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1 Introduction

The electric and magnetic dipole moments of the electron and the muon are precision low-
energy probes of the Standard Model (SM) of particle physics, and provide strong indirect
constraints on physics beyond the Standard Model (BSM). The electric dipole moment
is CP -odd, whereas the magnetic moment is CP -even. With the current experimental
precision, the electron magnetic moment is sensitive not only to QED effects but also to
hadronic contributions. Due to the larger muon mass, the muon magnetic moment is more
sensitive to heavier mass scales, including hadronic and electroweak contributions, as well
as BSM physics (see ref. [1] for a comprehensive recent review). The current experimental
value for the anomalous magnetic moment of the muon aµ [2–6] (a` = (g`− 2)/2, ` = e, µ)

aexp
µ = 116 592 061(41)× 10−11, (1.1)

and the SM prediction [1, 7–28]

aSM
µ = 116 591 810(43)× 10−11 , (1.2)

are in tension at the level of 4.2σ. Whether the difference

∆aµ = aexp
µ − aSM

µ = 251(59)× 10−11 , (1.3)

is a hint for new physics is not yet clear, but the E989 experiment at Fermilab is aiming to
further reduce the experimental uncertainty to 0.14 ppm [29]. On the theory side, the latest
determination of hadronic vacuum polarization (HVP) from lattice QCD [30] improves the
uncertainties compared to previous lattice-QCD calculations, but it is in a 2.1σ tension
with the value derived from the e+e− → hadrons cross section [11–16, 31–34]. Meanwhile,

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
7

for the hadronic light-by-light contribution, lattice-QCD determinations [27, 35] are in
agreement with the phenomenological estimate [1].

In the case of the electron anomalous magnetic moment, the agreement between ex-
periment [36],

aexp
e = 1 159 652 180.73(28)× 10−12 , (1.4)

and the SM prediction crucially depends on the input value for the fine-structure constant
α. Here the two latest determinations based on Cesium and Rubidium atomic recoils

α−1
QED,Cs = 137.035999046(27) [37] ,

α−1
QED,Rb = 137.035999206(11) [38] , (1.5)

differ by more than 5σ and lead to SM predictions

aSM,Cs
e = 1 159 652 181.61(23)× 10−12 ,

aSM,Rb
e = 1 159 652 180.252(95)× 10−12 , (1.6)

and the differences

∆aCs
e = aexp

e − aSM,Cs
e = −0.88(36)× 10−12 ,

∆aRb
e = aexp

e − aSM,Rb
e = 0.48(30)× 10−12 , (1.7)

which correspond to −2.4σ or +1.6σ discrepancies, respectively. The change in a` due to
a change in αQED is dominated by the one-loop Schwinger correction α/(2π) [39], which
is the same for ae and aµ. However, the experimental uncertainty for aµ is much larger
than for ae, and the theoretical prediction for the anomalous magnetic moment of the
muon is not affected by the small difference in αQED. In the examples we consider in this
paper, ∆a` ∝ m`, so it is useful to write the anomalous magnetic moment of the electron
discrepancy as

∆ae = me

mµ

[
−18(7)Cs

10(6)Rb × 10−11
]
, (1.8)

in order to compare BSM contributions to ∆aµ and ∆ae simultaneously. Dipole moments
require a chirality change of the lepton, which can introduce an additional factor of the
lepton mass, resulting in the “naive scaling” ∆a` ∝ m2

` [40]. A chiral enhancement results
if this second mass factor is replaced by some heavy internal mass scale.

The electric dipole moments (EDMs) of leptons are CP -odd observables that are highly
suppressed in the SM. Any measurement of an EDM would be a clear indication of BSM
physics, and the current experimental bounds [41, 42]

|de| < 1.1× 10−29 e–cm @ 90% CL ,
|dµ| < 1.5× 10−19 e–cm @ 90% CL , (1.9)
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place strong constraints on new physics which is CP -violating.1 The bound on the muon
EDM could be improved by about three orders of magnitude in a proposed experiment
at PSI [44].

In this paper, we investigate the possibility that the discrepancies, eqs. (1.3) and (1.7),
are due to BSM physics. While many models explaining the muon (and in some cases also
the electron) g−2 discrepancy have been constructed, we instead analyze possible BSM con-
tributions in a model-independent way using effective-field-theory (EFT) techniques. EFT
methods have been applied at the one-loop and even two-loop level to extract constraints
from the EDM of the electron [45, 46], but in the case of magnetic moments, the usual
treatment only involves a discussion of the dipole operator itself. Recent studies investi-
gated the connection to muon-collider [47, 48] and muon-proton collider observables [49].
Logarithmic one-loop terms were included in ref. [47].

In this work, we extend the available EFT analyses by exploring the lepton dipole
moments at one-loop order including dimension-six operators. We consider two scenar-
ios: (a) BSM physics appears above the electroweak scale and can be analyzed using
dimension-six operators in the SM effective field theory (SMEFT), and (b) BSM physics
occurs between the electroweak and QCD scales, and can be analyzed using a low-energy
effective field theory (LEFT). Both effective field theories contain dipole operators that
contribute to lepton dipole moments at tree level, so one trivial possibility is that the g−2
discrepancies are explained by a BSM contribution to the EFT dipole operator. In addition
to this possibility, we take into account other operators that can contribute to the dipole
moments at loop level. Recent calculations have determined the one-loop anomalous di-
mensions in SMEFT [50–53] and LEFT [54, 55], as well as the one-loop matching between
the two theories [56]. We determine all operators which can contribute to g − 2 including
one-loop matching and perturbative integration of the renormalization group (RG) evolu-
tion up to second order in the anomalous dimensions. We present our results in the spirit of
ref. [57–59] as master formulae in terms of LEFT, as well as SMEFT, Wilson coefficients.
We find that, although there are several operators that could provide an explanation if
new physics arises below the electroweak scale, an explanation for the discrepancy based
on other EFT operators arising from BSM physics heavier than the electroweak scale is
highly constrained. In this case, new physics would have to directly induce the dipole oper-
ator itself or certain semileptonic tensor operators, which can give significant contributions
to ∆a` through charm- or top-quark loops. Thus, while there are a plethora of new-physics
models that aim to address ∆a`, within the EFT language, all of the models can be de-
scribed by only a few operators. We end by showing how our results can be applied to
specific BSM scenarios, using the case of scalar leptoquarks as a representative example.

As the magnetic and electric dipole moments are related to the real and imaginary
parts of the Wilson coefficients in SMEFT and LEFT, we also discuss the suppression of
the imaginary parts relative to the real parts that is required to produce the g−2 anomalies
while still being consistent with the electric dipole moment constraints in eq. (1.9).

1The limit on de also places an indirect constraint on dµ that is slightly better than the direct experi-
mental bound [43].
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2 Effective field theory and dipole moments

The low-energy effects of BSM physics above the electroweak scale can be described by
an EFT that only contains the SM particles and respects the SM gauge group SU(3)c ×
SU(2)L × U(1)Y , known as SMEFT [60–62].2 We limit our analysis to dimension-six op-
erators. For operators of even higher dimension to be relevant, the BSM model would
have to be tuned so that dimension-six contributions to g − 2 are smaller than power-
suppressed higher-dimension contributions. If the BSM theory has light particles below
the electroweak scale, but heavier than the muon mass, we can use a low-energy EFT that
only contains light SM particles, and is invariant under SU(3)c×U(1)em, known as LEFT.

Our sign convention for the SU(3)c × SU(2)L ×U(1)Y covariant derivative is

Dµ = ∂µ + ig3T
AGAµ + ig2t

IW I
µ + ig1yBµ , (2.1)

with SU(3)c generators TA, SU(2)L generators tI = τ I/2, and the U(1)Y hypercharge
generator y. Our sign convention for the SU(3)c ×U(1)em covariant derivative is

Dµ = ∂µ + igTAGAµ + ieQAµ , (2.2)

where the QED coupling constant is positive, e = |e|, and the eigenvalues of the electric
charge operator Q are qe = −1, qu = 2/3, qd = −1/3 for the charged leptons, up-type
quarks, and down-type quarks, respectively.

