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1 Introduction

The study on dualities such as the wave-particle duality in quantum physics [1], the elec-
tromagnetic duality between electric and magnetic fields [2], AdS/CFT duality (duality
between the Anti-de Sitter gravity and the conformal field theory) [3], the particle-vortex
duality in condensed matter physics [4], the boson/fermion dualities in particle physics [5, 6]
and quantum/classical duality between quantum and classical integrable fields [7] is an im-
portant topic in Physics. In this paper, we study the positive/negative hierarchy dualities,
the dualities between integrable positive hierarchies and negative hierarchies by means of
the relativistically invariant fields, such as the sine-Gordon (sG) field, the Tzitzeica field,
the Toda fields and the heavenly equations.

In (1+1)-dimensional cases, the positive/negative hierarchy dualities are equivalent to
the local/nonlocal symmetry dualities for the related integrable systems. The investigation
of symmetries plays a fundamental role in natural science. It is known that the standard
model including all the known elementary particles constituted our universe is based on
the local SU(3)×SU(2)×U(1) gauge symmetry [8–10]. All the predictions resulted from the
standard model have been confirmed whence the Higgs boson is found [11, 12]. In nonlinear
science, there are numerous models to describe real natural phenomena. While there is no
unified method to solve nonlinear systems, the symmetry approach has been very effective.
Symmetries have numerous applications [13], including to build new solutions from known
ones [14, 15], to do dimensional reductions of nonlinear partial differential equations [16–
19], to get new integrable systems [20–23] and even to construct all solutions for certain
nonlinear systems [24].
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For a (1+1)-dimensional integrable system, there are infinitely many local and nonlocal
symmetries. To produce a hierarchy of infinitely many local commuting symmetries, one
can apply a recursion operator [25], Φ, to a seed symmetry which usually lies in a kernel of
the inverse recursion operator Φ−1. To find a set of infinitely many nonlocal symmetries,
some different approaches are available. The simplest way is to apply the inverse of recur-
sion operator, Φ−1, to a seed symmetry which belongs to a kernel of the recursion operator
Φ [26]. In addition to the kernels of the recursion operators, there are many other ways to
find seed nonlocal symmetries, say, the squared eigenfunction symmetries [27] related to Lax
pairs, the residual symmetries of the truncated Painlevé expansions [6], the infinitesimal
Darboux transformations [23, 28, 29], the infinitesimal Bäcklund transformations [30, 31]
and the infinitesimal conformal transformations of the Schwarzian forms [32].

For a (2+1)-dimensional integrable model, it is much more difficult to find symmetries
because the nonexistence of recursion operator except for C-integrable models (the models
which can be directly linearized) and breaking soliton models (whose recursion operators
are of one-dimensional). To find the symmetries related to (2+1)-dimensional positive
hierarchies, the mastersymmetry method [33] and the formal series symmetry approach
(FSSA) [34] are two effective methods. To find (2+1)-dimensional negative integrable
hierarchies, one may apply the formal spectral parameter expansion method [23, 30, 35]
to suitable seed nonlocal symmetries like the squared eigenfunction symmetries, residual
symmetries and infinitesimal Darboux/Bäcklund transformations.

To describe the colourful real nonlinear natural world, there are various idealized mod-
els including the Korteweg-de Vries (KdV) equation [36, 37], the modified KdV (MKdV)
equation [38], the potential KdV (PKdV) equation, the potential MKdV (PMKdV) equa-
tion, the sine-Gordon (sG) equation [39], the Sawada-Kotera (SK) equation [40, 41], the
Kaup-Kupershmidt (KK) equation [42, 43], the Fordy-Gibbons (FG) equation [44], the
potential FG (PFG) equation, the Tzitzeica equation [45–48], the nonlinear Schrödinger
(NLS) equation [49] and so on. It is interesting to point out that some of these physically
relevant models are linked each other. Indeed, the MKdV equation is related to the KdV
equation by a Miura transformation. The PMKdV equation is a potential form of the
MKdV equation. The SK equation and the KK equation are linked to a common modified
equation, the FG equation, via different Miura transformations [44]. The KdV equation,
the MKdV equation, the NLS equation and the sG equation are all the special reductions
of the Ablowitz-Kaup-Newell-Segur hierarchy [50, 51]. The PMKdV equation and the sG
equation possess a same recursion operator and some sets of common infinitely many con-
served invariants and symmetries. The PFG equation and the Tzitzeica equation share a
common recursion operator and some sets of invariants and symmetries. The sG equa-
tion and the Tzitzeica equation are all relativistically invariant, invariant under the Lorenz
transformation in the experimental coordinate system or invariant under the space-time
exchange in the light cone coordinate. In this paper, we study another type of connection
among these integrable systems by means of the relativistically invariant equations like the
sG, Tzitzeica, Toda and heavenly equations.

