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1 Introduction

In recent years novel two-dimensional quantum field theories with a group theoretical basis
and remarkable properties have been constructed. One such class comprises theories that
generically come under the name of λ-deformations [1–9]. They represent finite, integrable
in specific cases, deformations of WZW or gauged WZW theories. In parallel with the above
development, another related class of integrable σ-models [10–15], ultimately connected to
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the Principal Chiral Model (PCM) for groups and cosets and generically known as η-
deformations has also been constructed.

While these works have been further developed in various directions, in the present
work we are focused in aspects concerning their embedding to type-II supergravity. In
general this is a challenging task to perform and necessarily involves turning on a dilaton as
well as Ramond-Ramond (RR) fields that supplement the two-dimensional σ-model metric
and antisymmetric tensor fields. Most of the examples constructed in the literature [16–25],
have the entire space-time deformed and therefore they lack an AdS space-time as part of
the full supergravity solution. The only exception is the work of [26], where (unwarped)
AdS solutions with λ-deformed internal subspaces have been explicitly constructed.

Applying the machinery of AdS/CFT correspondence is the natural next step in order
to enlighten the field theory side of the solutions of [26]. However, the two important char-
acteristics of these backgrounds, namely the absence of supersymmetry and the presence of
an unwarped AdS factor, combined with the Ooguri-Vafa conjecture [27], suggest that an
investigation of their stability, at least perturbatively, is imminent. Specifically, this con-
jecture states that any non-supersymmetric AdS vacuum is unstable and it is a stronger
version of the weak gravity conjecture [28]. Therefore the tedious effort of checking the
stability of the AdS backgrounds with λ-deformed factors can be put in the wider context
of satisfying or disproving this conjecture. What makes the models of [26] attractive in
this context is their relative simplicity and the fact that the various factors correspond to
integrable subspaces from a two-dimensional σ-model point of view. The latter property
empirically and intuitively, if not guaranteeing stability, it makes instability less likely to
be the case. In that respect, we note that the parametric space in some solutions is two-
dimensional, leaving enough room for stability in part(s) of it. However notice that, even
if we could prove perturbative stability of the λ-deformed backgrounds, to disprove the
conjecture we should also exclude possible non-perturbative instabilities.

The state of the art in the field of investigating perturbative stability is coming from a
method that is based on exceptional field theory [29] and was developed in [30, 31] for com-
puting Kaluza-Klein spectra of maximal gauged supergravity vacua. In [32] this method
was applied to prove perturbative stability for the non-supersymmetric G2-invariant AdS4×
S6 background of massive-IIA supergravity,1 through the analytic computation of the full
Kaluza-Klein spectrum. The aforementioned calculation combined with the absence of a
brane-jet instability [35], i.e. a recently introduced non-perturbative instability, for these
backgrounds [36], sets an interesting challenge for the Ooguri-Vafa conjecture.

The plan of the paper is as follows: in section 2 we present in a minimalistic way
the fluctuation analysis for a wide class of effective theories containing only gravity and
scalars. Since this structure is a common characteristic of all the dimensionally reduced
solutions that we study in the current paper, we present the results in a unified framework.
We perform a perturbative analysis around an AdS solution having constant scalar fields.

1Another noteworthy non-supersymmetric and seemingly perturbatively stable string theory paradigm
can be found in [33]. In [34], AdS7 non-supersymmetric solutions of massive IIA were analyzed and both
perturbative and non-perturbative instabilities were found.
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Analysing stability boils down to determining the eigenvalues of a mass matrix, which is
constructed using the scalar potential and the constant metric in the scalar field space.

In section 3 we perform a stability analysis of the type-IIB AdS3×S3×CS2
λ×CH2,λ so-

lution, where CS2
λ and CH2,λ are the λ-deformed (two dimensional) coset CFTs SU(2)/U(1)

and SL(2,R)/SO(1, 1), respectively [1, 26]. We adopt an initial reduction ansatz contain-
ing only gravity and scalars which is also consistent with the Bianchi identities and flux
equations for the RR-fields. The resulting equations of motions are eventually derived from
a lower dimensional effective action of the type studied in section 2. From this action we
construct the mass matrix. The analysis is depicted in figures 1 and 2 and reveals regions
of stability/instability separated by a critical line between the two.

In section 4 we perform a stability analysis of the type-IIB AdS4×N4×CS2
λ where the

four-dimensional space N4 can be any of the following spaces (S4, H4, T
4) [26]. We follow

the same line of reasoning as before and arrive to a mass matrix. In figure 3 we plot its
eigenvalues as a function of the deformation parameter when N4 is either S4 or H4. Both
cases are proven unstable. The case of N4 = T 4 provides a range of potential stability.

In section 5 we perform the stability analysis of the type-IIB AdS6 ×N2 ×CS2
λ where

the two-dimensional space N2 can be any of the following (S2, H2, T
2) [26]. In figure 4, we

plot the eigenvalues as a function of the deformation parameter when N2 is either S2 or
H2 which reveals instability. The case of T 2, existing for zero deformation parameter, is
also unstable.

In section 6 we gather our results and discuss potential future directions. The main
text is supplemented with two useful appendices. In appendix A, to set up the basis for
the notation, we list the equations of motion of type-IIB supergravity in the string frame.
In appendix B we summarise all the supergravity solutions of [26] that we analyse in the
main text.

2 Gravity and scalars

Our stability analysis of the type-II solutions will be based on particular dimensional
reductions of the ten-dimensional fields. These reductions will give rise to lower dimensional
theories of gravity coupled to scalars. In all cases the background values for the scalars are
constants while the background geometry is an AdS space. In this section we study the
linearized equations of motion up to first order in the fluctuations for this class of effective
theories.

Consider a theory of gravity coupled to n scalars in D dimensions described by the
action

S(g, X) = 1
2κ2

D

∫
dDx

√
|g|
(
R− γij∂X i · ∂Xj − V (X)

)
, (2.1)

where the vector X = (X1, . . . , Xn) encodes the n scalars and γij is an n × n constant
symmetric matrix, playing the rôle of the metric in the scalar field space.

The Einstein equations arising from varying this action with respect to the metric
gµν are

Rµν − γij∂µXi∂νX
j − 1

2gµν
(
R− γij∂X i · ∂Xj − V (X)

)
= 0 . (2.2)
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The trace of the Einstein equations gives

R− γij∂X i · ∂Xj − D

D − 2V (X) = 0 . (2.3)

Eliminating the Ricci scalar from the Einstein equations we end up with

Rµν − γij∂µXi∂νX
j − gµν

D − 2V (X) = 0 . (2.4)

Moreover the equations of motion for the scalars are

∇2
gX

i − 1
2γ

ij∂jV (X) = 0 , (2.5)

where γij is the inverse of γij .

2.1 Perturbations around AdSD

We will linearise the equations of motion (2.4) and (2.5) assuming an AdSD background
solution

ds2
D = ḡµνdx

µdxν = L2
(
r2ηαβdx

αdxβ + dr2

r2

)
, X̄i = const , (2.6)

where early Greek indices run through α, β = 0, 1, . . . , D − 2 and the Minkowski metric is
mostly plus. Note the bar above the background metric and scalars, a notation that we
will follow in our paper.

Then, using (2.6) in (2.4) and (2.5) implies that

R̄µν = ḡµν
D − 2V (X̄) = −D − 1

L2 ḡµν =⇒ V (X̄) = −(D − 1)(D − 2)
L2 ,

∂iV (X̄) = 0 , i = 1, . . . , n .
(2.7)

We will now consider the fluctuations

gµν = ḡµν + δgµν , X i = X̄i + δX i , i = 1, . . . , n . (2.8)

Using the above we next study the perturbations of (2.4) and (2.5) to linear order.

2.1.1 Metric fluctuations

The linearized version (2.4) around (2.6) reads

δRµν −
V (X̄)
D − 2δgµν = 0 =⇒ δRµν + D − 1

L2 δgµν = 0 , (2.9)

or more explicitly that

∇σ∇µδgσν +∇σ∇νδgµσ −∇2δgµν − ḡρσ∇ν∇µδgρσ + 2 D − 1
L2 δgµν = 0 . (2.10)

We choose the transverse-traceless gauge

∇µδgµν = 0 , gµν δgµν = 0 , (2.11)
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which is possible since our action (2.1) starts with the standard Einstein-Hilbert term.
From the definition of the Riemann tensor we have that

[∇ρ,∇σ]δgµν = −R̄λ
µρσδgλν − R̄λ

νρσδgµλ . (2.12)

Therefore, using the transversality condition we have that

∇ρ∇σδgρν = R̄λ
σδgλν + R̄λνρσδg

ρλ . (2.13)

In addition, the Riemann tensor of the AdSD geometry is

R̄λνρσ = 1
L2
(
gλσgνρ − gλρgνσ

)
=⇒ R̄νσ = −D − 1

L2 gνσ . (2.14)

Using the above properties
∇ρ∇σδgρν = −D

L2 δgσν . (2.15)

From this and the transverse-traceless gauge, (2.10) becomes

∇2δgµν + 2
L2 δgµν = 0 , (2.16)

which is the equation for a massless graviton in AdSD. We conclude that the metric
fluctuations are stable under small perturbations. Any potential instability, will arise
solely from the particular form of the scalar potential V (X), that enters the analysis of the
scalar fluctuations.

