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1 Introduction

Six-dimensional supergravity is a promising arena in which to understand the relationship
between possible low-energy theories of quantum gravity and UV completions in the context
of string theory. In ten dimensions, it has been shown that all supersymmetric theories of
gravity coupled to gauge fields in flat space-time that satisfy anomaly cancellation and all
other known quantum consistency conditions are realized, at the level of massless spectra,
through some version of string theory [1, 2]. There has been recent progress towards
showing that a similar “string universality” principle holds for supergravity theories in
eight (as well as nine and seven) space-time dimensions [3, 4]. In six dimensions, the
space of theories becomes significantly more rich: six is the largest space-time dimension in
which matter fields can arise in representations other than the adjoint for a supersymmetric
quantum theory of gauge fields and gravity. The space of 6D supergravity theories is,
however, still reasonably manageable. For the most part, the theory consists of a set of
distinct continuous branches connected by various transitions into a single large meta-
moduli space. The massless spectra in these different branches are strongly constrained by
gravitational, gauge-gravitational and pure gauge anomaly conditions.

F-theory [5–7] provides a powerful nonperturbative tool for exploring a large part of
the global meta-moduli space of 6D supergravity theories in terms of the geometric moduli
spaces of elliptic Calabi–Yau threefolds, which are linked together in a large connected
network [8–11] by transitions that can change the number of tensor multiplets [7, 12], as
well as standard Higgs transitions and more exotic “matter transitions” [13]. There is a
close connection between the elliptic Calabi–Yau geometry of F-theory and the structure
of the string charge lattice and anomaly coefficients in the corresponding low-energy 6D
supergravity theory, making it possible in many branches of the theory to clearly identify
the geometric ingredients needed for the UV completion through F-theory of the given
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branch of the low-energy 6D supergravity moduli space (see, e.g., [9]). It was conjectured
in [14] that string universality should hold for the massless spectra of 6D supergravity
theories, so that any massless spectrum associated with a supersymmetric theory of gauge
fields and gravity not realized in string or F-theory should be provably inconsistent. At
this point in time, however, despite ongoing progress both in understanding the range of
possible F-theory constructions and in identifying new quantum consistency conditions for
6D supergravity theories, there are still many theories, including some infinite classes of
theories, in the apparent swampland [15]1 of 6D low-energy supergravity theories that obey
anomaly cancellation as well as all other known quantum consistency conditions and yet
have no known F-theory realization.

In this paper we find a unifying principle that underlies a range of the theories in the
current apparent 6D supergravity swampland, and we formulate a precise conjecture for
a class of theories that seem to be impossible to realize in F-theory despite satisfying the
known 6D quantum consistency conditions. This paper was motivated by the observation
that certain apparently consistent (SU(3) × SU(2) × U(1))/Z6 models cannot be realized
in F-theory by a universal Weierstrass realization identified earlier by the authors [17].
Instead, the rank of the gauge group is forced to increase when the anomaly coefficients
associated with the gauge factors are sufficiently large. This kind of enhancement had also
been seen in simple SU(2) models [18, 19]. Further exploration has revealed that indeed
many models that seem consistent but resist an F-theory realization fit with this same
general pattern. In this paper, we generalize these observations in the formulation of a
conjecture, and we elaborate on range of different situations where this kind of automatic
enhancement occurs. If the general conjecture we present here and its stronger forms for
specific gauge groups hold for general 6D supergravity theories it would rule out many
theories in the apparent 6D supergravity swampland.

The structure of this paper is as follows: In section 2, we formulate the central con-
jecture, which essentially states that given any 6D supergravity theory that has a gauge
group and matter content contained within those of another consistent theory that can be
realized in F-theory, but where the former theory cannot be reached by a Higgs deforma-
tion of the latter theory, the former theory does not arise in F-theory. In section 3, we give
a brief review of some of the main types of theories that appear currently to be in the 6D
supergravity swampland. In the following two sections, we go through a number of exam-
ples where we can demonstrate explicitly that the conjecture holds for standard F-theory
constructions. section 4 addresses a variety of examples with nonabelian gauge theories,
including non-Higgsable clusters and theories with gauge group SU(N), and section 5 de-
scribes examples with an abelian gauge group, including in particular some infinite families
of apparently consistent theories with gauge group U(1) and arbitrarily large charges that

1Note: the term “swampland” is used slightly differently by different authors. Here, we refer to the
“apparent swampland” as those theories that satisfy all known quantum consistency conditions for theories
coupled to quantum gravity but have no known string realization; a theory can be removed from the
apparent swampland if a string realization is found, or if a new quantum consistency constraint is identified
that rules out the theory. A recent review of work on swampland related problems, mostly focusing on
questions separate from the 6D supergravity issues addressed here, can be found in [16].

– 2 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
8

were previously known. In section 6, we give a slightly stronger characterization of the con-
jecture in terms of positivity/effectiveness for a variety of the specific simple cases studied,
and also give a sufficient local condition in some cases for a theory to either be enhanced or
broken in the F-theory realization. In section 7, we consider some more complicated cases,
focusing in particular on theories with exotic nonabelian matter representations and those
with discrete gauge groups. The discussion includes situations in which the application of
the conjecture formulated here is less clear but there are interesting related questions. In
section 8, we briefly consider how the ideas of this paper may be extrapolated to lower-
dimensional supergravity theories such as N = 1 and N = 2 4D supergravity theories, and
in section 9 we make some concluding remarks.

The work in this paper is complemented by a separate but related work also nearing
completion [19] that addresses questions of completeness of the charge spectra and massless
charge spectra in 6D supergravity theories and their F-theory realizations.

2 Statement of the conjecture

The basic proposal of this paper is the following conjecture for 6D F-theory and supergrav-
ity theories:

Automatic Enhancement Conjecture. Given any anomaly-consistent 6D supergravity
theory with gauge group G and massless matter hypermultiplets in a set of representations
M , such that there exists another anomaly-consistent theory with gauge group G′ ⊃ G and
matter representations M ′ ⊇ M that is realized in F-theory but cannot be broken through
a supersymmetry-preserving Higgsing process to the theory with gauge group G, the theory
with gauge group G cannot be realized in F-theory. Equivalently, trying to tune the gauge
group and matter content G,M in an F-theory Weierstrass model leads to an automatic
enhancement of the singularity types to a theory with gauge group and matter content
G′ ⊃ G,M ′ ⊇M .

Some comments on this conjecture:

• Note that the theory with gauge group and matter content G′,M ′ must contain the
theory with G,M in the strong sense that all other features of the theory must be the
same. In particular, the string charge lattice that contains the anomaly coefficients
(associated withH1,1(B,Z) of the compactification base B in an F-theory description;
see, e.g., [9]) and the positivity cone on this lattice (associated with the cone of
effective divisors in F-theory) must be the same, and the anomaly coefficients of the
gauge factors in G must match their counterparts in G′.

• We have stated this conjecture in the context of F-theory. Much of the bulk of
this paper consists of a variety of examples where this conjecture holds for standard
tunings in the F-theory context. While in some cases, such as the situation of non-
Higgsable clusters (section 4.1), the conjecture can be explicitly proven, in other
situations the evidence is only partial even in the F-theory context. Nonetheless, it is
tempting to speculate that this conjecture holds not only in F-theory but for general
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6D supergravity theories. If so, this would eliminate many of the known examples of
6D supergravity theories in the swampland of theories that appear consistent by all
known criteria but which are not realized in F-theory.

• This conjecture complements the Massless Charge Sufficiency Conjecture made
in [19], which asserts that the massless charge lattice of a 6D supergravity theory
generates the full charge lattice of the theory. As discussed further in section 4.2.3,
in some cases such as the enhancement of a theory with gauge algebra su(2) with a
large anomaly coefficient, the massless charge sufficiency conjecture is closely related
to the automatic enhancement conjecture and can be similarly interpreted as leading
to the addition of extra elements in the coroot lattice of the gauge group G.

• On a practical level, enhancements typically occur because the choice of divisor classes
necessary to obtain the correct matter spectrum causes the elliptic fibration to take
some special structure. A parameter could be forced to be zero because its divisor
class is ineffective, or multiple parameters may share common factors because their
classes only admit reducible sections. And if a parameter’s divisor class is trivial, the
elliptic fibration may exhibit enhanced features such as the presence of additional
rational sections. Since these effects occur in the geometry, one may naively wonder
if the G,M model could be obtained from the G′, M ′ model by a T-brane deforma-
tion [20, 21]. However, examples of the Automatic Enhancement Conjecture exhibit
a field-theoretic obstruction to Higgsing G′ to G. T-brane deformations should re-
spect these obstructions, implying that automatic enhancement cannot be evaded in
this fashion.

• The conjecture as stated above corresponds to the complete 6D supergravity theory
and its F-theory realizations, and is stated in a very general way. Most of the examples
we describe here also admit a more specific and stronger formulation in a way that
depends on the particular group/algebra in question. In particular, in many cases
the enhancement mechanism is required when the anomaly coefficients of the relevant
gauge factors theory violate a particular positivity condition, associated with an
effectiveness condition for the corresponding F-theory curves. When this condition
is violated either an enhancement must occur or there cannot exist a compatible F-
theory model. In many cases these positivity constraints lead to sufficient conditions
that can be formulated completely locally in the F-theory geometry. We illustrate
these positivity and local aspects in many of the examples described in the following
sections, and summarize these versions of the conjecture in section 6.

3 Review of 6D supergravity, F-theory realizations, and the swampland

In this section we briefly review some aspects of the current apparent “swampland” of 6D
supergravity theories that appear consistent from all known quantum consistency condi-
tions but that have no known F-theory realization.
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3.1 6D supergravity theories and their realizations in F-theory

A 6D N = 1 supergravity theory is characterized by a massless spectrum that contains a
fixed number of tensor multiplets T , a gauge group G, and a set of hypermultiplet matter
fields M living in certain representations of the gauge group G. The gauge group can
have nonabelian and abelian factors, as well as discrete components. The conditions of
gravitational, gauge-gravitational, and pure gauge anomaly cancellation [22, 23] impose
fairly strong constraints on the set of possible gauge groups and massless matter spectra.
When the number of tensor multiplets satisfies T < 9, it has been proven that there
are a finite number of distinct possible massless spectra G,M for theories with purely
nonabelian gauge groups G [9]. On the other hand, even when there are no tensor multiplets
(T = 0), there exist infinite families of theories with a simple U(1) gauge group and different
combinations of charged matter fields [24, 25] that satisfy anomaly cancellation and other
known consistency conditions.

A wide range of 6D N = 1 supergravity theories can be realized using F-theory [5–7].
A six-dimensional F-theory model is defined by an elliptic Calabi–Yau threefold X, and can
be thought of as a nonperturbative type IIB compactification on the (real four-dimensional)
complex Kähler surface B that acts as the base of the elliptic fibration X. Introductions to
the relevant aspects of F-theory compactifications can be found in [10, 26]. The set of 6D
F-theory models forms a connected meta-moduli space; the allowed bases are connected
through nonperturbative transitions that change the number of tensor multiplets [7, 12],
and over any given base B the set of valid F-theory models forms a continuous connected
moduli space parameterized by the coefficients f, g in the Weierstrass model

y2 = x3 + fx+ g . (3.1)

Here f, g can be thought of as functions on the base B, or more precisely as sections of line
bundles O(−4KB),O(−6KB), where KB is the canonical class of the base. Codimension-
one loci where the elliptic fiber becomes singular lead to nonabelian factors of the gauge
group G, while abelian and discrete factors have a more subtle global characterization.
Codimension-two loci where the elliptic fiber becomes singular in general characterize
massless matter fields in the 6D supergravity theory. There is thus a close correspon-
dence between the geometry of the F-theory compactification and the structure of the
low-energy 6D supergravity theory.

One particularly important connection between low-energy physics and F-theory is
that there is a simple geometric interpretation of the anomaly coefficients a, bi, b̃α associated
with terms in the 6D supergravity action of the form B ∧R ∧R,B ∧ Fi ∧ Fi, B ∧ Fα ∧ Fα
respectively, with Fi, Fα denoting nonabelian and abelian gauge field strength factors. In
particular, a corresponds to the canonical class KB, and bi corresponds to the locus Ci in B
where the nonabelian gauge factor Gi is supported. Note that for k abelian factors there are
anomaly coefficients b̃αβ associated with terms B ∧Fα ∧Fβ ; we use the notation b̃α = b̃αα.
These are special cases of the more general identification between the string charge lattice
Λ of the 6D supergravity theory, in which a, bi, b̃α are elements, and the lattice H1,1(B,Z)
given by the set of algebraic curves in the base B, including −KB and Ci, with the natural
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intersection form on homology. Because of this isomorphism, we will frequently move freely
back and forth between a, bi ∈ Λ andKB, Ci ∈ H1,1(B,Z) in various parts of the discussion.
A useful feature of this correspondence is that the arithmetic genus of a (possibly singular)
curve Ci supporting a nonabelian gauge factor Gi is encoded in the anomaly coefficients of
the low-energy theory through [27, 28]

gi = 1
2(a · bi + bi · bi) + 1 . (3.2)

To organize our brief review of some classes of models in the 6D supergravity swamp-
land, we will find it helpful to distinguish “generic” from exotic matter fields for a given
gauge group. A precise definition of which matter fields are generic for a 6D supergravity
theory with a fixed gauge group G (and for fixed anomaly coefficients, which are assumed
to be not too large) can be given by identifying the generic matter fields as those that arise
on the branch of moduli space of greatest dimension for fixed G and associated anomaly
coefficients [29]. This definition of generic turns out to match with the simplest types of
codimension-two singularities that give matter in the F-theory picture and also ties in nat-
urally to the structure of the anomaly constraints: at least for simple theories, the number
of generic matter representations is equal to the number of anomaly constraints, so in these
cases there is a unique generic matter content for fixed G once the anomaly coefficients
are fixed.

Another aspect of F-theory constructions that is relevant for the analysis of this paper
is that for a given gauge algebra g, the moduli space of models with matter fields in the
generic representations is captured in many cases by a “universal”2 Weierstrass model, with
a general algebraic form parameterized by the classes of the curves supporting the gauge
factors. In [17] we developed a systematic Jacobian-based methodology for checking that a
given family of Weierstrass model constructions is universal by checking that the number of
independent free complex parameters in the Weierstrass model matches the dimensionality
of the branch of the moduli space determined by the number of uncharged scalars. Such
universal Weierstrass models include, for example, the well-known Tate tunings of most
nonabelian gauge factors [30], the Morrison–Park U(1) Weierstrass models [18], and the
universal (SU(3)× SU(2)×U(1))/Z6 models developed in [17]. Note that universal Weier-
strass models are also known for some classes of models containing specific combinations
of representations that include exotic matter.

3.2 The 6D supergravity swampland

While for many classes of theories there is a fairly close match between the set of possible F-
theory constructions and the 6DN = 1 supergravity theories that are allowed from anomaly
cancellation and other known quantum consistency conditions, there are also many theories
that appear to be in the swampland. In [9, 24, 25], for example, some infinite families of
apparent swampland models were identified. In general, both supergravity and F-theory
models are understood best for theories with no tensor multiplets (T = 0), and with

2In [17], these universal Weierstrass model constructions were referred to as “generic”; here we change
terminology to “universal” to avoid confusion with other uses of the term generic.
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nonabelian gauge groups and generic matter representations. The structure of the theories
becomes more complicated as the number of tensor multiplets increases, particularly at
T ≥ 9, when abelian and discrete gauge factors are included, and when exotic (non-generic)
matter representations are considered. Over the last decade or so, there has been gradual
progress in better understanding both F-theory constructions of these more complicated
classes of models and also in identifying further quantum consistency constraints that must
be satisfied by any consistent N = 1 6D supergravity theory; as these theories are better
understood, further classes of apparent swampland models have also been identified. We
briefly review some of this work here, first summarizing some additional constraints on
6D supergravity and F-theory constructions, and then focusing on some of the simplest
and largest classes of apparent swampland models, for which the Automatic Enhancement
Conjecture is relevant.

3.2.1 Constraints on 6D supergravity theories

In addition to the constraints of local and global anomaly cancellation, a consistent 6D
N = 1 supergravity theory must satisfy a variety of further quantum consistency conditions.
We briefly summarize some of these further constraints here.

One simple constraint is that the gauge kinetic term proportional to F 2 must have a
negative coefficient; otherwise the theory has a perturbative instability. This leads through
supersymmetry to the condition that the anomaly coefficients bi, b̃α must lie in the positive
cone of the 6D string charge lattice Λ. This was used, for example, in [31] to rule out an
infinite family of models that had appeared to lie in the swampland [32].

Another constraint, proven in [33], is that the charge lattice Λ must be unimodular
(self-dual) under the Dirac pairing between strings; this follows automatically from F-
theory, where the lattice H1,1(B,Z) is always unimodular, but this condition must also hold
more generally in 6D supergravity, ruling out other classes of potential swampland models.

Some further constraints on the anomaly coefficients a, bi, b̃α were identified in [34,
35] using global and local anomaly cancellation conditions (a subset of these constraints
were also found in [25, 36]). These constraints are stronger if one makes the additional
assumption that the 6D theory can be defined on any spin manifold with an arbitrary
gauge bundle. For example, under these assumptions the anomaly coefficient a must be a
characteristic vector in the subspace of Λ spanned by the nonabelian anomaly coefficients
bi, meaning that a · bi + bi · bi ∈ 2Z. This is true for all F-theory compactifications (since,
e.g., the genus (3.2) is always an integer), but can rule out some theories that might appear
to be in the swampland.

