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1 Introduction

The goal of this paper is to study the gravitational phase space in a causal domain and
explain how the Barbero-Immirzi parameter [1, 2] deforms the SL(2,R) symmetry of the
boundary fields. Our approach will be quasi-local [3–6]. This is to say that we describe
the gravitational field as an open (dissipative) system in a finite box [7–9]. The box
has a boundary, and we choose it to be null. In this way, it is easy to characterise the
outgoing radiation, which escapes through the null boundary. At the null boundary itself,
we introduce a phase space, constraints and a set of Dirac observables.

The paper consists of two parts and a conclusion. The first part is section 2, where
we introduce the covariant radiative phase space [10–14] for the parity odd Palatini-
Holst [15, 16] action in causal domains. We identify the most minimal boundary conditions
along the null boundary. Two radiative modes are kept fixed, all other boundary fields are
unconstrained. We discuss the resulting bulk plus boundary field theory, introduce the pre-
symplectic two-form and identify its gauge symmetries. After explaining how the Barbero-
Immirzi parameter deforms the gauge symmetries, we provide a complete characterisation
for the radiative data and the corner data (edge modes), see [17] and [18–33], at a finite null
boundary for the Palatini-Holst action. The second part of the paper is section 3, where
we introduce the Dirac observables on the null boundary. These observables characterise
both gravitational radiation as well as gravitational memory [34, 35]. To compute the
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Poisson brackets, we introduce an auxiliary phase space, where the SL(2,R) symmetry of
the boundary fields is manifest. The physical phase space is obtained via symplectic reduc-
tion. There are both first-class and second-class constraints. The first-class constraints are
the gauge generators of vertical diffeomorphisms along the null generators and U(1) frame
rotations of the co-frame field. Besides the gauge generators, there are a few second-class
constraints. To compute the Poisson brackets among Dirac observables, we introduce the
Dirac bracket. Finally, we summarise the paper and discuss various strategies to approach
the system at the quantum level.

2 Barbero-Immirzi parameter on the null cone

In this section, we explain how the CP -violating Barbero-Immirzi term, which has no effect
on the field equations in the bulk, deforms the boundary field theory on a null surfaces and
mixes the null dilation charges with an otherwise vanishing U(1) charge.

2.1 Boundary conditions and quasi-local graviton

Consider first the action in the bulk,1

S
[
AABa, eAA′a

]
=
[ i

8πγG(γ + i)
∫
M

(
ΣAB ∧ FAB −

Λ
6 ΣAB ∧ ΣAB

)]
+ cc., (2.1)

where FAB = dAAB+AAC∧ACB is the sl(2,C)-valued curvature of the self-dual (complex-
valued Ashtekar) connection [36] and ΣAB is the self-dual component of the Plebański
two-form eAA′ ∧ eBB′ , namely

eAA′ ∧ eBB′ = −ε̄A′B′ΣAB − εABΣ̄A′B′ , (2.2)

where eAA′ is the co-tetrad (soldering form) in spinor notation [37, 38]. The action con-
tains two coupling constants, namely the Barbero-Immirzi parameter γ and a cosmological
constant Λ. Newton’s constant G plays the role of a mere conversion factor between units
of length and units of mass. In the following, we will study this action in a compact and
oriented spacetime region M, whose boundary consists of two spacelike manifolds M0 and
M1 connected by a null surface N, i.e. ∂M = M−1

1 ∪N ∪M0. The components of the
boundary inherit their orientation from the bulk.

Universal structure. To impose boundary conditions along N, we introduce a universal
ruling, which allows us to embed the manifold N into an abstract and oriented three-
dimensional manifold P (C, π), which is equipped with a surjection π : P → C onto a two-
dimensional oriented manifold C (the base manifold) such that there are homeomorphisms
φ : R×C → P that satisfy (π ◦φ)(u, z) = z for all (u, z) ∈ R×C. The pre-image π−1(z) of
any point z ∈ C on the base manifold is the null ray γz = π−1(z). A vector field ξa ∈ TP
is null (lightlike), if its push-forward under π∗ : TP → TC vanishes, i.e.

ξa ∈ V P ⇔ π∗ξ
a = 0. (2.3)

1In tetrad variables, the action is S = 1
16πG

∫
M

(
1
2 εαβµνe

α ∧ eβ ∧ (Fµν − Λ
6 e

µ ∧ eν)− γ−1eα ∧ eβ ∧Fαβ
)
.
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The null surface N has two disconnected spacelike boundaries ∂N = C−1
1 ∪C0, which

are cross sections of P , i.e. π(C0) = π(C1) = C. We introduce these boundaries to cut N
off, before any caustics may form. The induced orientation on the boundaries is determined
by ∂N = C−1

1 ∪C0. In addition, ∂M0 = C0 and ∂M1 = C1.
To introduce the boundary conditions and the corresponding boundary field theory

along N, we proceed as in [9]. First of all, we note that on a null surface, there always
exists a spinor-valued two-form ηAab and a (commuting) spinor `A such that

ηAab`B = 1
2iεABεab + ϕ∗NΣABab, (2.4)

where εab ∈ Ω2(N : R) is the area two-form on the null surface and ϕ∗N : T ∗M → T ∗N

denotes the pull-back. If we introduce a second and linearly independent spinor kA on N,
which is normalised such that εBAkB`A = kA`

A = 1, then there is an associate co-basis
(ka,ma, m̄a) of T ∗N such that ηAab admits the decomposition

ηA = (`A k − kAm) ∧ m̄. (2.5)

The complex-valued one-form ma determines the induced signature (0 + +) metric
qab = ϕ∗Ngab on N. We have, in fact,

qab + iεab = 2mam̄b, (2.6)

where εab is the area two-form. Besides ma and m̄a, the co-basis (ka,ma, m̄a) contains also
the one-form ka, which selects a specific dual null vector field in TN. We call this vector
field la and it satisfies

kal
a = −1, π∗l

a = 0. (2.7)

In the following, we restrict ourselves to configurations where la is always future pointing.
Given the co-basis (ka,ma, m̄a) on N, the corresponding dual basis of TN is (la,ma, m̄a),
where mam̄a = 1 and

mama = 0 = mal
a, mam̄

a = 1. (2.8)

Notice that all fields (la, ka,ma, m̄a) are intrinsic to the boundary. From (2.4) and (2.5),
it is also possible to infer the pull-back of the tetrad to the null surface. Details can be
found in [39, 40], the result is

ϕ∗NeAA′ = −i`A ¯̀
A′k + i`Ak̄A′m̄+ ikA ¯̀

A′m. (2.9)

The boundary action is now constructed in the same way as in reference [9] from the
boundary fields (ηAab, `A, la,ma) and additional auxiliary variables κa, ωa and NA

ab . The
combined action for the bulk plus boundary field theory is given by

S
[
AABa,eAA′a|ηAab, `A,NA

ab ,ωa|κa, la,ma

]
=

= i
8πγG(γ+i)

[∫
M

(
ΣAB∧FAB−

Λ
6 ΣAB∧ΣAB

)
+ (2.10)

+
∫
N

(
ηA∧

(
D− 1

2(κ+iω)
)
`A− i

2ω∧m∧m̄+NA∧(lyηA+`Am̄)
)]

+cc.,
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where D = ϕ∗N∇ is the exterior SL(2,C) covariant derivative on the null surface and
lyηA denotes the interior product, i.e. XyY yηA = ηAabY

aXb. The complex-valued one-
form ωa ∈ Ω1(N : C) and the spinor-valued two-form NA

ab are Lagrange multipliers that
impose constraints such that the one-form ηAab admits the algebraic decomposition given
in (2.5). If we insert these constraints back into (2.10), the action simplifies

S = i
8πγG(γ + i)

[∫
M

(
ΣAB ∧ FAB −

Λ
6 ΣAB ∧ ΣAB

)
+
∫
N
ηA ∧

(
D − 1

2κ
)
`A
]

+ cc.
(2.11)

We will see below that the one-form κa ∈ Ω1(N : R) is the U(1) null surface analogue of
the Ashtekar-Barbero connection [1, 2, 36]. Although (2.11) is much simpler than (2.10),
it is often more useful for us to work with the extended action (2.10).

The boundary conditions for the extended bulk plus boundary action (2.10) are such
that an equivalence class of boundary fields is kept fixed along the null boundary,

δg = 0, g = [κa, la,ma]/∼. (2.12)

We will identify the underlying equivalence relations ∼ below. Before doing so, let us also
fix the boundary conditions at the corners {C0,C1} of the null surface and at the spacelike
disks {M0,M1}, where the boundary conditions are simply given by

∀i = 0, 1 : ϕ∗Mi
δAABa = 0, δ`A

∣∣
Ci

= 0. (2.13)

Let us now return to the definition of the equivalence class (2.12). First of all, consider
the group of vertical diffeomorphisms,

Diff0(N) =
{
ϕ ∈ Diff(N)

∣∣π ◦ ϕ ◦ π−1 = idC

}
, (2.14)

which are generated by null vector fields ξa ∈ V P ⇔ π∗ξ
a = 0 that vanish at the boundary

of N, i.e. ξa
∣∣
C0

= ξa
∣∣
C1

= 0.
Any two configurations of [κa, la,ma] that only differ by such a vertical diffeomorphism

are to be identified. In other words,

∀ϕ ∈ Diff0(N) : [κa, ϕ∗la,ma] ∼ [ϕ∗κa, la, ϕ∗ma]. (2.15)

Next, there is a trivial shift symmetry

∀ζ : N → C : [κa, la,ma] ∼ [κa + ζ̄ma + ζm̄a, l
a,ma]. (2.16)

Then, there are the dilations of the null normal

∀f : N → R : [κa, la,ma] ∼ [κa + ∂af, ef la,ma]. (2.17)

Finally, we have the complexified conformal transformations

∀λ : N → C : [κa, la,ma] ∼
[
κa −

1
γ
∂aν, eµla, eµ+iνma

]
, (2.18)
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where µ and ν denote the real and imaginary parts of the gauge parameter λ,

Re(λ) = µ, Im(λ) = ν. (2.19)

In addition, we will also need to impose that the gauge parameters ν and f for U(1)
rotations and dilatations satisfy the γ-twisted boundary condition

ν
∣∣
∂N

= γf
∣∣
∂N

(2.20)

at the two corners of N.
Equation (2.18) implies that the one-form Aa = γκa transforms as an abelian U(1)

connection. This connection is the null surface analogue of the SU(2) Ashtekar-Barbero
connection [1, 2, 36]. We will see below that there is a corresponding U(1) charge. In
quantum theory, this charge, which measures the area of a cross section, is quantised [41].

