to reproduce the UV anomalies?21

When the heavy fermion is coupled to massless gauge bosons only, like the photons,
the scalar field φ has to be gauge neutral, βı̂ = β̂ = 0 and, according to (A.3), the GCS
terms are absent. So the axion term is the only one that can reproduce the anomalous shift
under a PQ transformation. However, when the heavy fermion has also an axial coupling
to at least one (massive) gauge field, βı̂ 6= 0, then a GCS term is needed in the EFT to
add up to the shift of the axion term in order to reproduce the full UV anomaly.

But even in the case of an axial gauge symmetry, it might still be possible that the
mixed PQ anomaly is borne by the axion term only provided that the PQ symmetry is
conveniently chosen. In these models, there need to unbroken vector-like symmetries that
can be used to redefine what one calls the PQ symmetry. For instance, the minimal model
in (A.1) has a “ψ-number” symmetry under which ψ → eiεψψ. Similarly, the model in
section 5 has two unbroken lepton number symmetries. The PQ charges are defined up
to these vector-like transformations. They do not affect the axion couplings [32, 33], but
they modify the GCS terms and the UV anomalies, in a way consistent with anomaly
matching as discussed above. For the axion term to capture the full PQ anomaly, we need
to impose that

δPQ

(
EPQı̂,̂

8π2 APQ,µAı̂,νF̃
µν
̂

)
= −EPQı̂,̂

16π2 εPQFı̂F̃̂ = 0 . (A.15)

It is therefore necessary and sufficient that EPQı̂,̂ + EPQ̂,̂ı = 0, i.e., given the explicit
expression (A.3) of the GCS coefficients,

3(αı̂β̂ + βı̂α̂)αPQ + 2βı̂β̂βPQ = 0 . (A.16)

Under such a condition, the mixed PQ gauge anomaly coefficient simply becomes

DPQı̂̂ = (3αı̂α̂ + βı̂β̂)
3 qPQ

φ , (A.17)

where qPQ
φ = qL − qR = 2βPQ is the PQ charge of the scalar field φ. We recognize here

the coefficient of the axion term (times the axion charge). Equation (A.16) generalizes the
prescription in (3.12) derived for a model with a single gauge symmetry. The integration

21A connected case is the one of a single physical massive gauge field, the axion θ becoming the longitudinal
component. The contribution of a heavy fermion of the U(1)3 gauge anomaly is then fully captured, in
generic gauge, by the axion term — it is not possible to write a GCS term involving a single gauge field,
see the anomaly inflow on a local string, ref. [39]. This is consistent with the well-known result of ref. [47]
that spontaneously broken gauge symmetry with anomalous fermion content can be consistently quantized.
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of several fermions at once, in particular when they form an anomaly-free set with respect
to the gauge symmetries, is similar to eq. (3.13) (see also appendix B.2).

Note that in the presence of several chiral gauge fields and for generic values of the
fermion gauge charges, the axion couplings are not expected to match all mixed anomalies
of the PQ symmetry at once, whatever the choice of the PQ charges of the UV fermions. In
section 5, we showed that this fact has observational consequences for non-abelian theories,
which take the form of the violation of sum rules. For abelian theories, the statement is
mostly formal, but it still applies, as can be seen in simple models such as the one of (3.7),
where no PQ charge assignment in the UV can generate a set of anomaly coefficients which
captures all axion couplings at once. An illustration of this is obtained when restricting the
gauge theory of the model in section 5 to the photon and the Z boson only (or equivalently,
to the hypercharge and T3 generators in the UV). It is then shown in appendix B.2 that the
PQ charge assignment in the UV cannot match the anomaly coefficients and the couplings
aγγ, aγZ, aZZ in the EFT. However, for each individual axion coupling, there exists one
convenient PQ charge obtained from (A.16). Note that if the heavy fermion has a vector-
like charge under one of the gauge symmetries and a chiral one under the other (e.g.
βı̂ = 0, β̂ 6= 0), then the suitable PQ charge is purely axial (αPQ = 0).