The paper is organized as follows. In section 2, with the help of the relativistic invari-
ance of the sG equation, we study the local/nonlocal symmetry duality or equivalently the
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positive/negative hierarchy duality related to the PMKdV equation and the sG equation,
i.e., the duality of the PMKdV hierarchy and the sG hierarchy. The duality of the PFG
hierarchies and the Tzitzeica hierarchies are established in section 3 thanks to the relativis-
tic invariance of the Tzitzeica equation. In section 4, after reviewing the FSSA and then
applying the method to a (2+1)-dimensional potential dKPL model, the positive/negative
hierarchy duality is established by using the two-dimensional dispersionless Toda (2ddT)
equation. In section 5, the duality method is treated alternatively. We directly use the
relativistically invariant differential-difference Toda equation to find a higher order Toda
system and its related dual model. In section 6, the hierarchy duality problem is studied for
a four dimensional integrable model (the second heavenly equation) by means of the FSSA.
Two commute elegant recursion operators of the second heavenly equation are reobtained
from the FSSA. Then, the positive/negative heavenly hierarchy duality is established with
the helps of the recursion operators and the relativistic invariance of the heavenly equation.
The last section is a short summary and some discussions.

2 Duality of the PMKdV hierarchy and the sine-Gordon hierarchy

The sG equation (in the light cone coordinate)

vxτ = sin(v) (2.1)

is one of the most physically relevant field equations [39, 52–57]. It is important not only in
quantum and classical field theories but also in almost all the physical branches and even
in other natural scientific fields. For instance, the sG model is equivalent to the massive
Thirring model [58, 59], the two-dimensional Coulomb gas [54, 60], the continuous limit of
lattice x-y-z spin-half model [61], and the massive O(2) nonlinear σ model [54].

It is known that the sG model (2.1) and the PMKdV equation

vt = vxxx + 1
2v

3
x (2.2)

share a common recursion operator

Φ = ∂2
x + v2

x − vx∂−1
x vxx, (2.3)

where ∂−1
x is formally defined by ∂−1

x ∂x = ∂x∂
−1
x = 1. When the operator, ∂−1

x , is restricted
to act on the functions with vanishing boundary at x = −∞, one can simply define it by
∂−1
x =

∫ x
−∞ dy [62].

Usually, the inverse recursion operator of Φ is written as [26, 62, 63]

Φ−1 = ∂−2
sin + ∂−2

cos = 1
2
(
∂−1
eiv∂

−1
e−iv + ∂−1

e−iv∂
−1
eiv
)
, (2.4)

where the operators ∂−1
sin , ∂−1

cos, ∂−1
eiv and ∂−1

e−iv are defined by

∂−1
sinf ≡ ∂

−1
x [sin(v)f ], ∂−1

cosf ≡ ∂−1
x [cos(v)f ], ∂−1

eivf ≡ ∂
−1
x [eivf ], ∂−1

e−ivf ≡ ∂−1
x [e−ivf ] (2.5)
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for an arbitrary function f . Thus, the PMKdV hierarchy (positive hierarchy) and the sG
hierarchy (negative hierarchy) can be written as

vt2n+1 = Φnvx = (∂2
x + v2

x − vx∂−1
x vxx)nvx ≡ K2n+1, n = 0, 1, 2, . . . , (2.6)

and

vτ2n+1 = Φ−n∂−1
x sin(v) = (∂−2

sin + ∂−2
cos)n∂−1

x sin(v) ≡ K−2n−1, n = 0, 1, 2, . . . , (2.7)

respectively. It is known [62] that K2n+1 defined in (2.6) are local symmetries and
K−2n−1 defined in (2.7) are nonlocal symmetries of the PMKdV equation (2.2) for all
n = 0, 1, 2, . . ..

First few flow equations of (2.6) and (2.7) are listed as follows

vt1 = vx, (2.8)
vτ1 ≡ vτ = ∂−1

x sin(v), (2.9)

vt3 ≡ vt = vxxx + 1
2v

3
x, (2.10)

vτ3 = 1
6v

3
τ + ∂−2

cosvτ , vτ = ∂−1
x sin(v) (2.11)

vt5 = vxxxxx + 5
2v

2
xvxxx + 5

2vxv
2
xx + 3

8v
5
x, (2.12)

vτ5 = 1
120v

5
τ + 1

6∂
−2
cosv

3
τ +

(
∂−2

sin + ∂−2
cos

)
∂−2

cosvτ , (2.13)

vt7 = vxxxxxxx + 7
2v

2
xvxxxxx + 14vxvxxvxxxx + 21

2 vxv
2
xxx + 35

8 v
4
xvxxx

+ 35
4 (2vxxx + v3

x)v2
xx + 5

16v
7
x, (2.14)

vτ7 = 1
5040v

7
τ + 1

120∂
−2
cosv

5
τ + 1

6
(
∂−2

sin + ∂−2
cos

)
∂−2

cosv
3
τ +

(
∂−2

sin + ∂−2
cos

)2
∂−2

cosvτ . (2.15)

