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1 Introduction

In hadron and nuclear collisions, cross sections for hard processes are always a blend of
short-distance and long-distance physics. QCD factorization allows one to systematically
study incoherence between effects at various distance scales [1]. The predictive power of
perturbative QCD for hadron collider physics relies on validity of factorization theorems
and universality of quantities encoding long-distance physics. Factorization also provides
a systematic approach to resum large logarithms of ratios between different scales to all
orders in perturbation theory [2].

Factorization for the Drell-Yan cross section in hadron collisions has been extensively
studied in the literature. Its validity has been proved within the context of perturba-
tive QCD [3–6]. It has been alternatively studied using the soft-collinear effective theory
(SCET) [7–11] in refs. [10, 12]. Such an effective field theory approach facilitates exploring
factorization and resummation in other similar processes, such as inclusive Higgs boson
production [13].

Long-distance physics in all the processes mentioned above manifests itself either in
parton distribution functions (PDFs) [14, 15], transverse-momentum-dependent (TMD)
PDFs [15] or the beam functions [16] in SCET. They are all defined as matrix elements
of gauge invariant operators sandwiched between some momentum eigenstate of colliding
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hadrons. And they do not possess any information on the spatial distribution of quarks and
gluons inside the hadrons, needed for a holistic snapshot of quantum phases-space parton
distributions [17].

The spatial distribution of partons in a hadron, say, a proton, could be revealed
by studying impact-parameter dependent collisions, as have been extensively studied in
nucleus-nucleus (AA) collisions. The impact parameter in AA/heavy-ion collisions can be
determined via centrality measurements by using the Glauber model [18]. In this model,
the cross section for the Drell-Yan production of vector bosons reduces to that in binary
nucleon-nucleon collisions, which is consistent with recent measurements at the LHC within
experimental uncertainties [19–23]. In order to unambiguously define the impact parame-
ter of proton-proton (pp) collisions, one needs first to clarify conceptual difference between
small colliding systems like pp collisions and large colliding systems like AA collisions.

The discovery of collectivity in pp collisions [24–29], however, blurs the boundary
between large and small colliding systems [30]. Concepts based on (classical) collision
geometry and the impact parameter in heavy-ion collisions have been frequently employed
to interpret collectivity in pp collisions in many theoretical discussions without scrutiny
(see ref. [31] for a recent review). Nowadays, redefining the boundary of physical concepts
respectively applicable to pp, pA and AA collisions is one of the main focuses in high-
energy nuclear physics [30, 31], which demands a unified theoretical approach in QCD to
treat all these collisions on the same footing.

The sole purpose of this paper is to lay the groundwork for a unified description of
hard processes in impact-parameter dependent pp, pA and AA collisions based on QCD
factorization. As depicted in figure 1, we restrict ourselves to a generic inclusive hard
process in hadron and nuclear collisions at an impact parameter b:

A+B → C + anything else (1.1)

with A and B either hadrons or nuclei, and C some colorless final-state object, such as
electroweak gauge bosons and Higgs bosons. Below, we motivate and outline how we
proceed to derive the factorized cross section for such a hard process.

In section 2, we revisit the fuzzy quantum picture of impact-parameter dependent col-
lisions. The motivation for this section is two-fold: first, in a typical pp collision at the
LHC, the proton size R, the impact parameter b and even the proton transverse spatial
dispersion ∆xT ,1 could be comparable with one another. In this case, a quantum de-
scription of the collision becomes more appropriate. Second, in heavy-ion collisions, the
Glauber model [18] has been broadly employed not only in theoretical calculations but also
in experimental studies of collision geometry from centrality measurements. Behind the
Glauber model underlies a classical picture of the impact parameter, which can even trace
back to Rutherford’s seminal discovery in ref. [33] that helped usher in the quantum age.
Giving this model a justification in QCD entails a quantum picture instead. However, the
formula for the impact-parameter dependent cross section has not been derived in quantum
scattering theory [34, 35]. This section is aimed to fill this gap.

1At the LHC, the crossing angle at the interaction point θc can be measured with an accuracy
∆θc < 10 µrad [32]. For a E = 7TeV proton, the uncertainty principle dictates ∆xT ≥ 1

2E∆θc
> 1.4 fm.
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Figure 1. The quantum picture of impact-parameter dependent collisions. This figure combines
the amplitude and the conjugate amplitude for the hard process in eq. (1.1) into a cut diagram.
The transverse momenta of particles A and B are known to be around some design values with
an uncertainty ∆pT . Accordingly, their transverse locations xA and xB = xA + b can only be
determined with an accuracy ∆xT limited by the uncertainty principle. This accounts for the
displacement of their transverse positions across the cut x. The product C with momentum pµC is
created at some hard scattering vertex around X, initiated by two partons respectively collinear
to A and B. Different collinear partons can communicate with one another via exchange of soft
gluons. The misalignment of the hard vertex in the transverse plane across the cut, that is, its
transverse coherence length, is of order 1/pC,T .

We consider a collision of two ultra-relativistic particles A and B at the impact param-
eter b. In collider physics, all we know is that their momenta are determined to be around
some design values Pµi with i = A and B. From this information, we do know that the
states of the particles can be described by some wave packets in momentum space, with
their momentum width constrained by experimental uncertainties. Accordingly, the par-
ticles are localized in position space, described by some well-defined spatial wave packets.
We aim to define the impact-parameter dependent cross section for the collision, which
is intrinsic to the colliding particles and should be independent of the beam particles’
wave packets.

We find that such an impact-parameter dependent cross section can be defined, as given
in eq. (2.23), if the following two conditions are fulfilled. Condition i) is the high-energy
limit: |Piz| � PiT ,∆pT ,∆pz with ∆pT and ∆pz respectively the particle’s transverse and
longitudinal momentum dispersions. It is needed to identify the longitudinal momenta of
the wave packets in the amplitude and the conjugate amplitude. Condition ii) is to require
that the fuzziness in particles’ transverse positions should be smaller than b: b � ∆xT .
It is needed to identify the transverse momenta of the wave packets in the amplitude and
the conjugate amplitude. Therefore, they are both necessary for integrating out the wave
packets in order to define the cross section and for unambiguously defining the impact
parameter. Otherwise, the probability for producing any final states in the collision ex-
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plicitly depends on the wave packets, which are not guaranteed to be the same in different
experiments. And, one ends up measuring a quantity which differs across experiments.