The results for the SMEFT and LEFT running and matching calculations have been
implemented in publicly available codes [63–66],3 which we partly use for our numerical
analysis. As the weak interactions are a chiral gauge theory, the finite parts of one-loop
diagrams depend on the specific scheme chosen for γ5. For example, the Fierz identity

ĀγµPLB C̄γµPRD = −2 ĀPRD C̄PLB (2.3)

holds in d = 4 dimensions. Away from d = 4 dimensions, the difference of the two sides
of eq. (2.3) is an evanescent operator, which has matrix elements proportional to (d− 4),
and gives a non-zero finite contribution in one-loop matrix elements if the loop integral is
divergent. We will use the SMEFT operator basis in ref. [62], the LEFT operator basis in
ref. [54], and follow the conventions for evanescent operators and γ5 explained in ref. [56].

The anomalous magnetic moment and electric dipole moment of a lepton are defined
through the vertex function

γ

` ` = (−ieqe) ū(p′)Γµ(p, p′)u(p) , (2.4)

2We consider only the case where the Higgs particle is part of an electroweak doublet as in the SM.
The case in which the Higgs boson is an SU(2)L singlet, known as Higgs Effective Field Theory (HEFT),
is another possibility.

3An overview of these codes can be found in ref. [67]. In the course of our analysis, we discovered bugs
in the public codes wilson [65] and DSixTools [63], and we are in communication with the authors of these
codes.
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which is decomposed in terms of Lorentz-invariant form factors as

Γµ(p, p′) = γµFE(k2) + i
σµνkν
2m`

FM (k2) + σµνkν
2m`

γ5FD(k2) + k2γµ − kµ/k
m2
`

γ5FA(k2) , (2.5)

where k = p′ − p is the incoming photon momentum. The mass m` is the physical (pole)
lepton mass and the external lepton states are on shell, p2 = p′2 = m2

` . The vertex
function includes external-leg corrections on the photon and fermion lines. The prefactor
e in eq. (2.4) is fixed by the renormalization condition FE(0) = 1, and corresponds to the
static on-shell electric charge eQED, measured, for example, using Coulomb’s law at large
distances. The two experimental values for αQED ≡ e2

QED/(4π) are given in eq. (1.5).
The anomalous magnetic moment is defined as the limit of the magnetic (or Pauli)

form factor at zero momentum transfer:

a` = 1
2(g` − 2) = FM (0) , (2.6)

and the electric dipole moment is given by the limit of the electric dipole form factor at
zero momentum transfer:

d` = −eQEDqe
2m`

FD(0) . (2.7)

The anapole moment FA(0) is not an observable [68]; it can be absorbed into four-fermion
operators using the equations of motion.

To illustrate the LEFT description of magnetic dipole moments, consider the SM one-
loop electroweak contribution to the anomalous magnetic dipole moments [69]

aEW
` = GFm

2
`

12
√

2π2

[
3− 4 sin2 θW + 8 sin4 θW

]
+O(v−4) . (2.8)

The terms in the LEFT Lagrangian that we need for this paper, which will allow us to
describe both SM and BSM contributions, are

L =
[
Leγ
pr

(ēLpσµνeRr)Fµν + LS,RRee
prst

(ēLpeRr)(ēLseRt)

+ LS,RLeu
prst

(ēLpeRr)(ūRsuLt) + LS,RLed
prst

(ēLpeRr)(d̄RsdLt)

+ LS,RReu
prst

(ēLpeRr)(ūLsuRt) + LS,RRed
prst

(ēLpeRr)(d̄LsdRt)

+ LT,RReu
prst

(ēLpσµνeRr)(ūLsσµνuRt) + LT,RRed
prst

(ēLpσµνeRr)(d̄LsσµνdRt) + h.c.
]

+ LV,LRee
prst

(ēLpγµeLr)(ēRsγµeRt) , (2.9)

with implicit sums over the flavor (generation) indices p, r, s, t. We will denote the gener-
ation indices by 1, 2, 3, or equivalently by e, µ, τ for leptons, and u, c, t for up-type quarks.
For down-type quarks, the generation index is the weak-eigenstate index d′, s′, b′ and is
related to the mass eigenstate index d, s, b by the CKM matrix, as discussed in ref. ([54],
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Figure 1. One-loop contribution to the dipole moment from four-fermion operators.

§ 2.2). We use the convention that the coefficients satisfy the same symmetry relations as
the operators, e.g.,

LV,LRee
prst

= LV,LR∗ee
rpts

, LS,RRee
prst

= LS,RRee
stpr

, (2.10)

and both contributions are included in the flavor index sum in eq. (2.9). Leγ is the co-
efficient of a dimension-five operator, while the others are coefficients of dimension-six
operators. The corresponding operators in the LEFT Lagrangian eq. (2.9) are denoted by
Oeγ
pr
, OV,LRee

prst
, etc.

In constructing the LEFT Lagrangian induced by the SM, there is a tree-level contri-
bution to the four-fermion operator OV,LRee

prst
due to Z exchange,

LV,LRee
prst

= δprδst
4GF√

2

(
1− 2 sin2 θW

)
sin2 θW +O(v−4) , (2.11)

and a finite matching contribution to the dipole operator Oeγ
pr

at one-loop,

Leγ
pr

= δpr
eqeGFml

48
√

2π2

(
−3− 8 sin2 θW + 16 sin4 θW

)
+O(v−4) . (2.12)

The total one-loop electroweak contribution to the anomalous magnetic moment is
given by the sum of the tree-level contribution from the dipole operator eq. (2.12) and the
one-loop contribution of the V,LR operator eq. (2.11) from the graph shown in figure 1;
the two contributions sum to eq. (2.8). While the W contribution only enters as a direct
matching to the dipole operator, numerically about 60% of the Z contribution comes from
the LEFT loop and 40% from the direct matching to the dipole. For BSM contributions,
one generally expects an analogous situation: some effects only appear as a direct matching
onto the dipole operators, while other contributions can indirectly feed into g − 2 through
EFT loops. We can evaluate the complete RG-improved BSM contribution since one-loop
running, matching, and matrix elements are now available.

Lepton dipole moments are predictions of the SM that only depend on the experi-
mental inputs of particle masses and coupling constants. In the EFT, the dipole moments
also depend on higher-dimension operator coefficients. The dipole moments get tree-level
contributions from the dimension-five dipole operators as well as loop contributions from
dimension-six interactions in the LEFT from the graph shown in figure 1. The dipole
moments therefore depend on Wilson coefficients that are free parameters in the EFT,
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making it difficult to correlate g − 2 with other observables in general. This feature ex-
plains why, for the magnetic moments, the EFT language is mostly employed only up to
tree level, i.e., models are matched directly onto the dipole operators. We will show that
the EFT approach beyond leading order is nevertheless useful to systematically organize
viable mechanisms that can explain the g − 2 discrepancies and to explicitly distinguish
logarithmically enhanced contributions.

As is well known, the SM electroweak contribution to the muon g − 2 up to two
loops [9, 10]

aEW
µ = (153.6± 1.0)× 10−11 , (2.13)

is comparable in magnitude to the discrepancy eq. (1.3), which already implies that heavy
BSM physics needs an enhancement mechanism to be a viable explanation [40, 43]. In the
case of the electron g − 2, both the differences eq. (1.7) and the uncertainties are much
larger than the SM electroweak contribution [70],

aEW
e = (30.53± 0.23)× 10−15 . (2.14)

3 LEFT interpretation

At tree level, the magnetic and electric dipole moments a` and d` are related to the real
and imaginary parts of Leγ and are conventionally given using different units, with a`
dimensionless and d` in e–cm,

−4m`

eqe
Leγ
``

= a` + 2m`

eQEDqe
id` ,

(6.750× 10−3 GeV) Leγ
ee

= ae − i
(
5.2× 1010

) de
1 e–cm , ` = e ,

(1.396 GeV) Leγ
µµ

= aµ − i
(
1.1× 1013

) dµ
1 e–cm , ` = µ . (3.1)

If Re(Leγ
ee

) explains the electron anomalous magnetic moment discrepancy ∆aCs,Rb
e , Im(Leγ

ee
)

has to be suppressed relative to the real part by about 10−6 to satisfy the bound on the
electric dipole moment de given in eq. (1.9). No suppression is needed for the muon.