2.2 Boundary field equations

The equations of motion in the bulk are the familiar Λ-vacuum Einstein equations in spin-
connection variables,

∇∧ ΣAB = 0, (2.21a)(
FAB −

Λ
3 ΣA

B

)
∧ eBA′ = 0, (2.21b)

which imply that the self-dual curvature admits the algebraic decomposition,

FAB = Λ
3 ΣAB + ΨABCDΣCD, (2.22)

where ΨABCD is the Weyl spinor. For our present purpose, we also need the evolution equa-
tions for the boundary fields along the null boundary for given boundary conditions (2.12)
and (2.13). The coupled bulk-boundary action is stationary with respect to variations of the
boundary spinors (ηAab, `A) provided the following boundary field equations are satisfied,
namely

D`A = +1
2
(
κ + iω

)
`A + lyNA, (2.23)

D ∧ ηA = −1
2
(
κ + iω

)
∧ ηA −NA ∧ m̄. (2.24)

The boundary field equations propagate the boundary spinors (ηAab, `A) along the null
boundary. The variation of the Lagrange multipliers ωa and NA

ab , on the other hand,
implies that ηAab satisfies the algebraic constraint (2.5). The theory in the bulk and
the field theory at the boundary are connected via the gluing conditions (2.4), which
are derived as an equation of motion from the coupled bulk plus boundary action (2.10).
In fact, the action (2.10) is stationary with respect to variations of the (anti-)self-dual
connection for given boundary conditions (2.12), (2.13), provided two distinct conditions
are satisfied: namely the torsionless condition (2.21a) in the bulk and the additional gluing
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condition (2.4) that couples the boundary degrees of freedom with the field theory in
the bulk.

Besides the algebraic constraints (2.4) and (2.5), there is one additional constraint.
At the kinematical level, the boundary one-form ωa is complex and κa is real. If we
impose that the action should be stationary under conformal variations δconfµ [la] = µla and
δconfµ [ma] = µma of the boundary fields, we obtain the γ-twisted reality condition

(γ + i)ωa − cc. = 0. (2.25)

This condition implies that there exists a U(1) connection Γ on N such that

ωa = γ − i
γ

Γa, Γ̄a = Γa. (2.26)

Therefore, the real and imaginary parts of the one-form ωa are proportional to each other
via the Barbero-Immirzi parameter γ. This observation is important for us, because it al-
lows us to infer the non-affinity κ(l) of the null generator from the boundary data (κa, ωa, la).
Going back to (2.23), we obtain, in fact

lbDb(`A ¯̀A′) = la
(
κa + Re(ωa)

)
`A ¯̀A′ . (2.27)

We then also know that the non-affinity κ(l) of la is defined as

l̂b∇b l̂a
∣∣
N

= κ(l)l
a, (2.28)

where l̂a ∈ TM is a vector field in N such that l̂a
∣∣
N

= la. If the torsionless equation is
satisfied, the two covariant derivatives agree, i.e. l̂b∇b l̂a

∣∣
N

= i e a
AA′ l

bDb(`A ¯̀A′). Going
back to (2.26), we thus obtain

laκa = κ(l) − γ−1laΓa. (2.29)

The U(1) connection Γa is the null surface analogue of the SU(2) spin-connection on a
spatial hypersurface. On the other hand, κ(l) is analogous to the extrinsic curvature.2

The one-form κa is therefore analogous of the SU(2) Ashtekar-Barbero connection, which
is the sum of the intrinsic spin connection and the extrinsic curvature multiplied by the
Barbero-Immirzi parameter γ.

Finally, we also have to take into account the variations of the triple (κa, la,ma) sub-
ject to the boundary conditions (2.12). Any such variation that satisfies the boundary
conditions (2.12) is a combination of an infinitesimal and vertical diffeomorphism (2.15), a
shift (2.16) of the one-form κa, an infinitesimal dilatation (2.17) and a complexified confor-
mal transformation (2.18). Let us consider every such variation separately and demonstrate
that the action is stationary with respect to such variations provided the bulk and boundary
field equations are satisfied. Hence there are no further constraints on the space of kine-
matical histories other than those already given in table 1. The set of bulk plus boundary
field equations is given by (2.4), (2.5), (2.21a), (2.21b), (2.23), (2.24), (2.26).

2Given a triad on a spatial hypersurface, the SU(2) spin connection is uniquely determined by the
torsionless equation. There is no analogous statement for the U(1) connection Γa on N. Given the U(1)
dyad (ma, m̄a) on N, the connection Γa is not unique. However, this non-uniqueness is mild. In fact, if the
dyad (ma, m̄a) on N is given, the pull-back of Γ to the null generators is unique, see (2.49) below.
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kinematical histories physical histories
bu
lk eAA′a soldering form ∇∧ eAA′ = 0

AABa self-dual connection
(
FBA − Λ

3 ΣB
A

)
∧ eBA′ = 0

bo
un

da
ry

`A null flag D`A = +1
2
(
κ + iω

)
`A + lyNA

ηAab dual (momentum) spinor D ∧ ηA = −1
2
(
κ + iω

)
∧ ηA −NA ∧ m̄

(ωa, NA
ab ) Lagrange multiplier fields ηA = (`A k − kAm) ∧ m̄

(κa, la,ma) boundary data (ϕ∗NeAA′) ∧ m̄ = −iηA ¯̀
A′

Table 1. The action is a functional on the space of kinematical histories. Its saddle points define
the space of physical historiesHphys ⊂Hkin, which consists of all solutions of the bulk plus boundary
field equations, which are given by the Einstein equations in the bulk, and additional boundary
field equations.

Any vertical diffeomorphism3 ϕξ ∈ Diff0(N) of the triple (κa, la,ma) can be extended
into a diffeomorphism ϕ̂ξ ∈ Diff(M) of all bulk and boundary variables. Since any such
vertical diffeomorphisms reduces to the identity at the boundary of N (recall the conditions
ξa ∈ TN, π∗ξa = 0, ξa|∂N = 0), any such diffeomorphism ϕ̂ξ ∈ Diff(M) will also preserve
the boundary conditions (2.13). On the other hand, it is also clear that the action (2.10)
is invariant under any such ϕ̂ξ ∈ Diff(M) anyways. At a configuration where the bulk
plus boundary field equations are satisfied, the action (2.10) is therefore stationary with
respect to those variations δdiffeoξ of the boundary data [κa, la,ma] that are generated by a
vertical diffeomorphism of (κa, la,ma), but preserve all other configuration variables, e.g.
δdiffeoξ [la] = [ξ, la] 6= 0, but δdiffeoξ [eAA′ ] = 0.

The same statement also holds for the shift symmetry, which is generated by the field
variation,

δshiftξ [κa] = ζ̄ma + ζm̄a (2.30)

that annihilates all other bulk and boundary configuration variables other than κa, e.g.
δshiftξ [eAA′a] = 0. The variation of the action (2.10) under any such shifts is given by

δshiftξ [S] = − i
16πγG

[
(γ + i)

∫
N
ηA`

A ∧ (ζm̄+ ζ̄m)
]

+ cc. (2.31)

If the equations of motion are satisfied, the SL(2,C)-invariant scalar ηAab`A turns into the
area two-form εab = −2im[am̄b]. Since m ∧ m̄ ∧m = 0, the action is trivially stationary
with respect to any such variations, i.e. δshiftξ [S]

∣∣
EOM = 0.

Next, we consider the dilations (2.17), which generate the infinitesimal field variation

δdilatf [κa] = ∂af, (2.32)

δdilatf [la] = fla. (2.33)
3Diffeomorphisms ϕ that do not preserve the light rays γz = π−1(z), z ∈ C are not included in here,

because they would not preserve the universal structure (the ruling of N), which is shared between different
points on phase space.
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All other bulk and boundary configuration variables are annihilated by δdilatf [·]. The re-
sulting derivative of the action is

δdilatf [S]
∣∣∣
EOM

= i
8πγG(γ + i)

∫
N

(
−1

2ηA`
A ∧ df + fNA ∧ lyηA

) ∣∣∣∣
EOM

+ cc. =

= i
8πγG(γ + i)

∫
N

( i
2ε ∧ df + fNA ∧ lyηA

) ∣∣∣∣
EOM

+ cc., (2.34)

were we used the gluing condition (2.4) to go from the first to the second line. If (2.23)
and (2.24) are satisfied, it follows that (2.34) is a total exterior derivative. If we compute
the expansion of the null surface, we obtain, in fact

−i d ∧ ε = (D ∧ ηA)`A + ηA ∧D`A = −NA ∧ m̄`A + ηA ∧ lyNA =

= −NA ∧ lyηA + ηA ∧ lyNA = −2NA ∧ lyηA. (2.35)

Inserting this expression back into (2.34), we obtain a total exterior derivative,

δdilatf [S]
∣∣∣
EOM

= − 1
16πγG

[
(γ + i)

∫
N

d ∧ (fε)
]

+ cc. = − 1
8πG

∮
∂N

f ε. (2.36)

Finally, we also need to consider the action of the complexified conformal transforma-
tions (2.18). We decompose the gauge parameter λ into its real and imaginary parts (2.19),
λ = µ+ iν, and obtain the field variation

δconfλ [κa] = −1
γ
∂aν, (2.37)

δconfλ [la] = µ la, (2.38)

δconfλ [ma] = (µ+ iν)ma. (2.39)

A short calculation yields

δconfλ [S]
∣∣∣
EOM

= i
8πγG(γ+i)

∫
N

[ 1
2γ ηA`

A∧dν−iµω∧m∧m̄−iνNA`A∧m̄
]∣∣∣∣

EOM
+cc.=

= i
8πγG(γ+i)

∫
N

[
− i

2γ ε∧dν+µω∧ε+iνNA∧lyηA
]∣∣∣∣

EOM
+cc.=

= i
8πγG(γ+i)

∫
N

[
− i

2γ ε∧dν+ γ−i
γ
µΓ∧ε− 1

2ν d∧ε
]∣∣∣∣

EOM
+cc. (2.40)

Going from the first to the second line, we used the decomposition of ηAab wit respect to
(ka,ma, m̄a), as given in (2.5). In the last step, we used the reality cognition (2.26) for the
abelian connection Γa. Since Γa is real, we are left with a total derivative that turns into
a surface integral,

δconfλ [S]
∣∣∣
EOM

= 1
8πγG

∫
N

[
ε ∧ dν + ν d ∧ ε

]
= 1

8πγG

∮
∂N

ν ε.

