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1 Introduction

The understanding of finite size physics in Integrable Quantum Field Theory, became
important in the AdS/CFT correspondence [1] and in modern statistical and condensed
matter physics applications [2].

In the past decades, useful and efficient mathematical tools have been developed to
describe the exact finite volume dependence of the spectrum of these theories. Concen-
trating only to the main achievements, these are the so-called Lüscher-formulas [3, 4] for
the leading [7] and next to leading [8] order exponentially small in volume corrections, the
Thermodynamic Bethe Ansatz [9] for the ground state and for excited states [10–12], NLIE
technique for some specific families of models [13–17], and finally the Quantum Spectral
Curve method for the different variants of the planar AdS/CFT correspondence [18, 19].

The next step towards the bootstrap solution of an integrable quantum field theory in
finite volume, is the description of the finite volume dependence of the matrix elements of
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the operators of the theory. The knowledge of such finite volume form-factors becomes im-
portant in spectral representation of thermal correlators [20, 21], and in the determination
of the string field theory vertex [22] and of the 3-point functions [23] in AdS/CFT.

The approach initiated in [24, 25], sought for finite volume matrix elements in a form
of a large volume series built out of the infinite volume form-factors of the theory. In these
works, polynomial in the inverse of the volume corrections to the form-factors, coming from
the Bethe-Yang quantization rules of the rapidities, have been determined.

In general, integrable quantum field theories can be divided into two classes; diagonally
scattering (or purely elastic scattering) theories, and non-diagonally scattering theories.
In the former, there is no mass degeneration in the spectrum, and the S-matrix of any
2-particle scattering is a pure phase factor (c-number). In a non-diagonally scattering
theory, in general there is some global symmetry present, which causes mass degeneration
in the spectrum. As a consequence, particles carry flavor quantum numbers, and the S-
matrix becomes a non-diagonal matrix in the flavor space. This matrix structure makes the
solution of the finite volume problem much more complex, than it is in the purely elastic
scattering case.

In purely elastic scattering theories a remarkable progress have been made in describ-
ing the finite volume behavior of form-factors. Namely, LeClair-Mussardo series have been
conjectured for the diagonal matrix elements [26, 27] and for the 2-point functions [28].
In the special case of the sinh-Gordon model, solving a set of linear integral equations
allows one to determine, the exact finite volume expectation values [29, 30], which can
be considered as a more compact resummation of the LeClair-Mussardo series. As for
the non-diagonal matrix elements, the leading order Lüscher-corrections have been con-
jectured1 [31–33], but an exact expression resumming all exponentially small in volume
corrections is still missing.

Unfortunately, much less is known in the case of non-diagonally scattering theories.
The exact determination of diagonal matrix elements of local operators is known only
in some very specific models like the sine-Gordon [34, 35] or N = 1 super sine-Gordon
theories [36]. In the latter case, only the vacuum expectation values have been worked out.
Similarly, the LeClair-Mussardo series representation for 2-point functions is known only
for some non-relativistic model with gl(3) or gl(2|1) symmetry [37].

The finite volume corrections to the non-diagonal form-factors in this class of theories
are much less known. So far, nothing is known about the corrections to their Bethe-Yang
limit [24]. To fill this gap, and reach some progress in this direction, in this paper we aim
to derive the leading order exponentially small in volume corrections (Lüscher-corrections)
to the 1-particle form-factors in a general relativistically invariant integrable quantum field
theory. We achieve this plan, by an appropriate generalization of the field theoretical
method initiated in [32] for purely elastic scattering theories.

The paper is organized as follows: in section 2, the method of extracting the Lüscher-
corrections to finite-volume form-factors is described. In section 3, we recall the form-
factor axioms being necessary to the computations. In section 4, we compute the Lüscher-

1To be more precise, the so-called F-term has been conjectured in [32, 33], and the µ-term in [31].
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correction to the 1-particle form-factors using the framework of the mirror theory. For
the perturbative check of our final result, we summarize some important properties of
the massive Thirring model in section 5. In section 6, the leading order weak coupling
expression of the Lüscher-correction to the fermion propagator of the Massive Thirring
model at the 1-particle pole is determined from the weak coupling expansion of our exact
results. The same quantity is computed at 1-loop order from Lagrangian perturbation
theory in section 7. The paper is closed by the summary of results in section 8. Some list
of formulas are relegated to appendix A.

2 The 2-point function and finite volume form-factors

In this section guided by the method of [32], we recall how one can extract the finite volume
corrections of the form-factors from the 2-point functions of the corresponding operators.
This requires to compute the 2-point function in two different ways. First, directly in the
“finite-volume channel”, and then in the so-called mirror-channel, where the role of space
and time is interchanged with respect to the previous channel. We consider, the finite
volume 2-point function as follows:

〈ψ̄α(x, t)ψβ(0)〉L =
∫

[Dψ] ψ̄α(x, t)ψβ(0) e−S[ψ]∫
[Dψ]e−S[ψ] , (2.1)

where S[ψ] is the Euclidean action, and in the path integral representation the field configu-
rations are either periodic or anti-periodic in x with L, depending on whether the fields are
commuting or anti-commuting ones. In our case the time coordinate t is not compactified
and can take any real value. For our purposes we need the 2-point function in momentum
space:

Γαβ(ω, q) = 1
L

L/2∫
−L/2

dx

∞∫
−∞

dt ei ωt+i qx 〈ψ̄α(x, t)ψβ(0)〉L. (2.2)

The periodicity of the fields imposes the constraint on the momentum: ei qL = (−1)F , where
F = 0 for bosonic fields and F = 1 for fermionic fields. For the sake of simplicity, in this
paper we will consider models having only either fermions or bosons in their spectrum, and
assume that the fields entering the 2-point function (2.1) share the same statistics with the
fundamental fields of the Lagrangian of the theory. In the “finite-volume channel”, where
the periodic x is interpreted as a space coordinate, the 2-point function is a time ordered
product:

〈ψ̄α(x, t)ψβ(0)〉L = θ(t) 〈ψ̄α(x, t)ψβ(0)〉L + (−1)F θ(−t)〈ψβ(0)ψ̄α(x, t)〉L, (2.3)

with θ(t) being the Heaviside-function. After the insertion a complete set of finite volume
eigenstates, this form implies the following representation for Γαβ(ω, q):

Γαβ(ω, q) =
∑
{n,A}

L〈0|Pψ̄α(0)P−1|n〉A A〈n|Pψβ(0)P−1|0〉L
i δq,Pn(L)

ω + i∆En(L)+

+
∑
{n,A}

L〈0|ψβ(0)|n〉A A〈n|ψ̄α(0)|0〉L
−i(−1)F δq,Pn(L)
ω − i∆En(L) ,

(2.4)
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where P denotes the parity transformation, ∆En(L) and Pn(L) are the energy and mo-
mentum of the state |n〉A, such that the energy is measured from the finite volume ground
state energy: ∆En(L) = En(L)−E0(L). Here, the subscript A accounts for the degenera-
cies dictated by the global symmetries of the model. This shows, that the finite-volume
form-factors can be read off from the residues of the poles of Γαβ(ω, q) in the variable ω.
Now, we specify this statement to the 1-particle pole at ω = ∆E1(L):

Res
ω=i∆E1(L)

Γαβ(ω, q) = −i (−1)F
∑
a

L〈0|ψβ(0)|q〉a a〈q|ψ̄α(0)|0〉L, (2.5)

where the 1-particle states are indexed by their momentum q and their flavor index a.
Formula (2.5) contains a sum on the right hand side, which doesn’t seem to allow one
to extract the individual form-factors. Nevertheless, in most of the interesting cases as
a consequence of the global symmetry of the model, the 1-particle form-factors have a
Kronecker-delta structure in the flavor space. Namely, L〈0|ψβ(0)|q〉a ∼ δa,x0 , with x0 being
a specific particle of the lowest lying multiplet of the theory. Specific examples for this case
are the fundamental fields of the O(N) nonlinear σ-models or of the massive Thirring model.
Then (2.5) takes a simpler form, which allows one to determine products of form-factors:

Res
ω=i∆E1(L)

Γαβ(ω, q) = −i (−1)F L〈0|ψβ(0)|q〉x0 x0〈q|ψ̄α(0)|0〉L. (2.6)

The situation is even better, when the exponentially small in volume corrections are sought
for. Denote the Bethe-Yang part of a form-factor by: 〈0|ψβ(0)|q〉BY

a and the Lüscher-
correction by δ〈0|ψβ(0)|q〉a. Then the Lüscher order of the residue in (2.6) can be written as:

Res
ω=i∆E1(L)

δΓαβ(ω, q) = −i (−1)F
{
〈0|ψβ(0)|q〉BY

x0 δ(x0〈q|ψ̄α(0)|0〉)+

x0〈q|ψ̄α(0)|0〉BYδ〈0|ψβ(0)|q〉x0

}
.

(2.7)

Since the correction of one form-factor is multiplied with the Bethe-Yang limit of the other,
at the formal level this formula allows one to extract each 1-particle form-factor’s exponen-
tial correction, from the Lüscher-order expression of the residue of the 2-point function.