There are a number of further constraints that are known to hold in F-theory but have
not been proven as consistency conditions for general quantum 6D supergravity theories.
Theories satisfying the known 6D supergravity quantum consistency conditions but violat-
ing these F-theory constraints appear to be in the swampland, pending a proof that these
conditions are more generally necessary for 6D supergravity consistency. The primary goal
of this paper is to present evidence that the automatic enhancement conjecture should
be a similar F-theory constraint. We summarize briefly here some other constraints in
this class. Note that beyond standard F-theory models there are also other possible con-
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structions such as the “frozen” phase of F-theory [37], which can realize some models that
otherwise may appear to be in the swampland. As far as we know the models we study
here do not have any such realization through any formulation of string theory including
the standard class of F-theory constructions.

One constraint that follows directly from F-theory is the Kodaira constraint [9], which
states that −12a−∑i νibi must lie in the positivity cone of Λ, which corresponds to the cone
of effective divisors in H1,1(B,Z). Here νi corresponds to the number of 7-branes needed
to form the nonabelian factor Gi of the gauge group, e.g., for SU(N), ν = N . Various
6D supergravity theories that look otherwise consistent violate this condition and hence
cannot be realized in F-theory; we mention some explicit examples later in this section.

Another constraint that is widely expected to hold in all consistent quantum theories
of gravity in dimensions D > 3 is the condition of charge completeness [38], which states
that there exist excitations of the theory with all possible charges in the weight lattice of
the symmetry group G. This was proven recently for all quantum gravity theories with a
holographic dual [39]. This condition is proven for all 6D F-theory models in [19] using
Poincaré duality, although there is no general proof for flat space 6D supergravity theories.

A further class of constraints can be identified if one assumes that the charge com-
pleteness hypothesis holds in the sense that there are dynamical string excitations for every
charge in the string lattice Λ. Under this assumption, there must be a consistent anomaly-
free theory on the worldvolume of such strings, which leads to additional constraints on
the set of allowed spectra for 6D supergravity theories. This method was used in [40], for
example, to show that the rank of the gauge group of 10D type I string theory must match
with the known value of so(32). In [2], this approach was used to show that consistency
of the theory on the string worldvolume places additional constraints on the spectra of 6D
supergravity theories; among other things, these constraints would rule out several infinite
families of apparent swampland models with T > 9 that were found in [9]. In [41], this
approach was used to place bounds on the number of abelian gauge factors that can arise
in a 6D supergravity theory, improving on previous bounds found from anomaly conditions
in [24].

The focus in this paper is on 6D supergravity models that obey all of the above-
mentioned constraints but still have no F-theory realization. To organize the discussion
we summarize some of the models that are still in the apparent swampland, including
some that violate the conditions above that are known to hold in F-theory vacua but are
otherwise apparently consistent 6D supergravity theories.

3.2.2 Apparent swampland for T = 0, nonabelian G, and generic matter

We begin with the simplest set of cases, with no tensors, a nonabelian gauge group, and
generic matter. Because of the absence of tensor fields, the anomaly coefficients a, bi are
integers. We focus first on theories with gauge group SU(N) and then consider other
gauge groups. For G = SU(N), generic matter fields are the fundamental and adjoint
representation, as well as the two-index antisymmetric representation when N ≥ 4 [29].

With gauge group SU(2), there are anomaly-allowed theories for anomaly coefficients
1 ≤ b ≤ 12 [29]. Naively, it seems that these theories can all be constructed directly in
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F-theory by directly tuning the appropriate gauge factor in the Weierstrass model. When
b = 9, 10, 11, 12, however, complications arise. In the case b = 12, as discussed further
in [19], this construction gives a theory with Z2 Mordell–Weil torsion, so the gauge group is
actually SO(3); in this case, the massless charge sufficiency conjecture stated in that paper
asserts that the pure SU(2), b = 12 theory cannot be realized in F-theory. For b = 10, 11,
it was observed in [19] that the naive tuning of this model gives an extra SU(2) factor and
Mordell–Weil torsion so G = (SU(2) × SU(2))/Z2. These cases, as well as the case b = 9,
are in the apparent swampland and satisfy the conditions of the Automatic Enhancement
Conjecture, and are described in more detail in section 4.2.1 and section 4.2.2.

For gauge group SU(N), there are anomaly-allowed theories for 1 ≤ b ≤ 24/N . Again,
naively these can all be constructed using a Tate tuning [30]. But again, in some cases the
resulting model does not have the desired SU(N) gauge group. It was pointed out in [42, 43]
that for b = 1 this construction does not give theories with gauge groups SU(21) and SU(23)
and generic matter, so these are in the apparent swampland. These cases, as well as the
other cases with N ≥ 18 are examples of the Automatic Enhancement Conjecture, as we
describe in more detail in section 4.3. Note that the case of SU(24), which lacks fundamental
matter and has an actual gauge group SU(24)/Z2 is an example where Mordell–Weil torsion
is forced, in accord with the Massless Charge Sufficiency Conjecture [19].

Similar apparent swampland theories arise for sp(N) and so(N); we discuss some cases
in section 4.5.

3.2.3 Apparent swampland with abelian G

When we include abelian U(1) gauge factors, the story becomes more complicated. In
F-theory, U(1) factors come from global features of the geometry, which makes them more
subtle to understand. For theories with a gauge group U(1) and generic (q = 1, 2) mat-
ter, there are apparent swampland models closely related to the simplest SU(2) models
discussed above; we describe in section 5.1 how these models also satisfy the Automatic
Enhancement Conjecture. Even for theories with a single U(1) as the gauge group and
T = 0, when larger charges are considered there are infinite families of charge configura-
tions that satisfy anomaly cancellation conditions [24, 25], even though there can only be a
finite number of distinct spectra compatible with F-theory constructions [9]. In section 5.2,
we show that at least the simplest of these families satisfies the conditions of the Automatic
Enhancement Conjecture.

Combining nonabelian and abelian factors, one can also find infinite families of
anomaly-free theories with gauge algebras of the form su(N) ⊕ u(1), for example. (Some
infinite families of this type with T = 1 were constructed in [24], and similar constructions
are possible with T = 0.) In section 5, we show that the previously identified infinite
classes of theories of this kind satisfy the conditions of the stronger version of the Auto-
matic Enhancement Conjecture that would render these theories inconsistent, although we
also identify some further infinite families for which the application of the conjecture is less
transparent. We also show in this section that the Automatic Enhancement Conjecture
applies to some theories with gauge group (SU(3) × SU(2) × U(1))/Z6 when constructed
with the universal Weierstrass form identified in [17].
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Going beyond single U(1) factors, at this point our understanding of F-theory models
with multiple U(1) factors and/or discrete gauge group factors is still sufficiently limited
that it is difficult to clearly delineate the swampland. This is in large part because abelian
U(1) and discrete factors come from global aspects of the F-theory geometry, unlike non-
abelian gauge factors that come from local structure. We do not attempt to give any
systematic analysis here of theories with multiple U(1) factors or discrete gauge factors,
though we make some general comments about theories with discrete gauge symmetries in
section 7.3.

3.2.4 Apparent swampland with T > 0

When the number of tensor multiplets is nonzero, T > 0, the structure of the theory
becomes more complicated, and questions about the swampland have additional compli-
cations. The anomaly coefficients a, bi, b̃α become vectors as Λ becomes a signature (1, T )
lattice, corresponding to H1,1(B,Z). There is a positivity cone for strings in Λ, which in
the F-theory description corresponds to effective divisors in B but which is not as well
understood in the 6D supergravity context. A variety of apparent swampland models may
arise corresponding to lattices Λ with positivity cones that do not match any F-theory
geometry. The condition identified in [34] that a must be a characteristic vector, at least
for the nonabelian anomaly coefficients, puts some concrete constraint on the allowed com-
binations of Λ, a, but there are still many theories at larger T that appear consistent and
yet have no F-theory realization. We focus here on some of these that are most relevant
for this story.

The most basic new feature that can arise at T > 0 is the appearance of a vector x ∈ Λ
that lies in the positivity cone and satisfies x · x < 0. When an F-theory construction
involves a base B that contains an effective curve C with C ·C < −2, the negative normal
bundle on C forces a Kodaira singularity in the elliptic fibers over that curve that gives a
gauge group of at least SU(3) in the corresponding 6D supergravity theory [44]. From the
point of view of supergravity, there is no obvious inconsistency with an element x satisfying
x · x < −2 lying in the positivity cone without a corresponding gauge factor in the theory.
Thus, such models lie in the apparent swampland. In section 4.1, we show that these
models are a simple example of the Automatic Enhancement Conjecture. Note that under
the assumption of charge completeness for the string charge lattice, one could alternatively
argue that anomaly cancellation on the worldvolume of a string with string charge x can
only be satisfied in the presence of the appropriate non-Higgsable gauge factor G ⊃ SU(3),
using analysis along the lines of [2, 45–47].

Already with a single tensor multiplet (T = 1), the range of possible theories ex-
pands significantly and there are more theories that have been identified in the apparent
swampland. In particular, in [24] there are infinite families of apparent swampland models
identified with T = 1 and gauge algebras u(1) and su(13)⊕u(1). Both of these families can
be ruled out by the Automatic Enhancement Conjecture, as we discuss in section 5. The
U(1) family is closely related to the infinite family of U(1) theories at T = 0 found in [25],
but the su(13)⊕ u(1) family is somewhat more subtle.
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When T ≥ 9, the classification of theories gets even more complicated, due in particular
to the fact that a ·a = 9−T ceases to be positive (this condition follows from gravitational
anomaly cancellation). An illustration of some of the complications that arise at T ≥ 9 is
given in appendix C. For T ≥ 9, there is no proof known that even constrains the number of
distinct spectra for nonabelian gauge groups and matter to be finite, though as mentioned
earlier some of the infinite families of apparent swampland models identified in [9] violate
the conditions found in [2] that hold when string charge completeness is assumed.

3.2.5 Apparent swampland with exotic matter for nonabelian G

In addition to the generic matter representations for a nonabelian gauge group G there
are also non-generic matter representations possible that can still satisfy anomaly cancel-
lation. Three-index antisymmetric representations of SU(N) for N = 6, 7, 8 are fairly well
understood [13, 30, 42, 48] and can arise through a Tate-type tuning of the Weierstrass
model [49]. Related exotic multi-charged matter representations include, e.g., the (6,2) of
SU(4)×SU(2) and the trifundamental of SU(2). More exotic matter representations can be
characterized as having a non-vanishing “genus” contribution (3.2), corresponding to the
arithmetic genus of a singularity in the divisor supporting the gauge factor in an F-theory
realization. In [28], it was argued that only a fairly limited set of exotic matter representa-
tions for nonabelian groups can be realized in F-theory without having a codimension two
locus where f, g vanish to degrees (4, 6), which generally signifies a superconformal sec-
tor [50–52]. These limited higher-genus exotic matter representations that can be realized
through F-theory models on a singular gauge divisor basically contain only the two-index
symmetric representation of SU(N), the three-index symmetric representation of SU(2),and
analogous representations of Sp(N). It has been suggested that some other exotic repre-
sentations such as the (56,2) of E7× SU(2), which naively involves a (4, 6) locus, may be
possible without a superconformal sector [53] through T-brane magic. Though this is not
well understood in F-theory, it is believed that there are heterotic models containing this
matter representation without superconformal sectors.

With this general classification of exotic matter, there are two kinds of apparent swamp-
land theories. First, there are anomaly-consistent theories containing the exotic matter
representations that can arise from F-theory constructions on singular divisors, but in
configurations that do not seem to arise from F-theory. Some examples of such apparent
swampland theories were described in [28]; we show in section 7.1 that some such examples
satisfy the conditions of the Automatic Enhancement Conjecture. Second, are any theories
that contain matter in representations of nonabelian gauge factors not believed to arise in
consistent F-theory models. We make some brief comments on such models in section 7.2.

4 Nonabelian examples

4.1 Non-Higgsable clusters

One of the simplest situations in which automatic enhancement must occur in F-theory
is when G is trivial and there is a primitive positive charge q in the string charge lattice
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with Dirac pairing q · q < −2 with itself and q · a = −q · q − 2 with the BRR anomaly
coefficient a. In any F-theory construction where the complex surface base B on which
the theory is compactified contains a curve C of self-intersection −3 or below, everywhere
in the F-theory moduli space of elliptically fibered Calabi–Yau threefolds parameterized
by Weierstrass models over B there is a singularity in the elliptic fibration that forces at
least a gauge algebra su(3) with an anomaly coefficient b = C, where the string charge
lattice containing the anomaly coefficient is identified with H1,1(B,Z) in any 6D F-theory
model [44]. Thus, in such a theory with a primitive positive charge b where b · b = −3,
a · b = 1 there is an automatic enhancement G = 1→ G′ ⊇ SU(3). the self-intersection b · b
decreases, the rank of the forced gauge group increases, with, e.g., b·b = −4⇒ G′ ⊇ SO(8),
. . . , b · b < −8⇒ G′ = E8, and with b · b ≤ −13 not allowed in any F-theory model. In all
these situations, the gauge group G′ is “non-Higgsable” in the sense that there is no local
Higgsing deformation that can break the gauge group while preserving supersymmetry. In
particular, in these cases there is no Higgsing from G′ → G, as expected in the Automatic
Enhancement Conjecture.

Note that in this case the Automatic Enhancement Conjecture can be stated purely
locally: we expect that any charge b in the positivity cone of the string charge lattice Λ that
satisfies b ·b < −2 and satisfies a ·b = −2−b ·b (corresponding to g = 0 from eq. (3.2)) must
support a gauge factor G′ ⊇ SU(3), with correspondingly larger factors for more negative
b · b. Furthermore, for similar reasons there cannot be any a curve in the positivity cone
with g > 0 and b · b < 0 in any F-theory construction [44].

In this class of automatic enhancements there is a complete proof that the enhancement
must occur in the context of F-theory. In other cases, our understanding of the F-theory
geometry is less complete and while we can give many examples of standard tunings that
lead to automatic enhancement, the proof that this must always occur even in the F-
theory context is less complete. Whether the automatic enhancement associated with
non-Higgsable clusters can be proven purely in the 6D supergravity context through other
approaches is also discussed briefly in section 3.2.4.

4.2 Automatic enhancement of su(2) gauge algebra

Another very simple set of examples of the kind of automatic enhancement implied by the
Automatic Enhancement Conjecture arises in the case of 6D F-theory models with gauge
group SU(2), generic matter (fundamental and adjoint representations), and no tensor
multiplets (associated with the base P2), where the anomaly coefficient for the gauge group
is taken to be b = 10, 11. This was one of the first examples of the automatic enhancement
mechanism observed, and was encountered in [18, 19]. We describe how the automatic
enhancement occurs in F-theory for this kind of theory and then describe some further
generalizations thereof.

4.2.1 su(2)→ (SU(2)× SU(2))/Z2 automatic enhancement

A universal form for the Weierstrass model giving a gauge algebra su(2) and the generic
fundamental and adjoint matter representations can be constructed either from the Tate
form [30, 54], or by direct analysis of the general Weierstrass model with the appropriate
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Kodaira singularity type [42].3 Such a universal Weierstrass model with gauge algebra
su(2) realized on a curve {σ = 0} takes the form

f = − 1
48φ

2 + σf1 ,

g = 1
864φ

3 − 1
12φσf1 + σ2(g2) .

(4.1)

The classes of f, g, σ in the F-theory base are [f ] = −4KB, [g] = −6KB, [σ] = C, where KB

is the canonical class of the base. In the 6D supergravity theory, KB and C correspond
to the anomaly coefficients a, b of the BR2, BF 2 terms respectively; we freely go back and
forth between the geometric (curve in H1,1(B,Z)) and field theory (anomaly coefficient
in the 6D supergravity string charge lattice) notations KB ↔ a,C ↔ b throughout the
discussion in this and subsequent sections. The discriminant locus associated with the
Weierstrass model (4.1) is

∆ = 1
16φ

2(φg2 − f2
1 )σ2 +O(σ3) . (4.2)

The class of the coefficient g2 is [g2] = −6a − 2b. When b is sufficiently large, this
class becomes ineffective and g2 = 0. In such a situation, the discriminant becomes
∆ = σ2f2

1 (−φ2 + 64f1σ)/16. This discriminant is divisible by f2
1 , and so there is an

automatic enhancement of at least an extra su(2) algebra on the vanishing locus of f1,
where [f1] = −4a − b. As shown in [19], the resulting Weierstrass model also has Z2 tor-
sion, so the gauge group becomes G′ = (SU(2) × SU(2))/Z2. The fact that the enhanced
gauge group arises automatically from the Weierstrass tuning (which is the universal and
minimal (UFD) tuning needed for the su(2) algebra) implies that there is no Higgsing from
the G′ theory to the anomaly-free theory with algebra su(2). This corresponds to the ab-
sence of adjoint matter fields under the extra su(2) algebra factor on {f1 = 0} (for further
explanation/discussion on this point, see appendix C).