2.1.2 Scalar fluctuations

We now move to the perturbations of (2.5). To linear order these read

∇2
ḡδX

i −
(
M2)i

jδX
j = 0 , (2.17)

where we have defined the mass squared matrix(
M2)i

j = 1
2γ

ik∂j∂kV (X)
∣∣∣
X=X̄

. (2.18)

Suppose now that we find a matrix P diagonalising M2, i.e.

PM2P−1 = diag(d1, . . . , dn) , (2.19)

where di with i = 1, . . . , n are the eigenvalues of M2. Note that it is not warranted that
these eigenvalues are real since, for instance, M2 is not necessarily a Hermitian matrix.
Continuing the analysis, the equation we want to solve reduces to

∇2
ḡfi − di fi = 0 , i = 1, . . . , n , (2.20)

with PδX = (f1, . . . , fn). If we assume for fi a plane wave dependence on the coordinates
xα, i.e. eik

(i)
α xα and expand the Laplacian we find that

∂2
rfi + D

r
∂rfi −

(
L2 di
r2 − m2

i

r4

)
fi = 0 , i = 1, . . . , n , (2.21)
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where m2
i = −k(i) · k(i). We will look the behaviour of fi with i = 1, . . . , n for large r.

Thus we assume fi ∼ r−∆i . If we plug this into the above differential equation and keep
the dominant terms we end up with an algebraic equation for ∆i which is

∆i(∆i + 1−D) = L2 di , i = 1, 2 . . . , n . (2.22)

This is the well known mass-dimension formula obtained in the context of the AdS/CFT
correspondence in [37]. Reality of the scaling dimensions ∆i requires that

di > −
(
D − 1

2L

)2
, ∀ i = 1, . . . , n , (2.23)

which is known as the Breitenlohner-Freedman (BF) bound [38].

3 The AdS3 solution

In this section we examine the stability of the type-IIB solution on AdS3×S3×CS2
λ×CH2,λ,

where we use the notation CS2
λ and CH2,λ for the λ-deformed cosets SU(2)/U(1) and

SL(2,R)/SO(1, 1), respectively. The solution depends on the deformation parameter λ,
the scale ` of the AdS3 and the level k of the undeformed CFTs. It turns out that, the
parametric space of the mass matrix arising from the stability analysis is two-dimensional
since the k and ` will appear via the combination ˆ̀ = k`. Details of the solution can be
found in appendix B.1. We will show that demanding perturbative stability restricts the
allowed parametric space.

3.1 The reduction ansatz

We start by introducing a reduction ansatz for the solution in appendix B.1. The reduc-
tion will be along the three-sphere and the two λ-deformed spaces of the ten-dimensional
space (B.4). Thus, for the metric we adopt the following ansatz (our approach is similar
in spirit to that in [39–41])

dŝ2 = e2A
[
ds2
M3 + e2ψ(dθ2

1 + sin2 θ1 dθ
2
2 + sin2 θ1 sin2 θ2 dθ

2
2
)

+ e2φy
(
λ2

+ e
2χ1 dy2

1 + λ2
− e

2χ2 dy2
2

)
+ e2φz

(
λ2

+ e
2χ3 dz2

1 + λ2
− e

2χ4 dz2
2

)]
, (3.1)

whereM3 is a three-dimensional space with metric

ds2
M3 = gµν dx

µ dxν . (3.2)

The scalars A,ψ, χ1, . . . , χ4 can only depend on the coordinates xµ of M3. For the NS
three-form and the dilaton we take

Ĥ3 = 0 , Φ̂(x, y, z) = 4A(x) + φy(y) + φz(z) , (3.3)

where φy(y) and φz(z) are given by (B.2) and (B.3), respectively. Finally, for the RR-sector
the ansatz is

F̂1 = 0 , F̂3 = 0 ,

F̂5 = dz1 ∧ dy2 ∧
(
c1e

χ2−χ1+χ3−χ4−3ψ Vol(M3) + c2Vol(S3)
)

− dz2 ∧ dy1 ∧
(
c2e

χ1−χ2−χ3+χ4−3ψVol(M3) + c1Vol(S3)
)
,

(3.4)
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where Vol(M3) is the volume form on M3 and Vol(S3) is given explicitly by (B.7). The
constants c1 and c2 are

c1 = 2k
(2
`

) 3
2

√
`− µ

2 , c2 = 2k
(2
`

) 3
2

√
`+ µ

2 . (3.5)

The solution of appendix B.1 is obtained by taking the spaceM3 to be an AdS3 with line
element

ds2
AdS3 = ḡµν dx

µ dxν = 2
`

(
r2ηαβdx

αdxβ + dr2

r2

)
, (3.6)

normalised as R̄µν = −` ḡµν and by setting the scalars to

Ā = χ̄1 = χ̄2 = χ̄3 = χ̄4 = 0 , ψ̄ = 1
2 ln 2

`
. (3.7)

3.2 The equations of motion

To find the equations of motion for the scalars A,ψ, χ1, . . . , χ4 and the metric gµν on
M3 we insert the ansatz (3.1), (3.3) and (3.4) in the equations of motion of the type-IIB
supergravity summarised in appendix A. We first notice that the equations for the form
fields (A.4) and (A.6) are trivially satisfied. Therefore, we are only concerned with the
dilaton and Einstein equations (A.5).

Tensors constructed below and all contractions are performed with respect to the
metric gµν onM3.

The dilaton equation. The dilaton equation (A.5) reduces to

R+ 6 e−2ψ − 2∇2
g

(
3ψ + χ1 + χ2 + χ3 + χ4

)
−
(
3 ∂ψ + ∂χ1 + ∂χ2 + ∂χ3 + ∂χ4

)2
− 3

(
∂ψ
)2 − (∂χ1

)2 − (∂χ2
)2 − (∂χ3

)2 − (∂χ4
)2 − 2 ∂

(
3ψ + χ1 + χ2 + χ3 + χ4

)
· ∂A

− 2∇2
gA− 8

(
∂A
)2 + 2 e

−2χ1

λ2
+

+ 2 e
−2χ2

λ2
−
− 2 e

−2χ3

λ2
+
− 2 e

−2χ4

λ2
−

= 0 . (3.8)

The directions along M3. Restricting ourselves to the components of the Einstein
equations (A.5) along theM3 directions we get

Rµν −∇µ∇ν
(
3ψ + χ1 + χ2 + χ3 + χ4

)
− 3∂µψ ∂νψ − ∂µχ1 ∂νχ1 − ∂µχ2 ∂νχ2

− ∂µχ3 ∂νχ3 − ∂µχ4 ∂νχ4 − 8 ∂µA∂νA− gµν ∇2
gA− gµν ∂

(
3ψ + χ1 + χ2 + χ3 + χ4

)
· ∂A

= −gµν
e−6ψ

4k2

(
c2

1e
−2χ1−2χ4 + c2

2e
−2χ2−2χ3

)
. (3.9)

Taking the trace of the equation above and using it in order to eliminate the Ricci
scalar from (3.8) we obtain that

∇2
g

(
3ψ + χ1 + χ2 + χ3 + χ4 −A

)
+ ∂

(
3ψ + χ1 + χ2 + χ3 + χ4

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4 −A

)
− 6 e−2ψ + 3 e

−6ψ

4k2

(
c2

1e
−2χ1−2χ4 + c2

2e
−2χ2−2χ3

)
− 2 e

−2χ1

λ2
+
− 2 e

−2χ2

λ2
−

+ 2 e
−2χ3

λ2
+

+ 2 e
−2χ4

λ2
−

= 0 .

(3.10)

It is convenient to use this equation instead of the equivalent one in (3.8).

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
4

The directions along S3. It turns out that the only non-vanishing components of the
Einstein equations along the sphere directions are the diagonal ones. As expected, due to
symmetry, we get a single equation given by

∇2
g

(
A+ ψ

)
+ ∂

(
A+ ψ

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4

)
− 2e−2ψ

= −e
−6ψ

4k2

(
c2

1e
−2χ1−2χ4 + c2

2e
−2χ2−2χ3

)
.