With the general formula for the impact-parameter dependent cross section derived in
section 2, one can calculate it for the hard process in eq. (1.1) using perturbative QCD.
In general, one needs to deal with the long-distance behavior in perturbative series. We
appeal to QCD factorization to factor out long-distance physics in section 3.

In section 3.1, using SCET we first give a detailed derivation of the factorized cross
section for the process in eq. (1.1). The main features of this factorization formula can be
understood based on the following heuristic argument.

Imagine that besides the hard scale Q we measure the transverse momentum
pC,T � ΛQCD of the product C. As illustrated in figure 1, C is produced at some hard
scattering vertex around X with a transverse coherent length |x| ∼ 1/pC,T � 1 fm within
a time scale th ∼ 1/Q. It effectively picks out two partons located around X respectively
from A and B with a transverse spatial accuracy of the order of |x|. The distributions of
these partons in the colliding particles are described by a new type of PDFs, which are
referred to as thickness beam functions in this paper.

The thickness beam functions are expected to be universal as a consequence of the
hard-collinear and soft-collinear factorization. Generic hard processes all involve radiation
collinear to the two beam directions nµA and nµB. The coherent time of a ni-collinear parton
with momentum pµni is given by

tni = 1
ni · pni

∼ 1
λ2Q

� th ∼
1
Q

(1.2)

where the expansion parameter λ, as a ratio between a soft momentum scale determined
by some specific observable to be measured and the hard scale Q, is assumed to be much
smaller than unity. That is, the beam collinear radiation takes place too early to interfere
with the hard scattering. Different beam collinear partons may communicate, via exchange
of soft gluons, with each other or with final-state colored objects since soft gluons have a
coherent time ts � th:

ts ∼
1
λQ

, or 1
λ2Q

. (1.3)

As long as soft gluons cannot resolve the substructure of collinear splittings, there is factor-
ization between soft and beam collinear partons. And the thickness beam functions should
be universal to all the hard processes in which these two types of factorization hold true.

Because their formation time is much longer than th, the hard scattering occurs too
rapidly to radiate soft gluons. That is, soft gluons are detached from the hard scattering
vertex. As a consequence, for the process in eq. (1.1), soft radiation only couples to the
total color charges of collinear partons from A or B and organizes itself into soft Wilson
lines. They act on the vacuum state to define another module of the factorization formula:
the soft function. Since it is the vacuum state that is involved in its definition, the soft
function is independent of X and does not carry any information on the impact parameter.
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Based on the above argument one can expect that the factorization formula, as given
in eq. (3.16), schematically takes the following form:

dσAB
d2bdyCd2pC

∼
∑
j,k

∫
d2XTj/A(X− xA)⊗ Tk/B(X− xB)⊗Hj,k→C ⊗ S (1.4)

with the impact parameter b = xB − xA, X denoting the transverse position of the hard
scattering and xi being the (average) transverse location of particle i, as shown in figure 1.
Here, the hard function Hj,k→C can be calculated from the partonic process j, k → C +
anything else and S is the soft function. They are the same as for conventional cross
sections in pp collisions [10, 12, 13]. The thickness beam functions Tj/i are related to the
quantum transverse phase-phase PDFs via the Fourier transform. That is, they encode
the information on the distribution of parton j carrying a momentum fraction z in both
transverse momentum and position spaces inside particle i. A detailed discussion about
the properties of Tj/i is presented in section 3.2.

In section 3.3, we study the connection between the factorization formula in eq. (1.4)
and the cross section in the Glauber model in heavy-ion collisions. We find that Tj/i re-
duces to a product of the thickness function in the Glauber model and the corresponding
beam function, as the Fourier transform of the TMD PDF, when the incoming nucleus is
treated as an assembly of uncorrelated nucleons. This gives the success of the Glauber
model [36] a QCD justification for such hard processes. On the other hand, the factoriza-
tion formula allows one to explore refined details about the parton distributions in heavy
nuclei. It can be used to optimize the potential of the LHC and HL-LHC, with increased
accuracy, in systematically studying cold nuclear effects [37–39], which are absent in the
aforementioned modelling. Nuclear modifications of PDFs had been first revealed in deep
inelastic scattering by the European Muon Collaboration [40] and have been favored by
recent measurements in PbPb collisions at the LHC [41]. The factorization formula is im-
portant for investigating the LHC/HL-LHC’s potential to pin down such effects since the
hard and soft functions can be calculated at high accuracy in perturbative QCD.

Using the factorization formula in eq. (1.4), one can potentially measure the transverse
phase-space parton distributions in protons through inclusive hard processes in impact-
parameter dependent pp collisions, which have not been experimentally explored. On the
other hand, given the fact that the aforementioned two conditions needed to define the
impact-parameter dependent collisions are not always fulfilled, caution is needed when the
impact-parameter dependent cross section is studied in pp collisions. A brief discussion on
this issue is given in section 3.4.

At this point, we have two ways to calculate the impact-parameter dependent cross
section by either using the general formula in section 2 or the factorization formula in
section 3. This provides a way to verify factorization order by order in perturbation
theory: first, calculate the cross section in perturbative QCD using the general formula;
then, expand the perturbative QCD results at small λ or, equivalently, large Q; and finally
compare the leading-order results in Q to those given by the factorization formula.

In section 4, a verification of the factorization formula is carried out for the inclusive
Drell-Yan process qq̄ → γ∗. This process involves two scales: the photon virtuality Q and
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the impact parameter b, which set the expansion parameter λ = 1/(bQ). We only focus on
the physically interesting case with λ� 1, that is, the impact parameter being much larger
than 1/Q. At leading order in λ, the factorization formula is confirmed up to one loop
in perturbative QCD. We also calculate the one-loop spatial quark distribution in a fast
moving quark, which carries information complementary to the corresponding TMD PDF.
The probability to find a quark carrying a momentum fraction z at a transverse distance
r from the original transverse location of the incoming quark is found to be inversely
proportional to r2.

Detailed derivations and calculations backing up the above summary can be found in
the ensuing sections. And the interested reader is invited to vet their details.