Simple examples The simplest cases in which this enhancement occurs is when the base
is P2 and the anomaly coefficient is b = 10 or b = 11. In these cases an additional su(2)
factor arises on f1 with [f1] = 2, 1 respectively. Since degree one and two curves on P2 are
rational curves of genus 0, the additional factor carries no adjoint matter. Furthermore, the
only fundamental matter fields for the additional su(2) are also charged under the original
su(2),4 so the enhanced G′ = (SU(2) × SU(2))/Z2 cannot be Higgsed to the anomaly-free
SU(2) theory on b = 10, 11, matching the conditions of the Automatic Enhancement Con-
jecture. Note that there are Higgsings of the G′ theory down to a theory with gauge algebra

3We assume here that the su(2) algebra is realized through a UFD-type construction. Non-UFD con-
structions typically give exotic matter representations [28]. Although in principle it may be possible that
in some special cases non-UFD models can be realized with only generic matter types, the analysis of
appendix D suggests that this will not occur in practice.

4This can be seen from the form of the discriminant locus; the only loci over {f1 = 0} where the vanishing
order of ∆ increases are those where either σ = 0, corresponding to matter jointly charged under both su(2)
factors, and those where φ = 0, corresponding to an enhancement to a Kodaira type III singularity that
carries no matter.
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su(2); in particular, Higgsing on the bifundamental fields can break these G′ theories down
to an SO(3) on b = 12 with only adjoint matter essentially by deforming f1σ → σ′ where σ′
is a generic degree 12 curve in P2. Such a Higgsing, however, cannot reproduce the original
b = 10, 11 theory that acquired the automatic enhancement.

This kind of su(2) enhancement can also occur on many other F-theory bases, not just
on P2. On the Hirzebruch surface Fm, for example, if {σ = 0} is n times the curve S̃ of
positive self-intersection +m, then in a basis where S is the curve of self-intersection −m
and F is the fiber curve with F · F = 0, F · S = 1 (such that S̃ = S + mF ), the class of
g2 is

[g2] = −6KB−2C = 6(2S+(2+m)F )−2n(S+mF ) = (12−2n)S+(12+6m−2nm)F . (4.3)

This becomes ineffective when n > 3 + 6/m. So, for example, on the Hirzebruch surface
F3, tuning an su(2) gauge algebra on 6S̃ would force an additional su(2) to arise on the
curve f1 = 0, where [f1] = −4KB − C = 2S + 2F . Part of this enhancement leads to
an enhancement of the SU(3) gauge factor on the −3 curve S, since [f1] contains 2S as a
component. This can be seen (using the Zariski decomposition as in [44]) by noting that
[σ]·S = 0, [φ]·S = −2, [f1]·S = −4, so the degrees of vanishing of f, g,∆ on S are 2, 3, 6 and
the gauge factor on S is enhanced to SO(7). The remaining part of [f1] is [f1]− 2S = 2F ;
this is a reducible curve, giving two su(2) factors each on a copy of F , so the total gauge
group of the enhanced theory is

G′ = (SU(2)× SU(2)× SU(2)× SO(7))/Z2 . (4.4)

The matter content includes 6 bifundamentals between the first SU(2) factor and each
of the other SU(2) factors, and a half-hypermultiplet in the (2,8) between each of the
enhanced SU(2) factors and the SO(7) factor (analogous to the matter appearing in the
−2,−3,−2 non-Higgsable cluster [44]). It is clear that there is no Higgsing of this model
possible that would leave the initial SU(2) factor unbroken. Many other similar models
can be realized on other bases with non-Higgsable gauge factors.

Positivity condition and local formulation The condition under which the automatic
su(2) enhancement mechanism enhancement must occur is that the divisor [g2] = −6a−2b is
ineffective, corresponding to the condition in the 6D supergravity theory that −6a−2b is not
in the (closure of the) positivity cone in Λ. Thus in the case of su(2) a stronger formulation
of the conjecture asserts that an su(2) factor with anomaly coefficient b, where −6a− 2b is
not in the positivity cone, is not possible unless there is also at least another su(2) factor
with anomaly coefficient b′ = −4a− b. The “local” information about the su(2) algebra is
encoded in the quantities a · b, b · b, or equivalently g, b · b, corresponding in the F-theory
picture to the genus (through eq. (3.2)) and self-intersection of the curve C supporting the
desired su(2) factor. When b · b > 0, for example, it is then a sufficient condition for [g2]
to be outside the positivity cone that −3a · b < b · b. As an example of the local version
of su(2) enhancement, we can thus conjecture that whenever a theory contains an su(2)
algebra with an anomaly coefficient b satisfying b · b > 0, b · b > −3a · b there must also be a
nonabelian gauge factor of rank at least one with an anomaly coefficient b′ = [f1] = −4a−b,

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
0
4
8

or the theory cannot be consistent at least with any F-theory construction. Note that when
this b′ vanishes there is no additional factor, but there is an additional section as discussed
in section 4.2.3. When b′ is not in the (closure of the) positivity cone, then the Weierstrass
model develops codimension one (4, 6) loci and is inconsistent. This local formulation
clearly matches with the examples above; for example, when T = 0,−a = 3, the extra
su(2) factor arises when b = 10, 11. Finally, note that on the F-theory side it is possible
that f1 is reducible, so that the additional gauge factor may be present with a pair (or
more) of anomaly coefficients b1, . . . , bk with b′ = b1 + · · ·+ bk.

Enhancements that break the theory Note that there are also cases where a similar
forced enhancement in the Weierstrass model can lead to codimension one (4, 6) loci, which
break the F-theory construction; these cases give swampland models that are not addressed
by the global version of the automatic enhancement conjecture as stated in section 2, but
which are addressed by the more specific positivity condition and local version stated
above. As a simple example of this consider an su(2) factor on the curve C = 4S̃ in the
Hirzebruch surface base F12. In this case, [g2] = 4S − 12F is ineffective and g2 vanishes.
We furthermore have [f1] = 4S + 8F , so f1 vanishes to order 4 on S. Since φ vanishes to
order 2 on S, there is a codimension one (4, 6) singularity on S so no F-theory model is
possible. One way of understanding this is that the automatic enhancement on any curve
intersecting or containing a −12 curve would naively lead to matter charged under the
E8, which is not possible. This model fits with the local version of the su(2) automatic
enhancement conjecture as stated above, since b·b = 192,−a·b = 56, so −3a·b = 168 < b·b,
so the local version of the conjecture rules out the theory with gauge group E8× SU(2)
with anomaly coefficients S, 4S̃.

4.2.2 su(2)→ (SU(2)×U(1))/Z2 automatic enhancement

An interesting further class of related examples occurs with the above su(2) tuning when
[g2] = 0, so g2 is a constant. In this case we get an automatic enhancement to a theory
with an additional U(1) factor. The story is similar to the preceding enhancement that
gives the additional SU(2) factor. One way to understand the resulting (SU(2)×U(1))/Z2
theory is to consider the theory with gauge group (SU(2) × SU(2))/Z2 that would arise
with [g2] = 0, so g2 is a constant. In this situation, [f1] = −4a− b = −a, so [f1] is a genus
one curve; as in the cases above, all fundamental matter in the extra su(2) factor on this
curve comes from bifundamentals with the original su(2). Thus, we can Higgs this theory
on the adjoint of the second SU(2), giving a theory with gauge group

G′ = (SU(2)×U(1))/Z2 , (4.5)

where all U(1)-charged matter is in the 21/2 representation. Thus, the G′ theory cannot
be Higgsed further to a pure SU(2) theory and this represents another class of automatic
enhancements satisfying the conjecture.

This argument is somewhat implicit. A more explicit analysis (see appendix A) shows
that when g2 is a constant, the Weierstrass model takes the form of a Morrison–Park
model [18] with the additional SU(2) factor on {σ = 0}. As for the enhancements described
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above, this story continues to hold in the presence of non-Higgsable gauge factors on more
complicated bases, though often the presence of the U(1) factor simply gives U(1) charges
to the non-Higgsable gauge factors and does not enhance them further. The simplest
example of this enhancement arises on the base P2 when an su(2) factor is tuned on a
curve of degree b = 9.

Note that this class of enhancement conditions is similar to that described in sec-
tion 4.2.1, but occurs in conditions where −3a = b holds identically. This is not really a
local condition, as a↔ KB involves global information about the geometry in F-theory, as
would be expected when abelian U(1) factors are involved.

4.2.3 su(2)→ SO(3) and massless charge sufficiency

Note that a similar mechanism to the Automatic Enhancement Conjecture operates when
we tune an su(2) algebra on a curve σ in the class −4a. In such a situation, [f1] = 0 and
there is no new gauge factor. But as shown in [19], in F-theory there is automatically a
new Z2 element in Mordell–Weil torsion, which gives the gauge group the global structure
SO(3) = SU(2)/Z2. While this is not an automatic enhancement, this is a case of the
Massless Charge Sufficiency condition described in [19]. For example, on the base P2,
tuning an su(2) algebra on curves of degrees 9, 10, 11 leads in F-theory to an automatic
enhancement through the mechanism described above, while tuning an su(2) algebra on
a curve of degree 12 leads in F-theory to an SO(3) theory. Thus, if both the Automatic
Enhancement Conjecture and the Massless Charge Sufficiency Conjecture are correct in
6D supergravity, then there would be no swampland for 6D N = 1 theories with T = 0,
gauge group SU(2), and generic (fundamental and adjoint) matter.

There is a sense in which the Automatic Enhancement Conjecture and the Massless
Charge Sufficiency Conjecture are special cases of a common phenomenon. The appearance
of the new element of Mordell–Weil torsion in the su(2) → SO(3) situation can in some
sense be thought of as adding a new element to the coroot lattice of G, within the linear
span of G. In this sense, the principal difference between the Automatic Enhancement
Conjecture and the Massless Charge Sufficiency Conjecture is whether the additional coroot
added increases the dimensionality of the gauge algebra or lies in the same vector space.
This interpretation is very clear in the F-theory context, where these coroots correspond
to homology classes in the compactification space. It would be interesting to investigate
whether a similar interpretation can be given directly in 6D supergravity that would unify
these principles.

The local version of this class of conditions is similar to that described in section 4.2.1,
but occurs in conditions where −4a = b holds identically, so b′ = [f1] = 0. (Note that if
−4a − b = (−a) + (−3a − b) = 0 then −3a − b cannot lie in the positivity cone since −a
does for all F-theory models.)

4.3 T = 0 models with large su(N) gauge algebras at b = 1

Similar enhancements occur in models with su(N) gauge algebras for N > 2. Let us
consider models with T = 0 tensor multiplets, an su(N) gauge group with a b = 1 anomaly
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coefficient, and the following spectrum of charged hypermultiplets:5

3×
N(N − 1)

2
+ (24−N)×N . (4.6)

Such massless spectra are consistent with the anomaly cancellation conditions for N ≤ 24;
for larger N , we would require a negative number of fundamental hypermultiplets. Note
that these representations (fundamental and two-index antisymmetric), along with the
adjoint, are the generic matter representations for su(n).

There are also consistent T = 0 models with su(N)⊕ u(1) gauge algebras and generic
matter where the anomaly coefficient for the su(N) factor is b = 1, at least for N < 19.
For even N , the spectrum of charged hypermultiplets is

3×
(

N(N − 1)
2

)
0

+
(

12− N

2

)
×N 1

2
+
(

12− N

2

)
×N− 1

2
+
(

9− N

2

)(
12− N

2

)
× 11 ,

(4.7)
while for odd N , the spectrum of charged hypermultiplets is

3×
(

N(N − 1)
2

)
− 1

N

+ 19−N
2 ×N−N+1

2N
+ 29−N

2 ×N N−1
2N

+ 1
4 (19−N) (23−N)×11 .

(4.8)
Although these spectra naively agree with eq. (4.6) if we ignore the u(1) charges, the
additional u(1) gauge algebra is clearly an important feature. In general, the gauge algebra
can be Higgsed down to su(N) by giving VEV’s to two hypermultiplets of 11 matter. But
if N is either 18 or 19, there are no 11 hypermultiplets, and the Higgsing is not permitted.
The Automatic Enhancement Conjecture therefore implies that the su(18) or su(19) models
above should not occur in F-theory, as the gauge algebra should enhance to su(18)⊕ u(1)
or su(19)⊕ u(1).

This enhancement can be seen explicitly if we attempt to construct these models.
Because there are no tensor multiplets, the corresponding F-theory models would have P2

as the base of the elliptic fibration. And to obtain an su(N) gauge algebra with a b = 1
anomaly coefficient, the models should have split IN singularities tuned along a line in this
P2. There are known UFD Weierstrass tunings that realize split IN singularities along a
divisor {σ = 0} [42, 54]. The Weierstrass model takes the form

y2 = x3 +
(
−1

3Φ2 + fkσ
k
)
xz4 +

( 2
27Φ3 − 1

3Φfkσk + gNσ
N
)
z6 (4.9)

for N = 2k and

y2 = x3 +
(
−1

3Φ2 + 1
2φ0ψkσ

k + fk+1σ
k+1

)
xz4

+
( 2

27Φ3 − 1
6Φ (φ0ψk + 2fk+1σ)σk + 1

4ψ
2
kσ

2k + gNσ
N
)
z6

(4.10)

5For N = 3, the hypermultiplet spectrum would consist of 24 fundamental hypermultiplets, but the
N = 3 case is not of significant interest here.
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for N = 2k + 1, where6

Φ = 1
4φ

2
0 + φ1σ . (4.11)

These models support hypermultiplets in the antisymmetric and fundamental representa-
tions.7 Thus, the natural strategy for constructing our desired su(N) models is to apply
these tunings in an elliptic fibration over P2 with [σ] = H. The other parameters then have
the following divisor classes:

[φ0] = 3H [φ1] = 5H [ψk] = (9− k)H [fi] = (12− i)H [gj ] = (18− j)H . (4.12)

For N ≤ 17 and N = 24, these tunings give us the desired su(N) models without
any enhancements of the gauge algebra.8 But when N = 18, [gN ] is trivial, and gN is
automatically a perfect square. If we replace gN with γ2, the elliptic fibration described
by eq. (4.9) admits a rational section

[x̂ : ŷ : ẑ] =
[1

3Φ : γσ9 : 1
]
. (4.13)

The gauge algebra is therefore su(18) ⊕ u(1), and one can confirm with the Katz–Vafa
method [55] and the proposals in [56] that the charged hypermultiplet spectrum agrees
with eq. (4.7). When N = 19, [gN ] is ineffective, and gN is essentially zero. After setting
N to 19 and gN to 0, the elliptic fibration described by eq. (4.10) admits the rational
section

[x̂ : ŷ : ẑ] =
[1

3Φ : 1
2ψ9σ

9 : 1
]
, (4.14)

implying that the gauge algebra is enhanced to su(19) ⊕ u(1). And by the Katz–Vafa
method [55] and the proposals in [56], one can again verify that the charged hypermulti-
plet spectrum agrees with eq. (4.8). Clearly, we see the enhancements expected from the
Automatic Enhancement Conjecture in these two models.

Enhancements also occur for N larger than 19, as previously observed in [42, 43].9 The
enhancements are summarized in table 1. If we use eq. (4.9) to construct the su(20) and
su(22) models, the divisor class [gN ] becomes ineffective, and the gauge algebras enhance
to su(20) ⊕ su(2) or su(22) ⊕ su(2) respectively. (The generating section in eq. (4.13)
becomes torsional [57], and the gauge group is (SU(N)×SU(2))/Z2.) While the extra su(2)
algebra in both cases could be Higgsed by giving VEVs to two (1,2) hypermultiplets, the
su(20) ⊕ su(2) and su(22) ⊕ su(2) spectra in table 1 do not have this matter. Thus, the
appearance of this extra su(2) algebra agrees with the Automatic Enhancement Conjecture.

Meanwhile, if we use eq. (4.10) to construct the su(21) and su(23) models, the divisor
class [ψk] becomes ineffective, and the gauge algebras enhance to su(22)⊕su(2) and su(24),

6In [42], Φ is defined as 1
4φ

2
0 + φ1σ + . . .+ φk−1σ

k−1. However, one can remove the φi>1 parameters by
the redefinition φ1 → φ1 − (φ2σ + . . .+ φk−1σ

k−2).
7If {σ = 0} is a curve of genus greater than 0, there may also be adjoint hypermultiplets, although this

possibility is not important here.
8The N = 24 model, however, is an example of the Massless Charge Sufficiency Conjecture, as an

additional torsional section appears.
9Because it is somewhat more difficult to find extra rational sections, these previous works did not point

out the additional u(1) algebras for N = 18 and 19.
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Expected Gauge Algebra Enhanced Gauge Algebra Matter Spectrum
su(18) su(18)⊕ u(1) 3× 1530 + 3× 181/2 + 3× 18−1/2
su(19) su(19)⊕ u(1) 3× 171−1/19 + 5× 199/19
su(20) su(20)⊕ su(2) 3× (190,1) + 2× (20,2)
su(21) su(22)⊕ su(2) 3× (231,1) + (22,2)
su(22) su(22)⊕ su(2) 3× (231,1) + (22,2)
su(23) su(24) 3× 276
su(24) su(24) 3× 276

Table 1. Enhanced gauge algebras observed when attempting to tune various expected gauge
algebras along a divisor of class H on P2, along with the observed matter spectrum.

respectively. Neither of these enhanced models has the requisite matter to Higgs the gauge
algebra to su(21) or su(23). While one can give VEVs to (22,2) matter to break su(22)⊕
su(2) to su(21) [58], one would need at least two hypermultiplets of (22,2) matter to satisfy
the D-term constraints [59]. And the su(24) model, which supports only antisymmetric
hypermultiplets, lacks the fundamental matter necessary to Higgs the gauge algebra down
to su(23). Therefore, the observed enhancements when attempting to construct the su(21)
and su(23) models agree with the expectations of the Automatic Enhancement Conjecture.