Using the definition of the commutation relation [F (v), G(v)] as

[F (v), G(v)] = F ′G−G′F = lim
ε=0

d
dε [F (v + εG)−G(v + εF )],

it is not difficult to prove that all the local symmetries Φnvx = K2n+1 and the nonlocal
symmetries Φ−n∂−1

x sin(v) = K−2n−1 commute each other [26, 62],

[K2n+1, K2m+1] = [K2n+1, K−2m−1] = [K−2n−1, K−2m−1] = 0, n, m = 0, 1, 2, . . .

which means everyone of K2n+1, K−2n−1 and their linear combinations are solutions of the
symmetry equations of the PMKdV and the sG hierarchies. The symmetry equation of the
PMKdV equation is defined as

σt = σxxx + 3
2v

2
xσx, (2.16)

which is the linearized equation of (2.10) and is obtained by substituting v → v + εσ with
the infinitesimal parameter ε into the PMKdV equation (2.10).
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The symmetry equation of the sG equation,

σxτ = cos(v)σ, (2.17)

is the linearized form of eq. (2.1).
Because the sG equation (2.1) is relativistically invariant (x, τ exchange invariance)

and Φ given by (2.3) is a proper recursion operator for it, we immediately have the propo-
sition 1.

Proposition 1. The operator

Φ1 = ∂2
τ + v2

τ − vτ∂−1
τ vττ (2.18)

is a recursion operator for the sG equation (2.1).

It is observed that Φ1 is nothing but the inverse of the recursion operator Φ as implied
by the following proposition 2.

Proposition 2. If σ is a symmetry of the sG equation (2.1), i.e., a solution of (2.17),
then

Φ1Φσ = σ = ΦΦ1σ. (2.19)

Proof. The second equality follows from the first one under the exchange x ↔ τ , so it is
enough to prove the first equation of (2.19). Indeed, we have

Φ1Φσ =
(
∂2
x∂

2
τ + v2

x∂
2
τ + v2

τ∂
2
x + 2v2

xτ

)
σ + vxττ (2vx − ∂−1

x vxx)σ

+ 2vxτ
(
2vx∂τ − ∂−1

x ∂τvxx
)
σ + vxv

2
τ (vx − ∂−1

x vxx)σ

+ vτ∂
−1
τ (vxvττ∂−1

x vxx − vττv2
x − vττ∂2

x)σ − vx∂−1
x ∂2

τ vxxσ. (2.20)

Eliminating vxτ and σxτ via the sG equation (2.1) and its symmetry equation (2.17), (2.20)
yields

Φ1Φσ = [1 + vxvτ cos(v) + v2
xv

2
τ + vx sin(v)∂τ ]σ − vxv2

τ∂
−1
x vxxσ

− vx∂−1
cos[sin(v) + vx∂τ ]σ − vτ cos(v)∂−1

x vxxσ

+ vτ
{
∂−1
τ

[
vxvττ (∂−1

x vxx − vx)− sin(v)(cos(v) + vxvτ )
]}
σ. (2.21)

Performing some integrations by parts and using the relations (2.1) and (2.17), it is straight-
forward to find that (2.21) is just the first equation of (2.19), and the proposition 2 is proved.

Because Φ1 expressed in (2.18) is just the inverse of Φ, the sG hierarchy (2.7) (the
negative PMKdV hierarchy) can be reformulated as

vτ2n+1 = (∂2
τ + v2

τ − vτ∂−1
τ vττ )nvτ , n = 0, 1, 2, . . . , (2.22)

with vτ = ∂−1
x sin(v).

Thus, we call the positive PMKdV hierarchy (2.6) and the negative PMKdV hierar-
chy (2.7) (sG hierarchy) are dual each other while the sG equation is termed as the duality

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
8

relation of the hierarchies. In other words, the local symmetries K2n+1 and the nonlocal
symmetries K−2n−1 are dual with the duality relation

vx ↔ vτ [= ∂−1
x sin(v)]. (2.23)

Alternatively, we can also say that the set of the nonlocal symmetries of the PMKdV
equation can be localized with help of the duality relation (2.23). In fact, for the nth
equation of the negative hierarchy (2.7) or (2.22) is local in {τ, τ2n+1} space-time (τ space
and τ2n+1 time) and nonlocal in {x, τ2n+1} space-time (x space and τ2n+1 time). For the
nth equation of the positive hierarchy (2.6) is local in {x, t2n+1} space and nonlocal in
{τ, t2n+1} space while x and τ are related by the sG equation.

Summarizing above results, we have the following conjecture.

Dual conjecture of positive and negative hierarchies. For an integrable system,
there exists a possible dual relation such that a positive hierarchy can be changed to a
negative hierarchy.

If the positive hierarchy (like the PMKdV hierarchy) is local and the negative hierarchy
is nonlocal (like the sG hierarchy), then the duality conjecture indicates that the local
symmetries and nonlocal symmetries may be dual each other via a possible dual relation.