Let us summarise: at its saddle points, the coupled bulk plus boundary action (2.10)
is invariant under those variations of the boundary data (κa, la,ma) that are generated by

– 8 –
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vertical diffeomorphisms δdiffeoξ [·] that preserve the universal structure (the ruling of N by
light rays), shifts δshiftζ [·] of κa, complexified conformal transformations δdilatµ+iν and dilations
δdilatf [·]. The boundary conditions for the gauge parameters (ξa, ν, f) are ξa ∈ TN : π∗ξa =
0, ξa

∣∣
∂N

= 0 and ν
∣∣
∂N

= γ f
∣∣
∂N

, see (2.14) and (2.20). The residual degrees of freedom,
which are given by the gauge equivalence class (2.12), characterise the two physical degrees
of freedom at the null boundary. Notice that the definition of the equivalence [κa, la,ma]/∼
makes no reference to the interior of spacetime. All fields are intrinsic to the abstract null
surface boundary N ⊂ P (π,C).

2.3 Radiative symplectic structure

The null boundary N is equipped with a universal ruling that is shared between different
spacetimes (points on phase space) such that the fibres γz = π−1(z), z ∈ C that generate
the null surface are the same for all configurations on the space of (kinematical) histories
Hkin, see table 1 for a summary. If d is the differential on the space of kinematical histories,
we thus have d[la] ∝ la and 0 = d[la]ma = −lad[ma], where ma ∈ Ω1(N : C) is the co-dyad
on N. In other words,

dma = f ma + h m̄a, (2.41)

where f and h are one-forms on field space. The pre-symplectic potential ΘN along N

is obtained from the variation of the action and the pull-back on field space to the space
of physical histories. Since N has a boundary, there is a non-trivial cohomology and
the pre-symplectic potential on N is unique only up to the addition of two-dimensional
corner terms. More precisely, the pre-symplectic potential ΘN is the integral of a sym-
plectic current jN, which is a one-form on field space and a three-form on N. Given
an action, the pre-symplectic current is unique only up to the addition of an exact one-
form, i.e. ̃N = jN + dα, where α is a one-form on field space and a two-form along N.
Reference [42, 43] provide a more detailed discussions of such corner ambiguities in general
relativity. Given the action (2.10), a possible choice for the pre-symplectic potential along
the null surface boundary is given by the one-form on field space

ΘN = i
8πγG(γ + i)

∫
N

(
−1

2ηA`
A ∧ dκ − kadlaNA ∧ lyηA +NA`A ∧ dm̄

)
+ cc. =

= i
8πγG(γ + i)

∫
N

( i
2ε ∧ dκ + i

2kadl
a d ∧ ε− k ∧ `AD`A ∧ dm̄

)
+ cc., (2.42)

where we used the boundary field equations (2.4) and (2.23) to go from the first to the
second line.

Since the four-dimensional region M is also bounded by the spacelike disks M0 and
M1, we also have corresponding contributions to the pre-symplectic potential,

ΘM = i
8πγG(γ + i)

[∫
M

ΣAB ∧ dAAB −
∮
∂M

ηAd`
A
]

+ cc. (2.43)

If δ denotes a linearised solution of the bulk plus boundary field theory (a tangent vector
to Hphys), we obtain

δ[S]
∣∣
Hphys

= ΘN(δ) + ΘM1(δ)−ΘM0(δ). (2.44)
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Since we are primarily interested in the symplectic structure along the null boundary,
let us briefly discuss the geometric nature of the various terms that appear in the pre-
symplectic potential (2.42). Since la`ADa`

A = 0, which follows from (2.23), the one-form
`AD`

A on N admits the decomposition

`AD`
A = −

(1
2ϑ(l)m+ σ(l)m̄

)
. (2.45)

The components σ(l) and ϑ(l) are the shear and expansion of the null congruence la ∈ TN.
Going back to (2.9), we obtain, in fact

`Am
aDa`

A = k̄A′`Am
aDa(¯̀A′`A) = −mbm

aDal
b =̂ −m̂am̂b∇a l̂b = −σ(l), (2.46)

`Am̄
aDa`

A = k̄A′`Am̄
aDa(¯̀A′`A) = −mbm̄

aDal
b =̂ −q̂ab∇a l̂b = −2ϑ(l), (2.47)

where we extended in the last steps la ∈ TN and ma ∈ TCN into vector fields l̂a ∈ TM
and m̂a ∈ TCM, which are defined in a neighbourhood of N, and q̂ab = 2 m̂(a ˆ̄mb). This
extension of the vector fields away from N is useful to identify the components of `AD`A

with shear and expansion of the null congruence l̂a
∣∣
N
∈ TM. The symbol =̂ stands

for equals on N. It is important to note, however, that it is possible to compute shear
and expansion directly from the exterior derivative of the boundary intrinsic one-form
ma ∈ Ω1(N : C) alone. An embedding of the boundary into the bulk is not necessary to
infer shear and expansion. In fact, the exterior derivative of the one-form ma on N admits
the basis expansion

d ∧m = −i
(
ϕ(l)k + γm̄

)
∧m− 1

2ϑ(l)k ∧m− σ(l)k ∧ m̄. (2.48)

Notice that the one-form ϕ(l)k+ γm+ γ̄m, defines a U(1) spin connection on N. The defi-
nition of this connection depends on a choice for the one-form ka : kala = −1. If we replace
ka by ka + fma + f̄ma, the spin coefficient γ is shifted into γ − fϕ(l) + i

2ϑ(l)f − iσ(l)f̄ . On
the other hand, the spin coefficient ϕ(l) equals laΓa, with Γa denoting the U(1) connection
introduced in (2.26). Using the spinor formalism, the proof is immediate:

2iϕ(l) =̂ 2l̂a ˆ̄mb∇[am̂b] − cc. =̂ l̂a ˆ̄mb∇am̂b + ˆ̄mam̂b∇a l̂b − cc. =̂

=̂ −
(
kA ¯̀

Al
aDa(`Ak̄A

′)− cc.
)

+ 2 ˆ̄mam̂b∇[a ˆ̀
b] =̂

=̂ 2kAlaDa`
A − cc. = 2 i `aΓa. (2.49)

where we used the Frobenius integrability condition l̂[a∇b l̂c] =̂ 0 to eliminate the second
term in the second line. In addition, we used the boundary equations of motion (2.23), (2.26)
and the isomorphism (2.9) between spinors and vectors on the null boundary to arrive at
the final result.

Another useful equation is to write the expansion ϑ(l) of the null surface solely in terms
of the exterior derivative of the area two-form ε ∈ Ω2(N : R),

d ∧ ε = −ϑ(l) k ∧ ε (2.50)
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Taking into account kadla = −ladka, we can then write the pre-symplectic poten-
tial (2.42) in the following simplified form

ΘN = − 1
8πG

∫
N
ε ∧ dκ + i

8πγG

∫
N

(
(γ + i)`AD`A ∧ d(k ∧ m̄)− cc.

)
. (2.51)

The corresponding pre-symplectic two-form is given by the exterior derivative on field space

ΩN = dΘN. (2.52)

2.4 Gauge symmetries on the radiative phase space

In this section, we identify the gauge symmetries of the pre-symplectic two-form (2.52),
which are the degenerate directions of ΩN. We will see below that such gauge transforma-
tions are given by combinations of (i) dilatations of the null normal la and the connection
κa, (ii) U(1) transformations of the boundary data (κa,ma), (iii) shifts of κa, and (iv)
horizontal diffeomorphisms of (κa, la,ma).

(i) Dilatations: first of all, we consider the dilatations (2.32), (2.33) of the boundary
data. An infinitesimal such variation defines the vector field δdilatf [·], whose compo-
nents are given by (2.32) and (2.33). Going back to the definition of shear and expan-
sion, (2.46), (2.47), (2.45), we obtain

δdilatf [`AD`A] = f`AD`
A. (2.53)

Since kala = −1, and δdilatf [la] = fla, we then also know

`AD`
A ∧ δdilatf [k ∧ m̄] = −f`AD`A ∧ k ∧ m̄ = −1

2 f ϑ(l) k ∧m ∧ m̄. (2.54)

Therefore,

ΩN(δdilat.f , δ) =− 1
8πG

∫
N
δε∧df− i

16πγG

∫
N

(
(γ+i)f ϑ(l) k∧m∧m̄−cc.

)
= (2.55)

= 1
8πG

∫
N

(δε∧df+fd∧δε) =− 1
8πG

∮
∂N

f δε=−δ
(
Kf [C1]−Kf [C0]

)
.

Where we defined the corresponding charge,

Kf [C] = 1
8πG

∮
C
f ε. (2.56)

The field variation δdilatf [·] defines an unphysical gauge direction, if the gauge parameters
f : N → R has compact support. A large gauge transformation, where f does not vanish
at the boundary, is generated by the dilatation charge given by (2.56).