The local version of this class of enhancements states that for any element b ∈ Λ
satisfying b · b = 1, g = 0 (−a · b = 3), an isolated gauge algebra of su(18) or more is
automatically enhanced according to table 1.

4.4 Other SU(N) examples

In the last two subsections we have focused on enhancements of the algebra su(2) with
general anomaly coefficients and enhancements of the algebra su(n) at large n on anomaly
coefficients b · b = 1, where g = 0. We briefly discuss some more general su(n) examples

4.4.1 Enhancements of su(3) and beyond for general b

A similar enhancement to that described in section 4.2.1 occurs for su(3). When the
coefficients in classes [f2] = −4a − 2b and [g3] = −6a − 3b in a σ expansion of f, g for
the general SU(3) form [19, 42] are not effective, the discriminant acquires an additional
cubic factor ψ3

1 where [ψ1] = −3a − b. This gives an enhancement su(3) → su(3) ⊕ su(3).
Just as there is Z2 torsion in the su(2) → su(2) ⊕ su(2) situations of section 4.2.1, there
is automatically Z3 Mordell–Weil torsion in these cases [19], so the global gauge group
becomes G′ = (SU(3) × SU(3))/Z3. Again, the second SU(3) factor has no adjoints and
all fundamentals/antifundamentals are jointly charged, so the second SU(3) factor cannot
be Higgsed without breaking the original SU(3). For T = 0, this enhancement occurs for
the values b = 7, 8. At b = 6, f2, g3 become constants and the algebra is enhanced by
u(1) ⊕ u(1), by the same logic that led to eq. (4.5). The local version of this analysis is
that when b · b > 0, b · b > −2a · b we get an extra su(3) factor on −3a− b.

We now consider su(4). In general what is needed for automatic enhancement to an
extra SU(2) factor with generic (fundamental, adjoint) matter that cannot be Higgsed down
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is that the extra factor must have an anomaly coefficient b′ giving g′ = 0 (for the absence
of adjoints) and the automatically enhanced group must provide all fundamental SU(2)
matter. The number of fundamental matter fields in this situation is b′ · (−8a− 2b′) from
anomaly cancellation. For an su(4) with anomaly coefficient b to experience enhancement
to su(4)⊕ su(2) we must then have 4b · b′ = b′ · (−8a− 2b′). This can certainly occur, most
simply when 2b = −4a − b′. For example, this occurs when T = 0 where b = 5, b′ = 2. In
general, this will occur when −3a − 2b is not positive but −4a − 2b is positive; it is not
hard to confirm in the universal Weierstrass model for an su(4) with generic matter that
this enhancement occurs under these conditions, where f3 = g4 = 0.

We leave further exploration of automatic enhancement of this type for gauge factors
with general anomaly coefficients to further work.

4.4.2 Enhancements of su(N) for g = 0, small b · b

We now focus on more general enhancements of su(N) for larger N , restricting to the cases
where g = 0. For su(N) models with g = 0, b · b = 2, the largest value of N allowed by
the anomaly cancellation conditions is N = 16. Automatic enhancement should occur for
at least N ≥ 13 because of the requirement that (−6a −Nb) · b must be non-negative for
[gN ] = −6a −Nb to be effective. But automatic enhancement can also occur for some N
less than 13 depending on the base of the F-theory model in question, since −6a − Nb
can be outside the positivity cone even if (−6a −Nb) · b ≥ 0. For instance, let us restrict
attention to T = 1 models, which are constructed using the Hirzebruch surfaces Fm as
bases. To ensure that the divisor supporting the su(N) algebra is irreducible and has self-
intersection +2, m should be 0 or 2. The automatic enhancements, which are the same for
both of these cases, are summarized in table 2.

The pattern of enhancements may be different for b · b = 2 divisors on other bases. For
instance, consider a base B found by blowing up F2 at the intersection of the −2 curve
and a 0 curve, and imagine tuning an su(N) algebra on a +2 curve {σ = 0}. There are no
automatic enhancements for N ≤ 9 on B, apart from a relatively uninteresting su(3) NHC
on the −3 curve. For N = 10, [g10] = −6KB − 10[σ] is effective and nontrivial, but the
only holomorphic sections of [g10] are perfect squares. The gauge algebra should therefore
admit an extra u(1) factor. In fact, the full gauge algebra is su(10)⊕ su(3)⊕ su(2)⊕ u(1),
and the charged hypermultiplet spectrum is

4× (45,1,1)0 + 1× (10,1,2)0 + 5× (10,1,1) 1
2

+ 5× (10,1,1)− 1
2
. (4.15)

This spectrum satisfies the conditions of the Automatic Enhancement Conjecture, as one
cannot Higgs away the su(2) or u(1) factors without disturbing the su(10) algebra. Tuning
su(10) on the b · b = 2 curve in B should therefore lead to an automatic enhancement as
observed, even though a similar su(10) enhancement does not occur in the T = 1 models
above. Locally, this enhancement can be understood as being forced from the intersection of
the +2 curve with a curve of self-intersection −1, and can be understood using purely local
analysis as in [43]. Likewise, su(11) and su(12) experience automatic enhancements when
tuned on the +2 curve of B, yet they can be obtained without enhancements when T = 1.
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Expected Gauge Algebra Enhanced Gauge Algebra Matter Spectrum
su(12) su(12)⊕ u(1) 4× 660 + 4× 12 1

2
+ 4× 12− 1

2

su(13) su(13)⊕ u(1) 4× 78− 1
13

+ 6× 13 6
13

su(14) su(14)⊕ su(2) 4× (91,1) + 2× (14,2)
su(15) su(16) 4× 120
su(16) su(16) 4× 120

Table 2. Automatic enhancements for T = 1 models with su(N) gauge algebras tuned on divisors
of genus g = 0 and self-intersection b · b = 2.

For g = 0 and b · b = 3, the largest value of N allowed by the anomaly cancellation is
13. Based on the condition for (−6a − Nb) · b, automatic enhancements should occur at
least for N ≥ 11. Again, the actual pattern of enhancements depends on the base of the
F-theory model. When T = 1, one can find irreducible curves with self-intersection +3 on
F1 and F3. On F1, there is no enhancement for N ≤ 8, and the enhanced gauge algebras
are su(9) ⊕ su(2) for N = 9, su(10) ⊕ su(2) ⊕ su(2) for N = 10, and su(12) ⊕ sp(2) for
N = 11 and N = 12.10 On F3, there is no enhancement for N ≤ 9 apart from the usual
su(3) non-Higgsable cluster. The enhanced gauge algebras are su(10) ⊕ u(1) ⊕ su(3) for
N = 10, su(11)⊕ u(1)⊕ su(3) for N = 11, and su(12)⊕ su(2)⊕ su(2)⊕ so(7) for N = 12,11

with the last gauge algebra representing that supported on the −3 curve. For both of these
bases, attempting to obtain an su(13) gauge algebra using the standard tuning of eq. (4.10)
produces an invalid elliptic fibration with singular fibers everywhere on the base. While we
do not discuss the matter spectra for brevity, they are all consistent with the Automatic
Enhancement Conjecture.

4.5 Examples with sp(N) and so(N) algebras

We can immediately obtain sp(m) examples of automatic enhancement by Higgsing the
su(2m) models of section 4.3. If we give a VEV to matter in the antisymmetric represen-
tation of su(2m), we obtain an su(m) gauge algebra with the same anomaly coefficient b.
From an F-theory perspective, the resulting sp(m) model is given by taking the su(2m)
construction of eq. (4.9) and ignoring the tuning of Φ in eq. (4.11). The su(2m) models of
section 4.3 have enough antisymmetric hypermultiplets to perform this Higgsing. However,
these hypermultiplets are uncharged under any additional su(2) or u(1) factor appearing
due to automatic enhancements, and the su(2m) → sp(m) breaking does not introduce
new hypermultiplets that would let us Higgs the extra gauge factors without disturbing
the sp(m) algebra. This fact provides us with T = 0 examples of automatic enhancement
with sp(m) gauge algebras and b = 1 anomaly coefficients.

When m = 9, for instance, the conjecture implies that sp(9) experiences an automatic
enhancement to sp(9)⊕ u(1) with the following charged hypermultiplet spectrum:

2× 1520 + 3× 181/2 + 3× 18−1/2 . (4.16)
10We use conventions where sp(2) is supported along non-split I4 loci.
11Since it can be difficult to find rational sections, the enhanced gauge algebras may actually have u(1)

factors beyond those listed here, which we were able to identify easily.
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This enhancement can be seen in the sp(9) Weierstrass model produced by the procedure
described above: the class [g18] is trivial, leading to an additional section of the elliptic
fibration. Similarly, sp(10) and sp(11) experience automatic enhancements to sp(10)⊕su(2)
and sp(11) ⊕ su(2), respectively. While the sp(12) model does not experience automatic
enhancement, the Weierstrass model has an extra torsional section, in agreement with the
Massless Charge Sufficiency Conjecture as noted in [19].

There are also so(N) examples with automatic enhancement. For example, consider
a T = 0 model with an so(10) gauge algebra and b = 4 anomaly coefficient. The charged
hypermultiplet spectrum for this model is

3× 45 + 8× 16 + 4× 10 . (4.17)

However, there is also a consistent so(10) ⊕ u(1) model with anomaly coefficients b = 4,
b̃ = 1 and a charged hypermultiplet spectrum of the form

3× 450 + 8× 16 1
4

+ 4× 10 1
2
. (4.18)

The Automatic Enhancement Conjecture implies that we should see an so(10)→ so(10)⊕
u(1) enhancement. In fact, this can be seen in the so(10) Weierstrass tuning

y2 = x3 + σ2
(
− 1

48Φ2 + f3σ

)
+ σ3

( 1
864Φ3 +

(
γ2 − 1

12f3Φ
)
σ + g5σ

2
)
. (4.19)

The so(10) algebra is tuned along {σ = 0}, so [σ] should be 4H to obtain the correct
so(10) hypermultiplet spectrum. But the divisor class [g5] = −6KB − 5[σ] = −2H is then
ineffective, forcing g5 to be 0. In turn, the elliptic fibration acquires an additional rational
section of the form

[x̂ : ŷ : ẑ] =
[ 1

12σΦ : γσ2 : 1
]
, (4.20)

demonstrating the expected appearance of the u(1) gauge algebra.

5 Abelian examples

The Automatic Enhancement Conjecture also suggests that abelian gauge symmetries in
certain models are forced to enhance. In fact, the conjecture is particularly powerful in
these settings, as it can explain why infinite families of apparently consistent supergravity
models with abelian gauge symmetries do not occur in F-theory. We first describe cases
of the Automatic Enhancement Conjecture with U(1) gauge group and generic (q = 1, 2)
matter, and then focus on two types of infinite families that include exotic U(1) charges:
those with U(1) gauge groups, and an infinite family with an su(13)⊕ u(1) gauge algebra.

5.1 U(1) models with generic matter

For a gauge group U(1), the generic matter representations are those with charges q =
1, 2 [25]. Weierstrass models for F-theory constructions of U(1) theories with these generic
matter charges were constructed by Morrison and Park [18]. The explicit form of these
Weierstrass models is given in eq. (A.2), and it was shown that these models are universal in
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the sense that they capture all the uncharged moduli, at least over simple bases, in [60, 61].
There is a class of situations where the generic U(1) model with certain anomaly coefficients
satisfies the conditions of the Automatic Enhancement Conjecture. These situations are
closely related to the su(2) models described in section 4.2.1. Consider a 6D supergravity
theory with gauge algebra su(2) ⊕ su(2), and anomaly coefficients b, b′ satisfying b + b′ =
−4a. In such a situation, the spectrum consists of b · b′ bifundamental matter fields and
g, g′ adjoint fields for the two su(2) factors, where g, g′ are given by eq. (3.2) using b, b′
respectively. When g > 0, the first su(2) factor can be broken down to u(1) by Higgsing on
an adjoint field. When g′ = 0, however, the second su(2) factor cannot be broken through
Higgsing while preserving the first u(1) factor. This gives a situation with gauge algebra
u(1)⊕su(2) and matter charged only in the 12,21 representations. When such a theory can
be constructed in F-theory, the conditions of the Automatic Enhancement Conjecture are
satisfied, so we expect that the theory with only gauge algebra u(1) and anomaly coefficient
b̃ = 2b cannot be realized in F-theory.

The simplest example of this is in the case of no tensor multiplets (T = 0). There are
anomaly-consistent U(1) models with anomaly coefficient b̃ = 6, 8, . . . , 24 and spectrum
b̃(24 − b̃) × (±1) , b̃(b̃ − 6)/4 × (±2). Naively, these come from Higgsing the anomaly-
consistent su(2) model with b = b̃/2. As we have seen, however, in section 4.2.1, the su(2)
models with b = 10, 11 experience automatic enhancement, and from the above analysis
the same is expected for the u(1) models with b̃ = 20, 22.

Indeed, we can see explicitly from the form of the Morrison–Park Weierstrass model
eq. (A.2) that for the cases b̃ = 20, 22, which correspond to choosing classes [c3] = b̃/2 =
10, 11, the class [c0] becomes ineffective and there is an enhancement to an additional su(2)
factor on the class [c1]. This enhancement was also discussed from different points of view
in [18, 61]. More generally, whenever we have a u(1) theory with generic matter and an
anomaly coefficient b̃ such that −6a − b̃ is outside the positivity cone but −8a − b̃ is in
the (closure of the) cone, we have a similar situation where the theory suffers automatic
enhancement to u(1) ⊕ su(2). In the F-theory construction, it can be confirmed that the
global structure of the group in such situations is (U(1)× SU(2))/Z2 [19].

There are also similar situations when −6a − b̃ = 0, in which case the enhancement
is to a U(1) × U(1) theory, as can be seen again directly from the Morrison–Park form,
and when b̃ = −8a, which naively gives a u(1) model with only even charges, but where
the presence of an additional section in the Morrison–Park model makes this equivalent
to the model with only charges (±1), in accord with the Massless Charge Sufficiency
Conjecture [19]. Note that the original Morrison–Park generating section in the enhanced
U(1)×U(1) theory when −6a = b̃ is the “diagonal” sum of the two U(1) generators giving
the charge lattice generated by (±1, 0) and (0,±1). These cases play a further role as a
special case in the analysis of the following subsection.

5.2 U(1) infinite families

We now turn to some families of U(1) models with exotic charges q > 2. It was shown in [25]
that there is an infinite family of U(1) models with no tensor multiplets that satisfy the
6D anomaly cancellation conditions and other known low-energy constraints. The models
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in this family have U(1) height

b̃ = 6
(
q2 + qr + r2

)
(5.1)

and charged hypermultiplet spectra of the form12

54× (±q) + 54× (±r) + 54× (±(q + r)) (5.2)

for q, r ∈ Z. From now on, we ignore situations where either q, r, or q + r is 0; after
normalizing charges, these situations correspond to a relatively uninteresting model known
to occur in F-theory [18] whose charged hypermultiplet spectrum has only 108 (±1) hy-
permultiplets. We also assume that q, r are relatively prime, so that these charges generate
the full possible charge lattice and therefore satisfy the Massless Charge Sufficiency Con-
jecture [19].13 Because the number of topologically distinct elliptically fibered Calabi–Yau
threefolds is finite, only a finite number of these supergravity models can be realized in
F-theory. This family therefore presents an infinite number of swampland candidates, but
there has been no proposal as to which precise subset of these models lie in the F-theory
swampland, let alone why. And since the models in this family support arbitrarily large
U(1) charges, this family is relevant for questions regarding which U(1) charges occur in
F-theory (see, e.g., [41, 63–66]).

However, there is also a model with zero tensor multiplets, a U(1)×U(1) gauge group,
and a relatively simple spectrum of charged hypermultiplets:14

54× (1,−1) + 54× (1, 0) + 54× (0, 1) . (5.3)

The anomaly coefficient matrix for the U(1)×U(1) gauge group is

b̃ =
(

6 −3
−3 6

)
. (5.4)

This model appears repeatedly in this section, and unless otherwise specified, any reference
to a U(1) × U(1) model refers to this specific model. Let us refer to the first U(1) factor
as U(1)a and the second U(1) factor as U(1)b. We are also free to use a different basis
U(1)c ×U(1)d, such that15 (

qc
qd

)
=
(
q −r
0 1

)(
qa
qb

)
. (5.5)

The charge spectrum in this new basis is

54× (q + r,−1) + 54× (q, 0) + 54× (r, 1) , (5.6)
12The sign of U(1) charge for a charged hypermultiplet is unimportant, as a (±Q) hypermultiplet contains

fields with U(1) charges +Q and −Q.
13Tarazi and Vafa have made the stronger conjecture [62] that there must always be a massless field

of charge (±1) in a 6D U(1) supergravity theory of this type, which would be violated by many of
these theories, but there would still be an infinite family with q = 1, r prime compatible even with this
stronger conjecture.

14A (Qa, Qb) hypermultiplet is equivalent to (−Qa,−Qb) hypermultiplet, as both contain fields with
charges (Qa, Qb) and (−Qa,−Qb).

15This transformation is not valid if q = 0, but as mentioned above this situation is uninteresting.
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and the anomaly coefficient matrix is(
6
(
q2 + qr + r2) −3(q + 2r)
−3(q + 2r) 6

)
. (5.7)

Although U(1)c corresponds to the U(1) seen in the infinite family, there are still two
U(1) factors in this model. One could imagine obtaining a model in the infinite family by
Higgsing U(1)d in a way that preserves U(1)c. This Higgsing would entail giving a VEV
to (0, 1) matter in the U(1)c×U(1)d basis, but this matter is not present in the spectrum
unless r or r + q is 0. The Automatic Enhancement Conjecture would then imply that if
we attempt to construct any U(1) model in the family with r, q, r + q 6= 0, the model is
forced to obtain an extra U(1), and we end up with the U(1)×U(1) model.