(3.11)

The y-directions along the λ-deformed spaces. Focusing on the y-components
of (A.5), turns out that the ones surviving are along the diagonal directions (y1y1) and
(y2y2) resulting at

∇2
g

(
A+ χ1

)
+ ∂

(
A+ χ1

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4

)
− e−2χ1

λ2
+

+ e−2χ2

λ2
−

= −e
−6ψ

4k2

(
c2

1e
−2χ1−2χ4 − c2

2e
−2χ2−2χ3

) (3.12)

and

∇2
g

(
A+ χ2

)
+ ∂

(
A+ χ2

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4

)
+ e−2χ1

λ2
+
− e−2χ2

λ2
−

= e−6ψ

4k2

(
c2

1e
−2χ1−2χ4 − c2

2e
−2χ2−2χ3

)
,

(3.13)

respectively.

The z-directions along the λ-deformed spaces. As before, the non-vanishing com-
ponents of the Einstein equations (A.5) are along (z1z1) and (z2z2) leading to

∇2
g

(
A+ χ3

)
+ ∂

(
A+ χ3

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4

)
+ e−2χ3

λ2
+
− e−2χ4

λ2
−

= e−6ψ

4k2

(
c2

1e
−2χ1−2χ4 − c2

2e
−2χ2−2χ3

) (3.14)

and

∇2
g

(
A+ χ4

)
+ ∂

(
A+ χ4

)
· ∂
(
3ψ + χ1 + χ2 + χ3 + χ4

)
− e−2χ3

λ2
+

+ e−2χ4

λ2
−

= −e
−6ψ

4k2

(
c2

1e
−2χ1−2χ4 − c2

2e
−2χ2−2χ3

)
,

(3.15)

respectively.

The mixed directions. There is also a number of mixed components that are non-
trivial. These are along the (µy)- and (µz)-directions and they give rise to the following
first order equations, respectively

∂µ
(
2A+ χ1 + χ2

)
= 0 , ∂µ

(
2A+ χ3 + χ4

)
= 0 , (3.16)

integrated to
2A+ χ1 + χ2 = 0 , 2A+ χ3 + χ4 = 0 , (3.17)

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
4

where the integration constants were fixed by requiring consistency with the background
values (3.7).

The constraints (3.17) tell us that from the six scalars only four of them are indepen-
dent. In addition, using them one can easily see that (3.12) and (3.13) are equivalent and
similarly for (3.14) and (3.15). Hence, we remain with the metric gµν and, by making a
specific choice among the scalars, with A,ψ, χ1, χ3. The independent set of equations now
will be (3.9) together with (3.10), (3.11), (3.12) and (3.14).

3.3 A change of frame and the stability analysis

Our equations can be further simplified in a different frame metric given by

gµν = e8A−6ψgµν . (3.18)

In this frame, the equations of motion for the rescaled metric gµν and the scalars A,ψ, χ1, χ3
can be derived from an action of the form (2.1) where now D = 3 and the scalars are
encoded in a four-vector X = (A,ψ, χ1, χ3). The matrix γij is

γij =


32 −12 2 2
−12 12 0 0

2 0 2 0
2 0 0 2

 (3.19)

and the potential V (X) reads

V (X) =− 6 e8A−8ψ − 2 e8A−6ψ
(
e−2χ1

λ2
+

+ e4A+2χ1

λ2
−

− e−2χ3

λ2
+
− e4A+2χ3

λ2
−

)

+ e12A−12ψ

2k2

(
c2

1e
2χ3−2χ1 + c2

2e
2χ1−2χ3

)
.

(3.20)

The vacuum of appendix B.1 corresponds to the background values (3.6) and (3.7). Hence,
the background value for gµν is related to that of gµν in (3.6) via

ḡµν =
(2
`

)3
ḡµν (3.21)

and using (2.6) amounts to an AdS3 space with radius

L = 4
`2
. (3.22)

In order to proceed with the stability analysis we need the eigenvalues of the mass matrix
square M2 which is a 4× 4 matrix. The expressions are quite complicated and not illumi-
nating for general values of λ. Nevertheless, for λ = 0 they become tractable so that we
examine this case first. The result we obtain give us an insight of what to expect in general.
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The undeformed case with λ = 0. The matrix M2 is

M2 = `4

2


0 0 0 0
−1 1 0 0
−1

ˆ̀ 0 1
2 −

1
ˆ̀ −

1
2

1
ˆ̀ 0 −1

2
1
2 + 1

ˆ̀

 , (3.23)

with eigenvalues

d1 = 0 , d2 = `4

4

(
1 +

√
1 + 4

ˆ̀2

)
, d3 = `4

2 , d4 = `4

4

(
1−

√
1 + 4

ˆ̀2

)
, (3.24)

where
ˆ̀ := k` . (3.25)

From (3.24) and (2.22) we find the associated scaling dimensions

∆+
1 = 2 , ∆−1 = 0 , ∆±2 = 1±

√√√√5 + 4
√

1 + 4
ˆ̀2
,

∆+
3 = 4 , ∆−3 = −2 , ∆±4 = 1±

√√√√5− 4
√

1 + 4
ˆ̀2
.

(3.26)

All of them, apart from ∆±4 , are manifestly real. To ensure reality of ∆±4 we demand that

ˆ̀> 8
3 . (3.27)

Therefore the radius of the AdS3 requires a minimum value so that stability is not excluded,
even though classically ˆ̀> 0.

The general case. Classically, reality of the supergravity solution requires a minimum
value for the AdS3 scale that is

ˆ̀> 4λ
1− λ2 . (3.28)

Our findings above for λ = 0 suggest that stability may require a stricter bound than (3.28),
which is explicitly evaluated below.

To proceed we define the matrix

B = 1 + 16
`4
M2 , (3.29)

with eigenvalues written in terms of di (the eigenvalues of M2) as

bi = 1 + 16
`4
di > 0 , i = 1, . . . , 4 . (3.30)

The positivity is required for stability according to (2.23). The characteristic polynomial
of the matrix B turns out to be

p4(s) = (s− 1)p3(s) ,

p3 (s) = s3 − 19s2 +
(

99− 641 + 18λ2 + λ4

ˆ̀2 (1− λ2)2

)
s−

(
81− 1923 + 22λ2 + 3λ4

ˆ̀2(1− λ2)2

)
.

(3.31)
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From the factorisation of p4(s) clearly one eigenvalue of B is unity, say b1 = 1. The constant
term of the polynomial p3(s) coming with a minus sign equals the product b2b3b4.2 In the
desired scenario of stability all of the eigenvalues (b2, b3, b4) must be non-negative, so must
be their product. This tells us that a necessary but not sufficient condition for stability is
that ˆ̀ satisfies the inequality

ˆ̀> 8
3
√

3

√
3 + 22λ2 + 3λ4

1− λ2 , (3.32)

which is clearly a stricter bound than that in (3.28). This guarantees that b2b3b4 > 0,
but not the positivity of each eigenvalue separately. There is always a possibility that one
eigenvalue is positive and two negative. However this can not be true in our case. In order
to show this we assume, without loss of generality, that b2 > 0 and b3, b4 < 0. From the
coefficient of the quadratic term in p3(s) we have that b2 + b3 + b4 = 19, which together
with our assumption implies that b2 > 19. In addition, it can be shown that the coefficient
of the linear term in p3(s) is positive for all values of λ. Therefore, b2b3 + b2b4 + b3b4 > 0.
Trading b4 from the aforementioned sum we have that −(b2 − 19)(b2 + b3) > b23 > 0. This
is true for b2 + b3 < 0 yielding that 19 = b2 + b3 + b4 < b4. The latter contradicts to our
initial assumption where b4 < 0. Hence we conclude that whenever ˆ̀ satisfies (3.32) all
eigenvalues bi, i = 1, 2, 3, 4 are non-negative which according to (2.23) ensures the reality
of the scaling dimensions.

The analysis above is also illustrated in figures 1 and 2. In figure 1 we plot the
eigenvalues b2 and b3 of the matrix B as a function of λ and ˆ̀ parameters. The latter are
confined between the horizontal axis and the curve in red, which is defined by the equality
in (3.28). In this domain the eigenvalues b2 and b3 are positive, as it can be seen from the
two contour plots, and thus they are not associated to unstable modes. The case of the
eigenvalue b4 is shown in figure 2. There exists a critical curve (dashed line), parametrized
by the equality in (3.32), on which b4 = 0. Therefore, the allowed region for the parameters
λ and ˆ̀ is divided into two sub-regions, one that sits between the red and dashed lines with
b4 < 0 and one that sits on the right of the dashed line with b4 > 0. Clearly, one should
disregard the area of the parameter space with b4 < 0, where the instability of the mode
associated to the eigenvalue b4 occurs.