(ii) U(1) transformations: next, there are the U(1) transformations,

δU(1)
ν [κa] = −γ−1∂aν, (2.57)

δU(1)
ν [la] = 0, (2.58)

δU(1)
ν [ma] = i ν ma. (2.59)
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Notice that γκa transforms as a U(1) connection. On the other hand, the null vector la

is charge neutral and the one-form ma is a vector under U(1).

Given (2.59), (2.45), (2.46) and (2.47), we then also know

δU(1)
ν [`AD`A] = i ν `AD`A. (2.60)

Bringing everything together, and taking into account that ε = −im ∧ m̄, we obtain

ΩN(δU(1)
ν , δ) = − 1

8πγG

∫
N

dν ∧ δε+ 1
8πγG

∫
N

(
(γ + i)ν δ(k ∧ `AD`A ∧ m̄) + cc.

)
=

= − 1
8πγG

∫
N

dν ∧ δε− 1
16πγG

∫
N

(
(γ + i)ν δ

(
ϑ(l)k ∧m ∧ m̄

)
+ cc.

)
=

= − 1
8πγG

∫
N

dν ∧ δε− 1
8πγG

∫
N
ν d ∧ (δε) =

= −δ
(
Lν [C1]− Lν [C0]

)
. (2.61)

Where we introduced the U(1) charge

Lν [C] = 1
8πγG

∮
C
ν ε. (2.62)

Going back to (2.56), we obtain an important constraint between the dilatation
charge (2.56) and the U(1) charge (2.62), namely

Kf [C] = γLf [C]. (2.63)

The orbits of the U(1) charge (2.62) are compact. Since the orbits are compact, the
corresponding charge must be quantised [44]. On the other hand, the U(1) generator
Lf [C] is the surface integral of the area density multiplied by the function f : C → R.
The quantisation of the U(1) charge implies, therefore, the quantisation of area in units
of γ`2P, with `2P = 8π~G/c3 denoting the Planck area. This observation provides a simple
explanation for the quantisation of area in loop quantum gravity [1, 2, 41, 45–47].

(iii) Shifts of κa: under the shift symmetry, the one-form κa transforms according to (2.30).
All other boundary fields (la,ma, m̄a) are annihilated by the action of δshiftζ . We thus
have

ΩN(δshiftζ , δ) = + 1
8πG

∫
N
δε ∧ (ζm̄+ ζ̄m). (2.64)

On the other hand, ε = −im∧m̄. Taking into account the variation of the co-dyad (2.41),
we obtain

ΩN(δshiftζ , δ) = 0, (2.65)

such that the shift symmetry defines a degenerate null direction of the pre-symplectic
two-form.
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(iv) Vertical diffeomorphisms: finally, we return to the vertical diffeomorphisms, which are
generated by vertical vector fields ξa ∈ TN : π∗ξa = 0 that vanish at the boundary of
N, i.e.

ξa
∣∣
∂N

= 0. (2.66)

The resulting infinitesimal field variation is the Lie derivative

Lξκ = ξy(d ∧ κ) + d ∧ (ξyκ), (2.67)

Lξl
a = [ξ, l]a, (2.68)

Lξm = ξy(d ∧m), (2.69)

where [·, ·] is the Lie bracket of vector fields on N and ξy denotes the interior product
between a vector field and a p-form. If such a vector field ξa is field independent, we
have δ[ξa] = 0, and obtain

ΩN(Lξ, δ) =− 1
8πG

∫
N

[
Lξε∧δκ−δε∧Lξκ

]
+

+ i
8πγG

[
(γ+i)

∫
N

(
Lξ(`AD`A)∧δ(k∧m̄)−δ(`AD`A)∧Lξ(k∧m̄)

)
−cc.

]
=

= 1
8πG

∫
∂N

ξy(κ∧δε)+

− i
8πγG

[
(γ+i)

∫
∂N

(
ξy
(
δ(`AD`A)∧k∧m̄

))
−cc.

]
−δ[Cξ]. (2.70)

The two boundary terms disappear, because ξa vanishes at ∂N, see (2.14). We are thus
left with the last term, which is given by the integral

Cξ = 1
8πG

∫
N
Lξε ∧ κ − i

8πγG

[
(γ + i)

∫
N

(
Lξ(`AD`A) ∧ k ∧ m̄

)
− cc.

]
. (2.71)

This integral vanishes as a constraint. In fact, taking into account that ξy(`AD`A) = 0,
see (2.23), we obtain

Lξ(`AD`A) ∧ k ∧ m̄ =
(
ξy(D`A ∧D`A) + ξy(`AD ∧D`A)

)
∧ k ∧ m̄ =

=
(
2(ξyD`A)D`A − ξyFAB`A`B

)
∧ k ∧ m̄ =

=
(
ξy(κ + iω)`AD`A − ξyFAB`A`B

)
∧ k ∧ m̄ =

= 1
2ξy(κ + iω)ϑ(l)k ∧m ∧ m̄− (ξyFAB)`A`B ∧ k ∧ m̄. (2.72)

The first term on the right hand side is proportional to the expansion of the null congru-
ence, which follows directly from (2.50). The second term can be simplified by taking
into account that the pull back of the tetrad eAA′ to the null surface satisfies the gluing
condition

ϕ∗NeAA′
¯̀A′ = i `Am̄, (2.73)
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where the fields on the right hand side of this equation are all intrinsic to the null surface.
Inserting (2.73) back into to (2.72) and taking into account the reality condition (2.26)
for the one-form ωa, the generator Cξ becomes

Cξ = 1
8πG

∫
N

(
ξy(d ∧ ε) ∧ κ − (ξyκ) ∧ d ∧ ε

)
+

+ 1
8πγG

[
(γ + i)

∫
N

(ξyFAB) ∧ eBA′`A ¯̀A′ ∧ k − cc.
]
. (2.74)

The first two terms on the right hand side cancel each other. The third term vanishes
as well — provided the Einstein equations (2.21b) are satisfied. If we insert, in fact, the
Einstein equations in addition to ξyeAA′ = ξAA′ = −iξyk `A ¯̀

A′ and `A`A = 0, we obtain

Cξ = − i
8πγG

[
(γ + i)

∫
N
FAB ∧ eBA′ξAA

′ − cc.
]

=

= − iΛ
24πγG

[
(γ + i)

∫
N

ΣAB ∧ eBA′ξAA
′ − cc.

]
= 0. (2.75)

The last line vanishes: the vector-valued volume three-form is given by

d3vAA′ = 2 i
3 ΣAB ∧ eBA′ . (2.76)

Its pull-back to the null surface is proportional to the null normal. In fact,

ϕ∗Nd
3vAA′ = −`A ¯̀

A′k ∧m ∧ m̄. (2.77)

Since ξa is a vertical vector field, it satisfies ξaeAA′a∝ i`A ¯̀
A′ , such that ξAA′ϕ∗Nd3vAA′=0.

Going back to (2.75), we thus see that the generator Cξ of vertical diffeomorphisms (2.15)
vanishes as a constraint. Therefore,

∀ξa ∼ la, ξa
∣∣
∂N

= 0 : ΩN(Lξ, δ) = −δCξ = 0. (2.78)

We will see in the next section that the constraint Cξ = 0 is nothing but the Raychaud-
huri equation for the null congruence la ∈ TN.

Summary. Before we go on and proceed to the second half of the paper, let us briefly
summarise. The starting point of this section was the definition of the bulk plus bound-
ary action with the parity odd Holst term in the bulk and a boundary that is null.
The null boundary is homeomorphic to the cartesian product R × C and it is equipped
with a universal structure P (C, π), which consists of a surjection π : P → C onto
the base manifold C that determines the ruling of the null boundary by its null rays
γz = π−1(z) ⊂ P, z ∈ C. The boundary conditions are such that a gauge equivalence class
of boundary fields [κa, la,ma] ∈ T ∗N×TN×T ∗CN is kept fixed. The one-form κa encodes
the non-affinity of the null vector field la ∈ TN. The complex-valued one-form ma deter-
mines the degenerate metric qab = 2m(am̄b) on the null boundary. The inner product of
ma and la vanishes, i.e. mal

a = 0. The gauge equivalence class [κa, la,ma]/∼ describes two
physical degrees of freedom along the null boundary, which are the two degrees of freedom of
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gravitational radiation crossing the null boundary.4 Given the parity-odd action in the bulk,
we introduced the resulting pre-symplectic two-form along the null boundary and studied
its gauge symmetries, which consist of dilatations of (κa, la), U(1) gauge transformations
of (κa,ma), shifts of κa, and vertical diffeomorphisms, see (2.55), (2.61), (2.65), (2.78).
Notice that κa is an abelian connection with resect to both U(1) gauge transformations
as well as dilations, see (2.32) and (2.57). This is an important observation that pro-
vides a simple geometric explanation for the quantisation of area in loop quantum gravity.
See [1, 2, 45–47] for the original derivations using the spin network representations and
more geometric arguments given in [26, 41].

3 SL(2,R) boundary charges

In this section, we derive the Poisson commutation relations among the configuration
variables on the null cone. The construction has three steps. The first step is to iden-
tify an implicit SL(2,R)-symmetry among the boundary fields [κa, la,ma]. The next
step is to embed the covariant phase space into an auxiliary (kinematical) phase space,
where the SL(2,R) symmetry is manifest. The final step is to impose the constraints
and calculate the Dirac bracket to identify the Poisson commutation relations among the
physical observables.