The U(1) × U(1) model has an F-theory realization described in appendix B. Geo-
metrically, U(1)a and U(1)b correspond to the generating sections ŝQ and ŝR, while U(1)c
corresponds to the linear combination qŝQ − rŝR under elliptic curve addition. The natu-
ral way to test the Automatic Enhancement Conjecture is to try constructing the models
in the infinite family using the known F-theory U(1) constructions and to show that we
end up with the U(1) × U(1) F-theory model. Because the known U(1) constructions in
F-theory admit only relatively small charges, we will only be able to test the conjecture
for small r and q. Still, we see clear evidence of the expected enhancement in all the cases
we consider. When we try to use these constructions to obtain U(1) models in the infinite
family, the divisor classes of various parameters become either ineffective or trivial. As a
result, the Mordell–Weil rank enhances, and the section that seems to support the correct
U(1) charges becomes a combination of ŝQ and ŝR.

r = q = 1 When r and q are both 1, the desired spectrum of charged hypermultiplets for
the U(1) model takes the form

108× (±1) + 54× (±2) . (5.8)

Since the U(1) model only has matter with charges q = ±1 and ±2, the Weierstrass model
should be in the Morrison–Park form (A.2). We take the base of the elliptic fibration to
be P2. For b̃ = 6(q2 + qr + r2) = 18, the parameters in Morrison–Park form would have
divisor classes

[b̂] = 6H , [c3] = 9H , [c2] = 6H , [c1] = 3H , [c0] = 0H . (5.9)

This is precisely an example of the enhancement structure described in the last paragraph
of the preceding subsection. The divisor class [c0] is trivial, and c0 can freely be taken to be
a perfect square. But if c0 is a perfect square, the gauge group enhances to U(1)×U(1) [61].
One can verify the presence of this additional U(1) by counting moduli and comparing to
the expectations from the gravitational anomaly cancellation conditions [17]. Additionally,
we can map the Morrison–Park form with trivial [c0] to the U(1) × U(1) model discussed
in appendix B by relating the parameters as follows:

b̂ = S7 , c0 = S2
5

4 , c1 = S9S1 −
1
2S5S6 ,

c2 = 1
4
(
−4S9S2 + 2S5S7 + S2

6

)
, c3 = 2S9S3 −

1
2S6S7 .

(5.10)
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Because [c0], [S5], and [S9] are trivial, this is simply a redefinition of parameters, not a
tuning. Thus, our attempt to obtain the desired U(1) model with the Morrison–Park form
has recovered the U(1) × U(1) model, as expected. One can also verify that the standard
Morrison–Park section

[x̂ : ŷ : ẑ] =
[
c2

3 −
2b̂2c2

3 : −1
2 b̂

4c1 + b̂2c2c3 − c3
3 : b̂

]
(5.11)

is given by ŝQ − ŝR.

r = 2, q = 1 When r = 2 and q = 1 (or equivalently q = 2 and r = 1), the charged
hypermultiplet spectrum takes the form

54× (±1) + 54× (±2) + 54× (±3) . (5.12)

We can try to construct this charge-3 U(1) model with a blown-down version of the F3
toric hypersurface construction from [67].16 While there is a Weierstrass model for this
construction, it is easier to work with an alternative form of the elliptic fibration where the
fiber is a cubic curve in a P2 ambient space with coordinates [u : v : w]:

u
(
s1u

2 + s2uv + s3v
2 + s5uw + s6vw + s8w

2
)

+ v
(
s4v

2 + s7vw + s9w
2
)

= 0 . (5.13)

We take the base of the elliptic fibration to be P2. The charged hypermultiplet spectrum
of this construction is(

12K2
B −KB(8[s7]− [s9])− 4[s7]2 + [s7][s9]− [s9]2

)
× (±1)

+
(
6K2

B −KB(4[s9]− 5[s7]) + [s7]2 + 2[s7][s9]− 2[s9]2
)
× (±2)

+[s9] · (−KB + [s9]− [s7])× (±3) ,

(5.14)

and the anomaly coefficient is b̃ = −6KB − 2[s7] + 4[s9]. There are two combinations of
([s7], [s9]) that would seem to give the correct charged hypermultiplet spectrum: (6H, 9H)
and (0H, 6H).

This model is in fact equivalent to the U(1) × U(1) F-theory model for either choice
of ([s7], [s9]). If we focus on the ([s7], [s9]) = (0H, 6H) possibility, the divisor classes of the
other parameters are

[s1] = 3H , [s2] = 0 , [s3] =−3H , [s4] =−6H , [s5] = 6H , [s6] = 3H , [s8] = 9H .

(5.15)
Because [s3] and [s4] are ineffective, s3 and s4 can be set to 0, and the elliptic fibration
takes the form

u
(
s1u

2 + s2uv + s5uw + s6vw + s8w
2
)

+ vw (s7v + s9w) = 0 . (5.16)

If we then exchange v ↔ w and identify

s9 = S7 , s7 = S9 , s2 = S5 , s5 = S2 ,

s8 = S3 , s1 = S1 , s6 = S6 ,
(5.17)

16Using the more general charge-3 model from [36] does not change the results.
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we recover eq. (B.9), which describes the U(1) × U(1) model. Additionally, one can show
that the section supporting the r = 2, q = 1 spectrum is given by 2ŝQ − ŝR. A similar
story holds for ([s7], [s9]) = (6H, 9H). We therefore see the expected enhancement to the
U(1)×U(1) model for r = 2 and q = 1.

r = 3, q = 1 When r = 3 and q = 1 (or when q = 3 and r = 1), the U(1) charged
hypermultiplet spectrum takes the form

54× (±1) + 54× (±3) + 54× (±4) . (5.18)

We can attempt to construct this model using the charge-4 U(1) Weierstrass model in [36].
According to the matter spectrum given in [36], we should let [a1] be 6H, [b1] be 9H, and
[d1] be 0H to obtain the desired U(1) spectrum.17 The other parameters have the following
divisor classes:

[d0] = −3H [d2] = 3H [s1] = −6H [s2] = −3H
[s3] = 0H [s5] = 0H [s6] = 3H [s8] = 6H

(5.19)

Because their divisor classes are ineffective, the parameters d0, s1, and s2 should be set to
0, giving us a Weierstrass model described by

f = − 1
48
(
s2

6 − 4s3s8
)2
− 1

2s5s6s3 (a1d2 + b1d1)

− 1
3a

2
1d

2
1s

2
5 + 1

6a1d1s5
(
s2

6 + 2s3s8
)

+ b1d2s5s
2
3

(5.20)

and

g = 1
864

(
s2

6 − 4s3s8
)3

+ 1
4s

2
3s

2
5

(
a2

1d
2
2 + b2

1d
2
1

)
− 1

6s3s6s
2
5

(
a1b1d

2
1 + a2

1d1d2
)

+ 1
24s3s6

(
s2

6 − 4s3s8
)
s5 (a1d2 + b1d1)

− 1
72a1d1

(
12b1d2s

2
3s

2
5 +

(
s2

6 − 4s3s8
) (
s2

6 + 2s3s8
)
s5
)

− 2
27a

3
1d

3
1s

3
5 + 1

18a
2
1d

2
1

(
s2

6 + 2s3s8
)
s2

5 −
1
12b1d2s

2
3

(
s2

6 − 4s3s8
)
s5 .

(5.21)

This Weierstrass model is in fact equivalent to the U(1) × U(1) Weierstrass model of
appendix B. To see this, we first note that we can remove all occurrences of s5 through the
rescalings d2 → s−1

5 d2 and d1 → s−1
5 d1; since [s5] is trivial, the divisions by s5 do not cause

issues. Then, we can identify the parameters in the two Weierstrass models as follows:

S1 = d2 , S2 = s8 , S3 = b1 , S5 = d1 , S6 = s6 , S7 = a1 , S9 = s3 . (5.22)

The Weierstrass models are equivalent, implying that the gauge group is U(1)×U(1) instead
of just U(1). And one can verify that the section that seems to support the r = 3, q = 1
spectrum is in fact equivalent to 3ŝQ − ŝR. We therefore see the expected automatic
enhancement when we attempt to construct the r = 3, q = 1 U(1) model.

17We could also let [a1] = 9H and [b1] = 6H, but this situation is equivalent to the [a1] = 6H, [b1] =
9H model.
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A similar infinite family of U(1) models with one tensor multiplet was given in [24].
The charged hypermultiplet spectra of these models, which take the form

48× (±r) + 48× (±s) + 48× (±(r + s)) , (5.23)

mimic the structure of the T = 0 family discussed above. The analysis in [24] pointed out
that there is a related U(1)×U(1) model whose charged hypermultiplet spectrum is

48× (1, 0) + 48× (0, 1) + 48× (1, 1) . (5.24)

As with the T = 0 infinite family, one can view the U(1) algebras in the T = 1 infinite
family as linear combinations of the two U(1) algebras in this U(1)×U(1) model. But we
lack the matter necessary to properly Higgs the U(1)×U(1) model down to the desired U(1)
models unless r,s, or r+ s is 0. The Automatic Enhancement Conjecture therefore implies
that if we attempt to construct the models in this infinite family, the gauge group should
enhance to U(1)×U(1). One can confirm that this occurs in the (r, s) = (1, 1), (2, 1), and
(3, 1) cases by an explicit analysis of F-theory constructions along the lines above; some
aspects of this analysis are discussed in appendix D.

There is another infinite family of U(1) models [25] with zero tensor multiplets and
charged hypermultiplet spectra of the form

54× (±a) + 54× (±b) + 54× (±c) + 54× (±d) , (5.25)

where

a = m2 − 2mn , b = 2mn− n2 , c = m2 − n2 , d = 2(m2 −mn+ n2) (5.26)

for m,n ∈ Z+ with n ≤ m
2 . Some of these models belong to the three-charge infinite family

of eq. (5.2), suggesting that the Automatic Enhancement Conjecture may be important for
the four-charge family as well. However, we have not yet found an enhanced model for the
nontrivial four-charge models. Part of the difficulty lies in the complicated nature of the
models: because even the simplest non-trivial members of the family have U(1) charges
larger than those found in the known F-theory constructions, we cannot directly observe any
enhancements. And the quadratic structure of the charges, exhibited by their dependence
on m and n, contrasts with the linear nature of eqs. (5.2) and (5.23) that naturally reflects
combinations of multiple u(1) algebras. In fact, a similar quadratic structure appears in
the su(13) ⊕ u(1) family of section 5.3. Understanding whether automatic enhancement
plays a role in this four-charge family is an important direction for future work.

To summarize, the Automatic Enhancement Conjecture implies that none of the U(1)
models in the infinite families of eqs. (5.2) and (5.23) (except for trivial cases with only
one type of non-zero charge) can be realized in F-theory, as the gauge group is forced to
enhance to U(1)×U(1). The conjecture thus offers a reason as to why those models in the
infinite family lie in the F-theory swampland. While finding the “failure mode” for this
family is an important step, it does not definitely tell us which U(1) charges can generally
occur in F-theory. Yet this result offers a valuable lesson: limits on the maximum U(1)
charge in F-theory likely come not from local constraints on the behavior of sections but
from global considerations [18]. The problem with models in the infinite family lies in an
enhancement of the Mordell–Weil rank, which is a global property of the fibration.
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5.3 Infinite family of su(13)⊕ u(1) models

In [24], an infinite family of T = 1 supergravity models with su(13)⊕ u(1) gauge algebras
was presented. The charged hypermultiplet spectra for these models take the form

78−3a− 2
3f

+ 3× 78a + 6× 13f + 18× 16a+f , (5.27)

where
a = 13r2 − 234rs− 51s2 f = 24(13r2 + 3s2)
r = 84n+ 43 s = 182n+ 92

(5.28)

for n ∈ Z. The anomaly coefficient for the u(1) algebra is given by b̃ = 1
2(α, α̃) with

α = 52
[
6687s4 + 54756s3r + 94458s2r2 − 124956sr3 + 39455r4

]
,

α̃ = 52
[
2475s4 + 37908s3r + 170274s2r2 − 29484sr3 + 9035r4

]
,

(5.29)

in a basis where the intersection form is

Ω =
(

0 1
1 0

)
. (5.30)

First, note that if we attempt to obtain just the su(13) algebra, the model suffers
an automatic enhancement. In order to obtain four antisymmetric and six fundamental
hypermultiplets of su(13), the anomaly coefficient b for the su(13) algebra should satisfy
b · b = 2 and −a · b = 4, implying that (−6a − 13b) · b is negative and that −6a − 13b
is ineffective. By the discussion in section 4.3, the su(13) algebra should automatically
enhance to su(13) ⊕ u(1)f , where we use the subscript f to distinguish this u(1) algebra
from those in the infinite family.18 The charged hypermultiplet spectrum

4× 78− 1
13

+ 6× 13 6
13

(5.31)

lacks the necessary charged singlets to Higgs away the forced u(1) algebra, in line with the
Automatic Enhancement Conjecture.

Strictly speaking, this statement only applies to a model with an su(13) gauge algebra,
not the su(13)⊕ u(1) models in the infinite family. But because we are able to phrase this
automatic enhancement locally in terms of a · b and b · b, we would expect the su(13)
subalgebra of su(13)⊕u(1) to also experience an automatic enhancement. A naive guess is
that the gauge algebra for the infinite family automatically enhance to su(13)⊕u(1)⊕u(1)f ,
but if one combines the u(1) charges in eq. (5.27) and eq. (5.31), the resulting spectrum
does not satisfy the anomaly cancellation conditions. Nevertheless, the expected automatic
enhancement of the su(13) algebra suggests models in this su(13) ⊕ u(1) infinite family
should have some inconsistency, even though we have not found an explicit automatic
enhancement.

This argument does not seem to capture the true problem with the family, however.
There are also seemingly consistent su(N) ⊕ u(1) infinite families for N < 13, which can

18Note that −3a − 6b is effective, and there should not be automatic enhancements beyond the one to
su(13)⊕ u(1).
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be found by Higgsing the would-be su(13) ⊕ u(1) models on fundamental matter. The
su(N) subalgebras would not suffer the automatic enhancement of su(13) described above,
but the mechanism that eliminates the N < 13 families would presumably apply to the
su(13)⊕u(1) family as well. We therefore expect there to be an alternative, more satisfying
explanation that rules them out. The quadratic nature of the u(1) charges resembles that
seen in the four-charge family of eq. (5.25), suggesting that all of these families suffer
from similar issues. But it is difficult to see how the quadratic structure of the charges
would fit naturally in any kind of linear u(1) subalgebra of an enhanced U(1)k theory.
Additionally, the charges are significantly larger than those that can be easily realized in
F-theory constructions, so it would be tough to directly observe how the models fail. It
would be interesting to understand these infinite families more properly in future work.

5.4 Automatic enhancement for (SU(3)× SU(2)×U(1))/Z6 models

In [17], the universal Weierstrass model was constructed for the Standard Model gauge
group (SU(3) × SU(2) × U(1))/Z6. As discussed there, the model undergoes automatic
enhancement for certain choices of the anomaly coefficients b3, b2, β. In particular, the
Jacobian rank method introduced in that paper was used to count the number of moduli for
all 98 of the allowed parameter choices for 6D models over the base P2. In 44 of these cases
the moduli count does not match with the expectation from the spectrum fixed by anomaly
cancellation, and the model undergoes automatic enhancement or is rendered inconsistent.

In 34 of these cases, the gauge group enhances by the addition of nonabelian or U(1)
factors. In each of these cases, the resulting unHiggsed theory is anomaly consistent but has
insufficient matter to supersymmetrically Higgs to the original (SU(3)× SU(2)×U(1))/Z6
model, consistent with the Automatic Enhancement Conjecture. In the remaining 10
cases, the discriminant vanishes identically, indicating that the Weierstrass model is in-
valid. These are all models that would apparently have an unHiggsing to a Tate SU(4) ×
SU(3)× SU(2) model. However, it is found that the corresponding Tate models also have
identically vanishing discriminant, corresponding to the stronger case-specific version of the
enhancement conjecture that when certain positivity conditions are violated the theory is
either enhanced or inconsistent. The various cases are summarized in table 3.