2 The impact-parameter dependent cross section

In this section we revisit the concepts of the impact parameter and the impact-parameter
dependent cross section in quantum field theory (QFT). These two concepts are well-
defined in classical physics, as exemplified by the original derivation of the Rutherford
scattering formula [33]: the deflection angle of a charged particle scattering off a Coulomb
potential is given by a unique function of the impact parameter. In contrast, in the textbook
derivation of the conventional cross section (see, e.g., section 4 of [35]), there is no unique
relation between the deflection angle and the impact parameter. Yet, Rutherford’s formula
can be easily reproduced. Below, we redo the derivation of the formula for the cross section
in QFT in order to restore its impact-parameter dependence.

Consider a collision of two ultra-relativistic particles A and B respectively from two
counter-moving beams. Before the collision, the momentum of particle i with i = A or B
is accelerated to be around some design value ~Pi with an uncertainty ∆~pi. So, all we know
is that its wave packet peaks about ~Pi with a momentum width equal to or smaller than
∆~pi, which can be generically written in the form2

|φi〉 =
∫

d3~p

(2π)3
e−ip·xi√

2Ep
φi(~p)|~p〉, (2.1)

where φi is normalized, that is,

1 = 〈φi|φi〉 =
∫

d3~p

(2π)3 |φi(~p)|
2, (2.2)

the phase factor in front of φi(~p) accounts for the spatial translation in the transverse
plane and xi is the transverse position vector of particle i, to be determined later. Here
and below, we denote two-dimensional vectors in the transverse plane by bold letters and
three-dimensional vectors by letters with an arrow overhead.

The impact parameter of the collision is defined as

b ≡ xB − xA, (2.3)

2We only focus on unpolarized collisions and ignore the wave packet’s spin dependence here.
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once xA and xB are given. However, the particles are, at best, known to locate somewhere
with an uncertainty limited by the uncertainty principle. In order to quantitatively define
xi, one needs the particle’s spatial wave packet, which is given by

φ̃i(x− xi, z) = 〈~x|φi〉 ≡
∫

d3~p

(2π)3 e
i~p·~x−ip·xiφi(~p) (2.4)

with the position eigenstate [42]

|~x〉 ≡
∫

d3~p

(2π)3
e−i~p·~x√

2Ep
|~p〉. (2.5)

As long as ~x is not measured with a resolution better than the particle’s de Broglie wave-
length, |φ̃i|2 admits interpretation as the probability density to find particle i at ~x. Given
φ̃i, xi can be chosen to be the average transverse position vector of particle i. Obviously,
there are alternative choices for xi, such as the center of mass or the transverse peak loca-
tion of |φ̃i|2. Below, we show that such an ambiguity in defining b ≡ |b| is negligible when
one is allowed to define an impact-parameter dependent cross section.

In principle, one can predict the probability for producing any final state |{pf}〉 in the
collision at the impact parameter b according to

Pb(φA, φB → {pf}) = 〈φAφB|Ŝ†|{pf}〉〈{pf}|Ŝ|φAφB〉. (2.6)

Since we are only interested in the cross section, we can replace the S-matrix element by

〈{pf}|Ŝ|pA, pB〉 → (2π)4δ(4)
(
pA + pB −

∑
pf
)
iM(pA, pB → {pf}). (2.7)

Then, plugging the wave packets in eq. (2.1) into eq. (2.6) and using one of the delta
functions from the above replacement to integrate out p̄Az, p̄Bz and p̄B yields

Pb(φA, φB → {pf}) =
∫

pA,p̄A,pB ,pAz ,pBz

eib·(pA−p̄A)

× φA(~pA)φ∗A(~̄pA)φB(~pB)φ∗B(~̄pB)σ(pA, pB → {pf} ← p̄A, p̄B), (2.8)

where the measure
∫ n∏
j=1

dpj
2π is denoted by

∫
p1,··· ,pn

for brevity, the off-diagonal cross section

is defined as

σ(pA, pB → {pf} ← p̄A, p̄B) ≡ (2π)4δ(4)(pA + pB −
∑
pf )√

2EpA2Ep̄A2EpB2Ep̄B |v̄Az − v̄Bz|

×M(pA, pB → {pf})M∗(p̄A, p̄B → {pf}), (2.9)

p̄B = pA + pB − p̄A, and the longitudinal momenta p̄Az and p̄Bz are solutions to

EpA + EpB = Ep̄A + Ep̄B , p̄Az + p̄Bz = pAz + pBz. (2.10)

The impact-parameter dependent probability Pb generally depends on the wave pack-
ets. However, the beam particles’ wave packets are not measured in collider physics. More-
over, they are not guaranteed to be the same in different experiments. The cross section, on

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
0
0
2

the other hand, is intrinsic to the colliding particles and, therefore, should be independent
of the wave packets in order to allow comparison across experiments. Below, we show that
the following two conditions

i) |Piz| � |Pi|,∆pT ,∆pz; ii)|b| � ∆xT (2.11)

are sufficient for defining the impact-parameter dependent cross section from Pb. Here,
∆xT , ∆pT and ∆pz are respectively the transverse spatial, transverse and longitudinal
momentum dispersions of the colliding particles.

Condition i) is the high-energy limit in which both particles are moving predominantly
along the beam (±z) directions. In this limit, the solutions to eq. (2.10) are given by

p̄Az − pAz = pBz − p̄Bz ≈
|pA|2 − |p̄A|2

4PAz
− |pB|

2 − |p̄B|2

4PBz
(2.12)

for PAz > 0 and PBz < 0. Since these terms are small,3 we will drop them and take

p̄Az = pAz, p̄Bz = pBz. (2.13)

Following [43], we define transverse Wigner functions

Wi(X,P) ≡
∫

d2χ

(2π)2

∫
dzeiP·χφ̃i

(
X− χ

2 , z
)
φ̃∗i

(
X + χ

2 , z
)
. (2.14)

In terms of Wi, Pb can be expressed as

Pb(φA, φB → {pf}) =
∫
d2XAd

2PAd2XBd
2PB

∫
d2q

(2π)2 e
iq·(b+XB−XA)

×WA(XA,PA)WB(XB,PB)σ(pA, pB → {pf} ← p̄A, p̄B) (2.15)

with

pA = PA + q
2 , pB = PB −

q
2 ,

p̄A = PA −
q
2 , p̄B = PB + q

2 . (2.16)

Given condition i), one is allowed to expand the off-diagonal cross section in eq. (2.9)
at large Piz. For collider phenomenology, one only needs to keep leading-order terms in
∆/Piz with ∆ = Pi,∆pT or ∆pz, which is equivalent to replacing Pi by 0 and piz by their
design values Piz in the off-diagonal cross section.4 |q| ∼ 1/b could also be much smaller
than |Piz|. However, as it will become clear in the following sections, we do not expand
the amplitude squared in the off-diagonal cross section about |q|/Piz = 0 here. We only
do so when it is needed in detailed calculations, as exemplified in section 4. As a result,
we have