3.1 SL(2,R) parametrisation of the boundary fields

To parametrise the boundary fields [κa, la,ma], it is useful to work with auxiliary SL(2,R)
variables on the null boundary. Over every point of N, we introduce an internal and two-
dimensional auxiliary vector space V over R, which will carry a natural representation of
SL(2,R). We equipp this vector space with a complex structure J and a compatible metric
q. Let then {f i, i = 1, 2} be an orthonormal basis of (V, J, q) such that

q(f i,f j) ≡ qij = δij , (3.1)
J(f1) = +f2, (3.2)
J(f2) = −f1, (3.3)

where δij is the Kronecker delta. Given the complex co-dyad (ma, m̄a) on N, we introduce
the associated V-valued differential form,

e = 1√
2

(m+ m̄)⊗ f1 −
i√
2

(m− m̄)⊗ f2 = ei ⊗ f i, (3.4)

4The counting is immediate: since la ∈ TN lies parallel to the null rays, which are a universal structure,
la is characterised by a single number (a lapse function). Since lama = 0, see (2.8), there are two complex
components left to determine ma ∈ T ∗N. Finally, there is κa, which is a real-valued one-form intrinsic
to N. Hence there are 1 + 2 × 2 + 3 = 8 kinematical degrees of freedom per point on N. The vertical
diffeomorphisms (2.14) remove one of them, the shift symmetry (2.16) another two, the dilatations (2.17)
remove the overall scale of la and the complexified conformal transformations (2.18) remove two degrees of
freedom as well. The gauge equivalence class g = [κa, la,ma]/∼ describes therefore two degrees of freedom
along N.
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Next, we decompose the one-form ei with respect to the original complex-valued dyad
(ma, m̄a),

eia = mim̄a + m̄ima, (3.5)

where mi (m̄i) are the components of eia with respect to the co-vector m̄a (ma). In the
following, we will use the internal metric qij and its inverse qij : qimqmj = δij to raise and
lower vector indices in V, which is two-dimensional. Accordingly,

mi = qijm
j . (3.6)

We then also have the internal volume two-form,

εij = Jmj qmi = −2 im[im̄j], (3.7)

where Jmi are the components of the complex structure: J(ei) = Jmiem.
The vector space V is equipped with a natural representation of SL(2,R). A linear

map S : V→ V defines, in fact, an element of SL(2,R), if it preserves the volume two-form.
In components

εlmS
l
iS

m
j = εij . (3.8)

Such that the inverse matrix is given by

[S−1]ij = εinSmnεjm, (3.9)

where εimεjm = δij . A basis in the corresponding Lie algebra sl(2,R) is given by

J ik = i
(
m̄imk −mim̄k

)
, (3.10)

Xi
k = mimk, (3.11)

X̄i
k = m̄im̄k, (3.12)

where J is a U(1) generator and X is a complex and traceless 2× 2 matrix. We obtain the
commutation relations

[J,X] = −2 iX, (3.13)
[X, X̄] = +i J, (3.14)

where we suppressed the vector indices i, j = 1, 2. In the following, we will also need
a projector P : sl(2,R) → sl(2,R) that annihilates the U(1) generator J ∈ sl(2,R), but
otherwise preserves X and X̄. In other words,

PJ = 0, PX = X. (3.15)

Going back to the decomposition of eia in terms of the co-dyad (ma, m̄a), we now also
have an induced action of SL(2,R) onto the complex-valued one-forms (ma, m̄a). We call
this action S . ma, and it is defined via

∀S ∈ SL(2,R) : Sij ej = mi(S . m̄) + m̄i(S . m). (3.16)
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The basic idea is to parametrise the physical co-dyad ma in terms of a fiducial co-dyad
m

(0)
a , an SL(2,R) transformation S : N → SL(2,R) and an overall conformal factor Ω = eµ,

ma = Ω (S . m(0)
a ), (3.17)

Ω = eµ. (3.18)

Given the fiducial dyad, the corresponding fiducial volume element is

d2vo := −im(0) ∧ m̄(0). (3.19)

If the base manifold C has the topology of a two sphere, a natural choice for m(0)
a is given by

m(0)
a = ∂az

1 + |z|2 , (3.20)

where z = cot ϑ2 eiϕ maps the unit sphere onto the complex plane.
The radiative symplectic potential (2.51) depends not only on ma, but also on κa and

la for which we now introduce a convenient parametrisation as well. Consider first the
one-form κa, which can always be parametrised as follows:

κa = ∂aλ−
1
γ
ϕ(l)ka, (3.21)

where λ : N → R is a gauge parameter for dilatations, ka is a one-form on N such that
kal

a = −1 and the U(1) gauge potential ϕ(l) = laΓa is inferred from the Lie derivative

Llm =
(1

2ϑ(l) + iϕ(l)

)
m+ σ(l)m̄, (3.22)

as in (2.48) above. Finally, we also need to choose a parametrisation for the null normal
la. This can be done by introducing a fiducial time coordinate u : N → [−1, 1] along N,
which increases monotonically along the null generators: i.e. for every future pointing null
vector [l′]a ∈ TN: [l′]a∂au > 0. In addition, let us also choose the fiducial (unphysical) u
coordinate such that it satisfies the boundary conditions

u
∣∣
C1

= 1, u
∣∣
C0

= −1, (3.23)

at the boundary of N, which consists of two disjoint cross sections: ∂N = C0∪C−1
1 . Since

the vector space of all null vectors on N is one-dimensional, we can parametrize any future
pointing null vector la in terms of the fiducial null vector ∂au and an overall scale, e.g.

la = eµ+λ+ρ∂au, (3.24)

where µ and λ are the same as in (3.21) and (3.17), but eρ is arbitrary and defines the
lapse function

eρ = N(l). (3.25)

As far as the covariant phase space is concerned both the time function u : N → [−1, 1]
as well as the fiducial co-dyad m(0)

a are fixed background structures. Their field variations
vanish. In other words,

δ[u] = 0, δ[∂au] = 0, δ[m(0)
a ] = 0. (3.26)
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3.2 Choice of time

Above, we introduced a fiducial time coordinate u : N → [−1, 1]. By introducing a (local)
homeomorphism z : C → C on the base manifold, which naturally extends via z = z◦π into
a coordinate on N, we have a fiducial coordinate system (u, z, z̄) along the null boundary.
The u coordinate is unphysical. The only conditions are that it increase monotonically
and satisfy the boundary conditions (3.23). Otherwise, the coordinate u is completely
arbitrary. A more physical time coordinate can be introduced as follows. Consider first
the total (affine) duration of a null generator of N, as given by the affine length

L(z, z̄) =
∫ 1

−1
duN−1

(l) (u, z, z̄), (3.27)

where N(l) is the lapse function (3.25). We may then introduce the new time coordinate

U(u, z, z̄) =
2
∫ u
−1 du′N−1

(l) (u′, z, ū)− L(z, z̄)
L(z, z̄) , (3.28)

which satisfies the boundary conditions

U(±1, z, z̄) = ±1. (3.29)

Let us also consider the corresponding null vector field

Ua = L(z, z̄)
2 e−µ−λla. (3.30)

Its non-affinity is proportional to the expansion of the null surface. This can be seen as
follows. Consider first κ(l) : lb∇bla = κ(l)l

a, which is given by

κ(l) = la
(
κa + γ−1Γa

)
= la∂aλ, (3.31)

see (2.29), (2.49) and (3.17). Therefore,

U b∇bUa = L2

4 e−µ−λlb∇b
(
e−µ−λla

)
= −1

2

(
Ω−2 d

dU Ω2
)
Ua, (3.32)

where Ω = eµ is the conformal factor (3.18). Hence, the non-affinity of Ua is given by its
expansion. Derivatives with respect to Ua will be denoted as follows: if F : N → R is a
scalar function on the null surface, its time derivative is denoted by

Ḟ := Ua∂a[F ] =: d
dU F. (3.33)

3.3 Kinematical phase space

In this section, we write the symplectic potential (2.51) in terms of the SL(2,R) variables
introduced above. Consider first the Lie derivative of the vector-valued co-dyad ea along
the null generators, see (3.5). Since ea takes values in a two-dimensional vector space, we
first have to explain how the Lie derivative acts onto the basis vectors f i, i = 1, 2. The
simplest possibility is

Llf i = 0. (3.34)
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With this choice, we obtain

Lle
i =

(
Ω−1LlΩ

)
ei +

[
LlS · S−1

]i
j
ej , (3.35)

where

Ω−1LlΩ = 1
2ϑ(l), (3.36)

LlS · S−1 = ϕ(l)J + σ(l)X̄ + σ̄(l)X ∈ sl(2,R). (3.37)

If we then insert (3.36) and (3.37) back into the symplectic structure, we obtain

ΘN =− 1
8πG

∫
N
ε∧dκ+ 1

8πG

∫
N

[(
εij+γ−1qij

)
Ω−1Ll[Ω]ei∧d(k∧ej)+

+
(
εij+γ−1qij

)[
P (LlS ·S−1)

]i
m
em∧d(k∧ej)

]
, (3.38)

where P : sl(2,R) → sl(2,R) is the projector defined in (3.15). We now want to further
simply this expression. We insert the parametrisation of κa, see (3.21), back into (3.38).
In addition, we also note that

ei ∧ ej = εij Ω2 d2vo, (3.39)

ei ∧ ej ∧ dk = −ei ∧ ej ∧ d
(
e−µ−λ−ρdu

)
= −ei ∧ ej ∧ d

[
L

2 e−µ−λdU
]
, (3.40)

The second identity (3.40) is a consequence of dm = fm+hm̄, see (2.41), and the parametri-
sation k = −e−µ−λ−ρdu + ζm̄ + ζ̄ of the one-form ka. The vectorial component ζ of ka is
arbitrary and the value of the du component of ka is inferred from kal

a = −1. Going back
to (3.38), we then finally obtain

ΘN =− 1
8πG

∫
∂N

d2vo
(
dλ− L−1dL

)
Ω2 − 1

8πγG

∫
N
d2vo ∧ Ω2d

(
ϕ(l)k

)
+

+ 1
8πG

∫
N

[
d2vo ∧ d[dU ] d

dU Ω2 + 1
γ
J lm

[
S · dS−1

]m
l

Ω dΩ ∧ d2vo +

+ Ω2
(
δmk + 1

γ
Jmk

) [
P (dS · S−1)

]k
l

[
S · dS−1

]l
m
∧ d2vo

]
(3.41)

To make this expression more transparent, let us introduce the abbreviations

Φ̃ := −ϕ(l)k, (3.42)
E := Ω2, (3.43)

K̃ := d~U, (3.44)
pK := Ė, (3.45)