To express the Lüscher corrections of the form-factors in terms of infinite volume data,
the same 2-point function and residue must be calculated in the language of the mirror-
model [32]. Since, the mirror model is obtained from the original one by exchanging the
role of space and time, in this language the original 2-point function becomes a thermal
correlator with T = 1/L temperature. In general the fields transform under the mirror
transformation, thus in the mirror framework both the action and the fields defining the
2-point function may differ from the original ones.2 Denote the mirror transforms of the
fields entering (2.1):

ψβ →M(ψβ) = φβ ,

ψ̄α →M(ψ̄α) = φ̄α.
(2.8)

2In a section 5, this statement may become clearer for the reader, when the example of the massive
Thirring model will be discussed.
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Then, the original correlator can be computed in the mirror channel by the usual thermal
formula:

〈ψ̄α(x, t)ψβ(0)〉L = 〈φ̄α(x, t)φβ(0)〉T=1/L =
θ(x)
Z

Tr
[
φ̄α(0, t) e−H̄x φβ(0) e−H̄(L−x)

]
+ (−1)F θ(−x)

Z
Tr
[
φ̄β(0) eH̄x φ̄α(0, t) e−H̄(L+x)

]
,

(2.9)

where H̄ denotes the mirror Hamiltonian and Z = Tr
[
e−H̄L

]
is the mirror partition func-

tion. Inserting a complete set of mirror eigenstates, one ends up with the formula:

Γαβ(ω, q) = 1
Z

{
Σ(φ̄α, φβ |q) + (−1)F Σ(φPβ , φ̄Pα | − q)

}
, (2.10)

where for any operator φ, φP stands for its parity transform: PφP−1, and

Σ(φ̄α, φβ |q) = 2π
L

∑
n

e−EnL
∑
m

Tnm[φ̄α, φβ ] δ(ω + Pmn)
Emn − iq

, (2.11)

where Emn = En − Em, Pmn = Pn − Pm, and

Tnm[φ̄α, φβ ] = 〈n|φ̄α|m〉〈m|φβ |n〉. (2.12)

Here the states |n〉 and |m〉 are eigenstates of the infinite volume mirror Hamiltonian H̄.
As it can be seem from (2.10) and (2.11), the mirror representation is particularly useful
for computing the exponentially small in volume corrections to the 2-point function, since
they are governed by the∑

n
e−EnL . . . factor in (2.11). Thus for leading Lüscher-corrections

the sum for n should be restricted to the 1-particle states with smallest mass of the mirror
theory. In the next sections, from (2.10), we express the Lüscher-correction of the residue
at the 1-particle pole in terms of infinite volume data. To do so, first we have to fix our
conventions on the S-matrix and form-factors.

3 Form-factor axioms and related conventions

In an integrable relativistic quantum field theory, the 2-particle S-matrix plays crucial role.
Denote a(θ) a particle with flavor a and rapidity θ. Then, in our notation the scattering
process: a(θ1) + b(θ2)→ c(θ1) + d(θ2) is described by the S-matrix element: Scdab(θ1 − θ2).
In the sequel we assume, that the S-matrix satisfies the following properties:

Parity-symmetry: Scdab(θ) = Sdcba(θ), (3.1)
Time-reversal symmetry: Scdab(θ) = Sabcd(θ), (3.2)

Crossing-symmetry: Scdab(θ) = Scb̄
ad̄

(i π − θ), (3.3)
Unitarity: Sefab (θ)Scdef (−θ) = δca δ

d
b , (3.4)

Real analyticity: Scdab(θ)∗ = Scdab(−θ∗), (3.5)

where ∗ denotes complex conjugation and for any index a, ā denotes the charge conjugated
particle.
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In order to formulate the form factor axioms, we need to define the charge conjugation
matrix, which gives how the charge conjugation acts on 1-particle states:

Cab = δab̄ = δāb. (3.6)

We use the following normalization for the infinite volume multi-particle states:

b1...bn〈θ′1, . . . , θ′n|θ1, . . . , θn〉a1,...,an =
n∏
j=1

δajbj δ(θ′j − θj). (3.7)

We would like to formulate the form-factor axioms to be valid for fermions, too. For this rea-
son, following [41], it is worth introducing the dotted S-matrix with the definition as follows:

Ṡcdab(θ) = (−1)FScdab(θ), (3.8)

where we recall that F = 0, and 1 for bosonic and fermionic theories, respectively.3
With these conventions the form-factors FO of a local operator O(x, t) which is lo-

cal with respect to all fields creating the particles of the model, satisfy the axioms as
follows [38]:

I. Lorentz-invariance:

FOa1...an(θ1 + θ, . . . , θn + θ) = esOθ FOa1...an(θ1, . . . , θn), (3.9)

where sO is the Lorentz-spin of O.

II. Exchange:

FO...ajaj+1...(. . . , θj , θj+1, . . .) = Ṡ
bj+1bj
ajaj+1(θj − θj+1)FO...bjbj+1...(. . . , θj+1, θj , . . .), (3.10)

III. Cyclic permutation:

FOa1a2...an(θ1 + 2π i, . . . , θn) = σO,1 F
O
a2...ana1(θ2, . . . , θn, θ1), (3.11)

where σO,1 = −1, if the field creating the a1 particle anticommutes with O, and
σO,1 = 1, otherwise.

IV. Kinematical singularity:

Res
θ′=θ

FOabu1...un(θ′+iπ,θ,θ1, . . . ,θn) = i

2π

{
CabF

O
u1...un(θ1, . . . ,θn)−

∑
v1,...,vn

T āb (θ|θ1, . . . ,θn)v1...vn
u1...un F

O
v1...vn(θ1, . . . ,θn)

}
,

(3.12)

where T denotes the soliton monodromy matrix defined by:

T ba (θ|θ1, . . . , θn)b1b2...bna1a2...an = Sk1 b1
a a1 (θ − θ1)Sk2 b2

k1 a2
(θ − θ2) . . . Sb bnkn−1 an

(θ − θn). (3.13)
3We note, that for the sake of simplicity in this paper, we consider theories with all particles being either

bosons or fermions.
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In this paper we focus on models with having no bound states of fundamental particles in
their spectrum, thus we don’t need to recall the dynamical-pole axiom. What is needed is
the crossing axiom for form factors. With our conventions, it takes the form:

a1〈θ1|O|θ2, . . . ,θn〉a2,...,an =σO,1
{
FOā1,a2,...,an(θ1+iπ+iε,θ2, . . . ,θn)+

+
n∑
j=1

δ(θ1−θj)FOa′2,...,a′j−1,aj+1,...an
(θ1, . . . ,θj−1,θj+1, . . . ,θn) Ṫ a1

aj (θ2, . . . ,θj−1|θj)
a′2...a

′
j−1

a2...aj−1

}
,

(3.14)

where ε is a positive infinitesimal number and

Ṫ ba (θ2, . . . , θj−1|θj)
a′2...a

′
j−1

a2...aj−1 = Ṡ
a′2 b2
a2 a (θ2 − θj) Ṡ

a′3 b3
a3 b2

(θ3 − θj) . . . Ṡ
a′j−1 b

aj−1 bj−2
(θj−1 − θj). (3.15)

4 Lüscher-corrections from the mirror representation

As we mentioned in the previous sections, the mirror representation of the 2-point function
is well suited for computing the exponentially small in volume corrections to the leading
order Bethe-Yang limit.

In this section, we write down, how to extract the Lüscher-corrections of the 1-particle
form-factors and of the 1-particle energies. For short, we introduce the notations as follows:

• 1-particle matrix elements of the original theory4 in the Bethe-Yang limit:

fψa (θ) = 〈0|ψ|θ〉BY
a , f̄ ψ̄a (θ) = a〈θ|ψ̄|0〉BY, (4.1)

• 1-particle matrix elements of the original theory at infinite volume:

Fψa (θ) = 〈0|ψ|θ〉a, F̄ ψ̄a (θ) = a〈θ|ψ̄|0〉, (4.2)

• Infinite volume matrix-elements in the mirror theory:

F φ̄a (θ) = Fa(θ), F φ̄
P

a (θ) = FPa (θ), F φa (θ) = fa(θ), F φ
P

a (θ) = fPa (θ), (4.3)

and similarly for any multiparticle form-factor in the mirror theory, for short we will
simple use the notations:

F φ̄ → F, F φ̄
P → FP , F φ → f, F φ

P → fP . (4.4)

• Spin related phase factors:

s0 = (−1)F , sf = ei π sφ , sfP = ei π sφP , sF = ei π sφ̄ sFP = ei π sφ̄P , (4.5)

where sφ, sφP and sφ̄, sφ̄P are spins of the operators φ, φP and φ̄, φ̄P , respectively.
We just recall that φ and φ̄ are the mirror counterparts of the original operators ψ
and ψ̄, (cf. (2.8)). For short, here and in the sequel, we skip to denote the subscript
on the operators.

4Here and in the sequel, the term “original theory” means the theory where the compactified coordinate
is interpreted as space, and the finite volume corrections in which we are interested in.
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For later convenience, here we recall, that the relation between the Bethe-Yang (4.1)
and infinite volume (4.2) limits of form-factors is known from [24]. The Bethe-Yang limit
of a form-factor can be obtained as the ratio of its infinite volume counterpart and the
square-root of the density of states corresponding to the sandwiching “ket” Bethe-Yang
state. For 1-particle form-factors this means, that:

fψa (θ) = 〈0|ψ|θ〉BY
a = Fψa (θ)√

ρ1(θ)
, (4.6)

with ρ1(θ) being the appropriately normalized 1-particle density of Bethe-Yang states:

ρ1(θ) = mL

2π cosh θ. (4.7)

Denote the Lüscher-corrections of the 1-particle form-factors fψa , f̄ ψ̄a and of the 1-
particle energy E(q) =

√
q2 +m2, by δfψa , δf̄

ψ̄
a and δE(q), respectively. Then, from the

large volume expansion of (2.4) around the 1-particle pole, one obtains the following ex-
pression for the Lüscher-correction:

Γ(L)(ω, q) ∼ Q(θBY)
ω − iE(q) + R(θBY)

(ω − iE(q))2 , (4.8)

with

Q(θ) = −i (−1)F
∑
a

[
fψa (θ) δf̄ ψ̄a (θ) + f̄ ψ̄a (θ) δfψa (θ)

]
,

R(θ) = (−1)F δE(q)
∑
a

fψa (θ)f̄ ψ̄a (θ),
(4.9)

where θBY denotes the Bethe-Yang limit of the rapidity parameter. It is related to the
momentum q by

θBY = arcsinh
(
q

m

)
. (4.10)

In the cases, we are interested in, the 1-particle form-factors have a simple vector structure:
fψa , f̄

ψ̄
a ∼ δa,x0 , with x0 being some specific flavor quantum number of the lowest lying

multiplet of the theory. In this case the sums in (4.9) disappear and the expansion (4.8)
allows one to determine the Lüscher-corrections of the 1-particle form-factors and the
energy. Now, we perform this expansion in the mirror representation and express the
Lüscher-correction in terms of infinite volume scattering and form-factor data.