At one-loop order, a` is

a` = αq2
e

2π − 4m`

eqe
ReLeγ

``
(µ)

{
1− αq2

e

4π

[
2 + 5 log

(
µ2

m2
`

)]}
+ a4`

` + a2`2q
` +O(L2

eγ) , (3.2)

where e now denotes the renormalized MS coupling, but m` is still the physical pole mass
of the lepton. The first term is the famous QED one-loop contribution computed by
Schwinger [39]. The QED contribution is known to five loops [7]. The second term is the
tree-level contribution of the dipole operator Oeγ , together with its one-loop correction
from the graphs in figure 2. The a4`

` contribution arises from one-loop insertions of four-
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Figure 2. One-loop correction to the matrix element of Leγ . There is also a wave-function
correction, which is not shown.

lepton operators. In the MS scheme, and using the conventions of ref. [56] for evanescent
operators, it is given by

a4`
` = −m`

∑
p=e,µ,τ

mlp

4π2 ReLV,LRee
`pp`

(µ) +m`

∑
p=e,µ,τ

mlp

4π2 log
(
µ2

m2
lp

)
ReLS,RRee

`pp`
(µ) , (3.3)

where µ denotes the renormalization scale, and we have used the symmetry of the Wilson
coefficients eq. (2.10). The corresponding expressions for the electric dipole moment are
given by the imaginary parts using the relative normalization in eq. (3.1) between a` and
d`. In the SM, the scalar Wilson coefficients LS,RRee are proportional to Yukawa couplings
and only appear as dimension-eight effects [54]. The same remains true in the SMEFT at
one loop [56]. However, these Wilson coefficients could be present in the LEFT if there is
BSM physics below the weak scale. On the other hand, LV,LRee is already present in the SM
due to the one-loop electroweak contribution (2.11).

Finally, a2`2q
` in eq. (3.2) results from semileptonic tensor operators given in eq. (2.11).

In perturbation theory and in the scheme of ref. [56], only logarithmic one-loop contribu-
tions are generated,

a2`2q
` = −m`

∑
p

Ncqump

qeπ2 log
(
µ2

m2
p

)
ReLT,RReu

``pp
(µ)

−m`

∑
p

Ncqdmp

qeπ2 log
(
µ2

m2
p

)
ReLT,RRed

``pp

(µ) , (3.4)

where the sums on p are over heavy active quark flavors at the scale µ. The light-quark
matrix elements at low energies have to be evaluated non-perturbatively [71], and are not
included in eq. (3.4). They give a dipole contribution

a2l2q,uds
` = 8cT

m`

qe
F 2
π

Λχ
Re
[
quLT,RReu

``uu
+ qdLT,RRed

``dd

+ qdLT,RRed
``ss

]
, (3.5)

instead of the perturbative contribution eq. (3.4). Here Λχ = 4πFπ is the scale of chiral
symmetry breaking, with Fπ = 92 MeV the pion decay constant. cT is a non-perturbative
parameter, of order unity by naive dimensional analysis [72, 73], and depends on the
renormalization scale µ of the operators, which is chosen to be 2 GeV. In terms of the
chiral low-energy constant Λ1 of ref. [74],

cT = 4π
Fπ

Λ1 . (3.6)
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q q′

Figure 3. Contributions of the semileptonic scalar operators to the lepton dipole. The right-hand
diagram starts at four-loop order in perturbation theory. However, for light quarks, it gives a non-
perturbative contribution to the dipole that is not suppressed by loop factors in comparison to the
left-hand diagram.

Lattice-QCD input from ref. [75] for the pion tensor charge together with vector-meson
saturation [76] lead to cT ≈ −1.0(2), where the error does not include model uncertainties,
see refs. [71, 77].

The scalar operators LS,RRed , LS,RReu mix into the corresponding tensor operators LT,RRed ,
LT,RReu due to electromagnetic corrections, which subsequently contribute to the dipole via
penguin graphs, as shown in figure 3. This scalar-tensor mixing means that there are also
non-perturbative contributions to the dipole from LS,RReu

``uu
, LS,RRed

``dd

, LS,RRed
``ss

similar to eq. (3.5),

but with an additional αqqqe/(4π) electromagnetic suppression due to photon exchange
between the quark and lepton lines, from the left-hand graph in figure 3. We will use the
estimate

a2l2q,uds,S
` = 8cS

α

4πm`
F 2
π

Λχ
Re
[
q2
uL

S,RR
eu
``uu

+ q2
dL

S,RR
ed
``dd

+ q2
dL

S,RR
ed
``ss

]
, (3.7)

where cS is a non-perturbative constant of order unity, and depends on µ, which is chosen
to be 2 GeV.4

At a scale of µ = 2 GeV, the charm quark is an active degree of freedom. While non-
perturbative effects in its contribution may not be negligible, we use perturbation theory,
eq. (3.4), for a rough estimate of the charm contribution:

a2l2q,c,T
` ∼ −c(c)

T

Ncm`mcqu
π2qe

log
(
µ2

m2
c

)
ReLT,RReu

``cc
(µ) , (3.8)

where c(c)
T is expected to be of order unity, and is a reminder that there are non-perturbative

contributions to the charm-quark loop. For the scalar charm-quark semileptonic operator,
we will use the estimate

a2l2q,c,S
` ∼ −c(c)

S

α

4π
Ncm`mcq2

u

π2 log
(
µ2

m2
c

)
ReLS,RReu

``cc
(µ) , (3.9)

4In chiral perturbation theory, the terms in eq. (3.7) arise from structures ∝ Tr(Q2
LLU†)Oeγ or

Tr(QLLQRU†)Oeγ , where U is the matrix containing the pions, QL,R = diag(qu, qd, qd), and L =
diag(LS,RReu

``uu
, LS,RRed

``dd

, LS,RRed
``ss

). There also exist structures ∝ Tr(LU†)Tr(Q2
L)Oeγ from diagrams like the one

in the right-hand panel of figure 3, which give rise to a different qu,d dependence. We neglect them for
simplicity, as these contributions, like those in eq. (3.7), have an electromagnetic suppression and are very
small.
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where the additional αquqe/(4π) suppression relative to eq. (3.8) again comes from the
photon exchange in the left-hand diagram in figure 3.

The (LR)(RL) operators LS,RLed , LS,RLeu also can have non-perturbative contributions
from graphs where there is photon exchange between the quark and lepton lines. We
will use the estimates eq. (3.7) and eq. (3.9) with the non-perturbative constants replaced
by c̃S and c̃

(c)
S , respectively. The non-perturbative contribution from semileptonic vector

operators requires, in addition to the photon exchange, a helicity flip on the lepton line,
with a resultant m` chiral suppression. As a result, their contribution to a` is suppressed
relative to the scalar operators, and can be neglected.

In eq. (3.2), we have neglected terms quadratic in the dipole-operator coeffi-
cients [54, 55], which in principle appear at dimension six as well. Second-order contribu-
tions from two flavor-changing dipoles are negligible due to constraints on flavor-violating
decays of charged leptons. Since the flavor-diagonal dipole operators contribute at tree
level to the dipole moments, second-order dipole contributions are much smaller than the
first-order tree-level contributions, and can be neglected.

In order to interpret the g− 2 discrepancies in terms of new physics, we subtract from
eq. (3.2) the corresponding expression in the SM: the Schwinger term drops out, and as we
only keep terms linear in the Wilson coefficients, all LEFT coefficients can be replaced by
their purely BSM contribution.