Ĩ := 1
γ

Ω d~Ω, (3.46)

Π̃ := γ + i
γ

L

2 eµ−λσ(l)d~U, (3.47)
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where the diacritic indicates that the corresponding variable defines a density along the
null rays. In addition, we have introduced in here the differential

d~[·] := du d
du
[
·
]
. (3.48)

The line densities Ĩ and Π̃ on the null rays γz = π−1(z) can be rearranged into the diagonal
and off-diagonal components of an SL(2,R) Lie algebra-valued line density

Π̃l
m = ĨJ lm + Π̃X̄ l

m + ˜̄ΠX l
m . (3.49)

Given these definitions, some straight-forward algebra brings the symplectic potential (3.41)
into the following form,

ΘN =− 1
8πG

∫
∂N

d2vo
(
dλ− L−1dL

)
E+

+ 1
8πG

∫
N
d2vo ∧

[
pKdK̃ + γ−1E dΦ̃ + Π̃l

m

[
S · dS−1

]m
l

]
. (3.50)

Now, the basic idea to compute the resulting Poisson brackets is to introduce an
auxiliary (kinematical) phase space, equipped with the symplectic potential (3.50), where
pK , K̃, E, Φ̃, Π̃l

m and S : N → SL(2,R) are now treated as functionally independent
coordinates on phase space. Hence, this auxiliary phase space has 2 + 2 + 2 × 3 = 10
dimensions. The physical phase space is obtained by symplectic reduction with respect to
the constraints that bring us down to the two true physical degrees of freedom along N.

The kinematical phase space is equipped with the symplectic potential (3.50). It is
immediate to calculate the corresponding Poisson brackets. The only non-vanishing Poisson
brackets among the canonical variables (pK , K̃, E, Φ̃, Π̃l

m, S
l
m)(x) are given by

{
Π̃(x), S(y)

}
= −8πGXS(y) δ̃N(x, y),

{ ˜̄Π(x), S(y)
}

= −8πG X̄S(y) δ̃N(x, y), (3.51){
Π̃(x), Ĩ(y)

}
= −8πiG Π̃(y) δ̃N(x, y),

{ ˜̄Π(x), Ĩ(y)
}

= +8πiG ˜̄Π(y) δ̃N(x, y) (3.52){
Π̃(x), ˜̄Π(y)

}
= −16πiG Ĩ(y) δ̃N(x, y), (3.53){

Ĩ(x), S(y)
}

= +4πGJS(y) δ̃N(x, y), (3.54){
pK(x), K̃(y)

}
= +8πG δ̃N(x, y), (3.55){

E(x), Φ̃(y)
}

= +8πγG δ̃N(x, y), (3.56)

where δ̃N(x, y) is the Dirac distribution on N. Notice that the first block of these equations,
namely (3.51), (3.52), (3.53), (3.54), simply says that the Hamiltonian vector field of Π̃l

m

acts as a right-invariant vector field on the group-valued configuration variable, which is
S : N → SL(2,R). The commutation relations can be inferred immediately from the canon-
ical Poisson commutation relations of T ∗SL(2,R) equipped with its natural symplectic
structure ΘSL(2,R) = tr(PS SdS−1), with PS = IJ + ΠX̄+ Π̄X denoting the sl(2,R)-valued
momentum in the matrix representation defined by (3.10), (3.11) and (3.12).
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For practical reasons, it is often more useful not to work with the group-valued con-
figuration variables, but with a Lie algebra-valued flat SL(2,R) connection instead

d~S · S−1 =: ϕ̃J + h̃X̄ + ˜̄
hX, (3.57)

such that

S(u, z, z̄) = Pexp
(∫

γz(u)

(
ϕ̃J + h̃X̄ + ˜̄

hX
))

S(−1, z, z̄), (3.58)

where Pexp is the path ordered exponential and γz(u′) is a null ray that starts at u = −1
ends at u = u′ and projects down onto z ∈ C on the base manifold. Inserting (3.57) back
into (3.51)–(3.54), we obtain{

Ĩ(x), ϕ̃(y)
}

= 4πG d~y δ̃N(x, y), (3.59){
Ĩ(x), h̃(y)

}
= 8πiG h̃(y) δ̃N(x, y), (3.60){

Π̃(x), ϕ̃(y)
}

= −8πiG h̃(y) δ̃N(x, y), (3.61){
Π̃(x), h̃(y)

}
= 0, (3.62){

Π̃(x), ˜̄h(y)
}

= −8πG d~y δ̃N(x, y)− 16πiGϕ̃(y) δ̃N(x, y), (3.63)

where the notation d~y δ̃N(x, y) indicates that the d~-differential (3.48) acts on the second
argument.

3.4 Constraints

In this section, we introduce the constraints that reduce the kinematical phase space defined
by the Poisson brackets (3.51)–(3.56) to the physical phase space of the radiative modes
at the null boundary. There are five different constraints, namely the Hamiltonian, Gauss,
conformal, scalar and vectorial constraints. We introduce them below.

(i) Gauss constraint. First of all, we have the Gauss constraint. Let Λ : N → R
be a test function of compact support. To impose (3.46) on the kinematical phase
space (3.51)–(3.56), we introduce the constraint

∀Λ : G[Λ] =
∫
N
d2vo ∧ Λ

(
Ĩ − 1

2γ d~E
)

!= 0, (3.64)

we will see below that this constraint is first-class and generates local U(1) gauge trans-
formations along the null boundary.

(ii) Conformal constraint. Next, we have a conformal constraint that imposes (3.45) via

∀λ : C[λ] =
∫
N
d2vo ∧ λ

(
pKK̃ − d~E

) != 0, (3.65)

where λ : N → R is a test function of compact support. Notice that pKK̃ is a squeeze
operator.
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(iii) Scalar constraint. At the kinematical level, the SL(2,R) holonomy (3.58) and the
sl(2,R)-valued momentum (3.49) are functionally independent. The functional depen-
dence is obtained by imposing (3.37) as a constrained on phase space. This involves a
scalar constraint and a complex-valued (momentum) constraint. The scalar constraint
is given by

∀µ : D[µ] =
∫
N
d2vo ∧ µ

(
Φ̃− ϕ̃

) != 0, (3.66)

where µ : N → R is a test function and Φ̃ and ϕ̃ are defined in (3.57) and (3.42)
respectively.

(iv) Vectorial constraint. Besides the scalar constraint, we also need to impose the vectorial
component of (3.37). Equation (3.57) is compatible with (3.37) only if we impose

∀ζ : V [ζ̄] =
∫
N
d2vo ∧ ζ̄e−2i∆

(
Ω−1Π̃− γ + i

γ
Ωh̃
)

!= 0, (3.67)

where ζ : N → C is a test function of compact support and ∆ is the U(1) angle

∆(u, z, z̄) =
∫
γz(u)

ϕ̃, (3.68)

with γz ⊂ N denoting a null ray that starts at u = −1, ends at u = u′ and projects
down onto z ∈ C on the base manifold. Strictly speaking, this U(1) dressing of the
constraint is not necessary, but we will see below that it greatly simplifies the con-
straint analysis. Notice also that V [ζ̄] is a complex constraint, hence we have two real
constraints Re(V [ζ̄]) = 0 and Im(V [ζ̄]) = 0 to impose. All other constraints are real.
Notice also that the vector constraints (3.67) are essentially creation and annihilation
operators with the conformal factor playing the role of the characteristic length scale of
the oscillators.

(v) Hamiltonian constraint. The Raychaudhuri equation determines the evolution of the
conformal factor along the null generators. Going back to (2.71) and (2.75), we obtain

Ll

[
ϑ(l)

]
− κ(l)ϑ(l) = −1

2ϑ
2
(l) − 2σ(l)σ̄(l). (3.69)

The expression simplifies once we evaluate it for the vector field Ua, defined in (3.30).
Taking into account that its expansion and non-affinity are related by (3.32), the Ray-
chaudhuri equation turns into the constraint

1
2

d2

dU2 Ω2 + σσ̄ = 0, (3.70)

where
σ(u, z, z̄) = L(z, z̄)

2 e−λ(u,z,z̄)σ(l)(u, z, z̄), (3.71)

is the rescaled shear. To realise this equation as a constraint on the kinematical phase
space (3.51)–(3.56), consider first the following vertical vector field

ξaN = N∂au, (3.72)
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where ∂au is the fiducial vector field introduced in (3.24) and N : N → R is a lapse
function that satisfies the boundary conditions

N
∣∣
C0

= N
∣∣
C1

= 0. (3.73)

Consider then the Lie derivative with respect to this vector field such that we are able
to define the generator

H[N ] := ΘN(LξN ). (3.74)

It is straightforward to check that for every N of compact support this generator vanishes
provided the constraints (3.64)–(3.67), (3.70) are satisfied. Indeed,

H[N ] = 1
8πG

∫
N
d2vo ∧

[
−1
γ
LξN [E]Φ̃−LξN [pK ]K̃ + Π̃l

m

[
S ·LξNS

−1
]m

l

]
≈

≈ 1
8πG

∫
N
d2vo ∧N

[
− 1
γ

Φ̃ d
duΩ2 − dU d

du
d

dU Ω2 + 2 Ĩ∂uyϕ̃−
(
Π̃ ∂uy

˜̄
h+ cc.

) ]
≈

≈ 1
8πG

∫
N
d2vo ∧N

[
− dU(∂uU) d2

dU2 Ω2 −
(

γ

γ − iΩ
−2Π̃ ∂uy

˜̄Π + cc.
)]
≈

≈ 1
8πG

∫
N
d2vo ∧ dU N(∂uU)

[
− d2

dU2 Ω2 − L2

4 e−2λ
(
γ + i
γ

σ(l)σ̄(l) + cc.
)]
≈

≈ − 1
4πG

∫
N
d2vo ∧ dULξN [U ]

[1
2

d2

dU2 Ω2 + σσ̄

]
≈ 0, (3.75)

where ≈ stands for equality on the constraint hypersurface and ∂uy denotes the interior
product, e.g. ∂uydU = ∂uU .