3 Duality of the PFG hierarchy and the Tzitzeica hierarchy

To provide further support for our conjecture, we consider another well known integrable
system, the PFG equation [44],

vt = vxxxxx −
5
2vxxvxxx −

5
4vxv

2
xx −

5
4v

2
xvxxx + 1

16v
5
x ≡ K5. (3.1)

It is a potential form of the FG equation (u = vx) [44]

ut =
(
uxxxx −

5
2uxuxx −

5
4uu

2
x −

5
4u

2uxx + 1
16u

5
)
x
,

which is a common modified system of the SK and KK equations via different Miura
transformations. The SK and KK equations are two important physical models which can
be used to describe all the physical fields where the KdV equation is not adequate and
needs some higher order corrections [64].

From the results of the SK and KK equations, we know that the PFG equation pos-
sesses two sets of local symmetries, or equivalently, two positive hierarchies [63]

vt6n+1 = Ψn
Dvx ≡ Ψn

DK1, n = 0, 1, 2, . . . , (3.2)

and
vt6n+5 = Ψn

DK5, n = 0, 1, 2, . . . (3.3)

– 6 –
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with K5 being defined in (3.1), the recursion operator and the inverse recursion operator
being given by

ΨD = Dgg
−1D−1

g3 D
5
gg
−2D−1

g2 D
2
g , g ≡ exp

(
v

2

)
, (3.4)

Ψ−1
D = D−2

g Dg2g2D−5
g Dg3gD−1

g (3.5)

= 1
9
(
∂−1

2 ∂−1
1 ∂−2

2 ∂−1
1 ∂−1

2 + 2∂−1
1 ∂−3

2 ∂−1
1 ∂−1

2 + 2∂−1
2 ∂−1

1 ∂−3
2 ∂−1

1 + 4∂−1
1 ∂−4

2 ∂−1
1

)
,

where
Df ≡ f∂x, D−1

f ≡ (Df )−1 = ∂−1
x f−1, ∂−1

1 ≡ ∂−1
x ev, ∂−1

2 ≡ ∂−1
x e−

v
2 . (3.6)

It is mentioned that the seed symmetries K1 and K5 are only two nontrivial solutions of
Ψ−1
D f = 0.

The PFG equation is known to possess a nonlocal symmetry σ = ∂−1
x

(
ev + e−

v
2
)
and

the related flow is the well known Tzitzeica equation (TE)

vxτ = ev + e−
v
2 . (3.7)

It is obviously that the TE (3.7) is relativistically invariant (the space-time (x-τ) exchange
invariance under the light cone coordinate). Thus, similar to the sG equation, all sym-
metries of the Tzitzeica equation continue to be symmetries under the x ↔ τ exchange
transformation.

Based on the relativistic invariance of TE, we formulate the following proposition.

Proposition 3. If σ is a symmetry of TE, i.e., a solution of

σxτ = σev − σ

2 e
− v2 , (3.8)

then
ΨDΨ∆σ = σ = Ψ∆ΨDσ, (3.9)

where

Ψ∆ = ∆gg
−1∆−1

g3 ∆5
gg
−2∆−1

g2 ∆2
g, ∆f ≡ f∂τ , ∆−1

f ≡ (∆f )−1 = ∂−1
τ f−1. (3.10)

A similar argument as we made for proving the proposition 2 may be employed to prove
above proposition, namely taking the Tzitzeica equation (3.7) and the linearized symmetry
equation (3.9) into consideration and integrations by parts. The detailed calculations,
which are rather cumbersome, may be implemented with the assistant of the computer
algebras such MAPLE or MATHEMATICA. Thus, we omit the proof.

Thanks to the proposition 3, the dual hierarchy of the first positive hierarchy (3.2) can
be written as

vτ6n+1 = Ψn
∆vτ , n = 0, 1, 2, . . . . (3.11)

– 7 –
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The first two of (3.11) read as

vτ1 = vτ = ∂−1
x

(
ev + e−

v
2
)
,

vτ7 = vτττττττ −
7
4(v2

τ + 2vττ )vτττττ − 7(vτvττ + vτττ )vττττ

− 7
8vτττ (6vτvτττ − 2v2

τvττ − v4
τ + 8v2

ττ ) + 7
4v

3
τv

2
ττ + 7

6vτv
3
ττ −

1
48v

7
τ

= Ψ−1
D ∂−1

x

(
ev + e−

v
2
)

= Ψ∆vτ .