6 Positivity conditions and local conditions for automatic enhancement

In each specific class of cases we have encountered in the preceding sections, the pattern
is essentially that when we try to tune an F-theory model with algebra g with a certain
anomaly coefficient b (or b̃), and when the curve class associated with a certain other string
charge −na−mb ceases to be effective, then either an additional gauge factor with algebra
of at least f arises with another anomaly coefficient b′ = −pa− qb, or the theory becomes
inconsistent due to excessive singularities. Put more simply, under such circumstances
we cannot have a theory with gauge algebra g having anomaly coefficient b satisfying the
stated conditions unless there is also a gauge algebra component of at least f associated
with the anomaly coefficient b′.
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[b1] [d0] [d1] [d2] [s1] [s2] [s5] [s8] # of Models Gauge Algebra
+ + ≥ − ≥ + + ≥ 11 su(3)⊕ su(2)⊕ u(1)⊕ u(1)
+ + − − ≥ + ≥ 0 9 su(3)⊕ su(3)⊕ u(1)
+ + − − + + + + 4 su(3)⊕ su(3)⊕ su(2)⊕ u(1)
+ + 0 − + + ≥ − 3 su(4)⊕ su(2)⊕ u(1)⊕ u(1)
+ + ≥ − 0 + 0 0 3 su(3)⊕ su(2)⊕ u(1)⊕ u(1)⊕ u(1)⊕ u(1)
+ + 0 − 0 + − − 1 su(5)⊕ su(2)⊕ u(1)⊕ u(1)
+ + + − + + 0 − 1 su(4)⊕ su(2)⊕ su(2)⊕ u(1)⊕ u(1)
+ + 0 − + + − − 1 su(5)⊕ su(2)⊕ su(2)⊕ u(1)⊕ u(1)
+ + + − 0 + − − 1 su(5)⊕ su(3)⊕ su(2)⊕ u(1)⊕ u(1)
+ + − − ≥ + ± − 10 Invalid

Table 3. Cases where the (SU(3) × SU(2) × U(1))/Z6 universal Weierstrass model undergoes
automatic enhancement over the base P2. Cases are grouped by their resulting gauge algebra,
which is determined by which divisor classes [b3]–[s8] associated with parameters in the Weierstrass
model are strictly effective (+), effective (≥), trivial (0), ineffective (−), or unspecified (±). The
parameter s6 is not listed and always has class −KB = 3H.

In the context of F-theory, for each such algebra enhancement, the conjecture can thus
be stated in terms of the effectiveness of certain curves; in supergravity this translates to
conditions that certain anomaly coefficients or other elements of the string charge lattice
lie in or outside the positivity cone. While we do not have any completely general way
of unifying these positivity conditions into a single conjecture, in each individual case,
the statement about positivity conditions is stronger than the Automatic Enhancement
Conjecture, since it includes those cases where the theory is rendered invalid by the would-
be enhancement. In this section we collect the specific results found in the other sections
for this stronger condition.

We also collect here some corresponding local versions of the Automatic Enhancement
Conjecture. In each case, the general form of the statement is that if there is a gauge
component g with anomaly coefficient b satisfying certain conditions, then a consistent
F-theory model is only possible when there is an additional gauge component of at least f

associated with another anomaly coefficient b′. The conditions in the local form for each
case only depend on b·a, b·b, which correspond to local conditions in the F-theory geometry,
namely the genus and self-intersection of the associated curve. These conditions are weaker
than the global positivity conditions, but are useful in analyzing models using only part of
the structure of the theory.

A number of these conditions that we have encountered in the paper are listed in
table 4.
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Algebra g Positivity Condition Local Condition f b′

— — b · b < −2, g = 0 G′ ⊇ SU(3) b

— — b · b ≤ −13, g = 0 no theory —
— — b · b < −2, g > 0 no theory —

su(2) −3a− b � 0 b · b > 0, b · b > −3a · b su(2) −4a− b
su(2) b = −3a — u(1) b̃′ = −8a− 2b
su(3) −2a− b � 0 b · b > 0, b · b > −2a · b su(3) −3a− b

su(3) b = −2a — u(1)⊕ u(1) b̃′ = −a
(

6 −3
−3 6

)
su(4) −3a− 2b � 0 b · b > 0, 2b · b > −3a · b su(2) −4a− 2b

su(n = 20–23) — g = 0, b · b = 1 su(2) −4a− dn/2eb
u(1) −6a− b̃ � 0 b̃ · b̃ > 0, b̃ · b̃ > −6a · b̃ su(2) −4a− b̃/2

u(1) b̃ = −6a — u(1) b̃′ = −a
(

2 −1
−1 2

)

Table 4. Positivity cone and local versions of the Automatic Enhancement Conjecture, for cases
with generic matter. In each case a gauge component g with anomaly coefficient b satisfying cer-
tain conditions forces enhancement to an additional gauge component of at least f with anomaly
coefficient b′. (For u(1) factors, anomaly coefficients are b̃, b̃′ respectively; note that this anomaly
coefficient corresponds to the normalization of the u(1) factor so that all charges are integers.) The
“genus” contribution g is given in terms of local anomaly coefficients a, b by eq. (3.2). In the “Pos-
itivity Condition” column, which gives the conditions on divisor classes under which enhancement
occurs, the notation D � 0 means that the divisor class D is ineffective.

Some comments on these local versions of the Automatic Enhancement Conjecture:

• Unlike the general statement of the Automatic Enhancement Conjecture, the local
versions of these statements are specific to rather particular circumstances of gauge
groups and anomaly coefficients. The list here is not in any way intended to be
complete, and even for those cases listed, we have given only some simple sufficient
local conditions for each enhancement. It would also be desirable to have a more
unified way of framing these in terms of a more general statement analogous to
Automatic Enhancement Conjecture.

• In cases where b′ is not in the positive cone, there is no corresponding F-theory model
— the enhancement breaks the theory.

• The local conditions given here are only sufficient conditions, since there can be an
enhancement that depends on further structure. In particular, even when the suffi-
cient local conditions are not satisfied, the presence of certain other types of curves
intersecting the curve supporting the gauge divisor can provide for an enhancement
in more general circumstances. An example of this is given in, for example, sec-
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tion 4.4.2, where we see that the usual enhancement that begins at su(13) on a curve
of genus 0 and self-intersection b · b = 2 also occurs for su(10–12) when the curve in
question intersects another curve b′ of self-intersection b′ · b′ = −1. A more careful
and thorough analysis of local conditions incorporating, e.g., adjacent divisors could
be made using similar principles to those used in [43].

• As for the general Automatic Enhancement Conjecture, the positivity based and local
versions given here for specific gauge factors are mostly conjectural even at the level of
F-theory. The case of non-Higgsable clusters (G = 1) was proven in full generality in
F-theory in [44], but the other examples depend upon some assumptions on the form
of the Weierstrass model used to achieve the initial gauge algebra G. In particular,
while the general form has been proven for, e.g.,the su(n) algebras under the UFD
assumption [42], it is possible that more general forms of the Weierstrass model such
as those considered in [28] may evade the conjecture at both the local and global
levels. Although such non-UFD constructions in general are expected to give exotic
matter representations, this has not been proven to always be the case. Nonetheless,
as discussed in appendix D, a variety of effects can remove non-UFD structure, and
based on the example presented there it seems likely that these effects conspire to
ensure that models without exotic matter take UFD forms.

• As for the general form of the Automatic Enhancement Conjecture, it is natural
to speculate that the group-specific stronger versions of the conjecture also hold for
6D supergravity theories more generally; this possibility is discussed further in the
conclusions section.

• We have only listed here cases with generic matter, which depend in general on
knowing the corresponding universal Weierstrass models.

• As mentioned earlier, in cases where the automatic enhancement involved would
break the theory, such as by producing codimension one (4, 6) loci or when b′ is not
in the positive cone, the gauge-specific positivity-based form and the local form of the
Automatic Enhancement Conjecture still effectively rule out the relevant swampland
models, while the global form as stated in section 2 does not due to the absence
of a consistent containing theory. Several examples of this are given in paragraph
“Enhancements that break the theory” on page 15 and section 5.3.

• In each case where the local enhancement mechanism forces a gauge group factor with
a new anomaly coefficient b′, as discussed in section 4.2.1, this can also be achieved
by having an enhanced gauge factor on each of a set of anomaly coefficients that add
to b′ = b1 + · · · bk.

7 Exotic matter and discrete gauge groups

In this section we discuss several further classes of apparent swampland models, those in-
volving exotic matter and those involving discrete gauge groups. We first describe some
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cases of exotic matter types that should be allowed in F-theory but where certain com-
binations of these matter representations lie in the apparent swampland. We then briefly
describe exotic matter that goes outside the F-theory classification of [67] and situations
with discrete gauge groups. These latter two classes of examples are still poorly understood
in F-theory, and for these types of apparent swampland models some further work and in-
sights may be needed to fit with the context of the automatic enhancement mechanisms
discussed in this paper.

7.1 An su(2) model with two half-hypermultiplets of 4 matter

In addition to the fundamental and adjoint representations of su(2), F-theory models can
realize matter in the three-index symmetric (4) representation. Such matter is supported
at triple point singularities of the divisor supporting the su(2) algebra. More precisely, a
triple point singularity of an su(2) divisor in a 6D F-theory model may support a half-
hypermultiplet of 4 matter and a full hypermultiplet of fundamental (2) matter [28, 68].19

While there are several matter spectra with 4 matter that occur in F-theory models,
there are also matter spectra that are consistent with the anomaly conditions but pose
problems when one tries to construct them in F-theory. One example, described in [28], is
a model with no tensor multiplets, an su(2) gauge algebra, and the following spectrum of
hypermultiplets:

2× 1
24 + 84× 2 + 104× 1 . (7.1)

This spectrum satisfies the anomaly cancellation conditions with b = 5. We would therefore
expect the corresponding F-theory model to have a P2 base, and the su(2) algebra should
be tuned on a quintic curve. Because the model supports two half-hypermultiplets of 4
matter, the quintic curve should have two triple points.

But as pointed out in [28], an irreducible quintic curve on P2 cannot have two triple
point singularities. If such a quintic existed, we could always find a line that goes through
both of the triple points. According to Bezout’s theorem, this line should intersect the
quintic at five points, counted with multiplicity. The line and the quintic intersect at the
two triple points, and each of these intersections would have multiplicity three. Therefore,
the triple points alone would give us an intersection number of 6, which is greater than
the expected value of 5 for the total intersection number from Bezout’s theorem. This
contradiction shows that an irreducible quintic curve cannot have two triple points.

There is a potential loophole in this argument: the quintic curve can contain the
line passing through the triple points. In this case, the quintic curve would be reducible.
For instance, suppose that, without loss of generality, the two distinct triple points are
described by the intersection of a line {ηb = 0} and a quadratic curve {ηa = 0}. A quintic
curve of the form

ηb
(
3t(2)η

2
a + 3t(1)ηaηb + t(0)η

2
b

)
= 0 (7.2)

with
[t(2)] = 0H , [t(1)] = 1H , [t(0)] = 2H (7.3)

19It is also possible for triple points to support adjoint matter [28], but this possibility is not important
for the models considered here.
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would then appear to have two triple points. Of course, this quintic curve reduces to the
union of a line and a quartic curve. To deform this reducible quintic into an irreducible
quintic with two triple points, we would need to introduce a term of the form t(3)η

3
a. (All of

the terms in the quintic must be polynomials of order three in ηa, ηb to preserve the triple
point singularities of the quintic and the non-UFD su(2) structure [28].) The parameter
t(3) would then be ineffective and would be forced to vanish, giving us the reducible quintic
of eq. (7.2) once again. Clearly, there is a geometric obstruction to deforming the reducible
quintic into an irreducible curve.

If we were to tune I2 singularities along the curve in eq. (7.2), the resulting gauge
algebra would be su(2)⊕ su(2) rather than su(2). We take the first su(2) to correspond to
the line {ηb = 0} and the second su(2) to correspond to the quartic curve. One can find
the corresponding Weierstrass model by setting t(3) to 0 in the su(2) construction given
in appendix B of [28]. Each {ηa = ηb = 0} point supports a half-hypermultiplet of (2,3)
matter and a half-hypermultiplet of (2,1) matter. The complete hypermultiplet spectrum
for this model is

2× 1
2(2,3) + 1× (1,3) + 19× (2,1) + 64× (1,2) + 104× (1,1) . (7.4)

The appearance of the su(2)⊕ su(2) algebra seems linked to the ineffectiveness of the
parameter t(3). This is reminiscent of the automatic enhancement examples encountered
above, in which the gauge algebra enhances because a parameter becomes ineffective. It
is therefore tempting to view the forced reducibility of the quintic curve as a geometric
manifestation of the Automatic Enhancement Conjecture. Specifically, we argue that the
conjecture implies that any attempt to construct an su(2) model with b = 5 and two half-
hypermultiplets of 4 matter leads to a model with an su(2)⊕ su(2) gauge algebra. In order
to show that this is the case, we must examine how one would field-theoretically break the
su(2)⊕ su(2) algebra down to su(2).

We are attempting to recombine the 7-branes wrapped on the linear and quartic curves
of eq. (7.2) while maintaining the triple points at {ηa = ηb = 0}. Field-theoretically, this
recombination process involves giving a VEV to bifundamental matter such that a diagonal
su(2) subalgebra of su(2) ⊕ su(2) is preserved. Specifically, if the generators for the su(2)
on the quartic curve are T a(4) and the generators for the su(2) on the linear curve are T a(1),
we wish to preserve the generators

T a(5) = T a(4) + T a(1) (7.5)

up to some normalization. Of course, the hypermultiplet spectrum in eq. (7.4) does not
contain any bifundamental matter, so we cannot perform this Higgsing process. But if we
ignore this problem, it naively seems that this Higgsing would give us the su(2) hyper-
multiplet spectrum in eq. (7.1). The su(2) ⊕ su(2) representations in eq. (7.4) branch to
representations of the diagonal su(2) as follows:

(2,3)→ 4 + 2 , (1,3)→ 3 , (2,1)→ 2 , (1,2)→ 2 , (1,1)→ 1 . (7.6)

Meanwhile, three of the su(2)⊕ su(2) gauge bosons, those corresponding to the generators

T a(4) − T
a
(1) , (7.7)
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should get masses as part of this Higgsing process. The T a(4)−T
a
(1) generators appear to be

charged in the adjoint (3) representation of the diagonal su(2) algebra, so they must pair
up with a hypermultiplet in the 3 representation of su(2) to form massive vector multiplets.
This 3 hypermultiplet is removed from the massless spectrum. Combining this information
with eqs. (7.4) and (7.6) leads to an ostensible massless hypermultiplet spectrum of

2× 1
24 + 84× 2 + 104× 1 , (7.8)

in exact agreement with eq. (7.1).
We therefore see that, if we could Higgs the su(2)⊕su(2) gauge algebra down to su(2),

we would recover the expected su(2) model with b = 5 and two half-hypermultiplets of 4
matter. However, the su(2) ⊕ su(2) model in question, with the hypermultiplet spectrum
of eq. (7.4), lacks the bifundamental matter necessary to perform this Higgsing. The
Automatic Enhancement Conjecture then states that any attempt to construct this su(2)
model would lead to a model with an su(2)⊕ su(2) gauge algebra. In other words, an su(2)
gauge algebra with the hypermultiplet spectrum of eq. (7.1) would automatically enhance
to an su(2) ⊕ su(2) gauge algebra. The conjecture thus offers a physical explanation for
the geometric observation that a quintic curve with two triple points must be reducible.

The geometric analysis of [28] identified other su(2) models with 4 matter that have
similar geometric obstructions. These models would be related to the quintic su(2) model
discussed here by applying Cremona transformations to the P2 base of the elliptic fibration.
It is natural to expect that these geometric obstructions can also be explained physically
by the Automatic Enhancement Conjecture. However, the su(2) divisors in these examples
have more complicated algebraic structures, making it more difficult to determine the
enhanced gauge algebras. We therefore do not analyze these examples here, although they
could serve as interesting tests of the Automatic Enhancement Conjecture in future work.

7.2 More exotic matter

We now briefly consider exotic matter in representations not expected from F-theory ac-
cording to the classification of [28]. Some examples of such matter representations are the
3-index antisymmetric (84) representation of SU(9), the (20) representation of SU(4),
any representation of G2 other than the 7 and the adjoint, etc. In general, attempts to
construct these representations lead to codimension two (4, 6) loci, which are associated
with superconformal sectors [50–52]. While there may be a physical interpretation of these
SCFT matter structures, these kinds of matter/SCFT structures are as yet poorly under-
stood in F-theory. We may, however, see the appearance of a (4, 6) codimension two locus
as another kind of “enhancement” that is forced when certain combinations of gauge group
and matter fields are tuned in an F-theory model. In particular, this kind of enhancement,
or an inconsistency of the theory, seems to arise whenever a theory is tuned in F-theory that
could possibly be consistent with exotic matter outside the list of representations identified
in [28]. One class of situations in which this (4, 6) enhancement has been studied is for
the 3-index antisymmetric SU(9) representation; while there are apparently anomaly-free
6D supergravity models that contain this representation, any attempt to construct them
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in F-theory appears to lead to a codimension-two (4, 6) locus associated with the desired
matter representation [13].

Here we briefly analyze another simple set of 6D supergravity theories with exotic
matter that satisfy all known consistency conditions but do not seem to have an F-theory
realization. These are theories with gauge group G2, no tensor multiplets, and matter
in the 27-dimensional exotic matter representation. Some simple 6D supergravity models
with this representation that seem to be anomaly-consistent are, for example, those with
T = 0, gauge group G2, and a matter spectrum of 31× 7 + 0 × 14 + x× 27, where 14 is
the adjoint representation and x = 1 or x = 2. We argue here that any attempt to tune
such a theory leads to an “enhancement” to a codimension two (4, 6) sector.