3.5 Dirac analysis of the constraint algebra

It is immediate to check that the Hamiltonian constraint H[N ] is the generators of vertical
diffeomorphisms ϕN = exp ξN on the kinematical phase space defined by the commutation
relations (3.51)–(3.56). Going back to the definition of the constraints, we find, in fact,

{
H[N ], H[N ′]

}
= −H

[
N

d
duN

′ −N ′ d
duN

]
, (3.76)

{
H[N ], G[Λ]

}
= −G

[
N

d
duΛ

]
, (3.77)

{
H[N ], C[λ]

}
= −C

[
N

d
duλ

]
, (3.78)

{
H[N ], D[µ]

}
= −D

[
N

d
duµ

]
, (3.79)

{
H[N ], V [ζ̄]

}
= −V

[
N

d
duζ

]
. (3.80)

The Poisson brackets (3.52), (3.54) imply that Ĩ is the generator of an U(1) subgroup
of SL(2,R). Going back to the definition of the Gauss constraint (3.64), we obtain the
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commutation relations {
G[Λ], G[Λ′]

}
= 0, (3.81){

G[Λ], C[λ]
}

= 0, (3.82){
G[Λ], D[µ]

}
= 0, (3.83){

G[Λ], V [ζ̄]
}

= 0. (3.84)

In proving (3.81)–(3.84) the only difficulty arises with equation (3.84), where we have to
take into account that the constraint has been dressed by the introduction of an U(1)
holonomy, see equation (3.67) and (3.68).

All other constraints are second class. A few entries of the corresponding Dirac matrix
vanish identically, {

C[λ], C[λ′]
}

= 0, (3.85){
C[λ], V [ζ̄]

}
= 0, (3.86){

D[µ], D[µ′]
}

= 0. (3.87)

Since Φ̃ and E are conjugate, but pKK̃ and ϕ̃ Poisson commutes with both Φ̃ and E, we
obtain that C and D are conjugate,{

C[λ], D[µ]
}

= −8πγG
∫
N
d2vo ∧ λ d~µ. (3.88)

We then also find{
D[µ], V [ζ̄]

}
= 4πG

∫
N
d2vo ∧ µ ζ̄ e−2i∆ Ω−1

[
(γ − i)h̃+ Ω−2Π̃

]
. (3.89)

If the vector constraint (3.67) is satisfied, the right hand side turns into{
D[µ], V [ζ̄]

}
≈ 8πγG

∫
N
d2vo ∧ µ ζ̄e−2i∆Ω−1h̃, (3.90)

where, once again, ≈ stands for equal on the constraint hypersurface. If the shear vanishes,
hence h̃ ≈ Ω−1σdU = 0, the constraints D[µ] = 0 and V [ζ̄] = 0 commute under the
Poisson bracket.

We are now left to compute the Poisson brackets among V and V̄ . First of all, we have{
V [ζ̄], V [ζ̄ ′]

}
=
∫
N
d2vo ∧

[
ζ̄ ′
{
V [ζ̄], e−2i∆}(Ω−1Π̃− γ + i

γ
Ωh̃
)
− (ζ ↔ ζ ′)

]
. (3.91)

Therefore, {
V [ζ̄], V [ζ̄ ′]

}
≈ 0. (3.92)

Finally, we also need to evaluate {V, V̄ }. A straight forward calculation yields

{V [ζ̄], V̄ [ζ ′]
}

=
∫
N
d2vo ∧

[
ζ ′
{
V [ζ̄], e+2i∆}(Ω−1 ˜̄Π− γ − i

γ
Ω˜̄h)+

− ζ̄
{
V̄ [ζ ′], e−2i∆}(Ω−1Π̃− γ + i

γ
Ωh̃
)]

+

+ 16πG
∫
N
d2vo ∧

[
− iζ̄ζ ′Ω−2Ĩ + i

γ
ζ̄ζ ′Ω−1 d~Ω− ζ̄ d~ζ ′

]
.
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Going back to the definition of the Gauss constraint (3.64) and the definition of the vectorial
constraint (3.67), we get

{V [ζ̄], V̄ [ζ ′]
}
≈ −16πG

∫
N
d2vo ∧ ζ̄ d~ζ ′, (3.93)

where ≈ denotes equality on the constraint hypersurface.
Let us briefly summarise. The kinematical phase space is defined by the Pois-

son commutation relations (3.51)–(3.56). The physical phase space is obtained by im-
posing the constraints. There are both first-class and second-class constraints. The
Hamiltonian (Raychaudhuri equation) and Gauss constraint are first class, all other con-
straints (3.65), (3.66), (3.67) are second-class. The kinematical phase space, which is
equipped with the Poisson brackets (3.51)–(3.56), is ten-dimensional. The resulting physi-
cal phase space is two-dimensional and spanned by the Dirac observables of the theory. In
the next section, we compute the Poisson brackets between such observables.

3.6 Dirac observables from SL(2,R) holonomies

Finally, let us explain how to identify coordinates (Dirac observables) on the physical
phase space. The physical phase space is equipped with the Dirac bracket. Let {Φα}α be
a family of second-class constraints and {Φα,Φβ} = ∆αβ : det ∆ 6= 0 be the Dirac matrix
and ∆αβ : ∆αµ∆µβ = δαβ be its inverse. The resulting Dirac bracket is defined by removing
the auxiliary directions from phase space, i.e.

{
A,B

}∗ =
{
A,B

}
−
{
A,Φα

}
∆αβ{Φβ , B

}
, (3.94)

where α is some unspecified multi-index. Summation (integration) is understood over all
repeated (DeWitt) indices α, β, . . . .

We now want to compute the Dirac bracket for a specific class of partial observables,
namely the matrix entries of the SL(2,R) holonomy (3.58). The calculation is straight
forward: first of all, we note that the matrix entries of the SL(2,R) holonomy (3.58)
commute among themselves with respect to the Poisson brackets of the kinematical phase
space. In other words, {

Sim(u, z, z̄), Sjn(u′, z′, z̄′)
}

= 0. (3.95)

Furthermore,

{
C[λ], Sim(u, z, z̄)

}
= 0, (3.96){

D[µ], Sim(u, z, z̄)
}

= 0, (3.97)

for all test functions λ : N → R and µ : N → R. The only entries of the inverse Dirac
matrix that we need to evaluate in order to calculate {S, S′}∗ are therefore those that
correspond to the vector constraint. Schematically,

{
S, S′

}∗ = −
{
S, Vα}∆αᾱ{V̄ᾱ, S′}+ cc. (3.98)
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Inverting the right hand side of (3.93), we obtain

{
Sim(u, z, z̄), Sjn(u′, z′, z̄′)

}∗ = 1
16πG

∫ 1

−1
du1

∫ 1

−1
duo

∫
C

[d2vo](w,w̄)

[
(3.99)

×
{
Sim(u, z, z̄), V (u1, w, w̄)

}
Θ(u1 − uo)

{
V̄ (uo, w, w̄), Sjn(u′, z′, z̄′),

}
+ cc.

]
,

where Θ(u) is the distribution

Θ(u) =

+1
2 , u > 0,
−1

2 , u ≤ 0,
(3.100)

and V (u, z, z̄) is the integrand that appears in the definition (3.67) of the vector con-
straint, i.e.

V [ζ̄] ≡
∫ 1

−1
du
∫
C

[d2vo](z,z̄) ζ̄(u, z, z̄)V (u, z, z̄) != 0. (3.101)

Equation (3.99) provides an important intermediate step, because it tells us that we
know the Dirac bracket {S, S′}∗, if we know the ordinary Poisson bracket {V, S} on the
kinematical phase space. Given the fundamental Poisson brackets (3.51)–(3.56) and the
definition of the vector constraint (3.67), the Poisson bracket {V, S} is immediate to cal-
culate. We obtain{

V [ζ̄], Sim(x)
}

= −8πG ζ̄(x) e−2i∆(x) Ω−1(x)Xi
jS

j
m(x), (3.102)

where x ≡ (u, z, z̄) labels a point on N. Inserting (3.102) back into the expression for the
Dirac bracket (3.99), we infer the commutation relations for the SL(2,R) holonomy{

Sim(x),Sjn(y)
}∗=−4πGΘ(x,y)δ(2)(x,y)Ω−1(x)Ω−1(y)

×
[
e−2i(∆(x)−∆(y))[XS(x)

]i
m

[
X̄S(y)

]j
n

+cc.
]
. (3.103)

Let us briefly summarise our notation in this equation: Sij (x) is the SL(2,R) holonomy
that determines the conformal class of the co-dyad eia on the null boundary, Θ(x, y) is
the step function Θ(x, y) = Θ(u(x) − u(y)) = ±1

2 , and δ(2)(x, y) ≡ δC(π(x), π(y)) is the
two-dimensional Dirac distribution on the base manifold. In addition, Ω is the conformal
factor (3.18), and ei∆, defined via equations (3.68) and (3.57), is the U(1) holonomy along
the null generators, and Xi

j = mimj is the complex-valued SL(2,R) translation generator
that we introduced in (3.11) above.