σ(pA, pB → {pf} ← p̄A, p̄B) = 1
2sM(pA, pB → {pf})M∗(p̄A, p̄B → {pf})

× (2π)4δ(4)
(
pA + pB −

∑
pf
)
, (2.17)

3For example, estimated from crossing angles at the LHC [32], one has |p̄iz − piz|/|Piz| < 10−10.
4Another justification of this approximation is that modern detectors typically have limited resolution

which can not resolve such a small variation of Pi [35].
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where the Mandelstam variable

s = n̄A · PAn̄B · PB, (2.18)

the incoming momenta are given by

pµA = n̄A ·PA
nµA
2 + qµT

2 −
q2
T

4n̄A ·PA
n̄µA
2 , pµB = n̄B ·PB

nµB
2 −

qµT
2 −

q2
T

4n̄B ·PB
n̄µB
2 ,

p̄µA = n̄A ·PA
nµA
2 −

qµT
2 −

q2
T

4n̄A ·PA
n̄µA
2 , p̄µB = n̄B ·PB

nµB
2 + qµT

2 −
q2
T

4n̄B ·PB
n̄µB
2 , (2.19)

with masses being neglected, and for any four-vector V µ we define

V µ
T = gT

µ
νV

ν = (0, V x, V y, 0). (2.20)

Note that one has V 2
T = −|V|2. Here, the light-like vectors are chosen to be

nµA = n̄µB ≡ (1, 0, 0, 1), nµB = n̄µA ≡ (1, 0, 0,−1), (2.21)

and the transverse metric is defined as

gµνT = gµν − nµAn
ν
B + nνAn

µ
B

2 . (2.22)

As a result, the integrand on the right-hand side of eq. (2.15) depends on Pi only through
the transverse Wigner functions. In order to integrate out the wave packets and get unity,
one needs to drop Xi from its phase factor. Condition ii) is sufficient to justify such an
approximation. If one goes back to eq. (2.8), this, equivalently, means that the difference
between pi and p̄i is negligible compared to their average. Obviously, this is also the
condition needed to eliminate the ambiguity in defining the impact parameter in eq. (2.3)
due to alternative choices of xi.

At the end, one can integrate out the transverse Wigner functions in eq. (2.15) and
obtain the impact-parameter dependent differential cross section for producing any observ-
able O

dσ

d2bdO =
∫

d2q
(2π)2 e

iq·b
∫ ∏

f

[
dΓpf

]
δ(O−O({pf}))

× 1
2sM(pA,pB→{pf})M∗(p̄A, p̄B→{pf})(2π)4δ(4)

(
pA+pB−

∑
pf
)
, (2.23)

where O({pf}) defines the observable O as a function of the final-state momenta {pf}, the
incoming momenta are given in eq. (2.19) and the phase-space measure in d-dimensional
spacetime for a particle of mass m∫

dΓp ≡
∫

ddp

(2π)d (2π)δ(p2 −m2)θ(p0) =
∫
dydd−2p
2(2π)d−1 (2.24)

with y the particle’s rapidity.
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3 Inclusive hard processes in hadron and nuclear collisions

Based on the heuristic argument outlined in the introduction, one can expect that a new
type of PDFs, which describe the parton distributions in transverse phase space, can be
universally defined for inclusive hard processes in impact-parameter dependent hadron and
nuclear collisions. In this section, we justify this argument using SCET [7–11].

3.1 Factorization for inclusive hard processes with colorless final states

In this subsection, we derive a factorized form of eq. (2.23) for the process in eq. (1.1). In
hadron and nuclear collisions, there are additional length scales that one needs to consider:
the sizes Ri of the colliding particles. Accordingly, the impact-parameter dependent cross
section for hadron and nuclear collisions is defined in the range:5 RA + RB & b � ∆xT .
It always involves non-perturbative modes with qT ∼ 1/b ∼ Ri in addition to perturbative
modes with p2

f & Λ2
QCD that contribute to the observable O({pf}) to be measured. Since

these non-perturbative modes are collinear to the colliding hadrons or nuclei, we take them
as submodes of the corresponding beam collinear modes.

3.1.1 Basics of SCET

We first briefly review the elements of SCET that are relevant to our discussion. With the
modes of qT ∼ 1/b taken as submodes of the corresponding beam collinear modes, all the
relevant infrared degrees of freedom for the process under study are the same as those for
the conventional cross section in refs. [10, 12, 13]:

ni-collinear: pµni ∼ Q (λ2, 1, λ)nin̄i ,

soft: pµs ∼
{
λ2Q for SCETI
λQ for SCETII

, (3.1)

where λ� 1 is an expansion parameter and we have defined for any V µ

V µ = n̄µi
2 ni · V + nµi

2 n̄i · V + V µ
T ≡ (ni · V, n̄i · V,V)nin̄i (3.2)

in terms of a pair of light-like vectors ni and n̄i with ni · n̄i = 2.
The S-matrix element at leading order in λ can be expressed generically in the form

〈pC , {pX}|Ŝ|φAφB〉 =
∫
d4xeipC ·x〈{pX}|iM̂(x)|φAφB〉 (3.3)

with {pX} standing for momenta of unmeasured infrared partons and the amplitude oper-
ator M̂ being a convolution of relevant SCET operators and corresponding Wilson coeffi-
cients. Let us combine everything but the collinear and soft fields in the SCET operators
with the Wilson coefficients and denote their sum by the coefficient C. In this way, irre-
spective of the species of the product C, M̂ can be always written in the form

iM̂(x) =
∫
dtAdtBCaAaBαAαB

(ε, tA, tB)[SnAφnA(x+ tAn̄A)]αAaA [SnBφnB (x+ tBn̄B)]αBaB , (3.4)

5We are only interested in strong interactions and hence ignore the cases with b� RA +RB .
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where the coefficient C is to be determined by the matching procedure after the species
of the product C being specified, ai and αi are respectively the color and Lorentz/spinor
indices, Sni is the soft Wilson line along the collinear direction ni and the collinear building
blocks φni stand for [44]

χni(x) = W †ni(x) /
ni /̄ni

4 ψni(x), χ̄ni(x), BµniT = 1
gs
W †ni(x)iDµ

niT
Wni(x), (3.5)

respectively for ni-collinear quarks, antiquarks or gluons with Dµ
niT
≡ ∂µT − igsA

µ
niT

and
Wni the ni-collinear Wilson line.