Let us evaluate eq. (3.2) numerically in order to estimate the size of the relevant Wilson
coefficients needed to explain the anomalies. Using coefficients renormalized at µ = 2 GeV,
one finds:

∆a2 GeV
` = m`

mµ
Re
[

1.35µ
1.31e

Leγ
``
× 1 GeV−1

− 1.4× 10−6 LV,LRee
`ee`

− 2.8× 10−4 LV,LRee
`µµ`

− 4.8× 10−3 LV,LRee
`ττ`

+ 2.3× 10−5 LS,RRee
`ee`

+ 1.7× 10−3 LS,RRee
`µµ`

+ 1.1× 10−3 LS,RRee
`ττ`

+ 2.1× 10−3cT

(
LT,RRed
``dd

+ LT,RRed
``ss

− 2LT,RReu
``uu

)
+ 2.7× 10−2c

(c)
T LT,RReu

``cc

+ 4.1× 10−7cS

(
LS,RRed
``dd

+ LS,RRed
``ss

+ 4LS,RReu
``uu

)
− 1.1× 10−5c

(c)
S LS,RReu

``cc

+ 4.1× 10−7c̃S

(
LS,RLed
``dd

+ LS,RLed
``ss

+ 4LS,RLeu
``uu

)
− 1.1× 10−5c̃

(c)
S LS,RLeu

``cc

]
× 1 GeV2 . (3.10)

For definiteness, we take the MS gauge couplings at the scale µ = MZ as input [78] and
evolve them to 2 GeV using the one-loop RG. For two generations of up- and down-type
quarks and three lepton generations, the LEFT Lagrangian has 1176 CP -even baryon-
and lepton-number-preserving terms at dimension six, and 25 at dimension five. Only
10 and 1 of these, respectively, contribute to each ∆a`. Without any assumption on the
flavor structure of BSM physics, the muon and electron dipole moments are essentially
uncorrelated: 9 of the 11 free parameters in each ∆ae and ∆aµ are unique and only the
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two parameters LS,RRee
eµµe

and LV,LRee
eµµe

enter both electron and muon dipole moments due to the
symmetry relation eq. (2.10).

Assuming Leγ ∼ Λ−1, Lee,ed,eu ∼ Λ−2 where Λ is the scale of new physics, the largest
impact on a` is from the dimension-five operator Leγ . However, in many models Leγ is
induced at dimension-six, Leγ ∼ v/Λ2, and its contribution scales like the four-fermion
operators. The most important four-fermion operators are the leptonic current-current
operator LV,LRee

`ττ`
involving the τ , the semileptonic tensor operators of eq. (3.5), which give a

non-perturbative contribution to the dipole moments, and the semileptonic charm-tensor
operator of eq. (3.8).

Assuming only a single Wilson coefficient to be non-zero, the needed values of the
Wilson coefficients to explain ∆aµ or ∆ae individually are collected in the upper panel of
table 1. For ∆ae, we give two sets of numbers using the two values for αQED in eq. (1.5). Of
course, an explicit BSM model can generate more than one non-zero coefficient, as discussed
for a leptoquark model in section 6. In the case of LS,RRee

eµµe
and LV,LRee

eµµe
, the symmetry relation

eq. (2.10) implies that they contribute to both muon and electron anomalies, which require
different values. The second panel of table 1 shows a minimal combined scenario for these
two parameters, where both are non-zero, and adjusted to explain the muon anomaly while
largely avoiding effects in ∆ae, which leads to a very strong correlation. Five significant
digits are shown to illustrate that a simultaneous explanation of the electron anomaly ∆aCs

e

or ∆aRb
e requires a fine-tuning of the two coefficients.

The Wilson coefficients that enter eq. (3.10) are only weakly constrained. The LHC
measurements of pp → µ+µ− give a constraint on the semileptonic operator

∣∣LT,RReu
µµuu

∣∣ ≤
9.3 TeV−2 [79]. However, this limit is only valid if BSM physics arises well above the
electroweak scale, Λ �

√
s ∼TeV, an assumption that does not necessarily hold in the

LEFT. A comparable constraint can be derived if one assumes that LT,RReu
µµuu

is induced

by the SMEFT Wilson coefficient C(3)
`equ
µµuu

. In this case SU(2)L invariance implies that

the LEFT operator is related to a charged-current interaction that can be probed by
π → µν [79]. Similarly, constraints on four-lepton operators can be derived if one assumes
that LV,LRee

µττµ
originates from the SMEFT operator C `e

µττµ
. In this case, LV,LRee

µττµ
is related to a

charged-current interaction that can be constrained by τ → µντ ν̄µ, leading to
∣∣LV,LRee
µττµ

∣∣ ≤
12 TeV−2 [78, 80, 81]. For both operators these bounds are not stringent enough to exclude
the values collected in table 1. In addition, it should be noted that neither of the above
constraints hold in scenarios where the SMEFT approach does not apply, as would be the
case when BSM physics appears at or below the electroweak scale.

The expressions for the magnetic moments can be used to obtain the EDMs of the
leptons, d`, by multiplying eq. (3.10) by qeeQED/(2m`) and replacing Re by Im. Combined
with the experimental bounds in eq. (1.9), this allows one to constrain the imaginary parts
of the Wilson coefficients. These bounds can be determined by multiplying the middle
of the ranges given in the ` = µ and ` = e,Cs columns in table 1 by the combination
2m`d

exp
` /(eQED|∆a`|) = {(640.0)µ, (6.5 × 10−7)e} for the muon and electron, respectively,
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coefficient units ` = µ ` = e, Cs input ` = e, Rb input

Leγ
``

GeV−1 [1.4, 2.3]× 10−9 −[8.2, 20]× 10−11 [2.8, 12]× 10−11

LV,LRee
`ee`

GeV−2 −[1.4, 2.3]× 10−3 [7.9, 19]× 10−5 −[2.7, 12]× 10−5

LV,LRee
`µµ`

GeV−2 −[6.8, 11]× 10−6 [3.8, 9.1]× 10−7 −[1.3, 5.7]× 10−7

LV,LRee
`ττ`

GeV−2 −[4.0, 6.5]× 10−7 [2.3, 5.4]× 10−8 −[7.8, 34]× 10−9

LS,RRee
`ee`

GeV−2 [8.5, 14]× 10−5 −[4.8, 11]× 10−6 [1.6, 7.1]× 10−6

LS,RRee
`µµ`

GeV−2 [1.2, 1.9]× 10−6 −[6.5, 15]× 10−8 [2.2, 9.7]× 10−8

LS,RRee
`ττ`

GeV−2 [1.7, 2.8]× 10−6 −[9.6, 23]× 10−8 [3.3, 14]× 10−8

cTL
T,RR
eu
``uu

GeV−2 −[4.7, 7.5]× 10−7 [2.6, 6.2]× 10−8 −[9.0, 39]× 10−9

cTL
T,RR
ed
``dd

, cTLT,RRed
``ss

GeV−2 [9.3, 15]× 10−7 −[5.2, 12]× 10−8 [1.8, 7.8]× 10−8

c
(c)
T LT,RReu

``cc
GeV−2 [7.1, 11]× 10−8 −[4.0, 9.5]× 10−9 [1.4, 6.0]× 10−9

cSL
S,RR
eu
``uu

GeV−2 [1.2, 1.9]× 10−3 −[6.5, 16]× 10−5 [2.3, 9.8]× 10−5

cSL
S,RR
ed
``dd

, cSLS,RRed
``ss

GeV−2 [4.7, 7.6]× 10−3 −[2.6, 6.2]× 10−4 [9.1, 39]× 10−5

c
(c)
S LS,RReu

``cc
GeV−2 −[1.8, 2.9]× 10−4 [1.0, 2.4]× 10−5 −[3.5, 15]× 10−6

c̃SL
S,RL
eu
``uu

GeV−2 [1.2, 1.9]× 10−3 −[6.5, 16]× 10−5 [2.3, 9.8]× 10−5

c̃SL
S,RL
ed
``dd

, c̃SLS,RLed
``ss

GeV−2 [4.7, 7.6]× 10−3 −[2.6, 6.2]× 10−4 [9.1, 39]× 10−5

c̃
(c)
S LS,RLeu

``cc
GeV−2 −[1.8, 2.9]× 10−4 [1.0, 2.4]× 10−5 −[3.5, 15]× 10−6

LV,LRee
eµµe

GeV−2 1.0133× 10−3 1.0117× 10−3

LS,RRee
eµµe

GeV−2 1.7218× 10−4 1.7208× 10−4

Table 1. Upper panel: size of single non-vanishing LEFT Wilson coefficients at µ = 2 GeV needed
to explain the anomalies ∆aµ or ∆ae individually. The ranges correspond to ±1σ in eqs. (1.3)
and (1.7). The red entries are the same coefficient LV,LRee

eµµe
= LV,LRee

µeeµ
and the blue entries are the same

coefficient LS,RRee
eµµe

= LS,RRee
µeeµ

, from eq. (2.10). An explanation of the muon anomaly that avoids huge
effects in ∆ae is possible with the combination in the lower panel. A simultaneous explanation of
∆ae requires a fine-tuning of the two coefficients.