The physical phase space has two local degrees of freedom. The SL(2,R) holonomy
has three functionally independent components and it is not quite a Dirac observable yet.
In fact, it does not commute with the first-class constraints. Instead, we have

{
H[N ], Sik (u, z, z̄)

}
= N(u, z, z̄) d

duS
i
k (u, z, z̄), (3.104){

G[Λ], Sik (u, z, z̄)
}

= 4πGΛ(u, z, z̄) J imSmk (u, z̄, z̄). (3.105)
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Imposing the Gauss constraint amounts to computing the quotient SL(2,R)/U(1). An ex-
ample for such an U(1)-invariant observable is given by the U(1) dressed SL(2,R)
holonomy,

H = e−J∆S, (3.106)

where J denotes the complex structure (3.10) and ei∆ is the U(1) holonomy defined
via (3.68). Another natural example is the two-dimensional conformally rescaled metric,

γij := qmnS
m
iS

n
j , (3.107)

where qmn = δmn is the two-dimensional internal metric (3.1) on the auxiliary internal
vector space V. Notice that both H and γ are still only partial observables, because
neither of them commute with the Hamilton constraint. True Dirac observables can be
introduced following standard constructions. An example is given by

γij(T, z, z̄) =
∫ +1

−1
du (∂uΩ)(u, z, z̄) δ

(
T − Ω(u, z, z̄)

)
γij(u, z, z̄), (3.108)

which is the functional on phase space that evaluates the conformally rescaled metric γij
at those points of the null ray γz = π−1(z), where the conformal factor takes the value
T . Hence the area serves as a relational clock — Bondi’s luminosity distance — to define
the Dirac observable (3.108). Since the conformal factor Ω commutes with all second-class
constraints except D[µ], and since the inverse Dirac matrix has neither diagonal D × D
entries nor any off-diagonal D × C (C ×D) entries, the commutation relations for γij can
be immediately inferred from (3.99). A short calculation yields
{
γij(T, z, z̄), γkl(T ′, z′, z̄′)

}∗ = −16πGΘ(T − T ′) δ(2)(z, z′)
(
Ξij(T, z, z̄) Ξkl(T ′, z, z̄) + cc.

)
,

(3.109)
where Ξij is an abbreviation for

Ξij = Ω−1mkmlH
k
iH

l
j . (3.110)

Notice that the Dirac observable (3.108) is constructed using a line dressing, where a
kinematical (gauge variant and partial) observable is integrated along a light ray to obtain
a gauge invariant observable. A recent discussion of such dressed observables in the context
of perturbative gravity can be found in [48, 49].

4 Summary and outlook

Summary. Let us briefly summarise. The first set of results were developed in section 2,
where we considered the Palatini action with the parity odd Holst term Fαβ [A] ∧ eα ∧ eβ

in a finite domain with a boundary that is null. We specified the boundary conditions
and introduced the corresponding boundary term along the null surface. The boundary
conditions (2.12) are such that a gauge equivalence class of boundary fields is kept fixed.
This equivalence class is characterised by two local degrees of freedom along the null surface,
and additional corner data — gravitational edge modes [17–31] at the two boundaries
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of N. We introduced the pre-symplectic potential on the quasi-local radiative phase space,
and we identified the gauge symmetries of the resulting pre-symplectic two-form. An
important observation was made in equation (2.55) and (2.61), where we saw that the
Barbero-Immirzi parameter deforms the U(1) frame rotations (2.57), (2.58), (2.59). The
resulting U(1) charge (2.62) is proportional to the generator of dilations (2.56), which is
itself a multiple of the cross-sectional area. The relation (2.63) between dilatations and
U(1) frame rotations is responsible for the quantisation of area in loop quantum gravity,
where the Barbero-Immirzi parameter γ determines the fundamental area gap.

In the second part of the paper, section 2, we studied the Dirac observables on the
null surface. To infer the Poisson brackets, we found it useful to embed the covariant
phase space into a kinematical phase space that contains an auxiliary SL(2,R) holonomy
flux algebra (3.51)–(3.53). The physical phase space is obtained by symplectic reduction
with respect to first-class and second-class constraints. The two first-class constraints are
the generators of vertical diffeomorphisms and U(1) frame rotations, namely the Hamilton
constraint (3.75) and the Gauss constraint (3.64). The second class constraints impose
the conformal matching (3.65) and additional constraints on the sl(2,R) currents, i.e.
equations (3.66) and (3.67). We computed the constraint algebra and defined the Dirac
bracket (3.94). An important result was given in equation (3.103), were we found the
commutation relations among the SL(2,R) holonomy. At null infinity, its matrix elements
describe both gravitational radiation as well as gravitational memory [34, 35]. Finally, we
introduced a line dressing [48, 49] to construct physical observables, which are invariant
under U(1) gauge transformations and vertical diffeomorphisms.

Outlook. It seems an extremely daunting task to quantise the Dirac bracket (3.103)
directly. The right hand side (3.103) involves not only the SL(2,R) holonomies Sij , but
also the conformal factor. Yet the conformal factor depends via the Raychaudhuri equa-
tion (3.70) on the shear σ, which is itself obtained from the SL(2,R) Maurer-Cartan form
S−1 d~S, see (3.37) and (3.57). The entire construction is highly non-linear. Various trun-
cations seems necessary to quantise the algebra in an effective way. Let us briefly consider
three possible such truncations below.

Asymptotic quantisation: The first and perhaps simplest possibility is to restrict our-
selves to asymptotically flat spacetimes (Λ = 0) and quantise the asymptotic phase
space alone. Consider an auxiliary double null foliation {Nr}r>0 in a vicinity of future
(past) null infinity I± such that I± = limr→∞Nr, see [9]. Given such a foliation,
the radiative phase space at null infinity can be obtained from an asymptotic r →∞
limit of the quasi-local radiative phase space introduced above. If we take the falloff
conditions for the various spin coefficients of an adapted Newman-Penrose tetrad into
account, we obtain the 1/r expansion

Ω(u, r, z, z̄) = rΩ(0)(z, z̄) +O(r0), (4.1)

H i
j (u, r, z, z̄) =

[
δik + σ(0)(u, z, z̄)

Ω(0)(z, z̄)
1
r
X̄i

k + σ̄(0)(u, z, z̄)
Ω(0)(z, z̄)

1
r
Xi

k +O(r−2)
]

[So]kj(z, z̄),

(4.2)
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where H i
j is the dressed SL(2,R) holonomy (3.106), Ω is the (inverse) conformal

factor and So(z, z̄) ∈ SL(2,R) is the initial condition that appears in (3.58). In
the asymptotic Ω → ∞ limit, only the first two terms of the 1/r expansion of the
dressed SL(2,R) holonomy enter the symplectic potential (3.50). For r → ∞, the
SL(2,R) group-valued commutation relations (3.103) turn into the Lie algebra-valued
commutation relations for the asymptotic shear. The result of this contraction on
phase space defines the Poisson brackets

{
σ(0)(x), σ̄(0)(y)

}∗ = −4πGΘ(x, y) δ(2)(x, y) (4.3)

of the radiative data at null infinity. Separating (4.3) into positive and negative
frequency modes, we obtain an infinite set of harmonic oscillators. The Fock vacuum
is then simply the state that is annihilated by the positive frequency part of the
asymptotic shear σ(0)

ab = σ(0)m̄am̄b + cc.

From the perspective of the quasi-local phase space, we find such an asymptotic
quantisation problematic. The conformal factor is treated as a classical field and
sent to infinity before considering the quantum theory. In addition, the quantum
nature of the SL(2,R) zero-mode So(z, z̄) is usually ignored as well. A more appro-
priate approach will also consider the Hilbert space of the SL(2,R) edge modes, see
e.g. [30, 50–52].

In fact, if we ignore the quantum nature of the conformal factor and only consider
the Hilbert space of the radiative modes, we make a mistake, because we would
violate the Heisenberg uncertainty relations that tell us that the area two-form is
canonically conjugate to a U(1) gauge parameter, see (2.61). Hence we can not
impose simultaneous gauge conditions on both the U(1) gauge parameter ϕ̃ = O(r−1)
and the conformal factor Ω = O(r). A possible solution is to quantise the quasi-local
phase space at the full non-perturbative level and construct coherent states that are
peaked at appropriate values of Ω and ϕ̃. Once such coherent states are found, we
can define asymptotic states by sending Ω → ∞. Still, the question remains for
how to recover the ordinary S matrix in this framework. In fact, the S matrix is
a highly entangled boundary state (linear functional) [53, 54] on the tensor product
Hilbert space H+ ⊗H

†
−, where H± is the Fock space for future (past) null infinity.

Defining this tensor product amounts to join the two asymptotic boundaries into a
single Hilbert space. A rigorous construction of such a joint Hilbert space may very
well be possible only via an entangling product [55, 56] that takes into account that
the gravitational edge modes, which are located at a joint cross section of the two
asymptotic boundaries (such as io), must be quantised as well.

Loop quantization: In the spin network representation [57, 58], we face the opposite
problem. We have a straight-forward and rigorous quantisation of gravitational edge
modes, including SL(2,R) edge modes see e.g. [30, 41, 59, 60], but it is difficult to
characterise the two radiative modes. Consider, for example an SU(2) spin network
state on a partial Cauchy hypersurface. Such a state consists of superpositions of
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gravitational Wilson lines. Every such Wilson line represents a quantum of area.
At the boundary of the partial Cauchy surface, the Wilson lines terminate and a
quantum of area is excited. If the resulting boundary state is an eigenstate of the
area operator, we would have, e.g.

Ω̂2(z, z̄)|~, ~m,C〉 = 8π ~γG/c3 ∑
k

√
jk(jk + 1)) δ(2)(z̄k, zk; z, z̄)|~, ~m,C〉, (4.4)

where ~, ~m are the usual SU(2) spin labels. Hence the conformal factor is quantised.
The question is then to construct a representation of the radiative modes, such that we
can use the Hamiltonian constraint (3.70) to generate the evolution of the boundary
states along the null generators. Twisted geometries, which admit a representations
of the relevant SL(2,R) degrees of freedom [61], may provide a natural framework to
study this problem in the spin network representation. In three-dimensional euclidean
gravity, the problem of how to explain such boundary evolution for spin network states
has been studied in [5, 6].

Other truncations: It would be highly desirable to develop yet another truncation, where
we only consider a finite-dimensional symplectic subspace of the quasi-local phase
space that we defined in above. Such a subspace could be found by various UV
cutoffs. If, for example, the cross sections are spherical, we could choose an auxiliary
(round) metric, decompose all configuration variables into spherical harmonics (with
respect to the auxiliary metric), and introduce an effective UV cutoff for large spins
and frequencies, see e.g. [41]. It would be very useful to quantise such a finite-
dimensional phase-space, and define different UV completions via different refining
maps [62, 63] that embed the finite-dimensional Hilbert spaces into larger and larger
tensor product spaces.
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