As a 1st step, one should identify, which terms of the double sum (2.11) in (2.10)
contribute to the 1-particle pole of the 2-point function. In [32], it has been shown, that
in the Bethe-Yang limit: |n〉 = |0〉 and |m〉 runs for all 1-particle states, while in the 1st
Lüscher-order two-types of contributions are possible:

1. |n〉 runs for 1-particle states, and |m〉 = |0〉,

2. |n〉 runs for 1-particle states, and |m〉 runs for 2-particle states.
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These two types of contributions will be denoted by subscripts 10 and 12, respectively.
Introducing the parameterizations:5

ω = −m sinhψ q = m q̂, (4.11)

after a simple computation, the Bethe-Yang limit takes the form:

ΓBY(ω, q) = 2π
m2 L

sFP
∑
x
fPx (ψ)FPx̄ (ψ)

coshψ (coshψ + i q̂) +
s0sf

∑
x
Fx(ψ) fx̄(ψ)

coshψ (coshψ − i q̂)

 . (4.12)

The 10-type correction can also be easily computed. It takes the form:

Γ10(ω, q) = Σ10(F, f |q) + s0 Σ10(fP , FP | − q), (4.13)

where

Σ10(F,f |q) =− 2π
m2L

∫
due−`coshu δ(u−ψ)

coshψ (coshψ+i q̂)
∑
a

s0 sFP f
P
ā (ψ)FPa (ψ), (4.14)

where ` = mL and with this notation Σ10 is considered as a functional of the form fac-
tors (4.3). We note, that when taking into account the (−1) sign factors, coming from
commutation relations of the operators, we assumed, that all operators either commute or
anticommute. The most complicated 12 term takes the form:

Γ12(ω, q) = Σ12(F, f |q) + s0 Σ12(fP , FP | − q), (4.15)

where Σ12 can be formally written:

Σ12(F, f |q) = 2π
m2 L

∫
du e−` coshu J12(u, ψ|q)[F, f ], (4.16)

with

J12(u, ψ|q)[F, f ] =
∞∫
−∞

dβ1

∞∫
−∞

dβ2
T (u|β1, β2)[F, f ]

2
sinh β1 + sinh β2 − sinh u− sinhψ

cosh β1 + cosh β2 − cosh u− iq̂ ,

(4.17)
where

T (u|β,β2)[F, f ] =
∑
a,b1,b2

Πab1b2(u|β1, β2)[F ] Π̄b2b1a(β2, β1|u)[f ], (4.18)

with the short notations for the necessary 12 matrix elements of the operators:

Πab1b2(u|β1, β2)[F ] = a〈u|φ̄|β1, β2〉b1b2
Π̄b2b1a(β2, β1|u)[f ] = b1b2〈β1, β2|φ|u〉a.

(4.19)

5Here ψ denotes the rapidity parameter for ω, it shouldn’t be confused with the field ψ of the 2-point
function (2.1).
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As for the notation, we consider these matrix elements as functions of the form-factors of
the corresponding operators. These matrix elements can be computed from the form-factor
axioms, and they take the form in the continuum theory as follows:

Πab1b2(u|β1, β2)[F ] = (−1)F
{
Fāb1b2(u+ i π−, β1, β2) + δab1fb2(β2)+

+ δ(u− β2) Ṡxab1b2(β1 − β2)Fx(β2)
}
.

(4.20)

Π̄b2b1a(β2, β1|u)[f ] = fb̄2b̄1a(β2 + i π−, β1 + i π−, u) + δ(u− β1) δab1fb̄2(β2 + i π)+
δ(u− β2) Ṡaxb2b1(β2 − β1) fx̄(β1 + i π),

(4.21)

where for short π− = π − iε, with ε being a positive infinitesimal number, and for the
repeated index x summation is meant.

In addition to the so far discussed terms, the denominator Z of (2.10) also contributes
to the Lüscher-correction:

Z = 1 + Γz +O(e−2`), Γz = n0 δ(0)
∫
du e−` coshu, (4.22)

where n0 denotes the flavor-space dimension of the lowest lying multiplet of the theory.
Upto the Lüscher order O(e−`), in the formulas (4.14), (4.16), and (4.22), the range of
integration in u can be restricted to the regime: cosh u < 2. This restriction becomes also
very useful during the subsequent computations, since it allows us to avoid treating branch
cuts. Thus, in the rest of the paper, everywhere where integration with respect to the
variable u can be seen, the following integration domain is meant:

− arccosh 2 < u < arccosh 2. (4.23)

Putting all the building blocks together, the Lüscher correction to the 2-point function can
be given as follows:

Γ(L)(ω, q) = −Γz ΓBY(ω, q) + Γ10(ω, q) + Γ12(ω, q) + regular terms, (4.24)

where the expression “regular terms”, mean terms being regular at the 1-particle pole of
the 2-point function.

Using the continuum normalization of states, both Γz and the product of matrix el-
ements in (4.18) contain ill defined terms. Thus, regularization of the Dirac-delta terms
is necessary. In this paper, we will use the regularization method of [32]. Namely, we
regularize the Dirac-delta function by the formula:

δ(x)→ δε(x) = i

2π

( 1
x+ i ε

− 1
x− i ε

)
, (4.25)

and we take the ε→ 0 limit only at the end of the computations. With this regularization,
the Dirac-delta singularity becomes a pole singularity. Then these type of singularities can
mix with the ones coming from the kinematical pole singularities of the 3-particle form-
factors entering (4.20) and (4.21). For any 3-particle form-factor f , it is useful to introduce
the finite part, which is free from kinematical poles:

f cab1b2(u, β1, β2) =fab1b2(u, β1, β2)− R1[f ]ab1b2(β1, β2)
u− β1 − i π

− R2[f ]ab1b2(β1, β2)
u− β2 − i π

, (4.26)
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where the residues are of the form:

R1[f ]ab1b2(β1, β2) = Res
β=β1

fab1b2(β+i π, β1, β2)= i

2π
[
δāb1 fb2(β2)−Sāxb1b2(β1−β2) fx(β2)

]
,

R2[f ]ab1b2(β1, β2) = Res
β=β2

fab1b2(β+i π, β1, β2)= (−1)F
2π i

[
δāb2 fb1(β1)−Sxāb1b2(β1−β2) fx(β1)

]
.

(4.27)

Furthermore, for later convenience it is also useful to introduce the form-factor, which is
regular in the 1st pair of its arguments:

f̂ab1b2(u, β1, β2) =fab1b2(u, β1, β2)− R1[f ]ab1b2(β1, β2)
u− β1 − iπ

. (4.28)

Using these definitions, we introduce6 the regularized 3-particle form-factor by the
definition as follows:

f regab1b2
(u, β1, β2) = f̂ab1b2(u, β1, β2) + i

4π (Sb1xāb2
)′(β1 − β2) fx(β2), (4.29)

where ′ denotes the derivative and for repeated indexes summation is meant. At the end
of this section, we will see, that this combination of form-factors and S-matrix elements
will play a central role in our final formula for the Lüscher-corrections of the 1-particle
form-factors.

We just note, that definitions (4.26)–(4.29) are the natural generalizations of the anal-
ogous definitions of [32] in diagonally scattering integrable theories.

4.1 Computing J12(u|ψ, q)[F, f ]

The function J12(u|ψ, q)[F, f ] is defined in (4.17). Using the method of [32], we compute
it in the vicinity of the 1-particle pole. As, a first step we rephrase it for real values of ω,
or equivalently ψ. Then we perform the analytical continuation from the real axis towards
the interesting point ω → iE(q).

We start with introducing the new integration variables:

β1 = b+ w, β2 = b− w, (4.30)

Then the b-integration can be evaluated:

J12(u|ψ, q)[F, f ] =
∞∫
−∞

dw
T (u|b0(w) + w, b0(w)− w)

C(b0(w), w) (C(b0(w), w)− cosh u− i q̂) , (4.31)

where
C(b, w) = 2 cosh b coshw, b0(w) = arcsinh

(sinh u+ sinhψ
2 coshw

)
. (4.32)

If we restrict ourselves to the domain cosh u < 2, which is enough for the O(e−`) or-
der Lüscher-corrections, we can avoid the branch cuts coming from the arcsinh-function.

6In analogy with the diagonally scattering case [32].
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Though, the w-integration is regular along the real axis, as a consequence of the ε-
regularization of the Dirac-delta function (4.25), pole singularities are present from ε order
distance from the real axis. On the upper half plane, the position of this type of pole is
given by the formula:

w+ = w0 + εw1 +O(ε2), w0 = u− ψ
2 , w1 = i

2
cosh u+ coshψ

coshψ . (4.33)

To get rid of the cumbersome ε-dependence of the integrand, we rephrase (4.31), by shifting
the integration contour: w → w + i γ, with γ being a small positive number, but large
enough to run the integration contour above these infinitesimally close poles. Due to the
pole, this shift results residue terms from the pole w+ of (4.33). Then J12(u|ψ, q)[F, f ]
takes the new form:

J12(u|ψ, q)[F, f ] = JR12(u|ψ, q)[F, f ] + J0(u|ψ, q)[F, f ], (4.34)

where JR12(u|ψ, q)[F, f ] denotes the residue terms, and J0(u|ψ, q)[F, f ] stands for the γ-
shifted integral.7 The latter is of the form:

J0(u|ψ,q) =
∫

”iγ”

dw
1

ν(ν−coshu−iq̂)

[
H0(u|b0+w,b0−w)+

∑
σ=±

H
(σ)
1 (b0+w,b0−w)
u−b0−w

+

+
∑
σ=±

H
(σ)
2 (b0+w,b0−w)
u−b0+w

]
ab1b2

[
G0(u|b0+w,b0−w)+

∑
σ=±

G
(σ)
1 (b0+w,b0−w)
u−b0−w

+

+
∑
σ=±

G
(σ)
2 (b0+w,b0−w)
u−b0+w

]
b2b1a

, (4.35)

if with the help of the definitions (4.20), (4.21), (4.25) and (4.26) one formally rewrites Π
and Π̄ as follows:

Πab1b2(u|β1, β2)[F ] =
[
H0(u|β1, β2) +

∑
σ=±

H
(σ)
1 (u|β1, β2)
u− β1 + i σ ε

+
∑
σ=±

H
(σ)
2 (u|β1, β2)
u− β2 + i σ ε

]
ab1b2

,

Π̄ab1b2(u|β1, β2)[f ] =
[
G0(u|β1, β2) +

∑
σ=±

G
(σ)
1 (u|β1, β2)

u− β1 + i σ ε
+
∑
σ=±

G
(σ)
2 (u|β1, β2)

u− β2 + i σ ε

]
b2b1a

.