It is fairly straightforward to see that tuning any kind of G2 gauge factor with matter in
the 27 representation leads to some kind of complications in F-theory. As mentioned briefly
earlier, one simple way of classifying exotic matter fields is through their contribution to
the arithmetic genus of the curve supporting them in an F-theory model, which can be
computed directly from the contribution to eq. (3.2) from that particular representation
in the anomaly equations [27]. The 27 of G2 has a genus contribution of g = 3. Thus,
we expect only to see this representation when G2 is tuned on a curve with a triple self-
intersection point or other singularity of arithmetic genus 3. At such a point, however, (f, g)
must vanish to orders (6, 9) since the orders needed for G2 in the Kodaira classification
are (2, 3). We thus have an automatic (4, 6) point in any F-theory model when we try to
tune this representation. The meaning of this kind of singularity is not quite clear at this
time. In general, as mentioned above, we expect a superconformal field theory (SCFT) to
be coupled in at such codimension (4, 6) points. It is possible that such an SCFT could
play the role of the 27 matter, although it is not clear how to make complete sense of
this interpretation. It has also been suggested [53] that T-brane structures may somehow
enable exotic matter at codimension-two (4, 6) loci in such a way that there is no SCFT
coupled into the theory, and in principle such a mechanism may operate here, but this is
also poorly understood. While the base can be changed by blowing up the (4, 6) point
associated with the exotic matter, giving another base with T → T + 1, in this case the
G2 factor would generally lose its self-intersection at the locus supporting the desired 27
and the matter associated with that point would be lost. In any case, the enhancement
of the Weierstrass model to a codimension two (4, 6) point may represent some kind of
enhancement related to those described in the bulk of this paper, though it is not covered
by the Automatic Enhancement Conjecture as stated in section 2. It would be interesting
to try to incorporate this kind of swampland model into a larger framework including the
other cases described here that are better understood.

Another interesting class of enhancements related to some kind of strongly coupled
SCFT matter arises in the case of a tuned E8 gauge group.20 Again here there is a
necessary enhancement to a local (4, 6) point when we tune, e.g.,an E8 factor on a curve on
P2, associated with some kind of SCFT. Deformations of the Weierstrass model away from
this locus, as for the other tuned (4, 6) point SCFTs presumably correspond to some kind

20Thanks to Yinan Wang for helpful discussions on this point.
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of Higgsing that breaks the E8. Some investigation of this kind of structure was carried
out in [69], but it would be nice to better understand these kinds of SCFT enhancements
and their role in the Automatic Enhancement Conjecture.

7.3 Discrete gauge groups

Automatic enhancement can occur for models with discrete gauge symmetries as well, even
when the desired charged matter spectrum satisfies the low-energy anomaly conditions
of [35]. We do not give a complete description of automatic enhancement for discrete
gauge groups here. Instead, we present examples of F-theory models where a Z2 or Z3
symmetry automatically enhances to a larger group, such as U(1).

For instance, we can consider a Z2 model with zero tensor multiplets and 108 charged
hypermultiplets. One might imagine trying to obtain this model by Higgsing a U(1) model
with anomaly coefficient b̃ = 6H and 108 hypermultiplets of (±1) matter, but this U(1)
model does not have the requisite (±2) hypermultiplets to perform the Higgsing. The
Automatic Enhancement Conjecture would therefore suggest that the Z2 gauge symmetry
should automatically enhance to a U(1). To see if this enhancement occurs explicitly in
F-theory, we can consider the Z2 Weierstrass model from [61, 70], which is given by

y2 = x3 +
(
e1e3 −

1
3e

2
2 − 4e0e4

)
x+

(
−e0e

2
3 −

1
3e1e2e3 −

2
27e

3
2 + 8

3e0e2e4 − e2
1e4

)
. (7.9)

We let the base be P2 to ensure there are zero tensor multiplets, and to obtain the correct
number of charged hypermultiplets, we should let [ei] = (12− 3i)H.21 Since [e4] is trivial,
e4 can be freely taken to be a perfect square, implying that the gauge group is U(1) instead
of Z2 [61]. We therefore see the expected Z2 → U(1) automatic enhancement.

One can also consider the F1 toric hypersurface model discussed in [67], which has
gauge group Z3. Considering this model tuned over the base P2, the Jacobian rank method
of [17] seems to indicate that this is the universal model for the gauge group Z3. How-
ever, for most values of the parameters S7,S9, the gauge group enhances, due to either the
ineffectiveness or triviality of classes of some parameters in the Weierstrass model (in the
latter cases, the model develops extra U(1) gauge factors because the associated parame-
ters are automatically perfect squares, as in many of the other cases we have discussed).
For example, there is an anomaly-consistent Z3 model with (S7,S9) = (0, 1) containing 168
charged hypermultiplets (note that charges ±1 and ±2 are equivalent in a 6D Z3 model).
However, there is an associated U(1) model (the F3 toric hypersurface model of [67]) with
(S7,S9) = (0, 1) that would Higgs to this Z3 model, except that for this choice of classes
the U(1) model has no (±3) matter with which to perform the Higgsing. Thus, according
to the Automatic Enhancement Conjecture, we expect that the Z3 model automatically
enhances to a U(1) model for this choice of S7,S9, and indeed this is the case. It appears
to be true that all of the enhanced models over the base P2 have insufficient matter to
supersymmetrically Higgs to the associated Z3 model, consistent with the Automatic En-
hancement Conjecture. Note that there are also choices of S7,S9, such as (S7,S9) = (1, 9)

21We could alternatively let [ei] = 3iH, but because we can exchange ei ↔ e4−i, the analysis is the same
for this case.
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that are a priori consistent with anomalies for which the discriminant of the F1 model
vanishes identically, indicating that these models are actually inconsistent altogether.

It would be interesting to perform a more thorough investigation of automatic en-
hancements of discrete gauge symmetries in future work.

8 Automatic enhancement in lower-dimensional theories

8.1 Automatic enhancement in 4D N = 1 F-theory models

While we have focused in this paper on 6D F-theory models, at least at the level of geometry
similar enhancements are forced through tuning Weierstrass models with certain gauge
groups on sufficiently large divisors in 4D F-theory models as well. Because the actual
gauge group can be affected by fluxes and the superpotential, the physical consequences of
this geometric enhancement are less clear in 4D theories, but the analogous phenomenon
seems worth exploring.

As a simple example, consider an F-theory model on the base P3, with an su(2) algebra
tuned on the divisor D = bH, with H the hyperplane divisor. The same logic as that
described in section 4.2 applies. Here KB = −4H, and so if 12 < b < 16, there will be
an additional su(2) algebra arising on the divisor f1 = 0, with [f1] = (16 − b)H. As in
the 6D context, the resulting global gauge group, at least at the level of geometry, will be
(SU(2)× SU(2))/Z2.

8.2 Automatic enhancement in 5D and 4D theories with 8 supercharges

It is interesting to speculate whether some similar mechanism may arise in 5D N = 1 and
4D N = 2 theories. In particular by compactifying at least some of the cases where 6D
theories have automatic enhancement on circles, it seems we can get some lower-dimensional
theories with additional gauge factors that cannot be completely Higgsed away.

As a simple example, consider the 6D T = 0 theory with an su(2) tuned on a curve
with b = 10 or b = 11, which as discussed in section 4.2.1 is automatically enhanced to
include an extra su(2) factor on a complementary curve with [f1] = 2, 1 respectively. If we
compactify this 6D theory down to a 5D or 4D theory with 8 supercharges on a circle S1 or
torus T 2, the lower-dimensional theory again has a gauge group (SU(2)× SU(2))/Z2. The
vector multiplets now include adjoint scalars for the su(2) factors, so there is a Coulomb
branch where, for example, the first su(2) factor remains nonabelian while the second
factor is broken to the U(1) subgroup so that the global group becomes (SU(2)×U(1))/Z2.
In the 5D theory there are no fields charged purely under the U(1) factor, so it seems
that we may have a similar situation where the containing G′ theory cannot be broken
down to a smaller theory with only a gauge algebra su(2) and the same charged matter
content under that factor. The story is much less clear here, however, since we do not have
an analogous construction to the F-theory geometry where we can see the forcing of the
extra factor through the Weierstrass model. If there is some constraint analogous to the
automatic enhancement mechanism for 5D theories, for example for 5D models that can be
realized by compactifying M-theory on a Calabi–Yau threefold, this would seem to entail
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some constraint on the geometry of general CY threefolds that might hold even beyond the
elliptic CY3 framework. We leave this question for further investigation. It would also be
interesting to look into the parallel questions for 4D models coming from compactification
on a further circle.

9 Conclusions and further directions

In this paper we have identified a range of circumstances in which tuning a certain gauge
group G and matter contentM in F-theory automatically gives rise to a larger gauge group
G′ and matter content M ′. We have analyzed a variety of constructions for specific gauge
groups G that satisfy the conditions of the Automatic Enhancement Conjecture stated in
section 2 that there is a containing theory G′,M ′ such that the larger theory cannot be
broken down to the smaller theory with gauge group G by a supersymmetry-preserving
Higgs deformation. For each of the specific gauge groups G with generic matter content,
we have used explicit constructions of universal Weierstrass models to identify positivity
conditions and associated local conditions in terms of anomaly coefficients that are sufficient
to show that certain gauge group and matter combinations cannot be realized in F-theory
without some additional enhanced gauge factors. These gauge group-specific formulations
of the conjecture are stronger than the general statement since they also incorporate classes
of theories that are rendered invalid by the enhancement.

While the analysis here has focused on F-theory constructions, where we can explicitly
prove that automatic enhancement must take place at least through standard F-theory con-
structions, it is interesting to speculate that the Automatic Enhancement Conjecture, and
its group-specific stronger versions, may hold more generally for 6D supergravity theories.
Indeed, many of the known 6D supergravity models that seem to lie in the swampland [15]
of theories that appear consistent but have no known string realization, and which do not vi-
olate other known F-theory constraints reviewed in section 3.2.1, are in the class of theories
identified here that are automatically enhanced to a larger gauge symmetry when realized
in F-theory through standard constructions, or are rendered invalid when this enhancement
is not possible. Furthermore, as described in [19] and reviewed in section 4.2.3, another
class of apparent swampland theories, in which the massless matter does not span the full
charge lattice of the gauge group, appears to be similarly ruled out in F-theory through
the appearance of additional sections. It would be interesting to try to find some way of
unifying the set of swampland theories that undergo automatic enhancement to either a
larger group or an invalid F-theory model, along with those theories that automatically
acquire extra Mordell–Weil sections in F-theory, through some condition on the low-energy
theory, which would provide a unified swampland hypothesis for all three of these sets of
theories in the context of 6D supergravity. Such a formulation seems a bit subtle, however;
for example, in the context of the su(2)→ (SU(2)× SU(2))/Z2 described in section 4.2.1,
automatic enhancement to the extra su(2) factor is forced on the locus f1 = 0. From the
F-theory point of view, this is one particular curve in a moduli space of curves in a given
homology class, which is picked out by the structure of the Weierstrass model. In the 6D
supergravity theory, that homology class corresponds to a particular charge in the string
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charge lattice, but the degrees of freedom associated with the specific choice of curve f1
are not clearly visible in the low-energy theory in any way that we are familiar with; thus,
in particular, world-volume methods on a string such as those used in [2, 41] do not seem
sensitive to the specific locus f1 = 0 as distinct from the other string configurations coming
from branes wrapped on other cycles in the same class. Understanding this better would
be an interesting direction for further investigation.

Another question of interest is whether the Automatic Enhancement Conjecture can
be rigorously proven even in the context of F-theory. For the first case we have discussed,
that of non-Higgsable clusters, such a proof exists. In this situation, where there is a
curve C of negative self-intersection C · C ≤ −3, the curve C is rigid and hence unique,
and the arguments of [44] show that any F-theory model with such a curve must have
a non-Higgsable gauge group of at least SU(3). For the other cases we have described
here, however, the argument is not quite so complete. We have shown that standard F-
theory constructions with various gauge groups and matter content G,M are automatically
enhanced to G′,M ′, however, and while we have not ruled out the possibility of exotic F-
theory constructions such as those using non-UFD structures on singular curves [28] that
could in principle realize G,M theories without enhancement, the results of appendix D
suggest that this approach will not lead to theories that violate the conjecture. Another
way to prove the Automatic Enhancement Conjecture for many of the classes of examples
we have described here would be to show that the universal moduli space of theories with
at least a given gauge group and matter content G,M must be a connected set (within the
context of a class of theories with a given F-theory base B, corresponding to a fixed string
charge lattice and positivity cone in the low-energy theory, and assuming fixed anomaly
coefficients for the factors of G). If this is true, then every theory with G,M could be
reached from every other, so that the enhanced theories G′,M ′ would need to be connected
to any smaller theory such as one with only the gauge group and matter content G,M and
no enhancement, which is not allowed by the conditions of the Automatic Enhancement
Conjecture. If such an argument could be realized, one could imagine a similar argument
might apply in the more general context of 6D supergravity without reference to an F-theory
completion, if it were possible to show that for a given string charge lattice and positivity
cone at a fixed number of tensor multiplets T the moduli space of allowed supergravity
theories with at least a given G,M is connected, for fixed values of the anomaly coefficients.
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A Explicit analysis of rational sections

A.1 (SU(2)×U(1))/Z2 model

For the su(2)→ (SU(2)×U(1))/Z2 enhancement of section 4.2.2, we take the Weierstrass
model in eq. (4.1) and consider situations where the divisor class [g2] is trivial. The
parameter g2 is then essentially a constant, and we can freely set it to a perfect square
γ2 without issue, where [γ] is trivial. This is not a tuning of the model when [g2] = 0
but is instead a simple rewriting of g2. After this substitution, the Weierstrass model is
described by

f = − 1
48φ

2 + σf1 , g = 1
864φ

3 − 1
12φσf1 + σ2γ2 . (A.1)

This Weierstrass model is in fact in the Morrison–Park form [18]22

f = c1c3 − b̂2c0 −
1
3c

2
2 , g = c0c

2
3 −

1
3c1c2c3 + 2

27c
3
2 −

2
3 b̂

2c0c2 (A.2)

with
b̂ = 1 , c0 = φ2

64 − f1σ , c1 = −2γσ , c2 = −1
8φ , c3 = 0 . (A.3)

It therefore admits an infinite-order generating section

[x̂ : ŷ : ẑ] =
[
φ

12 : γσ : 1
]
, (A.4)

and the gauge algebra is su(2)⊕ u(1). Because [γ] is trivial, the only u(1)-charged matter
occurs at {σ = f2

1 − γ2φ = 0}; this locus supports 21/2 matter, as can be verified with the
techniques in [56].23 This matter spectrum satisfies the anomaly cancellation conditions
for b̃ = −2KB − 1

2 [σ], and the gauge group is (SU(2)×U(1))/Z2.

A.2 (SU(2)× SU(2))/Z2 and SU(2)/Z2 models

For the situations encountered in sections 4.2.1 and 4.2.3, we take the Weierstrass model
given by eq. (4.1) and consider situations where the divisor class [g2] is ineffective. The
parameter g2 is therefore 0, leading to a Weierstrass model with

f = − 1
48φ

2 + σf1 , g = 1
864φ

3 − 1
12φσf1 . (A.5)

This Weierstrass model admits a rational section of the form

[x̂ : ŷ : ẑ] =
[
φ

12 : 0 : 1
]
, (A.6)

which is a torsional section of order 2. The section is directly correlated with the Z2
quotient seen in the gauge groups [19]. In fact, this torsional section can be viewed as the
γ → 0 enhancement of the rational section in eq. (A.4) along the lines of [57].

22To avoid confusion with the anomaly coefficients, we use the symbol b̂ to denote the parameter typically
called b.

23The u(1) charges are normalized here such that the lattice of singlet charges has unit spacing [71].
While there are no charged singlets when [γ] = 0, there are charged singlets at {f1 = γ = 0} for other
choices of [γ]. The charge of these would-be singlets sets the normalization.
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B U(1)×U(1) model

In section 5, we make use of a U(1) × U(1) F-theory model based on the construction
in [72]. (A more general class of F-theory models with group U(1)×U(1) was constructed
in [73], but the more general form is not needed here.) The base of the elliptic fibration
is P2, such that the resulting 6D spectrum has zero tensor multiplets. We take the divisor
classes of the parameters to be the following:24

[S1] = 3H , [S2] = 6H , [S3] = 9H , [S5] = 0H ,

[S6] = 3H , [S7] = 6H , [S8] = −3H , [S9] = 0H .
(B.1)

The Weierstrass construction for this U(1) × U(1) model, with S8 set to 0 due to its
ineffective divisor class, is described by

f = − 1
48
(
S2

6 − 4S5S7
)2

+ 1
6S9

(
6S1S3S9 − 3S1S6S7 − 2S2

2S9 + 2S2S5S7 + S2S
2
6 − 3S3S5S6

) (B.2)

and

g = 1
864

(
S2

6 − 4S5S7
)3

+ 1
27S2S

3
9

(
9S1S3 − 2S2

2

)
− 1

72S9
(
S2

6 − 4S5S7
) (
−3S1S6S7 + S2

(
2S5S7 + S2

6

)
− 3S3S5S6

)
+ 1

36S
2
9

[
9S2

1S
2
7 − 3S3

(
S1
(
2S5S7 + S2

6

)
+ 2S2S5S6

)

− 6S1S2S6S7 + 2S2
2

(
2S5S7 + S2

6

)
+ 9S2

3S
2
5

]
.