Both the hard-collinear factorization and the soft-collinear factorization (at leading
order in λ) are implemented through M̂ , which are independent of the initial states of
the colliding particles. Soft radiation decouples from the hard scattering encoded in the
coefficient C, which has been proved for certain processes based on infrared power counting
in perturbative QCD [1, 2]. Soft gluons can couple to collinear partons only through
their unphysical polarizations ni · As, which gives rise to the soft Wilson lines in M̂ . Soft
and collinear fields decouple in the SCET Lagrangian for both SCETI (after decoupling
transformation [9]) and SCETII. The soft Wilson lines in coordinate space take the form6

Sni(x) =

Pe
igs
∫ 0
−∞ dtni·As(tni+x) for φni+ (incoming particles)

P̄ e−igs
∫∞

0 dtni·As(tni+x) for φni− (outgoing antiparticles)
(3.6)

where φni± respectively stand for the positive and negative energy parts of φni and
As ≡ AasT a with T a being SU(Nc) generators in the corresponding color representation.
The collinear Wilson lines take the form

Wni(x) = Pe
igs
∫ 0
−∞ dtn̄i·Ani (tn̄i+x) or P̄ e−igs

∫∞
0 dtn̄i·Ani (tn̄i+x). (3.7)

The inclusion of collinear Wilson lines in the collinear building blocks is mandated by the
collinear gauge invariance [9].

3.1.2 Derivation of the factorization formula

With the S-matrix element given in eq. (3.3), we are ready to derive the factorized cross
section for the process in eq. (1.1). We impose the two conditions in eq. (2.11) and identify
the impact-parameter dependent probability Pb with the cross section at the outset:

dσ

d2bdyCd2pC
= 1

2(2π)3

∫
d4Xd4x e−ipC ·x

×
∑
{pX}
〈φAφB|M̂ †

(
X + x

2

)
|{pX}〉〈{pX}|M̂

(
X − x

2

)
|φAφB〉. (3.8)

Here, for definiteness we measure the rapidity yC and the transverse momentum pC of the
object C.

6This is equivalent to the approximation (pc + ps)2 ≈ n̄ · pcn · ps in all propagator denominators with
internal momenta given by a sum of n-collinear (pc) and soft (ps) momenta. The justification of this
approximation in perturbative QCD is rather technical event for the Drell-Yan process [6].
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The following derivation is pretty much the same as that in the previous section, except
that we keep X unintegrated. It tells us the transverse location of the hard scattering
vertex as shown in figure 1. One can first integrate out X0 and Xz in eq. (3.8) by using the
momentum operator and then the longitudinal momenta associated with the wave packets
in the conjugate amplitude. After that, one identifies the longitudinal momenta in the
amplitude and the conjugate amplitude, as in eq. (2.13). And, in terms of the transverse
Wigner functions in eq. (2.14), the cross section can be expressed as

dσ

d2bdyCd2pC
=
∫
d2X

∏
i=A,B

[∫
d2Xid

2Pi
d2qi
(2π)2 e

iqi·(X−xi−Xi)Wi(Xi,Pi)
]

× dσ

dyCd2pC
(pA, pB → pC ← p̄A, p̄B), (3.9)

where in terms of M̂ , the off-diagonal cross section in eq. (2.17) takes the form

dσ

dyCd2pC
(pA,pB→ pC← p̄A, p̄B) = 1

2(2π)3
1
2s

∫
d4xe−ipC ·x (3.10)

×
∑
{pX}
〈p̄Ap̄B|M̂ †

(
x

2

)
|{pX}〉〈{pX}|M̂

(
−x2

)
|pApB〉,

and the incoming momenta are given by

pµA = n̄A ·PA
nµA
2 + qµA

2 −
q2
A

4n̄A ·PA
n̄µA
2 , pµB = n̄B ·PB

nµB
2 + qµB

2 −
q2
B

4n̄B ·PB
n̄µB
2 ,

p̄µA = n̄A ·PA
nµA
2 −

qµA
2 −

q2
A

4n̄A ·PA
n̄µA
2 , p̄µB = n̄B ·PB

nµB
2 −

qµB
2 −

q2
B

4n̄B ·PB
n̄µB
2 , (3.11)

with qµi = pµi − p̄
µ
i orthogonal to ni and n̄i. Finally, the two conditions in eq. (2.11) allow

one to integrate out the transverse Wigner functions and one has
dσ

d2bdyCd2pC
=
∫
d2X

∫
qA,qB

eiqA·(X−xA)+iqB ·(X−xB) dσ

dyCd2pC
(pA, pB → pC ← p̄A, p̄B).

(3.12)

Since the collinear and soft modes decouple, the right-hand side of the above equation
can be further written in a factorized form. The coefficient C in M̂ is independent of the
initial states of the colliding particles, which is combined into the hard function together
with its complex conjugate. The soft Wilson lines only act on the vacuum state to define
the soft function. As a result, the soft function is independent of X, as shown below. That
is, the soft and hard functions are the same as for the conventional cross section [10, 12, 13].

The collinear fields act on the incoming states to give a new type of PDFs, which are
referred to as thickness beam functions in this paper. The ni-collinear sector in eq. (3.12)
takes the form

T α′αa′a (ri, ni · x,x) =
∫

d2q
(2π)2 e

iq·ri (3.13)

×
〈
n̄i · Pi,−

q
2

∣∣∣∣ [φ†ni ]α′a′ (ni · x2 ,
x
2

)
[φni ]

α
a

(
−ni · x2 ,−x

2

) ∣∣∣∣n̄i · Pi, q2
〉
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with ri ≡ X − xi and the spin of particle i being implicitly averaged over. Given some
projector Pα′α, we define the corresponding thickness beam function Tj/i as

T α′αa′a (ri, ni · x,x)→
∫
dz

z

Pα
′α(zn̄i · Pi)
dci

δa′aTj/i(ri, z,x)ei
ni·x

2 zn̄i·Pi (3.14)

with dci the dimension of the color representation of φni and j the parton species corre-
sponding to φni . The most common projectors for unpolarized collisions are given by the
spin/polarization average, which take the form