4 The AdS4 solutions

In this section we perform a stability analysis of a class of type-IIB solutions with geometry
AdS4 ×N4 ×CS2

λ where the four-dimensional space N4 can be any of the following spaces
(S4, H4, T

4). All of the aforementioned cases are summarised in appendix B.2 and have
only one free parameter, that is λ, in addition to the level k of the undeformed CFTs.
When the four-dimensional space is either the sphere S4 or the hyperboloid H4 we strictly

2We use the fact that the polynomial p3(s) can also be written as

p3(s) = (s − b2)(s − b3)(s − b4) = s3 − (b2 + b3 + b4)s2 + (b2b3 + b2b4 + b3b4)s − b2b3b4 .
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Figure 1. The eigenvalues b2 (left) and b3 (right) of the matrix B in eq. (3.29) are constant along
the contours denoted by dark lines. In the coloured areas, the values of b2 and b3 are in between
the values attached to the contours. The curve in red parametrized by the equality in eq. (3.28)
defines the allowed region of the parameter space spanned by λ and ˆ̀.
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Figure 2. The eigenvalue b4 as a function of λ and ˆ̀. Here, the classically allowed region in the
parameter space is divided by a critical curve (dashed line) along which b4 = 0. This curve is given
by the equality in eq. (3.32). The area on the left of this contour is where instability occurs since b4
is always negative. On the right of the dashed line (denoted by green colour) b4 is always positive.
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have λ 6= 0. When N4 = T 4, we can construct one background with λ > 0 and one with
λ = 0 but with an additional free parameter. The latter case shows signs of stability.

4.1 The reduction ansatz

We will adopt a reduction ansatz that fits all the solutions that are mentioned in ap-
pendix B.2. The reduction takes place on the λ-deformed CS2

λ and the four-dimensional
spaces N4. Hence, for the metric we have the ansatz

dŝ2 = e2A
[
ds2
M4 + e2ψds2

N4 + e2φy
(
λ2

+ e
2χ1 dy2

1 + λ2
− e

2χ2 dy2
2

)]
, (4.1)

whereM4 is a four-dimensional space with metric

ds2
M4 = gµν dx

µ dxν (4.2)

and ds2
N4

can be any of the line elements in (B.9). The scalars A,ψ, χ1, χ2 are taken to
depend only on the coordinates xµ of M4. For the NS three-form and the dilaton we
consider the ansatz

Ĥ3 = 0 , Φ̂(x, y) = 4A(x) + φy(y) , (4.3)

with φy(y) given in (B.2). For the RR sector we assume that

F̂1 = c1 λ+ dy1 + c2 λ− dy2 , F̂3 = 0 ,

F̂5 = e−4ψVol(M4) ∧
(
c3e

χ1−χ2 λ+ dy1 + c4 e
χ2−χ1 λ− dy2

)
+ Vol(N4) ∧

(
c4 λ+ dy1 − c3 λ− dy2

)
,

(4.4)

where Vol(M4) is the volume form on M4 and Vol(N4) is given by the corresponding
expression in (B.13).

The solutions in appendix B.2 can be obtained after settingM4 to be an AdS4 space
with metric

ds2
AdS4 = ḡµν dx

µ dxν = 3
`1

(
r2ηαβdx

αdxβ + dr2

r2

)
, (4.5)

normalised as R̄µν = −`1 ḡµν and by setting the scalars to

Ā = ψ̄ = χ̄1 = χ̄2 = 0 . (4.6)

The constants c1, . . . , c4 and `1, `2 take values according to the six different solutions given
by (B.14), (B.16), (B.18), (B.20), (B.22) and (B.24).

4.2 The equations of motion

We determine the equations of motion for the scalars A,ψ, χ1, χ2 by inserting the ansatz of
the subsection 4.1 into the equations of the type-IIB supergravity presented in appendix A.
Similarly to the analysis for the AdS3 solution, we observe that the equations for the form
fields (A.4) and (A.6) are trivially satisfied. Thus we only have to deal with the dilaton
and Einstein equations (A.5).

Tensors constructed below and all contractions are performed with respect to the
metric gµν onM4.
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The dilaton equation. The dilaton equation (A.5) reduces to

R+ 4 ε `2 e−2ψ − 2∇2(A+ 4ψ + χ1 + χ2
)

−
(
4∂ψ + ∂χ1 + ∂χ2

)2 − 4
(
∂ψ
)2 − 8

(
∂A
)2 − (∂χ1

)2 − (∂χ2
)2

− 2∂
(
4ψ + χ1 + χ2

)
· ∂A+ 2

λ2
+
e−2χ1 + 2

λ2
−
e−2χ2 = 0 ,

(4.7)

The ε symbol takes the values 0,±1 according to (B.10).

The directions along M4. If we restrict ourselves to the components of the Einstein
equations (A.5) along theM4 directions we get

Rµν −∇µ∇ν
(
4ψ + χ1 + χ2

)
− 4∂µψ∂νψ − ∂µχ1∂νχ1 − ∂µχ2∂νχ2

− 8∂µA∂νA− gµν∇2A− gµν∂
(
4ψ + χ1 + χ2

)
· ∂A

+ gµν

(
e8A

4
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ e−8ψ

4
(
c2

3e
−2χ2 + c2

4e
−2χ1

))
= 0 .

(4.8)

Taking the trace of the previous equation and combining it with (4.7) in order to
eliminate the Ricci scalar we find that

∇2(4ψ + χ1 + χ2 − 2A
)
− 2∂

(
4ψ + χ1 + χ2

)
· ∂A

+
(
4∂ψ + ∂χ1 + ∂χ2

)2 − 4 ε `2 e−2ψ − 2
λ2

+
e−2χ1 − 2

λ2
−
e−2χ2

+ e8A
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ e−8ψ

(
c2

3e
−2χ2 + c2

4e
−2χ1

)
= 0 .

(4.9)

We will use this equation instead of the equivalent one in (4.7).

The directions along N4. The only non-trivial components of the Einstein equations
along the N4 directions are the diagonal ones. They all lead to the same equation given
by

∇2(A+ ψ
)

+ ∂
(
4ψ + χ1 + χ2

)
· ∂
(
A+ ψ

)
− ε `2 e−2ψ − e8A

4
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ e−8ψ

4
(
c2

3e
−2χ2 + c2

4e
−2χ1

)
= 0 .

(4.10)

The directions along the λ-deformed space. Focusing on the y-components of (A.5)
we find that the diagonal ones, i.e. the (y1y1) and (y2y2), contribute, respectively, as

∇2(A+ χ1
)

+ ∂
(
4ψ + χ1 + χ2

)
· ∂
(
A+ χ1

)
− e−2χ1

λ2
+

+ e−2χ2

λ2
−

+ e8A

4
(
c2

1e
−2χ1 − c2

2e
−2χ2

)
− e−8ψ

4
(
c2

3e
−2χ2 − c2

4e
−2χ1

)
= 0

(4.11)

and

∇2(A+ χ2
)

+ ∂
(
4ψ + χ1 + χ2

)
· ∂
(
A+ χ2

)
+ e−2χ1

λ2
+
− e−2χ2

λ2
−
− e8A

4
(
c2

1e
−2χ1 − c2

2e
−2χ2

)
+ e−8ψ

4
(
c2

3e
−2χ2 − c2

4e
−2χ1

)
= 0 .

(4.12)
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The off-diagonal component (y1y2) provides the condition

c1 c2 e
8A − c3 c4 e

−8ψ = 0 . (4.13)

This is obviously satisfied for the solutions I–IV in appendix B.2. However, for V &
VI (4.13) may be considered as an extra constraint on the scalars A and ψ. Hence, the
various solutions have to be treated separately as far as the stability analysis is concerned.

The mixed directions. Finally, non-trivial components of the Einstein equations (A.5)
along the mixed (µy) directions give rise to the first order equation

∂µ
(
2A+ χ1 + χ2

)
= 0 . (4.14)

This is integrated to
2A+ χ1 + χ2 = 0 , (4.15)

where the integration constant is fixed by the background values (4.6). Due to this con-
straint, (4.11) and (4.12) are equivalent.

From the considerations above it is clear that for the solutions I–IV, we are left with
equations (4.8), (4.9), (4.10) and (4.11) for the metric gµν onM4 and the three scalars ψ, χ1
and χ2. The scalar A should be substituted everywhere using (4.15). For the solutions V
& VI we have in addition the constraint (4.13) which leaves the possibility for a reduced
number of scalars as we will see in detail.

4.3 A change of frame and the stability analysis

The solutions I-IV. The equations can be further simplified if we change the metric
frame as

gµν = e−4ψ−χ1−χ2gµν . (4.16)

Then, it turns out that the equations of motion for the metric gµν and the scalars ψ, χ1, χ2
can be obtained by an action of the form (2.1) where now D = 4 with the vector for the
scalars being X = (ψ, χ1, χ2). In addition, the matrix γij is

γij = 1
2

24 4 4
4 7 5
4 5 7

 , (4.17)

whereas the potential V (X) is

V (X) = 2 e−4ψ−χ1−χ2

(
c2

1
e−6χ1−4χ2

4 + c2
2
e−4χ1−6χ2

4 + c2
3
e−8ψ−2χ2

4 + c2
4
e−8ψ−2χ1

4

− e−2χ1

λ2
+
− e−2χ2

λ2
−
− 2 ε `2 e−2ψ

)
.