(B.3)

The discriminant is then proportional to S2
9 , but because [S9] is trivial, this factor does not

signal the appearance of a nonabelian gauge algebra. There are two generating sections for
this elliptic fibration. The first, ŝQ, is given by

[x̂Q : ŷQ : ẑQ] =
[ 1

12
(
S2

6 − 4(S2S9 + S5S7)
)

: −1
2S9(S3S5 − S1S7) : 1

]
(B.4)

The second, ŝR, is given by

[x̂R : ŷR : ẑR] =
[ 1

12
(
S2

6 − 4S2S9 + 8S5S7
)

: 1
2(S5S6S7 − S9(S1S7 + S3S5)) : 1

]
. (B.5)

The presence of these two independent sections implies that the gauge group is U(1)×U(1).
According to the original matter analysis in [72], the locus {S8 = S9 = 0} supports

(−1,−2) matter, and the locus {S7 = S9 = 0} supports (0, 2) matter. Because [S9]
is trivial, the model does not support any hypermultiplets of (−1,−2) or (0, 2) matter.
There is also (1, 1) matter at

{S7S
2
8 − S6S8S9 + S5S

2
9 = S3S

2
8 − S2S8S9 + S1S

2
9 = 0} (B.6)

24Even though the variables are written as si in [72], we write them here as Si to avoid confusion with
variables used elsewhere in this paper.
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in the original model. The class of S7S
2
8 − S6S8S9 + S5S

2
9 is trivial in this example, and

there are no hypermultiplets of (1, 1) matter. However, (1,−1) matter is supported at
{S3 = S7 = 0}, implying that this model has 54 hypermultiplets of (1,−1) matter. By
examining the loci where ŷ and 3x̂2 + fẑ4 for the two sections simultaneously vanish, one
can verify that there are 54 hypermultiplets of (1, 0) matter and 54 hypermultiplets of
(0, 1) matter. In summary, the total spectrum is

54× (1,−1) + 54× (1, 0) + 54× (0, 1) . (B.7)

The anomaly coefficient for the model is given by

b̃ =
(

6H −3H
−3H 6H

)
. (B.8)

It is also useful to write this model in an alternative form where the fiber is a cubic
curve in a P2 ambient space. If the coordinates for this P2 ambient space are [u : v : w],
the model is described by

u
(
S1u

2 + S2uv + S3v
2 + S5uw + S6vw

)
+ vw (S7v + S9w) = 0 . (B.9)

The zero section is given by {u = v = 0}, while the two generating sections are given by
{u = w = 0} and {u = S7v + S9w = 0}.

C Absence of adjoint matter on C when C + KB is not effective

In various circumstances we consider nonabelian gauge factors with anomaly coefficient b
such that b+ a is outside the positivity cone. In such circumstances we assert that in any
F-theory realization the nonabelian gauge factor in question cannot have adjoint matter.
For example, this comes up in section 4.2.1, where [g2] = −4KB − C is not in the cone of
effective curves, but C ′ = [f1] = −3KB −C is effective, when an su(2) algebra is tuned on
a curve of class C, leading to an enhancement with at least an su(2) on a curve of class C ′.
In this appendix we give a simple F-theory based physics argument for why a nonabelian
gauge factor on a curve of class C ′ cannot have adjoint matter when C ′+KB is not effective,
and we summarize a simple argument for this conclusion from algebraic geometry. We also
illustrate how this works explicitly in a general class of situations at T ≤ 9, which highlights
the subtleties that arise in the classification of F-theory constructions when T ≥ 9.

First, we give a simple physics argument based on the Morrison–Park model (A.2).
Given a curve class C ′ = [c3], we can perform a Tate tuning of an su(2) algebra over c3,
which essentially gives the Morrison–Park model with b̂ = 0. When [b̂] = C ′ + KB is
effective, we can deform the su(2) model to the general Morrison–Park form by turning on
a nonzero value for b̂. This corresponds physically to breaking su(2)→ u(1) by Higgsing on
an adjoint field. When [b̂] is not effective there is no such deformation, and so no adjoint
fields can be present in the original su(2) theory. Geometrically, this means that the curve
C ′ is a rational curve, of genus zero.
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This conclusion also follows from some basic considerations of algebraic geometry.25

We assume that C ′ is an irreducible effective curve of (arithmetic) genus g = 1 + C ′ ·
(C ′ +KB)/2 > 0 in a complex surface B that supports an elliptic Calabi–Yau threefold of
interest for F-theory. We furthermore assume that B is rational; this leaves out the case of
the Enriques surface, which is essentially trivial for F-theory. The Riemann-Roch theorem
for surfaces states that

χ(O(C ′ +KB)) = C ′ · (C ′ +KB)/2 + χ(OB) , (C.1)

where χ(OB) = 1 since B is rational, and O(C ′ + KB) is the line bundle associated with
C ′ +KB. We thus have

χ(O(C ′ +KB)) = h2(O(C ′ +KB))− h1(O(C ′ +KB)) + h0(O(C ′ +KB)) = g . (C.2)

Serre duality tells us that

h2(O(C ′ +KB)) = h0(O(−C ′)) , (C.3)

but h0(O(−C ′)) = 0 since −C ′ is not effective. It follows that

h0(O(C ′ +KB)) ≥ g > 0 , (C.4)

so the line bundle O(C ′ +KB) has nontrivial sections and thus C ′ +KB is effective under
the assumptions made above. This implies, on the other hand, that if C ′ + KB is not
effective but C ′ is irreducible and effective, then C ′ has genus g = 0, which is what we set
out to prove.

To illustrate this result more explicitly, we demonstrate the situation for T ≤ 9 and
curves of limited complexity (e.g., for curves of limited degree on blow-ups of P2), and briefly
described the complications that arise at larger values of T and for curves of higher complex-
ity. To proceed explicitly we consider the class of cases where there is a basis of curves with
intersection form (+1,−1,−1, . . . ,−1) and we can write KB = (3,−1,−1, . . . ,−1). Since
all bases can be found as multiple blowups of P2 or the Hirzebruch surfaces Fm,m ≤ 12 [8],
this covers all cases except the Hirzebruch surfaces with even m, which can be treated
with a similar but simpler argument. For the del Pezzo surfaces dPk given by blowing up
k < 9 points in general position on P2, a basis for the cone of effective divisor classes is
given by (1, 0, . . . , 0), corresponding to a line on the original P2 that does not pass through
any of the blown up points, (0, . . . , 0, 1, 0, . . . , 0), corresponding to the exceptional curve of
the ith blown up point, (1, 0, . . . , 0,−1, 0, . . . , 0,−1, 0, . . . , 0) where the −1 entries appear
in positions i, j, corresponding to a line passing through the corresponding two blowup
points, (2, . . .) with up to 5 −1 entries (and the remaining entries being 0), corresponding
to a conic passing through up to 5 of the blowup points, (3, . . .) with up to k < 9 −1 entries
(or one −2 and up to seven −1s), corresponding to irreducible cubics, etc.. For curves of
degree n > 3, the set of possibilities can be complicated by constraints on the possible
multiplicities of singularities (see, e.g., [28]). When the points are not in general position,

25Thanks to Sheldon Katz for this proof.
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the effective cone is slightly larger and includes curves of self-intersection C · C < −1,
corresponding to curves of degree d in the original P2 that pass through more than d2 + 1
points (possibly including multiplicities).

If a curve C ′ is irreducible, we have (KB + C ′) · C ′ = 2g − 2, so the condition that
g > 0 is that (KB +C ′) ·C ′ ≥ 0. Writing C ′ = (n,−m1,−m2, . . . ,−mT ) in the given basis,
this condition becomes

n(n− 3) ≥
∑
i

mi(mi − 1) . (C.5)

For n = 3, the only solutions to this condition have all mi = 0, 1, and so

C ′ +KB = (n− 3, 1−m1, . . . , 1,mT ) = (0, 0 or 1 , . . . , 0 or 1) (C.6)

is clearly in the effective cone. For n = 4, we can have up to two values of mi = 2. But we
then have, e.g., the worst case scenario (largest mis)

C ′ +KB = (1,−1,−1, 0, . . . , 0) , (C.7)

which again lies in the effective cone. For n = 5, we can have mis above 1 in the combina-
tions (3, 2, 2) or (2, 2, 2, 2, 2). These give (with all other ms equal to 1)

C ′ +KB = (2,−2,−1,−1, 0, . . . , 0), (2,−1,−1,−1,−1,−1, 0, . . . , 0) , (C.8)

which again are easily seen to be in the effective cone.
A similar argument holds for larger values of n, as long as T ≤ 9, though as n becomes

increasingly large the set of effective curves becomes more subtle; for example, C ′ +KB =
(3,−2,−17) saturates eq. (C.5), and depends on the fact that a cubic can be found on
P2 with a double point at one chosen point and passing through seven other arbitrary
points. When T ≥ 9, however, we can also see more subtle issues arising related to the
choice of which bases support an elliptic fibration, as well as what kinds of singularities
are possible on a curve of given degree. For example, at T = 9, n = 6, we can choose
C ′ = (6,−2, . . . ,−2). We then have C ′ + KB = (3,−1, . . . ,−1) = −KB. We cannot,
however, blow up P2 at 9 generic points and get an acceptable F-theory base; the base
that results from blowing up at 9 generic points has a rigid cubic in the class KB, so the
Weierstrass model has f, g that generically vanish to orders (4, 6) on KB. For T = 9, this
still clearly works as KB = (3,−1, . . . ,−1) is effective (and non-rigid) on any acceptable
F-theory base. The situation, however, clearly becomes more complicated for larger T ,
since choosing curves of the form C ′ = (6, . . .) gives classes C ′ + KB = (3, . . .) with 9 −1
entries, curves of the form C ′ = (7, . . .) can have ms of, e.g., 14 × 2, etc.. Some of the
complications that arise in determining the generators of the effective cone at larger T are
discussed further in, e.g., [74]. An argument of this form must in principle work for all
T and all allowed F-theory bases, since the more abstract mathematical argument above
makes the statement rigorous at all T .
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D Another test of automatic enhancement in a U(1) model

In this appendix, we perform an additional test of automatic enhancement for the r = s = 1
model in the T = 1 infinite family of eq. (5.23). Recall that the charged hypermultiplet
spectrum for this model is

96× (±1) + 48× (±2) , (D.1)

and we expect an automatic enhancement to a U(1) × U(1) model with a charged hyper-
multiplet spectrum of the form

48× (1, 0) + 48× (0, 1) + 48× (1, 1) . (D.2)

Because there is one tensor multiplet, the base of an F-theory model realizing this spectrum
would be Fn. If we attempt to construct this U(1) model using the Morrison–Park tuning
of eq. (A.2) with an Fn base, the parameters should have the following divisor classes:

[b̂] = −2KB , [cm] = −mKB . (D.3)

Because [c0] is trivial, we see an enhancement to U(1)×U(1) as discussed in section 5.2.
One might imagine circumventing this enhancement by obtaining the U(1) model from

constructions that typically give higher charges.26 Let us focus on the charge-3 construc-
tion from [36], which supports charge-3 matter at {ηa = ηb = 0}. It is known that the
construction is equivalent to the Morrison–Park form if either [ηa] or [ηb] is trivial. But if
we choose non-trivial [ηa] and [ηb] such that [ηa]·[ηb] = 0, the model would only support hy-
permultiplets with charges ±1 and ±2. This model does not seem to be in Morrison–Park
form, and one might hope it would realize eq. (D.1) without an automatic enhancement.

However, various effects either render the model invalid or secretly put it into Morrison–
Park form. The charge-3 construction contains a parameter φ that is important for its
structure. If φ, ηa, and ηb share a common nontrivial factor, (f, g,∆) vanish to orders
(4, 6, 12) at a codimension-one locus. Alternatively, if φ can be written as

φaηa + φbηb , (D.4)

we can relate the charge-3 construction to the Morrison–Park form through the following
map of parameters:27

b̂ = b(2)η
2
a + 2b(1)ηaηb + b(0)η

2
b , (D.5)

c3 = −
(
t(0)η

3
b + 3t(1)ηaη

2
b + 3t(2)η

2
aηb + t(3)η

3
a

)
+ 1

12
(
b(2)η

2
a + 2b(1)ηaηb + b(0)η

2
b

) (
b(0)ηbφa + b(1)ηaφa − b(1)ηbφb − b(2)ηaφb

)
,
(D.6)

c2 = 1
4
(
h(2)η

2
a + 2h(1)ηaηb + h(0)η

2
b

)
+ 1

144
(
b2

(1) − b(0)b(2)
)

(φaηa + φbηb)2

+ 1
96
(
b(2)φ

2
b − 2b(1)φaφb + b(0)φ

2
a

) (
b(2)η

2
a + 2b(1)ηaηb + b(0)η

2
b

)
+ 1

4
(
t(1)η

2
b + 2t(2)ηaηb + t(3)η

2
a

)
φb −

1
4
(
t(0)η

2
b + 2t(1)ηaηb + t(2)η

2
a

)
φa ,

(D.7)

26The authors thank Yinan Wang for helpful discussions on this point.
27This can be understood through the normalized intrinsic structure [28, 36] of the charge-3 construction.
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c1 = 1
1728

(
b(2)φ

2
b − 2b(1)φaφb + b(0)φ

2
a

) (
b(0)ηbφa + b(1)ηaφa − b(1)ηbφb − b(2)ηaφb

)
− ηa

48
(
48λ(1) − 2h(1)φa + 2h(2)φb + t(1)φ

2
a − 2t(2)φaφb + t(3)φ

2
b

)
− ηb

48
(
48λ(0) − 2h(0)φa + 2h(1)φb + t(0)φ

2
a − 2t(1)φaφb + t(2)φ

2
b

)
,

(D.8)

c0 = −f2 + 1
82944

(
b(2)φ

2
b − 2b(1)φaφb + b(0)φ

2
a

)2

+ 1
576

(
h(0)φ

2
a − 2h(1)φaφb + h(2)φ

2
b

)
− 1

1728
(
t(0)φ

3
a − 3t(1)φbφ

2
a + 3t(2)φ

2
bφa − t(3)φ

3
b

)
− 1

12
(
λ(0)φa − λ(1)φb

)
.

(D.9)

This mapping also applies if [φ] is ineffective; we simply set φa and φb to 0.
With these effects in mind, we now show that one cannot use the charge-3 construction

to successfully obtain eq. (D.1) without an automatic enhancement to U(1) × U(1). We
go through the possible choices of divisor classes and demonstrate that they all lead to
enhancement or introduce some problem. According to the matter analysis in [36], we
should let

[ẑ] = −2KB , [ηa] · [ηb] = 0 (D.10)

to obtain the desired charged hypermultiplet spectrum. This choice implies that

[f2] = 0 , [φ] = KB + [ηa] + [ηb] . (D.11)

If the model simplifies to Morrison–Park form, [c0] = [f2] is trivial, and the divisor classes
ensure we see the expected automatic enhancement. We can therefore limit our attention
to situations where φ is effective, eliminating many possibilities for [ηa] and [ηb]. When
they are both multiples of F , for instance, φ is ineffective, and we recover Morrison–Park
form. A similar argument shows that this same effect occurs on F0 when both [ηa] and [ηb]
are multiples of S. Since the only way to satisfy [ηa] · [ηb] = 0 on F0 is to have both [ηa]
and [ηb] be multiples of either S or F , we know that automatic enhancement occurs for
every possibility on F0, and we can focus on Fn≥1.

To proceed, it is helpful to write

[ηa] = α (S + aF ) , [ηb] = β (S + bF ) , (D.12)

where α, β are positive integers and a, b are non-negative rational numbers such that αa,
βb are integers.28 Here, S and F are the divisors on Fn such that S ·S = −n and F ·F = 0.
In order to have [ηa] · [ηb] be 0, we require that

− n+ a+ b = 0 . (D.13)
28If [ηa] or [ηb] is ineffective, the model reduces to Morrison–Park form (with a different mapping between

parameters). It also supports nonabelian gauge factors that can often be Higgsed away. However, these
situations do not offer a way of evading the automatic enhancement observed in Morrison–Park form.
Additionally, if only one of [ηa] or [ηb] is proportional to F , [ηa] · [ηb] is non-zero. The case where both are
proportional to F was discussed above.
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First, consider cases where 0 < a, b < n. Then, both ηa and ηb are reducible, and they
share a common factor v with divisor class S. We also know that the intersection products

[ηa] · S = −α(n− a) , [ηa] · S = −β(n− b) (D.14)

are negative. And since α, β ≥ 1, the intersection product [φ] · S is negative as well:

[φ] · S = (KB + [ηa] + [ηb]) · S
= n− 2− α(n− a)− β(n− b)
≤ n− 2− (n− a)− (n− b) = −2 .

(D.15)

Therefore, either [φ] is ineffective—implying the model is in Morrison–Park form—or φ
is proportional to v—implying that the model has a codimension-one (4, 6) singular locus
and is invalid.

This leaves the possibility that either a or b is 0. Without loss of generality, we take
b = 0 and a = n. The divisor classes are

[ηb] = βS , [ηa] = α(S + nF ) , (D.16)

and ηb is essentially vβ with a numerical coefficient. Additionally,

[φ] · S = (KB + [ηa] + [ηb]) · S = n+ 2− βn . (D.17)

Because β is positive, this intersection number is negative, implying either that [φ] is
ineffective or that φ is proportional to vβ and hence ηb. Both of these possibilities ensure
that the model reduces to Morrison–Park form.

To summarize, if we attempt to use the charge-3 construction to realize the matter
spectrum in eq. (D.1), we either end up with an invalid model or one in Morrison–Park
form that exhibits automatic enhancement. This analysis also applies to the charge-3
construction from [67], which a specialization of the one considered here. Similarly, the
charge-4 construction from [36] does not offer a way of realizing this matter spectrum that
does not involve the Morrison–Park form. These results support the idea that the automatic
enhancement is a genuine physical phenomenon rather than an artifact of the Morrison–
Park tuning. Furthermore, since the charge-3 construction relies on the mathematical
structure of non-UFD Weierstrass models, this analysis suggests more generally that non-
UFD models will not in general produce models that contain only generic charges that can
be realized through UFD constructions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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