A.3 CCWZ approach to the EFT

In order to connect to formulae such as (3.17)–(3.18), we would like to point out that it is
always possible to rearrange the EFT Lagrangian (A.2), and more generally any EFT of
axions an and gauged Goldstone bosons θı̂, as a combination of the following terms,

−
Cnîĵ

16π2fn
anFı̂,µνF̃

µν
̂ , −Enı̂̂

(
∂µan
fn
−APQ

n,µ

)(
∂νθı̂
mAı̂

−Aı̂,ν
)
F̃µν̂ . (A.18)

(plus other possible PQ- and gauge-invariant terms which do not involve the axions), where
A̂ can be massless but Aı̂ has to be massive. The two kinds of terms are respectively
anomalous and gauge-invariant, generalizing (3.1) and (3.17). The several axions an and
gauge GBs θı̂ find their UV origin in the phases of Higgs fields, and both operators are
obtained by integrating out fermions. In order to fulfil PQ anomaly matching, we must
therefore have Cnı̂̂ = DPQn ı̂̂, the UV mixed anomaly coefficients of the n-th PQ symmetry.
This rearrangement is straightforwardly done from our explicit formulae, but it can also
be simply understood from a field redefinition of the UV theory. For that, we generalize
further the UV models (A.1) and consider the case of a renormalizable UV theory involving
several charged chiral fermions ψu getting their masses via Yukawa couplings to several
Higgs fields φX :

LUV = iψuγ
µ (∂µ − i[αi,u − βi,uγ5]Ai,µ)ψu − (yXuv ψu,Lψv,R φX + h.c.) . (A.19)

The gauge fields are split in two categories: the ones with respect to which the fermions
are vector-like and which can be massless (if they get a mass from some other source, it
is irrelevant for our argument), and the necessarily massive ones under which the fermions
are chiral. For those massive vectors Ai (among which the PQ gauge field), it is possible

– 38 –



J
H
E
P
0
7
(
2
0
2
1
)
1
8
9

to define fields θi out of the phases θX of the Higgs fields, that shift as θi → mAiδ
j
i εj under

the j-th gauge symmetry.22 Thus, we can make the fermions uncharged under the massive
gauge fields by redefining them as follows [84, 85],

ψu,L/R → e
i
θi
mAi

qi
u,L/Rψu,L/R . (A.20)

Since the fermions are now uncharged (except under the vector-like gauge symmetries),
there cannot remain any axion in the Yukawa couplings. Also, the field redefinitions
modify the minimal coupling to gauge fields in the covariant derivative as follows:

ψuγ
µ (∂µ − i[αi,u − βi,uγ5]Ai,µ)ψu → ψuγ

µ
(
∂µ + i[αi,u − βi,uγ5]

[
∂µθi
mAi

−Ai,µ
])

ψu ,

(A.21)
which is correctly gauge invariant when the fermions are neutral. Thus, integrating the
latter out (in perturbation theory or beyond) cannot generate anything else than terms
which are made out of ∂µθimAi

−Ai,µ [41, 42, 47], among which terms such as the second ones
in (A.18). To such terms, one needs to add the jacobian contribution due to the anomalous
transformation of the path integral measure [86], which are nothing but the first terms
in (A.18) for the physical axions θi ≡ an, see the previous section for details. Anomaly
matching between the UV and the IR is obvious in this approach.

B Axion couplings and PQ anomalies in SM chiral extensions

In this appendix, we discuss the axion couplings in the SM chiral extension of section 5,
and we compare them to the UV PQ anomalies. In particular, we match them one by one
using the prescription of (A.17), which determines how to fix the fermion PQ charges so
that the axion coupling under study is reproduced by the corresponding PQ anomaly. We
show how this prescription should be properly used when the PQ symmetry is restricted
by the fact that it should commute with gauge symmetries.