For the second positive hierarchy (3.3), its dual hierarchy is

vτ6n+5 = Ψn
∆

(
vτττττ −

5
2vττvτττ −

5
4vτv

2
ττ −

5
4v

2
τvτττ + 1

16v
5
τ

)
, n = 0, 1, 2, . . . ,

whose simplest model of the hierarchy is the fifth order negative PFG equation

vτ5 = vτττττ −
5
2vττvτττ −

5
4vτv

2
ττ −

5
4v

2
τvτττ + 1

16v
5
τ = K−5 (3.12)

= ∂−1
1 z4 + 2∂−1

2 ∂−1
1 z3 + 24∂−1

1 ∂−3
2 w + 12∂−1

2 ∂−1
1 ∂−2

2 w

with
zx = e−

v
2 , wx = ev.

4 Duality of the dKPL hierarchy and the two-dimensional dispersionless
Toda hierarchy

In (2+1)-dimensional cases, it is still possible to construct a positive integrable hierarchy
with help of the FSSA [34] for certain nonlinear systems in the form

utx1 = K(t, x1, . . . , xm, u, ux1 , ux2 , . . .) ≡ K(u), m ≥ 2, (4.1)

where K(u) is a function of the space time ({t, x1, . . . , xm}) and space ({x1, . . . , xm})
derivations of u but not dependent on time (t) derivatives of u. The (2+1)-dimensional
nonlinear system (4.1) possesses a formal series symmetry thanks to the following propo-
sition.

Proposition 4. [34] Let f = f(t) and g = g(t, x2, . . . , xm) be arbitrary functions of the
indicated variables, then

σ(f, g) =
∞∑
k=0

f (−k)(∂−1
x K ′ − ∂t)kg (4.2)

is a formal symmetry of (4.1) with f (−k) ≡ ∂−kt f and

K ′h ≡ lim
ε→0

d
dεK(u+ εh).

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
8

While it is not possible to prove the convergence for the formal series symmetry (4.2)
with arbitrary f and g in general, it is fortunate and interesting that for various (2+1)-
dimensional integrable systems such as the KP equation [65], the Toda field [34], the
Nizhnik-Novikov-Veselov equation [66], the dispersive long wave equation [67] and the
differential-difference Toda equation [68], the formal series symmetries can be truncated
to a closed summation form by selecting the arbitrary function g as special polynomial
functions.

Whence the formal series symmetry (4.2) is truncated up to the nth term by fixing
g = gn, we can rewrite (4.2) as

σn(f) =
n∑
k=0

f (n−k)(∂−1
x K ′ − ∂t)kgn, (4.3)

after changing f to f (n) because of its arbitrariness. More specifically, by fixing the ar-
bitrary function f as a constant, say, f = 1, one may obtain an integrable (positive)
hierarchy

utn = (∂−1
x K ′ − ∂t)ngn (4.4)

if (4.1) is integrable.
Now we consider the following equation

vyt = (vvx)y − vxx, (4.5)

which was proposed recently by Zakharov et al. [69]. This (2+1)-dimensional equation,
referred as the dispersionless Kadomtsev-Petviashvili-like (dKPL) equation, resembles the
dispersionless Kadomtsev-Petviashvili (dKP) equation

vxt = (vvx)x − vyy, (4.6)

and the dispersionless negative BKP equation

Pyt = 3(PxPy)x − 3Pxx. (4.7)

It is noted that (4.5), (4.6) and (4.7) are different (2+1)-dimensional extensions of the
Riemann equation wt = wwx.

The potential form of the dKPL equation (4.5) reads as

uyt = 1
2u

2
xy − uxx ≡ G, (4.8)

where v = uxy. Applying the proposition 4 to it and fixing the arbitrary function g as
g = − 1

4n!x
n, we find an integrable positive potential dKPL hierarchy in the form

utn−2 = − 1
4n! (∂

−1
y uxy∂x∂y − ∂−1

y ∂2
x − ∂t)n−1xn, n = 3, 4, · · · . (4.9)

The first four flows of this hierarchy (4.9) (for n = 3, 4, 5 and 6, respectively) read

ut1 = 1
4ux,

uyt2 = 1
2u

2
xy − uxx,

– 9 –
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which is just the potential dKPL equation (4.8) with t2 = t,

uyt3 = 1
6u

3
xy −

1
2uxxuxy −

1
2v, vy = Gx, (4.10)

with G being defined in (4.8) and

uyyt4 = 3
4(uxyy − ∂x)(v + 2uxxuxy − u3

xy).

In general, recursion operators are not available for (2+1)-dimensional integrable sys-
tems, so we have to adopt other methods [30, 35] to find the related negative hierarchy.
For a given (2+1)-dimensional system, provided that a symmetry flow,

uxτ = F (u),

which possesses the space-time {x, τ} exchange invariance, then we may construct a dual
negative hierarchy by using the duality relation uτ = ∂−1

x F (u). Fortunately, for the poten-
tial dKPL equation (4.8) we have the following proposition.

Proposition 5. The equation
uτ = ∂−1

x e−uyy (4.11)

constitutes a symmetry of the potential dKPL equation (4.8).