(4.36)

In (4.35), b0 ≡ b0(w) given in (4.32), ν is defined in (4.45) and the integration contour runs
along a straight line with distance iγ above the real axis. The H[F ] and G[f ]-functions
can be found in appendix A. After a lengthy computation the residue terms take the form
as follows:

JR12(u|ψ, q)[F, f ] = JR1(u|ψ, q) + JR2(u|ψ, q) + JR3(u|ψ, q) + JR4(u|ψ, q), (4.37)
7It is important to keep in mind, that functions entering (4.34) are functionals of the form-factors F

and f , even though the explicit indication of this dependence is neglected in the subsequent formulas.
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where

JR1(u|ψ,q) = 1
coshψ(coshψ−iq̂)

[
isf
4π
K4
u−ψ

+sf
∑
x

fx(ψ)Fx̄(ψ)
(s0n0

2πε +δ(u−ψ)
)]
, (4.38)

JR2(u|ψ,q) = is0 sfK1

4π cosh2ψ(coshψ−iq̂)

[
sinh(u−ψ)

( 1
coshψ−i q̂+ 1

ν

)
− Ω
ν coshψ

]
+

+ is0 sfK3 ν

4π cosh2ψ(coshψ−iq̂)
, (4.39)

JR3(u|ψ,q) =

∑
a,x

[
sf f

c
āxa(u+iπ,ψ,u)+s0 sffaāx(u+iπ,u,ψ)

]
Fx̄(ψ)

2coshψ (coshψ−i q̂) , (4.40)

JR4(u|ψ,q) =

∑
a,x

[
sf F

c
āxa(u+iπ,ψ,u)+s0 sffāax(u+iπ,u,ψ)

]
fx̄(ψ)

2coshψ (coshψ−i q̂) , (4.41)

where

K1 =
∑
a,x,y

Fx(ψ)
[
Syaxa(ψ−u)−Sayax(u−ψ)

]
fȳ(ψ), (4.42)

K3 =
∑
a,y,x

{
Fx(ψ)

[
(Syaxa)′(ψ−u)+(Sayax)′(u−ψ)

]
fȳ(ψ)+

+ coshu
ν

(
F ′x(ψ)

[
Syaxa(ψ−u)−Sayax(u−ψ)

]
fȳ(ψ)+Fx(ψ)

[
Syaxa(ψ−u)−Sayax(u−ψ)

]
f ′ȳ(ψ)

)}
,

(4.43)

K4 =
∑
a,x,y

{
Fx(u)

[
Sayxa(u−ψ)−Syaax(ψ−u)

]
fȳ(ψ)+Fx(ψ)

[
Syaax(u−ψ)−Sayxa(ψ−u)

]
fȳ(u)

}
,

(4.44)

while
Ω = (sinh u+ sinhψ) (1 + sinh u sinhψ), ν = cosh u+ coshψ. (4.45)

Each of these formulas should be considered as functionals of the form-factors f and F ,
but to save space we do not indicated this dependence. As (4.15) shows, to compute the
2-point function, the contribution of the simultaneously f → FP , F → fP and q → −q
transformed J12 will enter the calculations, as well.

So far, the building blocks of Γ(ω, q) have been computed for real values of ω or
equivalently, for real ψ. Now, we are in the position to discuss some trivial cancellations
in our formulas. One can see, that there are terms being proportional to 1

ε and δ(u − ψ)
in (4.38) of (4.37). If according to (4.24), one adds all contributions to Γ(ω, q), then both
the ∼ δ(u− ψ) and ∼ δ(0) terms cancel, if one makes the identification:

δ(0)→ 1
2πε. (4.46)

We have to note, that literally applying the definition (4.25), δ(0) = 1
πε should be taken.

Nevertheless, it is obvious, that the final result cannot be divergent, as such the ∼ δ(0)
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terms should cancel, which can be reached by the identification (4.46) for the ambiguous
δ(0) value. Though, this prescription seems to be ad hoc, we use it, since it proved to be
correct for diagonally scattering integrable theories [32]. There, it has been shown, that this
regularization of the δ-function and δ(0) is equivalent to using finite volume regularization
along the continuous direction.

Now, one can conclude, that in the Lüscher-correction for Γ(ω, q), the terms −Γz ΓBY,
and Γ10 are present only to cancel the Dirac-delta terms arising in Γ12.

Thus, to get the Lüscher-corrections close to the 1-particle pole, only Γ12(ω, q) should
be investigated, such that the 1

ε and δ(u− ψ) terms are dropped from them.
As a next step, we perform the analytical continuation in ω from the real axis to the

value iE(q).

4.2 Analytical continuation

As a first step, we introduce a new notation. Denote:

J̃12(u|ψ, q)[F, f ] = ”J12(u|ψ, q)[F, f ]without the 1
ε
and δ(u− ψ) terms.” (4.47)

In this subsection, starting from the real axis, we perform the analytical continuation
ω → iE(q). The residue terms listed in (4.37)–(4.45), are analytic expressions in ω, thus
their continuation is straightforward. On the other hand the shifted integral (4.35) requires
more care.

As one moves with ω from the real axis towards iE(q), according to (4.11) the variable
ψ will evolve negative imaginary part, such that at ω = iE(q):

ψ → ±θ − iπ2 , with q = m sinh θ. (4.48)

As a consequence, the pole of the integrand at w0 = u−ψ
2 tends to cross the integration

contour. This crossing is taken into account by pushing the integration contour back to the
real axis, such that the pole gives an additional residue term. After a tedious and lengthy
computation, one ends up with the following result:

J̃12(u|ψ, q)[F, f ] = J̃0(u|ψ, q)[F, f ] + J̃R(u|ψ, q)[F, f ], (4.49)

where J̃0(u|ψ, q)[F, f ] is the same as (4.35), but with integration along the real axis, and
J̃R(u|ψ, q)[F, f ] is the residue contribution. It can be easily shown, that J̃0 doesnot have
any poles at ω ∼ iE(q), thus this term doesnot contribute to the Lüscher-correction of the
1-particle energies and form-factors. Only the residue term will give contributions to these
quantities. They take the form as follows:

J̃R(u|ψ,q)[F,f ] = 1
coshψ(coshψ− iq̂)

(
s0 sf Ŵ0 + i sf Ŷ0

2π(u−ψ) + i s0 sf ν K̂3
2π coshψ

)
+

− i s0 sf K̂1

2π cosh2ψ(coshψ− iq̂)

(
sinh(u−ψ)

( 1
coshψ− iq̂ + 1

ν

)
− Ω
ν coshψ

)
,

(4.50)
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where

Ŵ0(u,ψ,q)[F,f ] =
∑
a,x

[
F cāax(u+iπ,u,ψ)fx̄(ψ)+f caāx̄(u+iπ,u,ψ)Fx(ψ)

]
, (4.51)

Ŷ0(u,ψ,q)[F,f ] =
∑
x,y,a

{
Fx(u)

[
Sayxa(u−ψ)−δxy

]
fȳ(ψ)+Fx(ψ)

[
Syaax(u−ψ)−δxy

]
fȳ(u)

}
,

(4.52)
K̂1(u,ψ,q)[F,f ] =

∑
x,y

Fx(ψ)
∑
a

[
Sayax(u−ψ)−δxy

]
fȳ(ψ), (4.53)

K̂3(u,ψ,q)[F,f ] =
∑
a,x,y

{
Fx(ψ)(Sayax)′(u−ψ)fȳ(ψ)− coshu

ν
F ′x(ψ)

[
Sayax(u−ψ)−δxy

]
fȳ(ψ)

− coshu
ν

Fx(ψ)
[
Sayax(u−ψ)−δxy

]
f ′ȳ(ψ)

}
.

(4.54)

With help of (4.24), (4.15), (4.16), (4.47) and (4.49) the Lüscher-correction to the 2-point
function at the 1-particle poles can be written as:

ΓL(ω, q) = 2π
m2L

∫
du e−` coshu(J̃R(u|ψ, q)[f,F ]+s0J̃R(u|ψ,−q)[FP,fP ]

)
+regular terms.

(4.55)
According to (4.8) and (4.9), one needs to compute the coefficient of the single and double
pole terms of (4.55) at ω = iE(q), to obtain the Lüscher-correction of the form-factors and
the mass gap.