(4.18)

The vacua associated with the solutions I-IV of appendix B.2 correspond to (4.5) and (4.6).
Notice that, although we changed the frame according to the eq. (4.16) the background
values for gµν and gµν are the same, i.e.

ḡµν = ḡµν , (4.19)
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Figure 3. The eigenvalues bi in eq. (4.22) as a function of the deformation parameter λ. The upper
left plot refers to the solution I, the upper right to the solution II, the lower left to the solution III
and the lower right to the solution IV. In all cases there is a negative eigenvalue, namely the b3,
signaling the existence of an unstable mode.

and that amounts to an AdS4 of radius

L =
√

3
`1
. (4.20)

To study the stability of the fluctuations around the vacua I-IV we define, similarly
to (3.29), the matrix

B = 9
41 + 3

`1
M2 , (4.21)

with eigenvalues

bi = 9
4 + 3

`1
di > 0 , (4.22)

where di are the eigenvalues of the matrix M2 and positivity is according to (2.23). We
have computed for each one of the four solutions the characteristic polynomial of matrix
B which is cubic in order. We will not present their explicit expressions but nevertheless,
by examining the constant and quadratic pieces we easily conclude that one eigenvalue is
negative and two positive for all allowed values of λ. These are illustrated in figure 3 where
we plot the eigenvalues bi as a function of λ for each one of the four solutions.
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The solution V. This solution can be separated in two distinct cases. In the first one,
the deformation parameter λ takes the specific value λ = 2−

√
3 and the constraint (4.13)

is trivially satisfied. As a result this case can be seen as a continuation of the previous one,
in the sense that we can use the same four-dimensional action to obtain the equations of
motion for the metric and the scalars. Following this line of reasoning, the corresponding
mass matrix reads

M2 = 1
2
√

3k

 16 −1 1
−16 −5 5
16 19 13

 . (4.23)

From this we compute the eigenvalues of the matrix B through (4.22) which are

b1 = 57
4 , b2 = 21

4 + 3
√

13 , b3 = 21
4 − 3

√
13 . (4.24)

Obviously the mode associated to the eigenvalue b3 is unstable as it violates the BF bound.
When λ ∈ [0, 2−

√
3) the case of V solution differs significantly from those of I-IV, since

now there is an extra constraint for the scalars. This comes from (4.13) which now implies

A+ ψ = 0 . (4.25)

We can use this and (4.15) to obtain ψ = 1
2(χ1 + χ2). Thus we stay only with the metric

onM4 and the scalars χ1, χ2. Again we can go to the convenient Einstein frame letting

gµν = e−3(χ1+χ2)gµν . (4.26)

In the new frame, the equations of motion for the metric gµν and the scalars χ1, χ2 can
be derived from the four-dimensional analogue of the action (2.1) with X = (χ1, χ2), the
matrix γij being

γij = 1
2

(
17 15
15 17

)
(4.27)

and the potential V (X)

V (X) = e−7χ1−7χ2

[(
ν

4 − µ
)
e−2χ1 +

(
ν

4 + µ

)
e−2χ2

]
− 2
λ2

+
e−5χ1−3χ2 − 2

λ2
−
e−3χ1−5χ2 .

(4.28)

Using (2.18) we can construct the 2× 2 mass matrix

M2 = 1
4

(
ν − 17µ 3ν − 15µ
3ν + 15µ ν + 17µ

)
(4.29)

and from its eigenvalues we evaluate b1 and b2 via (4.22) giving

b1 = 21
4 + 3

ν

√
9ν2 + 64µ2 , b2 = 21

4 −
3
ν

√
9ν2 + 64µ2 . (4.30)

The mode associated with b2 always violates the BF bound as it is negative for all the
values of λ in the range [0, 2−

√
3).
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The solution VI. In this example a more interesting structure appears. Initially we
observe that the constraint (4.13) is trivially satisfied when the constant c1, i.e. the free
parameter entering in the solution VI through the coefficients of the RR fields F1 and F5
in (B.24)) takes the value c1 = ±

√
2
k . When this happens one can safely use the four-

dimensional version of the action (2.1) with γij given in (4.17) and V (X) in (4.18). As
usual, the matrix M2 is computed from eq. (2.18) and has the form

M2 = 1
2k

 8 −1 1
−8 7 9
8 3 −3

 . (4.31)

The eigenvalues of this matrix and those for the matrix B defined in (4.21) are related
via (4.22). We find that

b1 = 57
4 , b2 = 21

4 + 3
√

17 , b3 = 21
4 − 3

√
17 . (4.32)

Since b3 < 0 we conclude that the corresponding mode is unstable.
Another option for the parameter c1 is to allow |c1| <

√
2
k . In this case the con-

straint (4.13) implies that A and ψ are related as in eq. (4.25). Substituting the relation
between A and ψ in (4.10) we arrive to the following new constraint(1

k
− c2

1

)(
e−2χ1 − e−2χ2

)
= 0 . (4.33)

This is satisfied in two ways: either when c1 = ±
√

1
k , which, as explained below (B.25), is

identical with the λ = 0 limit of the solution V and thus it has one unstable mode or, if
c1 6= ±

√
1
k , by taking χ1 = χ2 := χ. Therefore, we end up with a four-dimensional system

of gravity with one scalar described by the action

S = 1
2κ2

4

∫
d4x

√
|g|
(
R− 32

(
∂χ
)2 − V (χ)

)
with V (χ) = 2

k
e−16χ − 4

k
e−8χ . (4.34)

The scalar χ has mass squared M2 = 4
k and thus the BF bound is not violated. This is the

only case in the whole analysis of the λ-deformed gravity solutions with an AdS4 factor
that an instability is not present.

Summarising, we arrive at the following conclusion: the stability analysis of the λ-
deformed type-IIB backgrounds with an AdS4 factor uncovered an unstable mode for all
solutions I-V, and only for the solution VI there are islands of potential stability. Precisely,
in the case of the AdS4×T 4×CS2 background (λ=0), with the values of the free parameter
c1 satisfying |c1| <

√
2/k and excluding the values c1 = ±

√
1/k, our stability analysis did

not detect any sign of instability. Technically, the feature that distinguishes the case VI
from the other five (I-V) is that one is forced, cf. (4.33), to take the two scalars equal, i.e.
χ1 = χ2. In turn, this gives rise to a positive mass term around the minimum of the single
scalar potential.
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5 The AdS6 solutions

Following the same line of the previous sections we examine the stability of a class of type-
IIB solutions with geometry AdS6 ×N2 × CS2

λ, where now the two-dimensional space N2
is one of the following spaces (S2, H2, T

2). More details on these solutions can be found
in appendix B.3. Likewise to the preceding section, λ is the only independent parameter,
apart from the level k of the undeformed CFT.

5.1 The reduction ansatz

A reduction ansatz for the metric accommodating the three solutions of appendix B.3 has
the form

dŝ2 = e2A
[
ds2
M6 + e2ψds2

N2 + e2φy
(
λ2

+ e
2χ1 dy2

1 + λ2
− e

2χ2 dy2
2

)]
, (5.1)

whereM6 is a six-dimensional space with metric

ds2
M6 = gµν dx

µ dxν (5.2)

and ds2
N2

can be any of the line elements in (B.27). Also, the scalars A,ψ, χ1, χ2 are taken
to depend exclusively on the coordinates xµ ofM6. For the NS three-form and the dilaton
we consider

Ĥ3 = 0 , Φ̂(x, y) = 4A(x) + φy(y) , (5.3)

where φy(y) is given by (B.2) and for the RR sector we assume that

F̂1 = c1 λ+ dy1 + c2 λ− dy2 , F̂3 = Vol(N2) ∧
(
c3 λ+ dy1 + c4 λ− dy2

)
, F̂5 = 0 , (5.4)

with Vol(N2) given by the appropriate expression in (B.31).
The vacua of appendix B.3 can be obtained after takingM6 to be an AdS6 with

ds2
AdS6 = ḡµν dx

µ dxν = 5
`1

(
r2dxαdxβ + dr2

r2

)
, (5.5)

normalised as R̄µν = −`1 ḡµν and by setting the scalars to

Ā = ψ̄ = χ̄1 = χ̄2 = 0 . (5.6)

The constants c1, . . . , c4 and `1, `2 take values according to the three different solutions
in (B.32), (B.34) and (B.36).

5.2 The equations of motion

We determine the equations of motion for the scalars A,ψ, χ1, χ2 by plugging our ansatz
into the equations of type-IIB supergravity in appendix A. In the same manner as the
examples containing AdS3 and AdS4 factors, the form field equations (A.4) and (A.6)
are trivially satisfied. Thus we only have to work out the dilaton and the Einstein equa-
tions (A.5).