Proof. To prove it, we need to show σ = ∂−1
x e−uyy solves the linearized potential dKPL

equation, namely
σyt − uxyσxy + σxx = 0. (4.12)

Substituting σ = ∂−1
x e−uyy into the left-hand side of (4.12), we have

(uxyuyyy − uxyy)e−uyy + ∂−1
x

[
(uyyyuyyt − uyyyt)e−uyy

]
. (4.13)

After using the potential dKPL equation, (4.13) becomes

(uxyuyyy − uxyy)e−uyy + ∂−1
x

[
e−uyy(uyyy∂y − ∂2

y)G
]

= ∂−1
x

{
∂x
[
(uxyuyyy − uxyy)e−uyy

]
+ e−uyy(uyyy∂y − ∂2

y)G
}

= ∂−1
x

[
(uyyy − ∂y)(Gy + uxxy − uxyuxyy)e−uyy

]
,

which vanishes due to the definition of G. Thus the proposition 5 is proved.
The equation (4.11) or

uxτ = e−uyy , (4.14)

is the large N limit (N →∞) of the two-dimensional sl(N + 1) Toda field [70–73] which is
also known as the Boyer-Finley equation [74] or the SU(∞) Toda equation [75] or the two-
dimensional dispersionless Toda (2ddT) equation [76]. Because of the relativistic invariance
of the 2ddT equation (4.14), we can build a hierarchy (negative dKPL hierarchy) which is
a dual hierarchy of the positive potential dKPL hierarchy (4.9)

uτn−2 = − 1
4n! (∂

−1
y uyτ∂τ∂y − ∂−1

y ∂2
τ − ∂t)n−1τn, n = 3, 4, · · · , (4.15)

with τ being defined by the duality relation (4.11).

– 10 –
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The first three equations of the hierarchy (4.15) possess the following forms

uxτ1 = 1
4e−uyy = 1

4uxτ ,

which is just the 2ddT equation (4.14) with τ1 = 4τ ,

uxyτ2 = (zuyyy − zy)e−uyy , zx = uyyye−uyy ,

and
uxyyτ3 = zxwy + 1

2wzxy −
1
2wyye

−uyy , wx = (zy − 2zuyyy)e−uyy .

5 Duality hierarchies from the two-dimensional Toda lattice

It is known that the 2ddT equation (4.14) is an integrable continuous limit of the following
differential-difference system [48, 68, 77, 78]

uxτ = eun−1−un − eun−un+1 ≡ A−A1 = −∆A1, Ak ≡ e−∆un+k , ∆fn = fn − fn−1, (5.1)

which is the celebrated two-dimensional Toda lattice (2dTL). In this section, we aim to
construct possible dual systems by taking the 2dTL (5.1), which is relativistically invariant,
as a duality relation. To this end, we should first build a hierarchy (negative hierarchy)
related to (5.1) and this will be done by means of the mastersymmetry method [33].

A direct calculation yields

[n,K] = K1 = K = ∂−1
x

[
eun−1−un − eun−un+1

]
= uτ = uτ1 , (5.2)

where the commutator is defined as

[F,G] = F ′G−G′F = lim
ε=0

d
dε [F (un + εG)−G(un + εF )] .

Therefore, while n is not a symmetry of the 2dTL (5.1), it is actually a mastersymmetry.
To find the next (higher order) flow one can apply the higher order mastersymmetry n2.
Some simple calculations result in

[[n2,K],K] = 2∆∂−1
x A1∂

−1
x (A2 −A) ≡ K2 = uτ2 , (5.3)

which, after taking the 2dTL (5.1) into consideration, may be rewritten as

uxτ2 = 2(un + un−1)τeun−1−un − 2(un + un+1)τeun−un+1 = −4∆A1Eun+1,τ , (5.4)

where the average operator E is defined by

Efn = 1
2(fn + fn−1)

and τ is related to x by the 2dTL (5.1). Under x = τ , (5.4) reduces to an equation appeared
early [79, 80].

– 11 –
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Now taking (5.1) as a duality relation, we may work out the dual equation (the equation
of the related positive hierarchy) of (5.4) in the {τ, τ2} space. Indeed, eliminating ux by
means of (5.1), (5.4) becomes

∆
{
A1
[
∆(un+1,τ2 − 2u2

n+1,τ ) + 4Eun+1,ττ
]}

= 0, (5.5)

which leads to
∆unτ2 = 2∆u2

nτ − 4Eunττ (5.6)

or
unτ2 = 2u2

nτ − 4∆−1Eunττ , ∆−1∆ = 1.

Applying the relativistic invariance again, we have another but equivalent integrable model

unτ2 = 2u2
nx − 4∆−1Eunxx ≡ K+

2 . (5.7)

It is interesting to note that the new equation (5.7) just constructed may be taken as a
semi-discrete potential dKPL equation (4.8) where the variable y is discretized.