This is the next step in our calculations. Partly, one can work in the language of the
variable ψ. The location of the 1-particle pole singularity is at

ψ → ψ±0 = ±θ − iπ2 , with q = m sinh θ, E(q) = m cosh θ. (4.56)

In the actual computations, we exploit, that a function being analytic around ψ±0 , can be
expanded as:

G(ψ(ω)) = G(ψ±0 )− 1
m

G′(ψ±0 )
coshψ±0

(
ω − i E(q)

)
+O

(
(ω − i E(q))2), (4.57)

and we make the substitution:

1
coshψ ± i q̂ →

m2(coshψ ∓ iq̂)
ω2 + q2 +m2 = m2(coshψ ∓ iq̂)

(ω − i E(q))(ω + i E(q)) . (4.58)

Furthermore, and more importantly, we exploit the earlier assumed simple Kronecker-delta
structure in the flavor space for the 1-particle form factors:

Fx(θ) = δxx̄0Fx̄0(θ), fx(θ) = δxx0fx0(θ). (4.59)

which allows one to get rid of plenty of summations, and obtain simpler formulas. Here, we
emphasize again that the flavor space assumption (4.59) is not only a theoretical assumption
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to get nicer results, but it is actually the case for most of the important models, for example:
for the fermion fields in the Massive Thirring model, or for the O(N) vector fields in the
O(N) non-linear sigma models. For future convenience, it is worth introducing the function:

U(θ) =
∑
a

[
Sax0
ax0 (θ + i

π

2 )− 1
]
, (4.60)

where the sum runs over flavors of the lowest lying particle multiplet. As a consequence of
the properties (3.1)–(3.5) of the S-matrix, it is independent of the choice of x0. Then, the
residue of the double pole in (4.8) takes the form:

R(θ) = − m2

E2(q)L sFP f
P
x0(ψ+

0 )FPx̄0(ψ+
0 )
∫
du e−` coshu cosh(u− θ)U(u− θ), (4.61)

with ψ+
0 given in (4.56). Comparing (4.61) to (4.9), allows one to extract the Lüscher-

correction for the 1-particle energy gap. The only ingredient one needs, is the identity:

sFP f
P
x0(ψ+

0 )FPx̄0(ψ+
0 )
∣∣
BY = (−1)F E(q)L

2π fψx0(θ) f̄ ψ̄x̄0(θ), (4.62)

which can be derived by comparing the Bethe-Yang limit of (2.6) to the residue of (4.12)
at the Bethe-Yang limit of the 1-particle pole: ω = iE(q) i.e. ψ → ψ+

0 , and exploiting
the relation (4.6) between the Bethe-Yang and infinite volume limits of the 1-particle form
factors. Then, the Lüscher-correction for the 1-particle energy gap can be written as:

δE(q) = − m

cosh θ

∫
du

2π e
−` coshu cosh(u− θ)U(u− θ), (4.63)

which agrees with the result expected from the literature [3–7].
The next step is to compute the corrections to the form-factors. As it was explained in

section 2, the mirror framework is used to compute the Lüscher-correction to the 1-particle
form-factors. As a result, all formulas of the calculations contain the form-factors of the
mirror transformed fields in the mirror theory. Certainly, at the end one would like to have
formulas containing the form-factors of the original fields8 in the original theory. Thus, to
eliminate the mirror form-factors of the mirror-transformed fields, it is worth discussing
the relation between the form-factors of the original theory and those of the mirror one.

As we will see in section 5 in the example of the massive Thirring model, as a con-
sequence of the relativistic invariance, in a relativistic theory the mirror theory can be
made identical to the original one, and only the transformation of the fields under the
mirror transformation should be taken into account. This is why, to eliminate the mirror
form-factors from the final results for the Lüscher-correction to the 1-particle form-factors,
only the knowledge of the relation between the form-factors of the original and mirror-
transformed fields in the original theory becomes necessary.

In this respect, we make the following statement for the fundamental particle creating
or annihilating boson or fermion fields of the original theory. Let ψ such an operator with

8Here, the expression “original fields” mean, the fields, the finite volume form-factors of which we are
interested in.
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definite Lorentz-spin s ∈ {0,±1/2}, and denote φ its image in the mirror theory (cf. (2.8)).
Then, their multiparticle form-factors are related by the formula:

Fψa1,...,an(θ1, . . . , θn) = F φ
P

a1,...,an

(
θ1 − i

π

2 , . . . , θn − i
π

2

)
, (4.64)

which implies at the level of operators the following relation:

ψ(0) = e−i
π
2 sφP φP(0), with φP(0) = Pφ(0)P−1, (4.65)

where P is the parity operator in the mirror theory, sφP is the spin of the operator φP , and
in (4.64) in the left and right hand sides, the form-factors are meant in the original theory.

The validity of formula (4.64) directly follows from (3.9) for a spinless fundamental
boson field in a parity invariant theory. Moreover, it will be clear from the subsequent
sections, through the example of the massive Thirring model, that formulas (5.13), (5.16)
and (6.6) tell us, that (4.64) holds also for the fundamental fermion fields in a relativistically
invariant fermion theory with quartic interactions.9

We note, that the identity (4.62), could also have been derived with the help of (4.6)
and the form-factor relating formula (4.64).

Now, we are in the position to formulate the Lüscher-corrections for the 1-particle form-
factors. During the calculations, always the form-factors of the mirror image operators
(φ, φ̄) and of their parity transforms arise. Now, at the final stage, with the help of (4.64)
the form-factor corrections can be expressed in terms of the form-factors of the original
operators. To save space, we provide the final results only in this way. The Lüscher-
corrections of the 1-particle form-factors take the form as follows:

δfψx (θ) = 1√
ρ1(θ)

{
−F

ψ
x (θ)
4π

[ sinhθ
cosh2 θ

Ω(0)(θ)+ Ω(1)(θ)
coshθ

]
+Fψ′x (θ)

2π
Ω(0)(θ)
coshθ +Ωψ

x (θ)
}
, (4.66)

δf̄ ψ̄x (θ) = 1√
ρ1(θ)

{
− F̄

ψ̄
x (θ)
4π

[ sinhθ
cosh2 θ

Ω(0)(θ)+ Ω(1)(θ)
coshθ

]
+ F̄ ψ̄′x (θ)

2π
Ω(0)(θ)
coshθ +Ωψ̄

x (θ)
}
, (4.67)

where the notations for the form-factors (4.1) and (4.2) are used and we introduced the
short notations

Ω(0)(θ) =
∫
du e−` coshu sinh uU(u− θ), (4.68)

Ω(1)(θ) =
∫
du e−` coshu sinh uU ′(u− θ), (4.69)

Ωψ
x (θ) = ei

π
2 sψ

∫
du e−` coshu ∑

a

Fψ,regaāx

(
u+ iπ, u, θ − iπ2

)
, (4.70)

Ωψ̄
x (θ) = (−1)F ei

3π
2 sψ̄

∫
du e−` coshu ∑

a

F ψ̄,regaāx̄

(
u+ iπ, u, θ − iπ2

)
, (4.71)

9We note, that based on some heuristic train of thoughts, we think that the form-factor connection
formula (4.64) holds for arbitrary local operator with definite Lorentz-spin and not only for the fundamental
fermion and boson fields.
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where sψ and sψ̄ are the spins of the operators ψ and ψ̄, respectively, and the definition
of the regularized form-factors entering (4.70) and (4.71) is given in (4.29), and U(θ) is
defined in (4.60).

As it has been done in the diagonally scattering theories [32], these results can be
written in a more compact form. One can recognize, that the terms proportional to Ω(0)

and Ω(1) in (4.66) and (4.67), can be reinterpreted as the Lüscher-corrections of the 1-
particle density ρ1 and of the rapidity. The Lüscher-correction for 1-particle rapidity is
given by the Bajnok-Janik formula [7]:

δθ = Ω(0)(θ)
2π cosh θ +O(e−2`). (4.72)

The density of states also gets exponentially small corrections of the form:

δρ1(θ) = ρ1(θ) Ω(1)(θ)
2π cosh θ +O(e−2`). (4.73)

Denote ρ(θ) the exact 1-particle density, including all finite volume corrections:10

ρ(θ) = ρ1(θ) + δρ1(θ). (4.74)

Then, rephrasing (4.66) and (4.67), the 1-particle form-factors upto Lüscher-order can be
written as follows:

fψa (θ) + δfψa (θ) = Fψx (θ + δθ)√
ρ(θ + δθ)

+ Ωψ
x (θ) +O(e−2`), (4.75)

f̄ ψ̄a (θ) + δf̄ ψ̄a (θ) = F̄ ψ̄x (θ + δθ)√
ρ(θ + δθ)

+ Ωψ̄
x (θ) +O(e−2`), (4.76)

Thus, the form-factor correction is composed of two type of terms. The 1st one is coming
from taking the leading expression at the exact Bethe rapidity and with the exact density
of states. The second term is a new type of term. It contains the higher multiparticle form-
factors, corresponding to the contribution of a virtual particle traveling around the word.

5 The Massive Thirring-model

In this paper, we will check our final results (4.75) and (4.76) for the 1-particle form-factors
through a perturbative calculation in the massive Thirring model. In this section, we
introduce the model and recall its most important properties. Moreover, we demonstrate,
how the mirror transformation acts on the fields (c.f (2.8)).

We start with the action of the Minkowski theory. Since at a later stage, we need to
determine the low order perturbative part of the 1- and 3-particle form-factors, it is worth
using the conventions11 of ref. [41]:

S[ψ̄, ψ] =
∫
dtdx

{
− ψ̄

(
iΓ0∂t + iΓ1∂x −m

)
ψ − g

2 ψ̄Γµψ ψ̄Γµψ
}
, (5.1)

10In the exact integrable description of the sine-Gordon/massive Thirring model ρ(θ) = Z′(θ)
2π with Z(θ)

being the counting-function in the NLIE description. For more details see: [44] and references therein.
11Our Lagrangian slightly differs from that of ref. [41], as a consequence of a ψ̄ → −ψ̄ transformation.
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where the Γ-matrices satisfy the algebra:{
Γµ,Γν

}
= 2 ηµν ,

{
Γµ,Γν

}
= 2 ηµν , µ, ν = 0, 1, (5.2)

with η being the metric tensor with the components:

ηµν = ηµν = diag(1,−1). (5.3)

For the form-factor computations, we will use the chiral representation as follows:

Γ0 =
(

0 1
1 0

)
, Γ1 =

(
0 1
−1 0

)
, Γ5 = Γ0Γ1

(
−1 0
0 1

)
. (5.4)

As for the fermion fields, they are two component vectors in the spinor space. The upper
component will be denoted by + and the lower one by − subscripts.