B.1 General 2HDM assignment and axion couplings

For generality, we first present what the axion couplings would be if we assigned the two
Higgses differently than in (5.14). Let us denote Hψ the Higgs that appears in ψ’s Yukawa

22Precisely, the mass term for the gauge fields,

L ⊃ 1
2M

2
ijAi,µA

µ
j ,

arises from the axion kinetic terms (themselves obtained from the Higgs fields kinetic terms)

L ⊃ 1
2(∂µθI − qiIvIAi,µ)2

so that M2
ij = qiIq

j
Iv

2
I . Diagonalizing M2 = OTM ′2O, for an orthogonal matrix O and M ′2 = diag(m2

Ai
),

A′
i = (OA)i define the massive vector fields of masses mAi and the associated gauge parameters are

ε′
i = (Oε)i. Thus, defining XiI = Oijq

j
I
vI

mAi
which is orthogonal (recall that we introduce fake gauge fields for

each PQ symmetry, so in particular there is one massive field for each phase of a Higgs scalar), θ′
i = (Xθ)i

shifts as mAiδ
j
i ε

′
j under the gauge symmetries defined by the vectors A′

i. We can also define q′
I
i = (OT qI)i

and check that we consistently have θI
vI

= q′
I
i θ′

i
mAi

. We work with the primed fields and drop the primes.
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term (only one can appear if the PQ is to be exact and the axion classically massless). Our
Yukawa sector thus looks as follows,

− LY = yE1L̄1E1HE1 + yE2L̄2E2HE2 + yN1L̄1N1HN1 + yN2L̄2N2HN2 + h.c. , (B.1)

and the axion content of each Higgs field, which can be Hi or H̃i, is written Hψ = e
iXHψ

a
f

·
(
0
vHψ√

2

)T
, so that the (Yukawa) axion fermion coupling is

yψvHψ√
2 ψ̄LψRe

iXHψ
a
f + h.c. . In

terms of the PQ charges of the fermions, one has

XHEi
= XLi −XEi , XHNi

= XLi −XNi . (B.2)

We derive the axion EFT below the mass of the new fermions, using the formulae in
appendix A. For that, we define the massive eigenstates Ni = Ni + NLi , Ei = Ei + ELi ,
where

L1 =
(
NL1

EL1

)
, L2 =

(
EL2

NL2

)
, (B.3)

and extract their gauge couplings from

L ⊃ Liγ
µ
(
g
σa

2 W a
µ + g′(−1)i+1Y Bµ

)
Li + g′Niγ

µ(−1)i+1
(
Y + 1

2

)
BµNi

+g′Eiγµ(−1)i+1
(
Y − 1

2

)
BµEi . (B.4)

Assuming equal masses within a SU(2) doublet for simplicity (mNi = mEi), the axion
couplings in the EFT read23

L ⊃ −g′2 (1 + 12Y 2)X+ + 6Y X−
192π2

a

f
BB̃−g2 X+

192π2
a

f
W aW̃ a

∣∣
lin.−gg

′X
+ + 6Y X−

192π2
a

f
BW̃ 3∣∣

lin.

(B.5)
where

X+ =
∑
i

(
XHNi

+XHEi

)
, X− =

∑
i

(
XHNi

−XHEi

)
. (B.6)

From this formula, we can immediately check that there are no (dimension 5) axion-gauge
bosons couplings if all the Higgses in (B.1) are expressed in terms of a single one, as given
in (5.11). Indeed, one then hasXHN1

+XHN2
= XHE1

+XHE2
= 0, such thatX+ = X− = 0.

Actually, this has a nice interpretation in terms of our discussion of section 3. Let us focus
on the aBB̃ coupling for simplicity. The mass terms and the axion couplings in (B.1) have
a U(1)5 symmetry — broken to U(1)3 by weak interactions -, spanned by the hypercharge
U(1)Y and four fermion numbers U(1)ψ=Ei,Ni . Thus the PQ symmetry must be a linear
combination of those. We can choose it to be fully aligned with U(1)Y without affecting

23With our assumption of equal masses within a doublet, the diagrams for the aW aW̃ b process can be
obtained using our abelian formulae with α = β = 1

4 , and supplemented by a factor∑
i=1,2(flavors)