Directly we may check that

unτ2τ − unττ2 = [K+
2 ,K] = 0 (5.8)

holds, which also implies [[[n2,K],K],K] = 0. In other words, both K2 and K+
2 defined

in (5.3) and (5.7) are symmetries and n2 is a mastersymmetry of the 2dTL (5.1).

6 From the real second heavenly equation to dual hierarchies

In this section, we apply the similar duality approach to find positive and negative heavenly
hierarchies by means of the exchange invariance

{x, τ, y, z, u} ←→ {τ, x, z, y, −u} (6.1)

of the real second heavenly equation [81]

uxz − uyτ + uzzuyy − u2
yz = 0. (6.2)

The heavenly equations, introduced in [81] by Plebanski, describe self-dual vacuum solu-
tions of the Einstein equations. The equation (6.2) has been studied extensively and many
results have been established (see [82–85] and the references therein). In particular, the
multi-Hamiltonian structures and assocaited (positive) hierarchies have been explored by
different methods [85–87].

According to the FSSA and the mastersymmetry method as discussed in the sections 4
and 5, we can find that the heavenly equation possesses two positive hierarchies in the forms

utn−1 =
[
∂−1
y (∂x∂z + uzz∂

2
y + uyy∂

2
z − 2uyz∂y∂z)− ∂τ

]n−1 zn

n! , n = 1, 2, . . . , (6.3)

and

uτn−1 =
[
∂−1
z (∂τ∂y − uzz∂2

y − uyy∂2
z + 2uyz∂y∂z)− ∂x

]n−1 yn

n! , n = 1, 2, . . . . (6.4)
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It is clear that above two hierarchies are related via the discrete symmetry transforma-
tion (6.1).

In the positive hierarchy (6.3) the variable τ should be eliminated by means of the
heavenly equation (6.2), i.e.,

uτ = ∂−1
y (uxz + uzzuyy − u2

yz) ≡ K. (6.5)

For the second positive hierarchy (6.4), we should eliminate the variable x via

ux = ∂−1
z (uyτ − uzzuyy + u2

yz) ≡ P. (6.6)

After some tedious calculations, we find that the hierarchy (6.3) may be reformulated
concisely as

utn = Φnz = Φn−2ux, Φ ≡ ∂−1
y (uyy∂z − uyz∂y + ∂x) (6.7)

which for n = 1, 2, 3 leads to

ut1 = uy = Φz,
ut2 = ux = Φ2z,

uyt3 = uyyuxz − uyzuxy + uxx = (Φ3z)y, (6.8)

while the second hierarchy (6.4) can be written as

uτn = Ψny = Ψn−2uz, Ψ ≡ ∂−1
z (∂τ − uzz∂y + uyz∂z) (6.9)

with the first three examples

uτ1 = −uz = Ψy,
uτ2 = −uτ = Ψ2y,

uzτ3 = uyyuzτ − uyzuyτ − uττ = (Ψ3y)z.

The dual negative hierarchy of (6.7) can be obtained by using the relativistic invari-
ance (6.1). The result reads as

uτn = Ψn−2uz
∣∣∣
uτ=K

, (6.10)

and explicitly its first nontrivial flow (for n = 3) is

uyτ3 = ∂−1
z (uyτuzz − uyzuzτ − uττ )y|uτ=K

= vzuyy − vyuzy + vx,

vy = u2
yz − uyyuzz − uzx.

In the same way, the dual negative hierarchy of (6.9) has the form

utn = Φn−2ux
∣∣∣
ux=P

. (6.11)

Above discussions indicate that both Φ and Ψ should be the recursion operators of the
second heavenly equation (6.2). Indeed, we have
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Proposition 6. Let σ be a symmetry of the second heavenly equation (6.2), i.e., a solu-
tion of

σyτ − σxz − σzzuyy − uzzσyy + 2uyzσyz = 0, (6.12)

so are Φσ and Ψσ.

Proof. Making the change σ → Φσ and eliminating στ and uτ by means of (6.12)
and (6.2), we have

∂y(∂τ −K ′)Φσ
∣∣
(6.2)(6.12)

= uyy
{

(uyzσz − uzzσy)z + ∂−1
y [(uzzσyy − uyyzσz)z − uyzσyzz + uyzzzσy]

}
= uyy∂

−1
y [∂y(uyzσz − uzzσy)z + (uzzσyy − uyyzσz)z − uyzσyzz + uyzzzσy]

= uyy∂
−1
y 0 = 0. (6.13)

So Φσ is also a symmetry of (6.2). The conclusion for Ψσ also holds due to (6.1). Thus
the proposition is proved.

Several remarks are in order:

Remark 1. Though the hierarchy (6.10) is a dual hierarchy of (6.7), we should mention
that Ψ is not a inverse of Φ.

Remark 2. While we constructed the operators Φ and Ψ via the FSSA, they did appear
in a early work by Dunajski and Mason [85, 86].