with ∆a` and dexp
` given by eqs. (1.3), (1.7), and (1.9). From the values of these rescaling

factors one sees that dexp
µ allows the imaginary parts of the Wilson coefficients to be a

factor of ∼ 6× 102 larger than the size of the real parts required to explain ∆aµ. Instead,
for the case of the electron, the imaginary parts are constrained to be roughly six orders
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of magnitude smaller than the size of the real parts needed to explain ∆ae, leading to
limits ∼ 10−10−10−15 GeV−2 on the imaginary parts of the coefficients of the four-fermion
operators.5

Although simple rescaling can be used to obtain limits on most of the CP -odd Wilson
coefficients, it is not appropriate in all cases due to the fact that currently the most stringent
limit on de results from measurements on the paramagnetic molecule ThO. CP -odd effects
in this molecule are not only induced by de, but also by electron-nucleon interactions of
the form N̄N ēiγ5e [82–84], generated by the semileptonic scalar operators in eq. (2.9)
that contain light quarks. Similarly, the stringent limit on the EDM of the diamagnetic
atom dHg [85, 86] can be used to probe spin-dependent nucleon-electron interactions that
are induced by the semileptonic tensor operators in eq. (2.9) involving light quarks [87].
Following refs. [71, 88], these effects lead to constraints of the order of ∼ 10−15 GeV−2 on
the semileptonic scalar and ∼ 10−14 GeV−2 on the semileptonic tensor operators.

The discrepancies ∆aµ and ∆ae can be explained simultaneously within the LEFT by
choosing suitable linear combinations of the Wilson coefficients in table 1. This result is
not surprising since LEFT contains a dimension-five dipole operator that contributes to
the dipole moments. The values in table 1 also provide an estimate of the scale at which
BSM physics must occur to be able to explain the dipole anomalies, based on the low-
energy operator generated in the model. Naive dimensional analysis (NDA) scaling [72, 73]
of the operators eq. (2.11) gives L5 . 4π/ΛNDA for the dimension-five dipole operators,
and L6 . (4π/ΛNDA)2 for the dimension-six operators, where ΛNDA is the scale of new
physics as given by the derivative expansion, i.e. the p/ΛNDA expansion. These inequalities
can be interpreted as bounds on the coefficients if the theory is strongly coupled, i.e. at
the unitarity bound. The Wilson coefficients can have additional perturbative suppression
factors if some of the interactions are weakly coupled. For example, if the dipole operator
has a coupling constant g, the inequality becomes L5 . g/ΛNDA. If the photon is weakly
coupled in the BSM theory, one expects a coupling constant g = e in the dipole-operator
coefficient. Similarly, if the four-fermion operators have a factor of g2, as occurs in the
low-energy operators generated by weak gauge-boson exchange, then L6 . g2/Λ2

NDA. The
SM electroweak coupling g2 ∼ 0.6, so in the following discussion, we will use L5 ∼ 1/Λ and
L6 ∼ 1/Λ2 to estimate the scale of new physics. One can get the corresponding values of
ΛNDA for a strongly coupled theory by multiplying Λ by 4π.

For ∆aCs
e , the values in table 1 mostly correspond to rather high BSM scales: for the

dimension-five dipole operator, the scale is Λ ∼ 1/ |L| ∼ 107 TeV, while in the case of
most four-fermion operators, the scale Λ ∼ 1/

√
|L| is still about 1− 5 TeV or even 12 TeV

for LT,RReu
eecc

. The two coefficients LV,LRee
eeee

and LS,RRee
eeee

would need to arise at the lower scales

Λ ∼ 90GeV and Λ ∼ 350GeV, respectively. The scalar semileptonic operators LS,RRed ,
LS,RReu , LS,RLed , LS,RLeu also need low scales in the 50− 200 GeV range.

In the case of ∆aµ, the corresponding BSM scales are generally lower, 106 TeV for the
dipole operator, and ranging between 300 GeV to about a TeV for most of the four-fermion

5Of course, the imaginary parts of the flavor-diagonal V, LR operators vanish due to the symmetry
relation of eq. (2.10).
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operators. The exceptions are again LT,RReu
µµcc

, pointing to 3 TeV, and the couplings to the

first generation, LV,LRee
eµµe

and LS,RRee
eµµe

, which would have to be induced at Λ ∼ 20GeV and

Λ ∼ 90GeV, respectively, to explain ∆aµ. The semileptonic operators LS,RRed , LS,RReu , LS,RLed ,
LS,RLeu require low scales in the 10− 50 GeV range.

While the scale for the dipole operators is high, in most models, the dipole coefficients
are effectively dimension six, L ∼ v/Λ2, so that ∆aCs

e requires a dipole scale Λ ∼ 103 TeV
and ∆aµ a dipole scale Λ ∼ 360 TeV. If BSM models induce dipole operators with a loop
suppression of ∼ α/(4π), the scale is lowered even further, to ∼ 30 TeV and ∼ 9 TeV,
respectively. If the four-fermion operators are generated in BSM models with small cou-
pling constants, then the scale at which they are generated will be lower than the values
given here.

The values presented in this section are for couplings renormalized at the scale µ =
2 GeV. We include RG running effects and operator mixing between Λ and 2 GeV in the
next sections.

4 Running effects below the electroweak scale

In the previous section, we investigated the LEFT contributions to the anomalous magnetic
moments using parameters at the low scale µ = 2 GeV. The LEFT is valid up to the scale
of BSM physics, or the electroweak scale µW , whichever is lower. We can run the LEFT
parameters from µ = 2 GeV to a higher scale, to investigate the effects of RG evolution,
which is due to QCD and QED. To illustrate this running effect and its implications on the
anomalous magnetic moment, we will scale eq. (3.10) from 2 GeV up to µ = 60 GeV in the
LEFT. Taking one-loop QCD and QED anomalous dimensions [55, 89, 90] into account,
one finds for the electron or muon magnetic moment, with terms in descending order of
size of their coefficients,

∆a60 GeV
` = m`

mµ
Re
[

2.2µ
2.1e

× 10−2L̃eγ
``
− 5.3µ

5.1e
× 10−5L̃T,RRed

``bb

+
(3.5µ

3.4e
+ 0.65c(c)

T

)
× 10−5L̃T,RReu

``cc
+ 9.0µ

8.7e
× 10−6L̃S,RRee

`ττ`
− 1.4× 10−6L̃V,LRee

`ττ`

+ 9.8µ
9.6e

× 10−7L̃S,RRee
`µµ`

−
(

10cT −
0.64µ
0.62e

)
× 10−7L̃T,RReu

``uu
+
(

5.0cT −
14µ
13e

)
× 10−7L̃T,RRed

``ss

+
(

5.0cT −
0.70µ
0.67e

)
× 10−7L̃T,RRed

``dd

− 1.6µ
1.5e

× 10−7L̃S,RRee
``ττ

−
(5.9µ

5.7e
+ 2.3c(c)