P ᾱiαi(k) =
{

1
2 (/k)ᾱiαi for quarks/antiquarks

1
d−2(−gᾱiαiT ) for gluons

(3.15)

with d the spacetime dimension.
Inserting the expression of M̂ in eq. (3.4) into eq. (3.12) and making the replacement

in eq. (3.14) eventually yields the factorization formula:

dσAB
d2bdyCd2pC

= 1
4πs

∑
j,k

∫
d2X

∫
d2xeipC ·x

∫ 1

0

dzA
zA

dzB
zB
Tj/A(X, zA,x)Tk/B(X− b, zB,x)

×
∫ ∏

f

[dΓpf ]
∏

i=A,B
δ(zin̄i · Pi − n̄i · pC −

∑
n̄i · pf )

×H āAāB
aAaB

(zAPA, zBPB → pC , {pf})S āAāBaAaB
(x), (3.16)

where we have taken xA = 0 and xB = b, Pµi = n̄i·Pi
2 nµi , the soft function is defined by

S āAāBaAaB
(x) ≡ 〈0|T̄ [S†a

′
B āB

nB (x+)S†a
′
AāA

nA (x+)]T [SaAa
′
A

nA (x−)SaBa
′
B

nB (x−)]|0〉

= 〈0|T̄ [S†a
′
B āB

nB (x)S†a
′
AāA

nA (x)]T [SaAa
′
A

nA (0)SaBa
′
B

nB (0)]|0〉 (3.17)

with x± ≡ X ± x/2, and the hard function, given by the partonic process j(zAPA) +
k(zBPB)→ C(pC) + anything else({pf}), takes the form

H āAāB
aAaB

≡ P ᾱAαA

dcA

P ᾱBαB

dcB
C̃∗āAāBᾱAᾱB

C̃aAaBαAαB
(3.18)

with C̃ given by

C̃(ε, zAn̄A · PA, zBn̄B · PB) =
∫
dtAdtBe

i(tAzAn̄A·PA+tBzB n̄B ·PB)C(ε, tA, tB). (3.19)

For the spin-averaged projectors in eq. (3.15), the hard function

HaAaB
aAaB

= |M |2 (3.20)

with |M |2 the square of the amplitude averaged over initial-state colors, spins or
polarizations [45].
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3.2 Thickness beam functions and transverse phase-space parton distributions

The thickness beam functions are universal. Their emergence only relies on the hard-
collinear and soft-collinear factorization. Therefore, they should universally show up in all
inclusive hard processes in hadron and nuclear collisions as long as the processes admit of
these two types of factorization. And hard processes with colorless final states like that in
eq. (1.1) provide the cleanest way to measure the thickness beam functions. The discussion
in the previous subsection can be easily generalized to deep inelastic scattering in electron-
proton and electron-ion collisions. Therefore, they could also be measured using the future
Electron-Ion Collider [46] once the impact-parameter dependence of the collisions can be
determined experimentally.

The thickness beam functions are related to transverse phase-space PDFs (TPS PDFs)7

via the Fourier transform with respect to x:

fj/i(r, z,p) =
∫
d2xeip·xTj/i(r, z,x). (3.21)

They are two-dimensional analogues of quantum phase-space distributions in the rest frame
of a proton defined in ref. [17]. This can be easily seen from the definition of Tj/i in
eq. (3.14), which generally takes the form

Tj/i(r, z,x) =
∫

d2q
(2π)2 e

iq·r
∫
dt

2πe
−iztn̄·P

×
〈
n̄ · P,−q

2

∣∣∣∣ [φ†n]α′a
(
tn̄

2 + xT
2

)
Γα′α[φn]αa

(
− tn̄2 −

xT
2

) ∣∣∣∣n̄ · P, q2
〉

(3.22)

with Γα′α to be determined after Pα′α are chosen. By using the momentum operator, one
can write

Tj/i(r, z,x) =
∑
m

∫
d2q

(2π)2

〈
n̄ · P,−q

2 |[φ
†
n]α′a (r) |m

〉
Γα′α

〈
m|[φn]αa (r) |n̄ · P, q2

〉
× eipm·xδ(n̄ · pm − (1− z)n̄ · P ). (3.23)

In the first line, the right-hand side of this equation can be interpreted as the “probability”8

of measuring a collinear field of type j at r inside particle i and producing a final state |m〉
with total momentum pµm. Accordingly, the corresponding TPS PDF is

fj/i(r, z,p) =
∑
m

∫
d2q

(2π)2

〈
n̄ · P,−q

2 |[φ
†
n]α′a (r) |m

〉
Γα′α

〈
m|[φn]αa (r) |n̄ · P, q2

〉
× δ(2)(p + pm)δ(n̄ · pm − (1− z)n̄ · P ), (3.24)

7TPS PDFs have a corresponding definition in QCD, in which the collinear fields are replaced by the
corresponding parton fields and the collinear Wilson lines are combined into gauge links. Subtlety, however,
could arise from the difference between the product of collinear Wilson lines and the chosen gauge links as
for the beam functions [16] and TMD PDFs [15].

8Like the Wigner function in quantum mechanics [43], we don’t expect that this term is always positive.
It can be literally interpreted as a probability only after being coarse-grained, say, measured at r with a
relatively large uncertainty.
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which, after being coarse-grained, is the probability of finding a collinear parton at r
carrying a momentum fraction z and transverse momentum p.

In the aforementioned coarse-grained sense, thickness beam functions and TPS PDFs
admit interpretation respectively as the beam functions [16] and TMD PDFs [15] at r since
one typically has |r| � |x| for hard processes. For inclusive hard processes with |x| ∼ 1/Q,
x can be dropped from the thickness beam functions as a result of multipole expansion.
And Tj/i(r, z,0) can be viewed as the corresponding conventional parton distribution func-
tions [14, 15] at r, that is, the transverse spatial PDFs. In this case, the off-diagonal
matrix element needed for defining Tj/i(r, z,0) is the same as generalized parton distribu-
tions (GPDs) [47] with the incoming momenta differing only in the transverse plane.