Remak 3. Two recursion operators Φ and Ψ commute each other, i.e.,

[Φ, Ψ]σ = (ΦΨ−ΨΦ)σ = 0,

where σ is a symmetry of the second heavenly equation (6.2).
According to the remark 3, two hierarchies (6.7) and (6.9) can be uniformly written as

utnm = ΦnΨmσ0,0|(6.2) , σ0,0 = x or τ, (6.14)

while the dual hierarchy of (6.14) reads

utmn = ΦmΨnσ0,0|(6.2) , σ0,0 = τ or x. (6.15)

7 Summary and discussions

In summary, if there is a relativistically invariant flow for an integrable nonlinear system,
then the related positive and negative hierarchies are dual each other simply by taking
the relativistically invariant flow as the duality relation. In (1+1)-dimensional cases, the
positive hierarchies are local in a proper space ({x, tn}) and nonlocal in its dual space
({τ, tn}) where the negative hierarchies are local in the space {τ, τn} and nonlocal in
the dual space {x, τn}. Because of the existence of the recursion operators for (1+1)-
dimensional integrable systems, we find that the recursion operators and their inverses and
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then the positive hierarchies and negative hierarchies possess completely same forms but
with different “space” variables which are linked each other by means of the relativistic
duality relations. This special structure will undoubtedly bring a lot of convenience when
we deduce the integrable properties of the whole hierarchies under consideration. For
example, by the dependent variable transformation, we can establish the following unified
bilinear form for the whole potential mKdV hierarchy

(D2n+1 −D2
xD2n−1)f∗ · f = 0,

(D−(2n+1) −D2
τD−(2n−1))f∗ · f = 0,

D2
xf
∗ · f = 0, D2

τf
∗ · f = 0

DxDτf · f = 1
2(f2 − f∗2)

where D2k+1 ≡ Dt2k+1 and D−(2k+1) ≡ Dτ2k+1 are Hirota’s bilinear operators defined by

Dm
t D

n
xa(t, x) · b(t, x) = ∂m

∂sm
∂n

∂yn
a(t+ s, x+ y)b(t− s, x− y)|s=0,y=0,

m, n = 0, 1, 2, · · · .

Furthermore, starting from unified bilinear form for the whole potential mKdV hierarchy,
we can derive the Bäcklund transformation and nonlinear superposition formula. Besides,
it might be of interest to study the following equations of x↔ y invariance from geometric
point of view,

vt = vxxx + vyyy + 1
2
(
vx

3 + vy
3), vxy = sin v,

vzt =
(
v2
xz + v2

yz

)
− 2(vxx + vyy), vxy = e−vzz ,

vnt =
(
v2
ny + v2

nx

)
− 2∆−1E

(
vnyy + vnxx

)
, vnxy = evn−1−vn − evn−vn+1 ,

vt = vxxxxx −
5
4
(
2vxxvxxx + vxv

2
xx + v2

xvxxx
)

+ 1
16v

5
x

+vyyyyy −
5
4
(
2vyyvyyy + vyv

2
yy + v2

yvyyy
)

+ 1
16v

5
y , vxy = ev + e−v/2.

For a (2+1)-dimensional integrable model, the formal series symmetry approach [34]
and the mastersymmetry method [33] can be readily used to find positive hierarchies. The
negative hierarchies can be obtained by means of Lax operators [35] or the nonlocal sym-
metries like the squared eigenfunction symmetries and infinitesimal Bäcklund/Darboux
transformations [30]. In this paper, the positive dKPL hierarchy is constructed within the
framework of the FSSA while the negative hierarchy is found by the duality relation owing
to the relativistic invariance of the two-dimensional dispersionless Toda equation. On the
other hand, if one has a relativistically invariant integrable system, then it is possible to
directly find the related dual hierarchies by using the system as duality relation. By com-
bining the mastersymmetry method and the duality approach, the differential-difference
dKPL equation (5.5) and the related higher order dual Toda equation are successfully ob-
tained from the two-dimensional Toda lattice. In fact, there are many other relativistically
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invariant integrable systems such as the coupled Tzitzeica-sinh-Gordon model [88], the mul-
ticomponent sinh-Gordon systems [88], the Pohlmeyer-Lund-Regge-Getmanov model [89–
91], the principal SU(n) chiral model [92], the massive Thiring model [93], O(n) nonlinear
σ model [89], the self-dual Yang-Mills equation [94] and so on. For those relativistically
invariant integrable systems, it is interesting to construct the related positive and negative
dual hierarchies by adopting the duality method proposed in this paper.

In higher dimensions, the second heavenly equation (6.2) is especially important be-
cause it can be derived from both the Einstein’s general relativistic equation and the self-
dual Yang-Mills equation. Though the recursion operators of the second heavenly equation
have been studied by Dunajski and Mason via the twistor theory of the anti-self-dual Ein-
stein vacuum equations [85, 86], those operators are reobtained here directly by the simple
FSSA. Using the heavenly equation as a duality relation the positive and negative second
heavenly hierarchies are naturally obtained.
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