T + 0.45c(c)
S

)
× 10−8L̃S,RReu

``cc
− 8.0µ

8.1e
× 10−8L̃V,LRee

`µµ`
− 3.3µ

3.2e
× 10−8L̃S,RRed

``bb

− 2.4× 10−8L̃S,RRee
``µµ

+ 8.8µ
8.4e

× 10−9L̃S,RRee
`ee`

− 4.5× 10−9c̃
(c)
S L̃S,RLeu

``cc
+ 3.5× 10−9cT L̃

S,RR
eu
``uu

− 1.2µ
1.1e

× 10−9L̃S,RRed
``ss

]
, (4.1)

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
7

where we have used the dimensionless constants

L̃i ≡ Λ−diLi(µ = Λ), (4.2)

with di the dimension of Li and Λ = 60 GeV, and we have dropped terms with coefficients
smaller than 10−9. If the BSM scale is 60 GeV, the dimensionless constants L̃ are expected
to be at most of order unity, and can be smaller if there are suppressions due to small
coupling constants. Note that the contribution of LS,RRee

``ττ
is generated by first running into

the LS,RRee
`ττ`

, which subsequently induces the dipole operator, effectively making it a two-loop
effect. Similar two-loop mixing effects occur for the semileptonic scalar operators. Apart
from the effect of the scalar operators, the RG resummation beyond one loop typically
induces corrections of only a few percent, reaching 6.3% in the case of the b-quark tensor
operator LT,RRed

``bb

. The non-perturbative contributions at low energies, which depend on the
parameters cT , cS and c̃S , are important for the light-quark operators.

As the scale of new physics increases, the size of Li decreases, and eventually the
contribution from some operators becomes too small to explain the g − 2 discrepancy. At
the same time, RG evolution and operator mixing implies that new operators can contribute
via mixing into those present in eq. (3.10). All Wilson coefficients present at µ = 2 GeV
still contribute at Λ = 60 GeV, although L̃V,LRee

`ee`
has been dropped since its coefficient is a

bit smaller than 10−9. Furthermore, two additional semileptonic b-quark operators, as well
as additional leptonic scalar operators, contribute to a`, when RG effects are taken into
account:

LT,RRed
``bb

, LS,RRed
``bb

, LS,RRee
``ττ

, and, in the case of ae, LS,RRee
eeµµ

. (4.3)

The Wilson coefficient LT,RRed
``bb

in eq. (4.3) contributes to a` by mixing into the dipole op-
erator via QED penguin diagrams. Its rather large contribution results from chiral en-
hancement: the chirality change inside the b-quark loop provides a mass factor mb, instead
of m`.

For the example of aµ, we again convert the required value of L̃ to a naive BSM scale
Λ (without taking into account possible additional BSM couplings that could lower the
scales). The Wilson coefficients that correspond to the highest probed scales are shown
in figure 4, reaching almost 8 TeV for the case of the tensor-operator coefficient LT,RReu

µµcc

and about 9 TeV for the case of LT,RRed
µµbb

. Such high scales motivate an analysis within the

SMEFT instead of the LEFT, which we will consider in the next section.6

With an increasing scale of new physics, more correlations between different observables
and additional constraints arise and one might wonder if the dipole operators themselves
can be constrained through their mixing effects. Since mixing only is possible with lower-
dimensional operators, one could consider the effects on the running of the electromagnetic
coupling. Dipole insertions in a vacuum-polarization diagram, as shown in figure 5, induce

6Note that LT,RRed is not generated in the SMEFT up to dimension six and one loop [56].
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∆aµ
∆aCs

e

100

101

102

103

Leγ
``

LT,RRed
``bb

LT,RReu
``cc

LS,RRee
`ττ`

LT,RRed
``ss

LV,LRee
`ττ`

LT,RReu
``uu

LS,RRee
`µµ`

Λ
[T
eV

]

Figure 4. Eight largest scales probed by the anomalous magnetic moments of the muon (orange)
and the electron (blue) of the LEFT Wilson coefficients in eq. (4.1), illustrated for the choices
c

(c)
T = −cT = 1 and ∆aCs

e based on the Cesium input for αQED. For the dipole-operator coefficients,
we assume the SMEFT scaling Leγ ∼ v/Λ2.

γ

`

γ

`

Figure 5. Mixing between dipole operators and the QED charge through the vacuum polarization
graph.

the running [55]

16π2µ
d

dµ
e = −16e2qem` ReLeγ

``
. (4.4)

The dominant contribution is from the τ dipole moment because of the mass dependence.
Defining

α−1(µ = MZ) = α−1(µ = 0)(1−∆α) (4.5)

we find

∆α
∣∣
dipoles = 3.8× 10−6L̃eγ

ee
+ 4.6× 10−4L̃eγ

µµ
+ 4.6× 10−3L̃eγ

ττ
, (4.6)

with dimensionless dipole-operator coefficients defined as in eq. (4.2), but for Λ = MZ .
Determinations of the QED coupling at the weak scale through global electroweak fits are
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largely compatible with input on the hadronic running from e+e− data [15, 16]. The elec-
troweak fits lead to a precision on ∆α at the weak scale of ∼ 39×10−5 [91], which constrains
the rescaled τ -dipole-operator coefficient at the level of 8.4× 10−2. This corresponds to a
tree-level contribution to aτ of

|∆aτ | < 2.1× 10−2 , (4.7)

which is comparable to the constraint on aτ itself [78]. However, this bound only applies if
the τ -dipole operator is generated at or above the electroweak scale. If it is loop induced,
the suppression factor pushes the naive scale well below the weak scale.

The constraints from the running of α have mainly been studied in the context of the
HVP contribution to aµ [31–34, 92]. In ref. [93], an EFT language was employed, parame-
terizing changes in the HVP function in terms of a dimension-six operator ∂λFµν∂λFµν . In
the LEFT basis, this operator is replaced via the equations of motion by a set of current-
current operators including OV,LRee . This might seem puzzling at first sight, as after the basis
change the four-fermion operators do not contribute to the photon polarization function,
whereas the equation-of-motion operator did. However, to relate the effective running QED
coupling to observables, it should not be defined as usual in terms of the basis-dependent
photon 1PI function, but rather through four-fermion processes, which include the contact
contributions of four-fermion operators. As before, the EFT approach only applies if the
scale of the operator lies at or above the electroweak scale. In ref. [93], changes in the HVP
function were related to a scale of a few GeV, so that no model-independent connection
between the HVP contribution to aµ and α at the weak scale could be established.

5 SMEFT interpretation

Above the EW scale µW , the LEFT is replaced by the SMEFT which consists of the
SM plus higher dimension operators. The LEFT coefficients can be computed in terms
of those in SMEFT by matching the two EFTs at the electroweak scale. The matching
equations have been computed at tree level [54, 94] and at one loop [56, 95, 96], and we
include the one-loop effects. The heavy SM particles, i.e., the top quark, W , Z, and Higgs
bosons, are integrated out at one common scale µW , which we set equal to the MS top
mass, µW = mt = 162.5 GeV [78]. As an input in the matching equations, we use the
on-shell W , Z boson masses and αQED evolved from the scale µ = MZ to µ = mt at one
loop. The exact choice of scheme changes the numerical results by a few percent. For
simplicity, we neglect additional dimension-6 corrections that appear when expressing the
SM electroweak contribution to a` in terms of the Fermi constant determined from muon
decay, as the discrepancy ∆aµ is larger than the SM electroweak contribution eq. (2.13).