ψ =
(
ψ+
ψ−

)
, ψ̄ =

(
ψ̄+
ψ̄−

)
. (5.5)

In our notations ψ̄ is related to ψ by the formula: ψ̄ = −ψ+ Γ0. The Euclidean action can
be obtained from the Minkowskian one by the usual Wick-rotation: t→ −i τ :

SE [ψ̄, ψ] =
∫
dτdx

{
− ψ̄

(
γ0∂τ + γ1∂x +m

)
ψ + g

2 ψ̄γµψ ψ̄γµψ
}
, (5.6)

where now γµ denotes the Euclidean γ-matrices satisfying the algebra{
γµ, γν

}
= 2 δµν , µ, ν = 0, 1. (5.7)

They are simply related to their Minkowskian counterpart given in (5.4):

γ0 = Γ0, γ1 = −iΓ1. (5.8)

The mirror transformation exchanges the role of space and time. As a consequence the two
γ-matrixes change place, resulting the mirror action:

SM [φ̄, φ] =
∫
dτdx

{
− φ̄

(
γ̃0∂τ + γ̃1∂x +m

)
φ+ g

2 φ̄γ̃µφ φ̄γ̃µφ
}
, (5.9)

where φ and φ̄ are the fundamental fermion fields and the γ̃- matrices are the γ-matrices
in the mirror theory. They also satisfy the usual algebra:{

γ̃µ, γ̃ν
}

= 2 δµν , µ, ν = 0, 1, (5.10)

and they are related to the “original ones” by a simple exchange in their subscripts:

γ̃0 = γ1, γ̃1 = γ0. (5.11)

This exchange can be rephrased more elegantly by a unitary transformation ωγ satisfying:

ωγ γµω
+
γ = γ̃µ, µ = 0, 1. (5.12)
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This fixes ωγ upto a sign. The solution of (5.12), we will use in the sequel, is as follows:

ωγ =
(

0 e−
i π
4

e
i π
4 0

)
. (5.13)

It has the simple properties as follows:

ωγ = ω+
γ = ω−1

γ , ω∗γ = ωTγ , (5.14)

where ∗ and T mean complex conjugation and transposition, respectively. The matrix
ωγ allows one to determine, how the fields transform under the mirror transformation.
One can show that the two Euclidean actions (5.6) and (5.9) are identical, if the following
relations among the fields are assumed:

φ(τ, x) = ωγ ψ(x, τ), φ̄(τ, x) = ψ̄(x, τ)ω+
γ . (5.15)

One can recognize, that apart from the linear transformation mixing the components, the
exchange of arguments is also important. Since the space-time dependence of the fields is
simple and well known, from the point of view of our form-factor computations, this relation
becomes more important at the origin, where it reduces to a simple linear transformation
of the components:

φ(0) = ωγ ψ(0), φ̄(0) = ψ̄(0)ω+
γ . (5.16)

For short, denote the exchange of arguments in ψ and ψ̄ by a prime. Namely,

ψ(x, τ) = ψ′(τ, x), ψ̄(x, τ) = ψ̄′(τ, x). (5.17)

This simplified notation allows us to discuss the propagator at the level of path integral.

〈ψ̄(x, τ)ψ(0)〉L = 1
Z

∫
”x+L=x”

Dψ̄Dψ ψ̄(x, τ)ψ(0) e−SE(ψ̄,ψ) =

= 1
Z

∫
”τm+L=τm”

Dψ̄′Dψ′ ψ̄′(τm, xm)ψ′(0) e−SM (ψ̄′,ψ′) =

= 1
Z

∫
”τm+L=τm”

Dψ̄′Dψ′ (ψ̄′ω+
γ )(τm, xm)(ωγψ′)(0) e−SE(ψ̄′,ψ′) =

= 〈φ̄(xm, τm)φ(0)〉T= 1
L
,

(5.18)

where τm = x and xm = τ denote the mirror time- and space- coordinates. In the 1st step
we reinterpreted time and space through the mirror model, and in the 2nd step we changed
integration variables ψ̄′ → ψ̄′ω+

γ and ψ′ → ωγ ψ
′, exploiting the relation SM (ψ̄′ ωγ , ωγ ψ′) =

SE(ψ̄′, ψ′). Formula (5.18) implies, that the original finite volume propagator, can be
identically represented as a finite temperature propagator with temperature T = 1

L , in
the same theory, but considering it as the 2-point thermal correlator of the transformed
fields (5.15).

In the previous section, we computed the Lüscher-corrections of the 1-particle form-
factors, starting form the finite volume propagator. The Lüscher-corrections could be
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computed from the mirror channel, where the fields constituting the propagator are mirror
transformed counterparts of the original fields. Thus, during the computation always the
form-factors of these transformed fields in the mirror theory appear. In general, one might
think, that the form-factors in another model being different from the original one, should
be known to get the form-factor corrections. Nevertheless, formula (5.18) shows the com-
monly known fact, that in a relativistically invariant theory, the mirror theory is equivalent
to the original one. Namely, in our example the mirror problem can be rephrased, such
that the thermal correlators, of the transformed fields have to be computed, but in exactly
the same theory as the original was. Consequently, to compute the Lüscher-corrections to
the form-factors, only the form-factors of the original theory will arise. This explains the
fact, why the form-factors of the same theory can be found on both sides of the form-factor
connection formula (4.64).

In the rest of the paper we will check our formulas (4.75) and (4.76) for the Lüscher-
correction of 1-particle form-factors at leading order in perturbation theory. This requires
two type of computations. On the one hand, with the help of integrability, one can de-
termine the exact S-matrix and form-factors of the model. This makes it possible to
determine the perturbative series of the form-factor correction formulas (4.75) and (4.76).
On the other hand, the 2-point function at the 1-particle pole can be directly computed
from Lagrangian perturbation theory. The comparison of the results from the two different
methods, allows us the give a nontrivial check on our formulas.

Now, we start with the computation on the integrable side.

6 Weak coupling series from integrability

In this section we perform the weak coupling expansion of the formulas (4.75) and (4.76)
for the Lüscher-correction to the 1-particle form-factors. As a starting point it is worth
investigating the free theory.

6.1 The free fermion case

The investigation of the free case is important, since when solving the axioms (3.9)–(3.12)
for the infinite volume form-factors, one has a freedom in the normalization of 1-particle
form-factors. Our choice is that we fix them to the values coming from the free fermion
theory. In the free Minkowski theory, the fermion fields admit the Fourier-expansion:

ψ(x, t) =
∫

dq

(4π)3/2E(q)

(
b(q)u(q) e−iE(q)t+i qx + d+(q) v(q) eiE(q)t−iqx

)
,

ψ+(x, t) =
∫

dq

(4π)3/2E(q)

(
b+(q)u∗(q) eiE(q)t−i qx + d(q) v∗(q) e−iE(q)t+iqx

)
,

(6.1)

where ∗ stands for complex conjugation, and the operators b,b+,d,d+ fermion and anti-
fermion creation and annihilation operators with the anti-commutation relations:{

b+(q),b(q′)
}

=
{
d+(q),d(q′)

}
= E(q) δ(q − q′),{

b(q),b(q′)
}

=
{
b+(q),b+(q′)

}
=
{
d(q),d(q′)

}
=
{
d+(q),d+(q′)

}
= 0.

(6.2)
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The u- and v-spinors in rapidity parameterization q = m sinh θ take the forms [41]:

u(θ) =
√
m

(
e−θ/2

eθ/2

)
, v(θ) = i

√
m

(
e−θ/2

−eθ/2

)
. (6.3)

The operators, b+(q) and d+(q) create the states with pure Dirac-delta normalization in
the rapidity variable:

|θ〉+ = b+(q)|0〉, |θ〉− = d+(q)|0〉, (6.4)

where + denotes the fermion and − the anti-fermion in the flavor space.
Thus, the infinite volume 1-particle form-factors in our normalization take the form:

〈0|ψ(0)|θ〉a = Fψa (θ) = δa+
u(θ)√

4π
,

〈0|ψ̄(0)|θ〉a = F ψ̄a (θ) = δa−
v̄(θ)√

4π
.

(6.5)

In the massive Thirring model, we normalize the infinite volume form-factors of elementary
fermion fields, such that the 1-particle form-factors are exactly given by their free fermion
limits (6.5).

6.2 Symmetries

For the form-factor computations, it is worth summarizing, how the fields transform under
parity and charge conjugation. A simple computation shows, that with the action (5.1),
the parity transformation of the fields takes the usual form:

P ψ(0)P−1 = Γ0 ψ(0), P ψ̄(0)P−1 = ψ̄(0) Γ0, (6.6)

where P is the parity operator with the action on the 1-particle states as follows:

P|θ〉a = pa| − θ〉a, with pa = δa+ − δa−. (6.7)

Its action on a general multiparticle state can be given by:

P|θ1, . . . , θn)a1,...,an = (−1)n(n−1)/2
n∏
j=1

paj | − θn, . . . ,−θ1〉an,...,a1 . (6.8)

Another important transformation is the charge-conjugation symmetry, which trans-
forms a particle to its anti-particle. Its action on 1-particle states is given in (3.6), and it
acts on a general multiparticle state as follows:

C|θ1, . . . , θn〉a1,...,an = |θ1, . . . , θn〉ā1,...,ān . (6.9)

Its action on the fernion fields take the form:

C ψ(0)C−1 = −iΓ5 ψ+(0) = −iΓ1 ψ̄(0), C ψ+(0)C−1 = iΓ5 ψ(0), (6.10)

with the ψ̄(0) = −ψ+(0) Γ0 convention. In the following subsections the transformation
rules (6.10) will prove to be particularly useful, since they will allow to determine the
matrix elements of the operators ψ̄ and ψ+ from those of ψ.
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6.3 The S-matrix

The knowledge of the two-particle S-matrix is essential to determine the form-factors of
local operators through solving the axioms (3.9)–(3.12). The S-matrix of the massive
Thirring model has been known for a long time [43]. Denote + the fermion and − the
anti-fermion state. Then, the non-zero S-matrix elements take the forms:

S++
++(θ) = S−−−−(θ) = a(θ) = exp

∞∫
0

dt

t

sinh (1−ν)t
2

sinh νt
2 cosh t

2
sinh t θ

iπ
,

S+−
+−(θ) = S−+

−+(θ) = b0(θ) a(θ), with b0(θ) =
sinh θ

ν

sinh i π−θ
ν

,

S−+
+−(θ) = S+−

−+(θ) = c0(θ) a(θ), with c0(θ) =
sinh i π

ν

sinh i π−θ
ν

,

(6.11)

where the parameter ν carries the information on how the S-matrix depends on the coupling
constant of the Lagrangian (5.1) of the model. This is given by the relation:

ν = π

π + 2 g . (6.12)

In the sequel we focus on the regime 1 < ν, or equivalently g < 0, where there are no bound
states, and only the fermion and the anti-fermion form the particle spectrum of the model.