At the end, we explicitly write down the expressions for the thickness beam functions
corresponding to the spin-averaged projectors in eq. (3.15):
for quarks,

Tq/i(r, z,x) =
∫

d2q
(2π)2 e

iq·r
∫
dt

2πe
−iztn̄·P

×
〈
n̄ · P,−q

2

∣∣∣∣ χ̄n ( tn̄2 + xT
2

)
/̄n

2χn
(
− tn̄2 −

xT
2

) ∣∣∣∣n̄ · P, q2
〉
, (3.25)

for antiquarks,

Tq̄/i(r, z,x) =
∫

d2q
(2π)2 e

iq·r
∫
dt

2πe
−iztn̄·P

×
〈
n̄ · P,−q

2

∣∣∣∣Tr
[
/̄n

2χn
(
tn̄

2 + xT
2

)
χ̄n

(
− tn̄2 −

xT
2

)] ∣∣∣∣n̄ · P, q2
〉

=
∫

d2q
(2π)2 e

iq·r
∫
dt

2πe
−iztn̄·P

× (−)
〈
n̄ · P,−q

2

∣∣∣∣ χ̄n (− tn̄2 − xT
2

)
/̄n

2χn
(
tn̄

2 + xT
2

) ∣∣∣∣n̄ · P, q2
〉
, (3.26)

and for gluons

Tg/i(r, z,x) = zn̄ · P (−gT α′α)
∫

d2q
(2π)2 e

iq·r
∫
dt

2πe
−iztn̄·P

×
〈
n̄ · P,−q

2

∣∣∣∣Baα′nT

(
tn̄

2 + xT
2

)
BaαnT

(
− tn̄2 −

xT
2

) ∣∣∣∣n̄ · P, q2
〉
. (3.27)

For gluons, there are also other possible projectors as combinations of gµνT , xµT and rµT . We
will not exhaust all the possible forms of the projectors in this paper, whose relevance will
depend on specific processes under consideration.

3.3 The Glauber model for hard processes in heavy-ion collisions

In heavy-ion collisions, one has

|ri| ∼ |b| ∼ Ri � 1/ΛQCD � |x|, 1/Q. (3.28)

– 15 –



J
H
E
P
0
7
(
2
0
2
1
)
0
0
2

That is, ri-dependence of thickness beam functions lies deep in the non-perturbative regime.
In principle, one could also quantitatively study such non-perturbative degrees of freedom
using the effective field theory approach. We, instead, content ourselves with connecting
our factorization formula in eq. (3.16) to the cross section in the Glauber model [18] by
modelling large nuclei.

In heavy-ion collisions, the two conditions in eq. (2.11) are easily fulfilled. In principle,
the impact parameter in eq. (2.3) can be determined better than 1 fm as long as one is not
aimed at high accuracy in the determination of the beam particles’ transverse momenta
and keeps ∆pT & 1GeV.9 Since the quantum fuzziness is much smaller than the impact
parameter, the classical concept of collision geometry used in the Glauber model is indeed
a reasonable approximation to the underlying quantum picture.

Let us approximate the thickness beam functions by appealing to a commonly used
model for heavy nuclei as in the Glauber model [18]. We also consider the difference between
protons and neutrons [48]. Large nuclei are known to be loosely bound with the binding
energy per nucleon ∆E ≈ 8MeV in their rest frame. This means that the typical time
scale for internal nucleon interactions is of order ∆t = n̄·Pi

2mi
1

∆E ≈ 25γ fm in the lab frame.
Such a time scale is much longer than any other time scales in the problem. Therefore,
nucleons in the nuclei are to be treated as free particles with a normalized distribution ρ̂i
proportional to that of electric charges [49]. Accordingly, the probability to find a nucleon
per unit transverse area around ri is given by

T̂i(ri) ≡
∫
dzρ̂i(ri, z). (3.29)

And, the thickness beam functions of nucleus i, which is made of Zi protons and Ni

neutrons, can be replaced by

Tj/i(ri, z,x)→ Ti(ri)
[

Zi
Zi +Ni

Bj/p(z,x) + Ni

Zi +Ni
Bj/n(z,x)

]
, (3.30)

where the nuclear thickness function is defined as [18]

Ti(ri) ≡ (Zi +Ni)T̂i(ri), (3.31)

Bj/p and Bj/n are the beam functions for protons and neutrons, respectively. That is, in
the Glauber model, the thickness beam functions are products of the thickness functions
and the beam functions.

Inserting eq. (3.30) into eq. (3.16) gives the cross section for hard processes in the
Glauber model

dσAB
d2bdyCd2pC

=
∫
d2XTA(X)TB(X− b) dσnn

dyCd2pC
, (3.32)

9In this paper, we are not concerned about how to determine the impact parameter of a collision
experimentally but only about what is speakable and unspeakable about the impact parameter in the
quantum picture.
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with the binary nucleon-nucleon cross section σnn given by the factorization formula for
colliding two nucleon beams with neutron-to-proton ratios respectively equal to Ni/Zi.
That is, the nuclear modification factor10

RAA ≡
dσAB

d2bdyCd2pC
TAB(b) dσnn

dyCd2pC

= 1, (3.33)

with

TAB(b) ≡
∫
d2XTA(X)TB(X− b). (3.34)

3.4 Impact-parameter dependent pp collisions

Collective phenomena among produced soft particles have been studied in pp
collisions [24–29], which are presumptively related to collision geometry according to some
models [31]. Inclusive hard processes in impact-parameter dependent pp collisions are
worth being explored experimentally as well. Based on the factorization formula in
eq. (3.16), such hard processes can be potentially used to measure transverse phase-space
parton distributions inside protons.

Caution is, however, needed when one studies impact-parameter dependent pp colli-
sions. For hard processes, one has

|ri| ∼ |b| ∼ Ri ∼ 1/ΛQCD � |x|, 1/Q. (3.35)

Therefore, like heavy-ion collisions, Tj/i(r, z,x) can be viewed as the distribution of parton
j with a transverse size ∼ |x|, i.e., the beam function Bj/i(z,x), located at r inside proton
i. On the other hand, in contrast to heavy-ion collisions, the two conditions in eq. (2.11)
are not always fulfilled in pp collisions. As discussed in section 2, in order to measure
universal quantities across experiments, one needs to maintain

∆pT ≥
1

2∆xT
� ΛQCD

2 ≈ 100 MeV. (3.36)

∆pT , however, can not be too large on modern colliders. For example, the crossing angle at
the interaction point θC ∼ 100 µrad at the LHC [32], which is one of the crucial parameters
for achieving high luminosity. θC can be determined with an accuracy ∆θC = 10 µrad,
which gives us

∆pT ≤ 70 MeV (3.37)

for E = 7TeV proton beams. If the measurements like those in refs. [24–29] are subject
to a similar constraint (with lower beam energies), the required theoretical calculations
always involve the wave packets of colliding protons, as shown in eqs. (2.15) and (3.9),
which, however, are not measured.11

10In experiments, one measures RAA with both its numerator and denominator averaged over a range
of impact parameter ∆b corresponding to some centrality bin. Since ∆b � 1/|pC |, one can identify the
average impact-parameter dependent cross section with the average number of hard processes per collision.