∑
j=1,2(ψj=N,E)

(σ{aσb})[1+i+j],[1+i+j]Xψj
i
,

where we defined x2 = x mod 2, [x] = x2 + 2(1− x2).
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the discussion of anomaly matching in the axion EFT, since the axion does not shift under
the vector-like fermion symmetries. Then, gauging again the PQ symmetry, one finds that
the fields cannot differentiate between the PQ or the B gauge field, since each fermion ψ
couples to a single combination of them, Yψ(APQ,µ +Aµ), hence there cannot be any GCS
term in the EFT, simply because one cannot write a non-vanishing GCS term with a single
gauge field. Also, each fermion couples to a single axion, the phase of the single Higgs,
so that there is a single axion term. Consequently, the axion term is given by the U(1)3

Y

anomaly coefficient, or by the U(1)PQU(1)2
Y anomaly coefficient, which are identical by

assumption. Eventually, since the full set of heavy fermions has no U(1)3
Y anomaly, there

is no possible axion coupling in the EFT.

B.2 Matching with the UV PQ anomaly coefficients

We now verify that the prescription in (A.17) reproduces the axion couplings of (B.5). Let
us recall why such a prescription is needed. The interactions in (B.1) have two unbroken
lepton number symmetries U(1)L1 and U(1)L2 , which are anomalous with respect to the
chiral gauge symmetries SU(2)L×U(1)Y . Therefore, the PQ UV anomalies can be modified
by adding to the fermion PQ charges a component along those fermion numbers, namely
by redefining U(1)PQ → U(1)PQ + α (U(1)L1 + U(1)L2), with α an arbitrary number (the
antisymmetric combination U(1)L1 − U(1)L2 is anomaly free). This number can be used
to modify each mixed PQ anomaly so that it matches the corresponding axion coupling
in (B.5). We show how this is achieved in what follows.

For that, we compute the anomalous terms arising after a PQ rotation that removes
the axion from the mass terms,

Li → e
iXLi

a
f Li , Ni → e

iXNi
a
fNi , Ei → e

iXEi
a
fEi , (B.7)

where i = 1, 2. The anomalous terms read

δL = −g2 AabW
16π2

a

f
W aW̃ b − g′2 AB16π2

a

f
BB̃ , (B.8)

where the anomaly polynomials are

AabW = (XL1 +XL2)δab
2 , AB = X+ − 2(XL1 +XL2)

4 + Y X− + Y 2X+ , (B.9)

where X± have been defined in appendix B.1, and we recognize in particular the contribu-
tion of the unbroken anomalous fermion number U(1)L1 + U(1)L2 .

We now specialize to the Higgs assignment in (5.14), for which we have the rela-
tions (5.15), which imply X+ = 2(X1 −X2), X− = 0 so that we get

AabW = (XL1 +XL2)δab
2 AB = −XL1 +XL2 + (X2 −X1)(1 + 4Y 2)

2 . (B.10)
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Restricting (B.8) to the neutral mass eigenstates, one finds

−16π2

e2 δL = (X1 −X2)
(

2Y 2 + 1
2

)
FF̃

+
(
−tW

[
(X1 −X2)

(
4Y 2 + 1

)
− (XL1 +XL2)

]
+ t−1

W [XL1 +XL2 ]
)
FZ̃

+
(
t2W

[
(X1 −X2)

(
2Y 2 + 1

2

)
− XL1 +XL2

2

]
+ t−2

W

XL1 +XL2

2

)
ZZ̃ .