Tensors constructed below and all contractions are performed with respect to the
metric gµν onM6.
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The dilaton equation. The dilaton equation (A.5) reduces to

R+ 2 ε `2 e−2ψ − 2∇2 (A+ 2ψ + χ1 + χ2)−
(
2∂ψ + ∂χ1 + ∂χ2

)2 − 2
(
∂ψ
)2

−
(
∂χ1

)2 − (∂χ2
)2 − 8

(
∂A
)2 − 2∂

(
2ψ + χ1 + χ2

)
· ∂A

+ 2
λ2

+
e−2χ1 + 2

λ2
−
e−2χ2 = 0 ,

(5.7)

The ε symbol takes the values 0,±1 according to (B.28).

The directions along M6. The components of the Einstein equations (A.5) along
M6 give

Rµν −∇µ∇ν
(
2ψ + χ1 + χ2

)
− 2∂µψ∂νψ − ∂µχ1∂νχ1 − ∂µχ2∂νχ2

− 8∂µA∂νA− gµν
(
∇2A+ ∂

(
2ψ + χ1 + χ2

)
· ∂A

)
+ gµν

[
e8A

4
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ e4A−4ψ

4
(
c2

3e
−2χ1 + c2

4e
−2χ2

)]
= 0 .

(5.8)

The trace of the last equation combined with (5.7) serves to eliminate the Ricci scalar
from it giving

∇2(2ψ + χ1 + χ2 − 4A
)
− 4∂

(
2ψ + χ1 + χ2

)
· ∂A+

(
2∂ψ + ∂χ1 + ∂χ2

)2
− 2 ε `2 e−2ψ − 2

λ2
+
e−2χ1 − 2

λ2
−
e−2χ2 + 3

2e
8A
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ 3

2e
4A−4ψ

(
c2

3e
−2χ1 + c2

4e
−2χ2

)
= 0 .

(5.9)

It is convenient to use this equation instead of the equivalent one in (5.7).

The directions along N2. Along these directions the only non-trivial components of
Einstein’s equations are the diagonal ones leading to the same expression

∇2(A+ ψ
)

+ ∂
(
2ψ + χ1 + χ2

)
· ∂
(
A+ ψ

)
− ε `2 e−2ψ − e8A

4
(
c2

1e
−2χ1 + c2

2e
−2χ2

)
+ e4A−4ψ

4
(
c2

3e
−2χ1 + c2

4e
−2χ2

)
= 0 .

(5.10)

The directions along the λ-deformed space. The diagonal y-components of (A.5),
i.e. the (y1y1) and (y2y2), give

∇2(A+ χ1
)

+ ∂
(
2ψ + χ1 + χ2

)
· ∂
(
A+ χ1

)
− e−2χ1

λ2
+

+ e−2χ2

λ2
−

+ e8A

4
(
c2

1e
−2χ1 − c2

2e
−2χ2

)
+ e4A−4ψ

4
(
c2

3e
−2χ1 − c2

4e
−2χ2

)
= 0

(5.11)

and

∇2(A+ χ2
)

+ ∂
(
2ψ + χ1 + χ2

)
· ∂
(
A+ χ2

)
+ e−2χ1

λ2
+
− e−2χ2

λ2
−

− e8A

4
(
c2

1e
−2χ1 − c2

2e
−2χ2

)
− e4A−4ψ

4
(
c2

3e
−2χ1 − c2

4e
−2χ2

)
= 0 ,

(5.12)

respectively. The off-diagonal component is trivially satisfied.
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The mixed components. The integration of the equation arising from the mixed (µy)
directions provides that

2A+ χ1 + χ2 = 0 , (5.13)

in accordance with the background values (5.6). This can be used to solve for A and
eliminate it from the equations. Hence, the metric gµν onM6 and the independent scalars
ψ, χ1, χ2 must satisfy equations (5.8), (5.9), (5.10) and (5.11), where we note that (5.12)
is equivalent to (5.11).

5.3 A change of frame and the stability analysis

If we further change metric frame as

gµν = e−ψ−
χ1+χ2

2 gµν , (5.14)

then, the equations of motion for the metric and the scalars can be obtained by an action of
the form (2.1) where nowD = 6 and the scalars are encoded into the vector X = (ψ, χ1, χ2).
The matrix γij is

γij = 1
4

12 2 2
2 13 9
2 9 13

 . (5.15)

Also the potential V (X) is

V (X) = 2 e−ψ−
χ1+χ2

2

(
c2

1
e−6χ1−4χ2

4 + c2
2
e−4χ1−6χ2

4 + c2
3
e−4ψ−4χ1−2χ2

4

+ c2
4
e−4ψ−2χ1−4χ2

4 − e−2χ1

λ2
+
− e−2χ2

λ2
−
− ε `2 e−2ψ

)
.

(5.16)

We now study the linearized equations of motion for the scalars ψ, χ1, χ2 around the AdS6
solutions I-III of appendix B.3. These correspond to the background (5.5) and (5.6).

From (5.14) we observe that the background values for gµν and gµν are the same, i.e.

ḡµν = ḡµν , (5.17)

and thus gµν refers to an AdS6 of radius

L =
√

5
`1
. (5.18)

Following the lines of the section 2 we construct the matrix

B = 25
4 1 + 5

`1
M2 , (5.19)

whose eigenvalues are
bi = 25

4 + 5
`1
di > 0 , i = 1, 2, 3 , (5.20)

with di being the eigenvalues of the matrix M2 defined in eq. (2.18). Positivity of the bi’s
is necessary for stability. Below we analyse this for each solution of appendix B.3.
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Figure 4. The eigenvalues bi as a function of λ. The left plot corresponds to the solution I and
the right to the solution II. The existence of the negative eigenvalue b3 in both cases suggests that
the AdS6 solutions I and II are unstable.

The solutions I & II. It turns out that when N2 = S2 orN2 = H2 one of the eigenvalues
is negative for all the allowed values of λ whereas the other two stay positive. Hence the
backgrounds are unstable. This pattern is illustrated in figure 4, where for each solution
we plot the eigenvalues of B matrix as a function of λ. Clearly, one of them, say b3, is
always negative for all values of λ.

The solution III. This solution exists only for λ = 0. The mass matrixM2 from (2.18) is

M2 = 1
6k

12 3 9
−4 7 21
12 15 −3

 . (5.21)

The corresponding matrix B constructed from (5.19) has the eigenvalues

b1 = 145
4 , b2 = 5

4 + 5
√

13 , b3 = 5
4 − 5

√
13 . (5.22)

Obviously, since b3 < 0 the related mode is unstable. Notice that although this solution
is not the smooth λ → 0 limit of I (one should also replace the sphere by the torus) the
result of the stability analysis is qualitatively the same: one of the eigenvalues leads to
an unstable mode. At this point, there is a qualitative difference compared to the AdS4
result, and the reason (as we discussed at the end of the previous section) is that the λ = 0
limit in the AdS4 case is accompanied with a simplification in the reduction ansatz (i.e.
χ1 = χ2 = χ), something that is absent in the AdS6 case.

6 Conclusions

In the current paper we study a wide class of relatively simple supergravity backgrounds
constructed in [26]. These are non-supersymmetric solutions with an unwarped AdS factor
and originate from embedding integrable λ-deformed σ-models to type-II supergravity.
All of these solutions contain a continuous parameter λ, taking values in a certain range
between 0 and 1. The absence of supersymmetry, the presence of the AdS factor and
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the Ooguri-Vafa conjecture [27], as well as the potential usefulness within the AdS/CFT
correspondence, were the mains motivations to investigate the stability of these solutions,
starting with the perturbative one.

Among the different solutions constructed in [26] we chose to analyse those with an
AdSn factor of n = 3, 4, 6. All of them fall into the class of solutions that the Ooguri-Vafa
conjecture applies. In the present work we examined their perturbative stability. Our study
was based on a consistent dimensional reduction of these solutions to a lower dimensional
theory with scalars coupled to gravity and a subsequent perturbative stability analysis
of the corresponding lower dimensional theory. The study of the different backgrounds
revealed that most of them are perturbatively unstable except for the λ-deformed solution
with geometry AdS3 × S3 ×CS2

λ ×CH2,λ and the undeformed one with geometry AdS4 ×
T 4 × CS2 (solution VI in appendix B.2). Below we mention the solutions resisting the
characterisation unstable.

The analysis of the AdS3×S3×CS2
λ×CH2,λ solution uncovers an interesting structure.