6.4 The 3-particle form-factors

To test our formulas (4.75) and (4.76) for the Lüscher-correction of 1-particle form-factors,
the 3-particle form-factors of the corresponding fields should be determined. We test our
formula by the fermion propagator, thus we need to know the 3-particle form-factors of the
fields ψ and ψ̄. There are several ways in the literature to solve the form-factor axioms for
our model. Beyond Smirnov’s seminal work [38], the free-field representation [39, 40], and
the off-shell Bethe-Ansatz method [41, 42] proved to be very useful for the determination
of form-factors in the sine-Gordon/massive Thirring model. In this paper we use the latter
method for computing perturbatively the necessary 3-particle form-factors. To be prag-
matic, we present only the most necessary formulas. For a detailed description, the reader
is referred to the original paper [41]. What we compute from the off-shell Bethe-Ansatz
method are the 3-particle form-factors of the operator ψ. All the other necessary form-
factors can be determined with the help of the charge conjugation transformations (6.10).

6.4.1 3-particle form-factors of ψ±(0)

In [41], the 1-loop 3-particle form-factors of the operators ψ±(0) have been determined from
the weak coupling expansion of the exact formula for the form-factors. Now, we shortly
review the computation and present the 1-loop order result. From [41], the exact 3-particle
form-factor admits the representation:

fψ±a1a2a3(θ1, θ2, θ3) = N̂
ψ±
3

 ∏
1<i<j≤3

F (θi−θj)

∫
Cθ

du
3∏
i=1

φ(θi−u)e±(u−θ̄) Ψa1a2a3(u|θ1, θ2, θ3),

(6.13)
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where θ̄ = θ1+θ2+θ3
2 and the Bethe-wave function Ψ is defined through the matrix elements

of a monodromy matrix:

Ψa1a2a3(u|θ1, θ2, θ3) = T −,+++
+,a1a2a3(θ1, θ2, θ3|u),

T b,b1b2b3a,a1a2a3(θ1, θ2, θ3|u) =
∑
x,y

Ṡxb3aa3(θ3 − u) Ṡyb2xa2(θ2 − u) Ṡbb1ya1(θ1 − u), (6.14)

where according to (3.8) Ṡ = −S for the massive Thirring model. The integration contour
prescription Cθ in (6.13) has the following action on an arbitrary function of u:

∫
Cθ

duf(u) = 2π i
3∑
j=1

(
Res
θj−iπ

− 1
2Resθj

+ 1
2 Res
θj+iπ (ν−1)

)
f(u)+

∞∫
−∞

du

2

{
f

(
u+iπ2

)
+f

(
u−iπ2

)}
.

(6.15)
In addition, N̂ψ±

3 is a normalization factor with the definition,

N̂
ψ±
3 = ± im1/2

(4π)5/2 f
min
ss (0)2. (6.16)

The so far undefined functions in (6.13) are given by the integral representations as fol-
lows [41]:

fmin
ss (θ) = exp

∞∫
0

dt

t

sinh (1−ν) t
2

sinh ν t
2 cosh t

2

1− cosh [t (1− θ/(i π))]
2 sinh t ,

F (θ) = −i sinh θ2 f
min
ss (θ),

φ(u) = i

F 2
(
iπ
2

)
sinh u

exp
∞∫
0

dt

t

sinh (1−ν) t
2 (cosh [t (1/2− u/(iπ))]− 1)

sinh ν t
2 sinh t

.

(6.17)

For further useful representations and recurrence relations see appendix C in [41]. The
1-loop evaluation of the 3-particle form-factor formula (6.13) can also be found in [41].

To save space, we present only the − + + component, because the other nonzero
elements can be determined from it simply by the application of the cyclic axiom (3.11).

f
ψ+
−++(θ1,θ2,θ3) = g

i
√
me

1
2 (θ1−θ2−θ3)

(
eθ3−eθ2

)(
eθ3
(
eθ1 +2eθ2

)
+eθ1+θ2

)
4π3/2 (eθ1 +eθ2)(eθ1 +eθ3)(eθ2 +eθ3)

+O(g2),

f
ψ−
−++(θ1,θ2,θ3) = g

i
√
me

1
2 (θ1+θ2+θ3)

(
eθ3−eθ2

)(
2eθ1 +eθ2 +eθ3

)
4π3/2 (eθ1 +eθ2)(eθ1 +eθ3)(eθ2 +eθ3)

+O(g2).

(6.18)

To compute the finite volume correction to the residue of the fermion propagator the form-
factors of the fields ψ̄±(0) are also required. They can be determined from those of ψ±(0),
with the help of the charge conjugation symmetry (6.10), which implies:

b1,...,bm〈θ′1, . . . , θ′m|ψ̄±(0)|θ1, . . . , θn〉a1,...,an = ∓i b̄1,...,b̄m〈θ
′
1, . . . , θ

′
m|ψ±(0)|θ1, . . . , θn〉ā1,...,ān .

(6.19)
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Luckily, for the form-factor corrections one needs only special combinations of the 3-particle
form factors (4.70), (4.71), which take much simpler forms:∑

a=±
F
ψ±,reg
aāx

(
u+ iπ, u, θ − iπ2

)
= δx,+F±(u, θ),

∑
a=±

F
ψ̄±,reg
aāx

(
u+ iπ, u, θ − iπ2

)
= ∓ i δx,−F∓(u, θ),

(6.20)

where the weak coupling expansion of F±(u, θ) takes the form:

F±(u, θ) = gF (1)
± (u, θ) +O(g2) (6.21)

with

F (1)
± (u, θ) = ±

(
1
4 ±

i
4

)√
me±

θ
2∓u tanh(u− θ)sech(u− θ)
√

2π3/2 . (6.22)

When computing the weak coupling expansion of the regularized form-factors, we used the
perturbative expansion of the S-matrix elements, too. Just for completeness we present
that of the least nontrivial part of (6.11):

a(θ) = 1− i g tanh
(
θ

2

)
+O(g2). (6.23)

For the perturbative test of our final formulas (4.75), (4.76), the weak coupling expansion
of the function U(θ) is also necessary. It takes the form:

U(θ) = 2 g
cosh(θ) +O(g2). (6.24)

6.5 Perturbative results from integrability

In this subsection, with help of our integrability based formulas (4.75), (4.76), we compute
the leading order term in the weak coupling expansion of the Lüscher-correction to the
propagator of the massive Thirring model. At this point, one has to take carefully into
account, that the Lüscher-correction is a correction to the Bethe-Yang limit, which also
has L dependence, even though it is only polynomial in the inverse of the volume. To
use a parameterization comparable to direct field theory computations, we rewrite the
Bethe-Yang limit of the rapidity (4.10) in the following way:

sinh θBY = Q

`
, with Q = q L ∈ (2Z− 1)π, ` = mL. (6.25)

The parameter Q is a dimensionless quantum number, reflecting the anti-periodic boundary
condition. In principle, it is an odd integer multiple of π, but in the sequel we will consider,
as if it was an arbitrary complex parameter. With the help of (4.8) and (4.66), (4.67) the
Lüscher-correction to the residue of the fermion propagator (2.2) can be written as follows:

Res
ω=i E(q)

Γ(L)
αβ (ω, q) = i

ρ1(θBY)

{
−
F
ψβ
+ (θBY) F̄ ψ̄α+ (θBY)

2π

[ sinh θBY

cosh2 θBY
Ω0(θBY)+ Ω1(θBY)

cosh θBY

]
+

+ Ω0(θBY)
2π cosh θBY

d

dθ

[
F
ψβ
+ (θ) F̄ ψ̄α+ (θ)

]∣∣∣∣∣
θBY

+ F
ψβ
+ (θBY) Ωψ̄α

+ (θBY) + F̄ ψ̄α+ (θBY) Ωψβ
+ (θBY)

}
.

(6.26)
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Using the weak coupling expansions of the previous subsection, the 1-particle form-
factors (6.5) and the definitions (4.7) and (4.68)–(4.71), the 1-loop result can be given
by a simple formula:

Res
ω=i E(q)

Γ(L)
++(ω, q) = Res

ω=i E(q)
Γ(L)
−−(ω, q) = g

im

π

Q2

(Q2 + `2)3/2 K0(`) +O(g2),

Res
ω=i E(q)

Γ(L)
−+(ω, q) = − Res

ω=i E(q)
Γ(L)

+−(ω, q) = g
im

π

Q`

(Q2 + `2)3/2 K0(`) +O(g2),
(6.27)

where K0(`) is the modified Bessel-function.

7 The Lagrangian perturbation theory

Now, we compute the finite volume corrections to the fermion propagator at the 1-particle
pole from field theoretical perturbation theory upto 1-loop order. The starting point is the
Euclidean action (5.6), that we recall, but for regularization reasons in d-dimensions:

S[ψ̄, ψ] =
∫
ddx

{
− ψ̄

(
γµ∂µ +m0

)
ψ + g

2 ψ̄γµψ ψ̄γµψ
}
. (7.1)

Here m0 denotes the bare mass and now the Euclidean γ-matrices satisfy the d-dimensional
Clifford-algebra: {

γµ, γν
}

= 2 δµν 1, µ, ν = 0, 1, . . . , d− 1. (7.2)

In our actual computations, we will use Tr 1 = d, for the trace of the unity matrix in the
spinor space.12 The free propagator at infinite volume takes the usual form [45]:

〈ψ̄α(x)ψβ(y)〉0 = ∆βα(y − x), ∆(y − x) = 1
(2π)d

∫
ddp ei p(y−x) m01− i/p

p2 +m2
0
, (7.3)

where /p = γµ pµ, as usual. Now, we compute perturbatively the finite volume 2-point
function (2.2):

Γαβ(ω, q) = 1
L

L/2∫
−L/2

dx1

∫
dd−2x⊥

∞∫
−∞

dt ei ωt+i qx 〈ψ̄α(x, t)ψβ(0)〉L, x = (x1, x⊥) (7.4)

where antiperiodic boundary conditions are imposed on the fermion fields along the com-
pactified x1-direction.