The SMEFT results will be given at two scales, Λ = 250 GeV and Λ = 10 TeV, to illus-
trate the contributions to the dipole moments. Within the SMEFT, we evolve the coeffi-
cients from the matching scale µW to the scale Λ using the one-loop RG evolution [50–52].
In terms of SMEFT Wilson coefficients renormalized at Λ = 250 GeV, this results in the
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following expression for the magnetic moments:

∆a250 GeV
` = m`

mµ
Re
[

2.9µ
2.8e

× 10−3C̃eB
``
− 1.6µ

1.5e
× 10−3C̃eW

``

− 4.3µ
4.1e

× 10−5C̃
(3)
`equ
``33
−
(
2.6 + 0.37c(c)

T

)
× 10−6C̃

(3)
`equ
``22

− 7.9× 10−8C̃ `e
`33`

+
(

5.7cT −
0.49µ
0.48e

)
× 10−8C̃

(3)
`equ
``11

+ 1.4× 10−8C̃
(1)
`equ
``33

+
( 10µ

9.8e
+ 2.5c(c)

T

)
× 10−9C̃

(1)
`equ
``22
− 4.6µ

4.7e
× 10−9C̃ `e

`22`

+ m`

mµ

{2.5µ
2.4e

× 10−8
(
C̃HWB + iC̃

HW̃B

)
− 1.8µ

1.7e
× 10−8

(
C̃HB + iC̃

HB̃

)
− 6.0µ

5.7e
× 10−9

(
C̃HW + iC̃

HW̃

)
+ 3.8× 10−9C̃He

``
− 3.7µ

3.6e
× 10−9C̃

(1)
Hl
``

+ 3.6µ
3.3e

× 10−9C̃
(3)
Hl
``

+ 1.8µ
1.7e

× 10−9C̃HD + 2.1µ
2.0e

× 10−9C̃W

+ 1.1× 10−9iC̃
W̃

}]
, (5.1)

where we used the mass basis for the up-type quarks and charged leptons and only contri-
butions up to 10−9 have been retained. The CW and C

W̃
contributions violate holomor-

phy [97] due to the one-loop matching contribution, which depends on the scheme choice
for Q

W̃
, see the discussion in ref. [56] for details. We have used the convention of eq. (4.2),

where couplings with a tilde are couplings scaled by powers of Λ = 250 GeV to make them
dimensionless. The results for the dipole operators and C`e are comparable to the findings
in ref. [98]. The terms from line five to eight in eq. (5.1) are shown for completeness but
are subject to strong constraints. Using the python code smelli [99] and assuming only
one operator is present at a time, these operators are excluded as explanations for the
discrepancy: one finds that CHWB, CHB, CHW , CHD, and CW are strongly constrained by
the signal strength of h→ Zγ from gluon fusion production, µgg(h→ Zγ); CHe

22
is excluded

by the Z-pole observable Rµ, whereas C(1)
H`
22
, C(1)

H`
11
, CHe

11
, and C

(3)
H`
22

give too large contribu-

tions to R(K∗) and R(D∗), respectively. Finally, C(3)
H`
11

is constrained by a combination of
meson decays.

In the end, very few SMEFT operators can explain the aµ discrepancy; the electroweak
dipoles CeB, CeW , and the four-fermion operators C`e, C

(3)
`equ, C

(1)
`equ. The particle content of

possible tree-level models [100] generating the Wilson coefficients in eq. (5.1) that are not
excluded phenomenologically are summarized in table 2.

As before, the EDMs of the leptons can be obtained from eq. (5.1) by a simple rescaling
and replacing Re by Im. For example, to obtain |d`/dexp

` | the relevant factor is given by
e/(2m` d

exp
` ) = {(6.2 × 105)µ, (1.8 × 1018)e}. Thus, the experimental limit on dµ allows
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Spin Rep. OeB OeW O`e O(1)
`equ O(3)

`equ

0
(1,2, 1/2) × ×
(3,1,−1/3) × ×
(3,2, 7/6) × ×

1
2

(1,1,−1) ×
(1,2,−1/2) × ×
(1,3,−1) ×

1
(1,1, 0) ×
(1,2, 1/2) × × ×
(1,2,−3/2) ×

Table 2. Scalar, fermion, and vector representations that generate SMEFT operators at tree
level [100] relevant for (g − 2).

for sizable imaginary parts in the Wilson coefficients C̃i and only the dipole operators and
the semileptonic tensors, C̃(3)

`equ
2233

and C̃(3)
`equ
2222

, are constrained to be smaller than 1. The limits

due to dexp
e are much stronger, leading to nontrivial constraints even for the contributions

that are suppressed by an additional factor of me/mµ. Several of the constraints that
can be obtained in this way were recently discussed in refs. [45, 46, 101]. In comparison,
ref. [46] is able to constrain additional operators by considering two-loop diagrams that
induce next-to-leading-log contributions which were neglected in our analysis. On the other
hand, we explicitly include the, sometimes sizable, non-perturbative contributions due to
the semileptonic operators, which we parameterized by cS,T and c(c)

S,T and which were not
considered in ref. [46].

In a next step, we evolve the SMEFT Wilson coefficients to a higher scale of Λ =
10 TeV, finding for the magnetic moments:

∆a10 TeV
` = m`

mµ
Re
[
1.7× 10−6C̃eB

``
− 9.2µ

8.9e
× 10−7C̃eW

``
− 2.2µ

2.1e
× 10−7C̃

(3)
`equ
``33

−
(2.5µ

2.4e
+ 0.22c(c)

T

)
× 10−9C̃

(3)
`equ
``22

]
. (5.2)

If the BSM scale is in the multi-TeV range, the only possible operators that provide viable
explanations of the muon g − 2 discrepancy are the electroweak dipole operators CeW and
CeB, and the semileptonic tensor operators C(3)

`equ.
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6 Leptoquarks

The EFT analysis presented in the previous sections can be connected to specific models
proposed to explain the muon anomaly. In this section, we review a particular example in
the form of scalar leptoquark models, which can provide a NP contribution that is large
enough to account for the discrepancy. The leptoquark models together with several other
tree-level mediators generating the SMEFT Wilson coefficients are collected in table 2.

Leptoquark models are prominent candidates to explain the aµ discrepancy (see, for
example, refs. [102–106] and references therein). The possible leptoquark models include
SU(2)L singlet leptoquarks S1 transforming as (3̄,1, 1/3) under SU(3)c× SU(2)L×U(1)Y ,
SU(2)L triplet leptoquarks S3 transforming as (3̄,3, 1/3), or SU(2)L doublet leptoquarks
R2, transforming as (3,2, 7/6). Direct collider searches at the LHC constrain leptoquarks
to be heavier than 1 − 1.5 TeV [107, 108]. For the purposes of this paper, the inputs we
need from the BSM theory are the leptoquark masses, and the Yukawa couplings of the
leptoquarks to SM particles,

LS = yLpr (qTαip C`jr)εijS1α + yRpr (uTαp Cer)S1α + ySpr (qTαip C`jr)
(
ετ I
)
ij
SI3α

+ y(u)
pr (ūpαljr) εijRiα2 + y(q)

pr (q̄ipαer)Riα2 + h.c. , (6.1)

where C = iγ2γ0 is the charge conjugation matrix, p, r are generation indices, i, j, I are
weak SU(2)L indices, and α is a color index. In these expressions, q and ` are left-handed
SU(2)L quark and lepton doublets, while d, u, and e are right-handed SU(2)L singlet down-
type, up-type, and charged lepton fields. The leptoquark Yukawa couplings yLpr, yRpr, ySpr,
y

(u)
pr , and y(q)

pr are arbitrary 3× 3 matrices in flavor space.
At energy scales below the leptoquark mass, the leptoquarks can be integrated out,

generating four-fermion SMEFT operators with the tree-level coefficients

C
(1)
`equ
prst

= 1
2M2

1
yRtry

L∗
sp + 1

2M2
2
y

(u)∗
tp y(q)

sr , C
(3)
`equ
prst

= − 1
8M2

1
yRtry

L∗
sp + 1

8M2
2
y

(u)∗
tp y(q)

sr ,

C
(1)
`q
prst

= 1
4M2

1
yLtry

L∗
sp + 3

4M2
3
yStry

S∗
sp , C

(3)
`q
prst

= − 1
4M2

1
yLtry

L∗
sp + 1

4M2
3
yStry

S∗
sp ,

C qe
prst

= − 1
2M2

2
y

(q)
pt y

(q)∗
rs , C lu

prst
= − 1

2M2
2
y(u)
sr y

(u)∗
tp ,

C eu
prst

= 1
2M2

1
yRtry

R∗
sp , (6.2)

where M1,2,3 are the masses of S1, R2 and S3. The S1 and S3 contributions agree with
the results in ref. [109] and the ones for R2 with refs. [100, 110]. From eq. (6.2) it can
already be seen that S1 and R2 give a large contribution to the magnetic moments through
the tree-level matching to C(3)

`equ
``33

if they couple to t quarks and the corresponding leptons.