(B.11)
Note that (B.11) verifies the constraints (4.6), as it should. As expected the photon terms
match with the ones in (5.24). To match the photon-Z terms, one needs an axial PQ, as
discussed around (A.17). However, given the relations (5.15), it is impossible to define the
PQ symmetry such that it is chiral on each heavy fermion, namely one cannot enforce

XL1 +XE1 = 0 , XL1 +XN1 = 0 , XL2 +XE2 = 0 , XL2 +XN2 = 0 , (B.12)

unless the PQ charges of the Higgses are non generic, namely if they verify X1 = −X2.
This clash comes from the fact that we defined the PQ symmetry on the UV fields so
that it commutes with all gauge symmetries. In particular, both components of the SU(2)
doublets Li have the same PQ charge. Starting from a generic U(1)PQ charge assignment,
X1 = −X2 can be reached by considering a suitable linear combination of the hypercharge
and the original PQ symmetry. If we want to keep a generic PQ charge assignment, another
option is to impose a slightly weaker, but equally efficient constraint, which is that the PQ
symmetry is axial “on average”,24

XL1 +XL2 +XE1 +XE2 = 0 , XL1 +XL2 +XN1 +XN2 = 0 . (B.13)

This yields in particular

Axial PQ : XL1 +XL2 = X1 −X2
2 , (B.14)

thanks to which the photon-Z terms in (B.11) and (5.24) match. Finally, to understand
the ZZ̃ coupling, let us first write down the kinetic terms in terms of photons and Zs:

eNiγ
µ(−1)i+1

[(
Y + 1

2

)
Aµ +

(
−tW

(
Y + 1

4 + 1
4γ5

)
+ t−1

W

1− γ5
4

)
Zµ

]
Ni

+ eEiγ
µ(−1)i+1

[(
Y − 1

2

)
Aµ −

(
tW

(
Y − 1

4 −
1
4γ5

)
+ t−1

W

1− γ5
4

)
Zµ

]
Ei .

(B.15)

The photon coupling is of course vector-like. We know from (3.12) or (A.17) that a sys-
tematic way to get the right ZZ̃ coupling from the anomaly is to choose the PQ symmetry
such that 3αPQαZ + βPQβZ = 0 for each integrated field. That means demanding

6XLi

(
−tW

(
Y + 1

4

)
+ t−1

W

4

)
+ (−1)iXi+1 mod 2

(
tW (3Y + 1)− t−1

W

2

)
= 0

6XLi

(
−tW

(
−Y + 1

4

)
+ t−1

W

4

)
+ (−1)i+1Xi

(
tW (−3Y + 1)− t−1

W

2

)
= 0 .

(B.16)

24In the language of section 3.4, one does not need to demand that the PQ anomalous contribution of
the GCS vanishes for each integrated massive fermion, but only that it does at the level of a subset or all
of the heavy fermions.
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Those conditions are again too restrictive, namely they impose conditions on X1,2, but
choosing ∑(3αPQαZ + βPQβZ) = 0 for a whole (Ni, Ei) pair is allowed for generic Higgs
charges, and sufficient. The condition to enforce is the sum of the two contributions
in (B.16),

3XLi(t−1
W − tW ) + (−1)iXi+1 mod 2

(
tW (3Y + 1)− t

−1
W

2

)
+ (−1)i+1Xi

(
tW (−3Y + 1)− t

−1
W

2

)
= 0 ,

(B.17)
hence

XL1 +XL2 = t−1
W − 2tW

3(t−1
W − tW )

(X1 −X2) . (B.18)

With this choice, the aZZ̃ in (B.11) and (5.24) match.
The couplings to the charged bosons W± can also be understood along those lines.

Comparing (B.11) and (5.24), we see that we would like that

XL1 +XL2 = X1 −X2
3 (B.19)

for them to match. This relation is again achieved when we enforce that 3αPQαW +
βPQβW = 0, where αW = βW since the coupling to W s is purely left-handed. We cannot
enforce it at the level of each fermion without constraining X1,2, as we are now quite
used to, but we can impose a similar constraint on a full doublet (Ni, Ei). It means that
4XLi +XNi +XEi = 0. With (5.15), we see that this gives (B.19).

As a final remark, notice that we did not need to worry about the PQ variation of
other hypothetical axion terms, such as the (pure gauge) ones that feature the longitudinal
component of the Z boson aZ , of the form aZFF̃ , etc. This is due to the fact that we
chose the PQ symmetry so that aZ is PQ neutral, as can be seen from (5.19).
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