The conformal scaling factors related to the fluctuations of the scalars are functions of the
deformation parameter λ and the combination ˆ̀= k`, where k is the level of the undeformed
CFT and ` is the curvature scale of AdS3, thus creating a two-dimensional parameter space
to search for violation of the BF bound. As it is depicted in figure 1 two of the eigenvalues
of the matrix B are clearly positive and thus are not associated to unstable modes. On the
other hand, the figure 2 shows that there is an eigenvalue which is negative in the region of
the parametric space confined between the red and dashed lines and positive elsewhere. The
area where this eigenvalue is negative must be disregarded while its complement requires
further investigation.

In the case of AdS4 × T 4 × CS2 there is another free parameter that it is called c1
appearing in the RR sector. It turns out that when |c1| <

√
2/k (excluding the values

with |c1| = 1/
√
k), our stability analysis does not detect unstable modes violating the BF

bound. As such, this background serves as another candidate for a more elaborate study.
Equally important with the perturbative instabilities are the non-perturbative ones.

Current progress in that front is coming from a novel decay channel, introduced in [35],
and comes under the name brane-jet instability. In this set-up, a probe brane is placed in
the background and the force acting on the brane has to be examined. In case this force is
repulsive, the vacuum is characterised unstable. In [35], one of the few gravity backgrounds
that challenged the Ooguri-Vafa conjecture, i.e. the non-supersymmetric SO(3) × SO(3)
invariant AdS4 vacuum of the 4-dimensional N = 8 SO(8) gauged supergravity [42], was
proved brane-jet unstable. In a parallel line of research, tachyonic Kaluza-Klein modes
were found for the same background [43]. Brane-jet instabilities also arise for other AdS
vacua [44].

The fact that the perturbative analysis of the AdS3 and AdS4 solutions that survived
leave a substantial part of the parametric space free of instabilities suggests that a brane-jet
calculation could be useful to further constrain the window of potential stability. However,
such a computation for the AdS3 case is not conclusive since it is not easy to extract the
potential generating the forces on the brane. This is due to the involved dependence of the
RR potential on the internal coordinates. As such, we can not infer about the existence of
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possible non-perturbative instabilities based on a brane-jet argument. The same reasoning
holds for the AdS4 example as well.

The analysis of the current paper leaves a number of important open questions: in the
AdS3 case the reduction ansatz we considered and the subsequent perturbative analysis left
an important part of the parametric space (λ, ˆ̀) to challenge the Ooguri-Vafa conjecture.
Applying more powerful techniques, for instance those coming from exceptional field theory
and calculating the full Kaluza-Klein spectrum would unambiguously decide about the
presence or not of perturbative instabilities. The same kind of analysis could also be
applied to the AdS4 undeformed case and for the range of values of the parameter c1 that
the current analysis does not identify as violating the BF bound.

For those solutions that the perturbative analysis does not detect instabilities, a further
exploration of the field theory needs to be put forward by applying the standard tools of
the AdS/CFT correspondence. Calculation of the Maxwell and Page charges and their
dependence on the λ parameter, the study of the dynamics and of the mesonic spectrum
are some computations that could be done.

Consistent truncations are typically related to the presence of a symmetry, direct or
hidden. For λ-deformed backgrounds such symmetries are not present, except for the
undeformed cases (i.e. λ = 0) which have a U(1) isometry. Investigating the presence of
a hidden symmetry is an interesting future direction. In addition, progress in that front
would be extremely helpful in order to perform a systematic search and decide whether the
lower dimensional effective theories are part of a consistent reduction of a 10-dimensional
supergravity. At present we are not aware that this is the case.
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A Type-IIB supergravity

In this appendix we review the field content and equations of motion of type-IIB super-
gravity. It is described by the following string frame action

SIIB = 1
2κ2

10

∫
M10

[
e−2Φ

(
R ? 1 + 4dΦ ∧ ?dΦ− 1

2H3 ∧ ?H3

)

− 1
2

(
F1 ∧ ?F1 + F3 ∧ ?F3 + 1

2F5 ∧ ?F5

)]
+ St.t. ,

(A.1)
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where St.t. is a topological term given by

St.t. = − 1
4κ2

10

∫
M10

C4 ∧H3 ∧ dC2 . (A.2)

The field content of type-IIB supergravity consists of the metric GMN on the ten-
dimensional space M10, a dilaton Φ, a NS two-form B2 whose field strength is H3 and
the RR potentials C0, C2, C4 which give rise to the higher-rank forms F1, F3, F5 through

H3 = dB2 , F1 = dC0 , F3 = dC2 − C0H3 , F5 = dC4 −H3 ∧ C2 . (A.3)

Thus, the form fields satisfy the following Bianchi identities

dH3 = 0 , dF1 = 0 , dF3 = H3 ∧ F1 , dF5 = H3 ∧ F3 . (A.4)

The five-form F5 is self-dual, i.e. ?F5 = F5 which is imposed by hand.
The equations of motion arising from variations of the dilaton and the metric are

R ? 1 + 4 d ? dΦ− 4 dΦ ∧ ?dΦ− 1
2H3 ∧ ?H3 = 0 ,

RMN + 2∇M∇NΦ− 1
4
(
H2

3

)
MN

= e2Φ

2

((
F 2

1

)
MN

+ 1
2
(
F 2

3

)
MN

+ 1
48
(
F 2

5

)
MN

−GMN

(1
2F

2
1 + 1

12F
2
3

))
,

(A.5)

while those arising from the variations of the RR potentials are

d
(
e−2Φ ? H3

)
− F1 ∧ ?F3 − F3 ∧ F5 = 0 ,

d ? F3 +H3 ∧ F5 = 0 ,
d ? F1 +H3 ∧ ?F3 = 0 .

(A.6)

B Supergravity solutions with AdS and λ-deformed spaces

Here we summarise the supergravity backgrounds found in [26], whose the perturbative
stability is analysed in the main text. Before doing that let us introduce the following set
of parameters which appear often in this study

λ± =

√
k

1± λ
1∓ λ = k

λ∓
, µ = 4λ

k
(
1− λ2) , ν = 4

k

1 + λ2

1− λ2 . (B.1)

In the above, k is the level of the associated CFTs we mention below, which is a positive
number and in addition an integer in the compact case. The deformation parameter λ
in principle takes values in the interval [0, 1). However, each solution below may impose
further restrictions on the allowed values of it.

Since all solutions are based on the λ-deformation of the gauged WZW models cor-
responding to the exact coset CFTs, SU(2)/U(1) and SL(2,R)/SO(1, 1), it is also useful
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to introduce the metrics and the dilatons for these spaces. For the λ-deformed model on
SU(2)/U(1) we have that

ds2
CS2

λ
= e2φy

(
λ2

+ dy
2
1 + λ2

− dy
2
2

)
, φy(y) = −1

2 ln
(
1− y2

1 − y2
2
)
, (B.2)

where the coordinates (y1, y2) are restricted inside the unit disc y2
1 + y2

2 < 1. This space
will be denoted as CS2

λ. Similarly, the λ-deformed model on SL(2,R)/SO(1, 1) is

ds2
CH2,λ = e2φz

(
λ2

+ dz
2
1 + λ2

− dz
2
2

)
, φz(z) = −1

2 ln
(
z2

1 + z2
2 − 1

)
, (B.3)

where now the coordinates (z1, z2) lie outside the unit disc, i.e. z2
1 + z2

2 > 1. This space
will be denoted as CH2,λ.

B.1 The AdS3 × S3 × CS2
λ × CH2,λ

The NS sector of this solution contains a metric that takes the form

ds2 = 2
`

(
− r2dt2 + r2dx2 + dr2

r2 + dθ2
1 + sin2 θ1 dθ

2
2 + sin2 θ1 sin2 θ2 dθ

2
3

)
+ ds2

CS2
λ

+ ds2
CH2,λ ,

(B.4)

where ` is a constant and the line elements for CS2
λ and CH2,λ are given in (B.2) and (B.3),

respectively. There is also a dilaton whose expression is

Φ(y, z) = φy(y) + φz(z) , (B.5)

where the functions φy(y) and φz(z) are given in (B.2) and (B.3). The NS two-form B2 is
trivial and so is its field strength H3.