Finally, the QCD corrections to eq. (6.2) can be shown to be about 10% [111].
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Figure 6. The one-loop leptoquark contributions to the dipole moment. The upper graphs are from
the singlet S1 and triplet S3 leptoquarks, and the lower graphs from the doublet R2 leptoquark.

The one-loop diagrams shown in figure 6 generate contributions to the leptonic dipole
operators

CeB
pr

= g1Nc

16π2

{
−
yL∗sp y

R
tr

4M2
1

[
Yu
]
ts

[
(yq + yu) log µ2

M2
1

+ 3
2yq + 1

2yu − ye
]

+
[
yL∗sp y

L
st

24M2
1

+
yS∗sp y

S
st

8M2
3

] [
Y ∗e
]
rt

(ye + yu + 2yq) + yR∗ts y
R
tr

24M2
1

[
Y ∗e
]
sp

(ye + 3yu)

+ y
(u)∗
sp y

(q)
tr

4M2
2

[
Yu
]
st

[
(yq + yu) log µ2

M2
2

+ 1
2yq + 3

2yu + ye
]

+ y
(u)∗
sp y

(u)
st

24M2
2

[
Y ∗e
]
rt

(ye − yq − 2yu) + y
(q)∗
ts y

(q)
tr

24M2
2

[
Y ∗e
]
sp

(2ye − 6yq)
}
,

CeW
pr

= g2Nc

16π2

{
yL∗sp y

R
tr

8M2
1

[
Yu
]
ts

[
log µ2

M2
1

+ 3
2

]
+
[
−
yL∗sp y

L
st

24M2
1

+
yS∗sp y

S
st

8M2
3

] [
Y ∗e
]
rt

− y
(u)∗
sp y

(q)
tr

8M2
2

[
Yu
]
st

[
log µ2

M2
2

+ 1
2

]
+ y

(u)∗
sp y

(u)
st

48M2
2

[
Y ∗e
]
rt

}
, (6.3)

where the results for S1 and R2 are consistent with ref. [88].7 The S1 and S3 contributions
were computed in ref. [109], and we have some minor differences with their result. Although
all three leptoquarks contribute to al via dipole operators, only the S1 and R2 leptoquarks
give rise to contributions that are chirally enhanced. These leptoquark contributions are
proportional to the up-type Yukawa couplings, Yu, and provide a large contribution from
t-quark loops. S3 only contributes proportional to the lepton Yukawa couplings Ye.

Between µ = M1,2 and the electroweak scale the semi-leptonic tensor operators, with
coefficients C(3)

`equ given in eq. (6.2), mix into the dipole operators via RG running. At the
electroweak scale CeB and CeW match onto Leγ at tree level, while C(3)

`equ contributes at
7We follow the notation in refs. [50–52], yl = −1/2, ye = −1, yq = 1/6, yu = 2/3, yd = −1/3. Note that

ye + yu + 2yq = 0.
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one loop. Focusing on the enhanced contributions involving the top quark, one finds the
fixed-order result [112–115]

∆a` =− 3
8π2

mlmt

M2
1

Re
[
yL∗t` y

R
t`

](7
6 + 2

3 log m2
t

M2
1

)

+ 3
8π2

mlmt

M2
2

Re
[
y

(u)∗
t` y

(q)
t`

](1
6 + 2

3 log m2
t

M2
2

)
, (6.4)

which gives for the muon

∆aµ =
[
8.2− 4.3 log

(
(1 TeV)2

M2
1

)]
× 10−7 (1 TeV)2

M2
1

Re
[
yL∗tµ y

R
tµ

]
−
[
1.5− 0.4 log

(
(1 TeV)2

M2
2

)]
× 10−6 (1 TeV)2

M2
2

Re
[
y

(u)∗
tµ y

(q)
tµ

]
. (6.5)

Including the RG resummation at leading log, in addition to the above fixed-order result,
has the effect of decreasing the contributions in eq. (6.5) by 20–30% for massesM1,2 between
1–10TeV. Eq. (6.5) thus implies that the aµ discrepancy can be explained using M1 in the
few to 10TeV range and leptoquark Yukawa couplings close to unity.

The experimental upper limit Br(µ → eγ) < 4.2 × 10−13 [116] severely constrains
explanations of (g−2)e,µ that use leptoquarks. In particular, for any leptoquark explanation
that induces both (g−2)e and (g−2)µ through top-quark loops, the predicted Br(µ→ eγ)
is too large. Consider the S1 scenario as an example. Assuming that the S1 leptoquark
only couples the electron and muon to the top quark, the chirally enhanced contributions
to ∆aµ and ∆ae are

∆aµ = − 3
8π2

mµmt

M2
1

Re
[
yL∗tµ y

R
tµ

](7
6 + 2

3 log m2
t

M2
1

)
,

∆ae = − 3
8π2

memt

M2
1

Re
[
yL∗te y

R
te

](7
6 + 2

3 log m2
t

M2
1

)
. (6.6)

In terms of these quantities, a lower limit on the branching ratio of µ → eγ is given
by [43, 114, 115, 117]

BR(µ→ eγ) ≥
τµαm

3
µ

16

(
∆a2

e

m2
eξ

2 +
∆a2

µ

m2
µ

ξ2
)
, (6.7)

where α is the fine-structure constant, τµ the muon lifetime, and ξ =
∣∣ yRte
yRtµ

∣∣. The minimum
value of the above expression can be obtained by minimizing with respect to ξ2. Using the
observed values of ∆ae/µ we obtain

BR(µ→ eγ)min =
τµαm

3
µ

8
|∆ae∆aµ|
memµ

= 1.5× 10−4 , (6.8)

with ∆ae = ∆aCs
e and τµ = 2.2 µs = 3.3 × 1018 GeV−1. Therefore, it is not possible to

satisfy the constraints from µ → eγ if one assumes that ∆ae and ∆aµ are both due to
loops involving only the top and a single leptoquark [43].
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Figure 7. Two Loop Barr-Zee diagrams contributing to the lepton dipole moments.

Finally, we note that two-Higgs-doublet models (2HDM) are also popular explanations
of the ∆aµ anomaly, where the dominant contribution usually is from two-loop Barr-Zee
diagrams shown in figure 7. These models often have a light CP -odd scalar below the
electroweak scale and could be described by a two-loop matching onto LEFT [118]. A
detailed analysis of these models is beyond the scope of the present paper.

7 Conclusions

We have analyzed the lepton magnetic and electric dipole moments in a model-independent
way in terms of LEFT and SMEFT. Our main results are expressions for ∆ae,µ as a function
of the LEFT and SMEFT Wilson coefficients that include one-loop running and matching
effects. We also consider the contributions of semileptonic operators involving light quarks,
which get modified by the strong interactions at low energies. We have parameterized
these effects in terms of non-perturbative parameters of O(1), whose precise determination
requires a non-perturbative matching calculation with lattice QCD. Along with the current
experimental measurements, our results place strong constraints on the Wilson coefficients
in these effective field theories. We find that the current muon anomaly ∆aµ ∼ 2 × 10−9

can only be generated by a very limited set of higher-dimensional operators, especially if
the BSM physics scale is above a TeV. In this case, the only interactions that can produce
a large enough ∆aµ are the dipole operators, CeW and CeB, and the semileptonic four-
fermion operators C(3)

lequ
2222

and C(3)
lequ
2233

. These operators need to be induced at one loop and

tree level, respectively, to produce a large enough ∆aµ. Even if there is BSM physics
below the electroweak scale, only a few other semileptonic operators contribute (given in
eq. (4.1)).
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