A key ingredient to the perturbative computations is the free propagator corresponding
to the boundary conditions under consideration. A simple computation shows, that the
d-dimensional free propagator being antiperiodic with respect to L in the direction µ = 1,
takes the form as follows:

∆A(x) =
∑
n∈Z

(−1)n
∫

ddp

(2π)d e
i p x+i p1nL

m01− i/p
p2 +m2

0
. (7.5)

12We note that for d = 2− ε, any Tr1=2+O(ε), choice would lead to the same physical results.
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This form implies, that in perturbation theory everything is the same as in the usual infinite
volume case, apart from a change in the “integration measure”:∫

ddp

(2π)d . . . →
∫
L

ddp

(2π)d . . . =
∑
n∈Z

(−1)n
∫

ddp

(2π)d e
i p x+i p1nL . . . (7.6)

Simple computation shows, that at 1-loop order the propagator in momentum space take
the form:

Γαβ(ω, q) = 1
L

(
∆̃0(p) + ∆̃0(p) Γ(1)(p) ∆̃0(p)

)
βα

, ∆̃0(p) =
m0 − i/p
p2 +m2

0
, p = (ω, q). (7.7)

We note, that as a consequence of antiperiodic boundary conditions the allowed set of
values for the momentum q ∈ 2Z−1

L π. The actually momentum independent Γ(1)(p) is of
the form:

Γ(1)(p) = g

(
Tr[γµ∆A(0)] γµ − γµ∆A(0)γµ

)
. (7.8)

Because of the momentum independence of Γ(1)(p), in the sequel we will emphasize its
dependence on the bare parameters m0 and ε instead of the apparent p-dependence. Using
the integral representation (7.5), and the identity Tr γµ = 0, Γ(1) take the simple integral
representation as follows:

Γ(1)(m0, ε) = −g dmI1(m0, ε) 1, (7.9)

where
I1(m0, ε) =

∑
n∈Z

(−1)n
∫

ddp

(2π)d
ei p x+i p1nL

p2 +m2
0
, with d = 2− ε. (7.10)

Evaluating the integrals it takes the form:

I1(m0, ε) = Q∞(m0, ε) +QL(m0, ε),

Q∞(m0, ε) = 1
2πε + log(4π)− log(m2/κ2)− γE

4π +O(ε),

QL(m0, ε) = − 1
2π

∑
n∈Z

K0(|n|m0 L) +O(ε),

(7.11)

where γE is the Euler-gamma, K0 is the modified Bessel-function and κ is a mass scale
emerging as a consequence of the regularization method. In (7.11) Q∞ corresponds to the
infinite volume part and QL is the finite volume part, which upto Lüscher-order can be
written as follows:

QL(m0, 0) = − 1
π
K0(m0 L) +O(e−2m0L). (7.12)

It is easy to see, that at 1-loop order, wave-function renormalization is not required, but
mass renormalization is necessary to define the renormalized propagator. The simple steps
of the 1-loop mass renormalization can be in the easiest way done at the inverse of the
propagator:

Γ−1
αβ(p) = L

(
m0 1 + i /p− Γ(1)(m0, ε) 1 +O(g2)

)
βα

, (7.13)
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by inserting m0 = m+ δm, with m and δm being the physical mass and the additive mass
renormalization constant, respectively. The latter is determined to cancel the divergences
from (7.13), such that at infinite volume, the location of the pole of the propagator is at
p2 = −m2. Thus, upto O(g) the renormalized propagator inverse will take the form:

Γ−1
αβ(p) = m1 + i /p− Γ(1)

L (m) 1 +O(g2),

Γ(1)
L (m) = 2 gmQL(m, 0) = −2 gm

π
K0(`) +O(e−2`), ` = mL,

(7.14)

and the mass renormalization constant:

δm = −g (2− ε)mQ∞(m, ε) +O(g2). (7.15)

From the position of the pole of the renormalized propagator (7.14), the 1-loop finite volume
shift of the 1-particle energy denoted by δE(q), can be determined:

(m− Γ(1)
L (m))2 +

∑
µ

pµ pµ +O(g2) = 0, (7.16)

where

pµ =
(
i(E(q) + δE(q))

q

)
, E(q) =

√
q2 +m2. (7.17)

Finally, one gets:
δE(q) = − m

E(q) Γ(1)
L (m) +O(g2). (7.18)

To extract the form-factors, the residue at the finite volume 1-particle pole should be taken
(see (2.6)). This can be done, by taking the inverse of (7.14) at

pµ =
(
i(E(q) + δE(q)) + ∆E

q

)
, ∆E = ω − i(E(q) + δE(q)), (7.19)

and extract the term proportional to 1
∆E . After a simple computation one ends up with

the following result for the renormalized propagator:

Γαβ(ω, q) = 1
L∆E

m− i/p(∞)

2 i E(q) +R
(L)
1 1 +

∑
µ=0,1

γµR
(L)
γµ +O(g2)


βα

+ . . . , (7.20)

where

R
(L)
1 = −mδE(q)

2 i E2(q) , R(L)
γµ = − δE(q)

2 E(q)

(
i δµ0 −

p
(∞)
µ

E(q)

)
, p(∞)

µ =
(
i E(q)
q

)
, (7.21)

and the dots in (7.20) stand for terms O(1) in ∆E. The term being proportional to
m− i/p(∞) describes the infinite volume part of the form-factors, while the rest corresponds
to the finite volume corrections. With the help of (7.14) and (7.18), the finite volume
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corrections can be expressed in terms of the K0(`) Bessel-function. The main ingredients
take the form:

δE(q) = −g 2m2K0(`)
π E(q) , R

(L)
1 = g

i

π

Q2 `K0(`)
(Q2 + `2)3/2 , R(L)

γµ = −g δµ1
1
π

Q `2K0(`)
(Q2 + `2)3/2 ,

(7.22)
where again, we used the variables Q = q L and ` = mL. Inserting (7.22) into (7.20), the
O(g) Lüscher-correction to the residue of the fermion propagator will take the form:13

Res
ω=i∆E1(L)

Γ(L)
++(ω, q) = Res

ω=i∆E1(L)
Γ(L)
−−(ω, q) = g

i

πL

Q2 `K0(`)
(Q2 + `2)3/2 +O(g2, e−2`),

Res
ω=i∆E1(L)

Γ(L)
−+(ω, q) = − Res

ω=i∆E1(L)
Γ(L)

+−(ω, q) = g
i

πL

Q `2K0(`)
(Q2 + `2)3/2 +O(g2, e−2`),

(7.23)

which agrees with the formula coming from the 1-particle form-factor Lüscher-formula
(6.27).

8 Summary and conclusions

In this paper, using the field theoretical approach of [32], we derived the leading exponen-
tially small in volume corrections to the 1-particle form-factors of a non-diagonally scat-
tering relativistic integrable quantum field theory. Our final formulas were tested against
Lagrangian perturbation theory at 1-loop order in the massive Thirring-model, and per-
fect agreement was found. Our results can be considered as extensions of those of [32] to
more general cases. In [32], 1-particle form-factors of operators with zero Lorentz-spin in a
bosonic diagonally scattering relativistic integrable quantum field theory were considered.
Our final results also valid for operators with nonzero Lorentz spin, and for both bosonic
and fermionic non-diagonally scattering relativistic integrable quantum field theories.

The main result of the paper is the formula (4.75) with the definitions (4.1) and (4.68)–
(4.71), giving the finite volume 1-particle form-factor upto leading exponentially small in
volume corrections. The physical interpretation of the formula is the same as it is in the
diagonally scattering case [32]. It is composed of two terms. The 1st one, is similar to
the formula being valid in the Bethe-Yang limit, but the exponentially small in volume
corrections to the particle’s rapidity and to the density of states are taken into account.
The 2nd term is a new type of term. It contains a 3-particle form-factor corresponding to
the contribution of a virtual particle traveling around the world.

Though, our results give the Lüscher-corrections only to 1-particle form-factors, we
hope, that similarly to the case of diagonally scattering theories [33], these results could
be extended to arbitrary matrix elements of local operators in non-diagonally scattering
integrable quantum field theories.

13Here Γ(L)
αβ denotes the finite volume correction to the infinite volume propagator.
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A List of H and G functions

Here we list the tensor functions entering (4.36) and (4.35). The H functions are building
blocks of the regularized matrix element Π(u|β1, β2)ab1b2 [F ] and so they are functionals of
the F form factors.

H0(u|β1, β2)ab1b2 = s0 F
c
āb1b2(u+ iπ, β1, β2),

H
(−)
1 (β1, β2)ab1b2 = −s0

i

2π
∑
x

Saxb1b2(β1 − β2)Fx(β2),

H
(+)
1 (β1, β2)ab1b2 = s0

i

2π δab1 Fb2(β2),

H
(−)
2 (β1, β2)ab1b2 = − i

2π δab2 Fb1(β1),

H
(+)
2 (β1, β2)ab1b2 = i

2π
∑
x

Sxab1b2(β1 − β2)Fx(β1),

(A.1)

The G functions are building blocks of the regularized matrix element Π̄(u|β1, β2)ab1b2 [f ]
and so they are functionals of the f form factors;

G0(u|β1, β2)b2b1a = s0 sf f
c
ab̄2b̄1

(u+ iπ, β2, β1),

G
(−)
1 (β1, β2)b2b1a = − i

2π sf δab1 fb̄2(β2),

G
(+)
1 (β1, β2)b2b1a = i

2π sf
∑
x

Sx̄ab2b1(β2 − β1) fx(β2),

G
(−)
2 (β1, β2)b2b1a = − i

2πs0 sf
∑
x

Saxb2b1(β2 − β1) fx̄(β1),

G
(+)
2 (β1, β2)b2b1a = i

2π s0 sf δab2 fb̄1(β1).

(A.2)
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any medium, provided the original author(s) and source are credited.
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