The above is supported by a RR sector whose content is

F1 = 0 , F3 = 0 ,

F5 = 2 k
(2
`

) 3
2
dz1 ∧ dy2 ∧

√`− µ
2 Vol (AdS3) +

√
`+ µ

2 Vol
(
S3
)

− 2 k
(2
`

) 3
2
dz2 ∧ dy1 ∧

√`+ µ

2 Vol (AdS3) +

√
`− µ

2 Vol
(
S3
) ,

(B.6)

where we have defined the volume forms on AdS3 and S3 as

Vol(AdS3) = r dt ∧ dx ∧ dr , Vol(S3) = sin2 θ1 sin θ2 dθ1 ∧ dθ2 ∧ dθ3 . (B.7)

In order for the solution to be real one has to require that ` > µ.
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B.2 The AdS4 ×N4 × CS2
λ

Another class of type-IIB solutions with AdS and λ-deformed factors have the line element

ds2 = 3
`1

(
−r2dt2 + r2dx2

1 + r2dx2
2 + dr2

r2

)
+ ds2

N4 + ds2
CS2

λ
, (B.8)

where `1 is a positive constant, ds2
CS2

λ
is given in (B.2) and N4 can be any of the four-

dimensional spaces in the list (S4, H4, T
4). The line elements are explicitly given by

ds2
S4 = 3

`2

(
dθ2

1 + sin2 θ1 dθ
2
2 + sin2 θ1 sin2 θ2 dθ

2
3 + sin2 θ1 sin2 θ2 sin2 θ3 dθ

2
4

)
,

ds2
H4 = 3

`2

(
dθ2

1 + sinh2 θ1 dθ
2
2 + sinh2 θ1 sin2 θ2 dθ

2
3 + sinh2 θ1 sin2 θ2 sin2 θ3 dθ

2
4

)
,

ds2
T 4 = dθ2

1 + dθ2
2 + dθ2

3 + dθ2
4 .

(B.9)

The space N4 is normalised such that

R
(N4)
MN = ε `2 g

(N4)
MN , with ε =


+1 for N4 = S4

0 for N4 = T 4

−1 for N4 = H4

, (B.10)

where `2 is also a positive constant. Moreover, the NS two-form is zero and the dilaton
depends on the y-coordinates of the deformed space as

Φ = φy(y) , (B.11)

with φy(y) being the function in (B.2).
The RR sector can be written in a universal fashion as

F1 = c1 λ+ dy1 + c2 λ− dy2 , F3 = 0 , (B.12)
F5 = Vol(AdS4) ∧

(
c3 λ+ dy1 + c4 λ− dy2

)
+ Vol(N4) ∧

(
c4 λ+ dy1 − c3 λ− dy2

)
,

where the volume forms are

Vol(AdS4) = 9
`21
r2 dt ∧ dx1 ∧ dx2 ∧ dr ,

Vol(N4) =


9
`22

sin3 θ1 sin2 θ2 sin θ3 dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 for N4 = S4

dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 for N4 = T 4

9
`22

sinh3 θ1 sin2 θ2 sin θ3 dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 for N4 = H4 .

(B.13)

The parameters c1, . . . , c4 and `1, `2 are chosen so that the type-IIB supergravity equa-
tions are solved. Below we list each one of them, separately.

Solution I. This is a solution where N4 = S4, with the various constants being

c1 = c4 = 0 , c2 = s2

√
ν

2 , c3 = s3

√
8µ− ν

2 , `1 = µ , `2 = µ− ν

4 , (B.14)

and s2,3 = ±1. The solution is well defined when c2
1, c

2
2, c

2
3, c

2
4 > 0 and `1, `2 > 0. This

means that λ is bounded as
2−
√

3 < λ < 1 . (B.15)
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Solution II. A second solution of the same class, i.e. N4 = S4 is

c2 = c4 = 0 , c1 = s1

√
ν

2 , c3 = s3

√
8µ+ ν

2 , `1 = ν

4 + µ , `2 = µ , (B.16)

with s1,3 = ±1. The constant `2 vanishes at λ = 0 and the rest are well behaved for
λ ∈ [0, 1). Thus requiring `2 > 0 implies

0 < λ < 1 . (B.17)

Solution III. A third solution which now belongs to the class N4 = H4 is

c1 = c3 = 0 , c2 = s2

√
ν

2 , c4 = s4

√
ν − 8µ

2 , `1 = ν

4 − µ , `2 = µ , (B.18)

with s2,4 = ±1. This behaves well when λ is restricted in the interval below

0 < λ 6 4−
√

15 . (B.19)

Solution IV. Another solution of this class, i.e. with N4 = H4 is

c1 = c4 = 0 , c2 = s2

√
ν

2 , c3 = s3

√
8µ− ν

2 , `1 = µ , `2 = ν

4 − µ , (B.20)

with s2,3 = ±1. In this case the allowed values of λ are

4−
√

15 6 λ < 2−
√

3 . (B.21)

Solution V. A distinct class of backgrounds is when N4 = T 4. There are two solutions
belonging to this class, the deformed one with λ > 0 and the undeformed one with λ = 0.
For the deformed one we have that

c1 = s1

√
ν

4 − µ , c2 = s2

√
ν

4 + µ , c3 = s3

√
ν

4 + µ , c4 = s4

√
ν

4 − µ ,

`1 = ν

4 ,
(B.22)

with s1,2,3,4 = ±1 satisfying the condition s1 s2 = s3 s4. The solution is real when

0 6 λ 6 2−
√

3 . (B.23)

Solution VI. The last solution of the class N4 = T 4 is one with λ being strictly zero
and thus it has topology AdS4 × T 4 ×CS2. This solution has c1 as a free parameter, The
rest of them are

c2 = s2

√
2
k
− c2

1 , c3 = s3 c1 , c4 = s4

√
2
k
− c2

1 , `1 = 1
k
, (B.24)

with s2,3,4 = ±1 satisfying s2 = s3 s4. Reality implies that

−
√

2
k
6 c1 6

√
2
k
. (B.25)

Notice that when c1 = ±
√

1
k one obtains the λ = 0 limit of (B.22). On the other hand,

when c1 = 0 one finds the λ = 0 limit of (B.18) with H4 replaced by T 4, while whenever
c1 = ±

√
2
k one recovers the λ = 0 limit of (B.16) with S4 replaced by T 4.
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B.3 The AdS6 ×N2 × CS2
λ

The last class of solutions of interest in the present work, is that with geometry containing
an AdS6 part and the λ-deformed space CS2

λ. The NS-sector of these backgrounds includes
a metric

ds2 = 5
`1

(
−r2dt2 + r2dx2

1 + r2dx2
2 + r2dx2

3 + r2dx2
4 + dr2

r2

)
+ ds2

N2 + ds2
CS2

λ
, (B.26)

where `1 is a positive constant, ds2
CS2

λ
is given in (B.2) and N2 can be any of the two-

dimensional spaces in the list (S2, H2, T
2) with line elements

ds2
N2 =


1
`2

(
dθ2

1 + sin2 θ1 dθ
2
2

)
for N2 = S2

dθ2
1 + dθ2

2 for N2 = T 2

1
`2

(
dθ2

1 + sinh2 θ1 dθ
2
2

)
for N2 = H2 .

(B.27)

The space N2 is normalised such that

R
(N2)
MN = ε `2 g

(N2)
MN , with ε =


+1 for N2 = S2

0 for N2 = T 2

−1 for N2 = H2 ,

(B.28)

where `2 is also a positive constant. The rest of the NS fields are

H3 = 0 , Φ = φy(y) , (B.29)

with φy(y) being the function in (B.2).
The field content of the RR-sector is

F1 = c1 λ+ dy1 + c2 λ− dy2 , F3 = Vol(N2) ∧
(
c3 λ+ dy1 + c4 λ− dy2

)
, F5 = 0 , (B.30)

where the volume form Vol(N2) can have any of the following expressions

Vol(N2) =


1
`2

sin θ1 dθ1 ∧ dθ2 for N2 = S2

dθ1 ∧ dθ2 for N2 = T 2

1
`2

sinh θ1 dθ1 ∧ dθ2 for N2 = H2 .

(B.31)

The parameters c1, c2, `1, `2 are constants which are fixed by solving the type-IIB equations
of motion. Below we present three such solutions.

Solution I. This solution has N2 = S2. The various constants are

c2 = c3 = 0 , c1 = s1

√
ν − 4µ

3 , c4 = s4

√
ν + 8µ

3 ,

`1 = ν + 2µ
6 , `2 = µ ,

(B.32)

with s1,4 = ±1. The solution is well defined when c2
1, c

2
2 > 0 and `1, `2 > 0. This means

that λ is bounded as
0 < λ 6 2−

√
3 . (B.33)
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Solution II. The second solution has N2 = H2 and the various constants are

c1 = c4 = 0 , c2 = s2

√
ν + 4µ

3 , c3 = s3

√
ν − 8µ

3 ,

`1 = ν − 2µ
6 , `2 = µ ,

(B.34)

with s2,3 = ±1. Requiring that c2
2, c

2
3 > 0 and `1, `2 > 0 we find that λ must be restricted as

0 < λ 6 4−
√

15 . (B.35)

Solution III. When λ = 0 one can get solutions with N2 = T 2. One of them is the
following

c2 = c3 = 0 , c1 = s1

√
4
3k , c4 = s4

√
4
3k , `1 = 2

3k , (B.36)

with s1,4 = ±1. This can also be obtained by taking the λ = 0 limit in the solution I and
replacing the two-sphere by a torus.

Note that, there is an equivalent solution arising from interchanging the coordinates
y1 and y2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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