11When Condition ii) in eq. (2.11) is violated, the factorization formula in eq. (3.16) is still valid but the
definition of thickness beam functions will depend on the protons’ wave packets.
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4 The impact-parameter dependent Drell-Yan process in qq̄ collisions

The modes associated with qT ∼ 1/b are non-perturbative in hadron and nuclear collisions.
In order to make a model-independent verification of the factorization formula in eq. (3.16),
in this section we study impact-parameter dependent qq̄ collisions with b . 1/ΛQCD. Since
the factorization formula is valid at all orders in αs and at leading order in λ, its validity
in such collisions can be verified order by order in perturbation theory by comparing to
the results of the general formula in eq. (2.23). For this task, the factorization formula is
required to reproduce the perturbative QCD results, expanded to leading order in λ.

4.1 The impact-parameter dependent Drell-Yan cross section

We calculate the impact-parameter dependent cross section for the Drell-Yan process

qq̄ → γ∗ + anything else (4.1)

with the virtuality of the photon p2
C = Q2 at the impact parameter b . 1/ΛQCD. The quark

and antiquark are taken as massless onshell particles. In this case, there are only two scales:
Q and 1/b, which set the expansion parameter λ = 1/(bQ) � 1. Like the conventional
cross section, the impact-parameter dependent cross section is not infrared safe because
of insufficient average over the initial states. Its singularities are to be regularized by
dimensional regularization with d = 4− 2ε.

Let us first derive the impact-parameter dependent total cross section from the general
formula in eq. (2.23). One first integrates over the observable O and then singles out one
of the final-state particles as γ∗ to obtain the general formula for the total cross section

dσqq̄
d2b = π

s

∫
d2q

(2π)2 e
iq·b

∫ ∏
f

[
dΓpf

]
δ(p2

C −Q2)

×M(pA, pB → pC , {pf})M∗(p̄A, p̄B → pC , {pf}) (4.2)

with pC = pA+pB−
∑
pf and the incoming momenta given by eq. (2.19). For unpolarized

collisions, it can be written in the following compact form

dσqq̄
d2b = π

s

∫
d2q

(2π)2 e
iq·b

∫ ∏
f

[
dΓpf

]
δ(p2

C −Q2)|M |2(pA, pB → pC , {pf} ← p̄A, p̄B) (4.3)

with |M |2(pA, pB → pC , {pf} ← p̄A, p̄B) being the off-diagonal amplitude squared in the
last line of eq. (4.2) averaged over initial-state spins.

For the factorization formula, one needs to integrate over yC and pC in eq. (3.16).
This can be easily done by using eq. (2.24) to introduce δ(p2

C −Q2) and then integrate out
the four-momentum pµC instead. We only consider the production threshold: Q2 ∼ s. In
this case, one can replace δ(p2

C −Q2) by δ(n̄A · pC n̄B · pC −Q2) and the pC-integral gives
δ(2)(x). Then, integrating out x gives

dσqq̄
d2b = π

s

∑
j,k

∫
dzA
zA

dzB
zB

∫
d2XTj/q(X, zA)Tk/q̄(X− b, zB)

∫ ∏
f

[dΓpf ]

×H (zAPA, zBPB → pC , {pf}) δ(n̄A · pC n̄B · pC −Q2) (4.4)
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with n̄i · pC = zin̄i · Pi −
∑
n̄i · pf . Here, we have used the fact that the soft function

becomes unity at x = 0 and the hard function H is equal to |M |2 for the partonic process
j, k → C + anything else, as given in eq. (3.20). We define

Tj/i(r, z) ≡ Tj/i(r, z,0), (4.5)

which are referred to as transverse spatial PDFs. In heavy-ion collisions, the above equation
gives the factorization formula for the inclusive Drell-Yan production of γ∗, W± and Z0

with a single hard scale Q, valid for all orders in αs. The interested reader is referred to
refs. [37, 48] for fixed-order calculations and phenomenological studies. Below, we only focus
on the verification of the factorization formula by a detailed calculation for qq̄ collisions at
leading order in λ.

4.2 Factorization at the Born level

At zeroth order in αs, the off-diagonal amplitude squared is given by

|M (0)|2(pA, pB → pC ← p̄A, p̄B) =
pA

pB

pC pA
_

pB
_

= −1
4e

2
qTr

[
vs(p̄B)v̄s(pB)γµus′(pA)ūs′(p̄A)γµ

]
(4.6)

with eq the electric charge of the quark and antiquark. Expand it around λ = 0, and at
leading order one has

|M (0)|2(pA, pB → pC ← p̄A, p̄B) = e2
q(1− ε)s, (4.7)

where s = n̄A · PAn̄B · PB and we have used the following identities

∑
s

us(p)ūs(p′) = /p+m√
2(m+ E)

(
1 + γ0

) /p′ +m√
2(m+ E′)

,

∑
s

vs(p)v̄s(p′) =
−/p+m√
2(m+ E)

(
−1 + γ0

) −/p′ +m√
2(m+ E′)

. (4.8)

Inserting eq. (4.7) into eq. (4.3) and expanding the δ function in Q as well12 gives

dσ(0)

d2b
= π2e2

qδ(s−Q2)δ(2)(b). (4.9)

That is, the hard scattering is initiated by the quark and antiquark only when they pass
very close to one another at a distance ∼ 1/Q, which defines “point-like” in our calculation.

12As an exercise to illustrate the validity of such an expansion, one can work out

Q2
∫

d2q
(2π)2 e

iq·bδ(|q|2 −Q2x) = Q2

4π J0(Qb
√
x)→ δ(2)(b)δ(x) as Q→∞,

by using test functions in both b and x.
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Now, let us calculate the factorized Born cross section using eq. (4.4). At zeroth
order in αs, the transverse spatial quark/antiquark distributions, according to eqs. (3.25)
and (3.26), take the form

T (0)
q/q (r, z) = T (0)

q̄/q̄ (r, z) = δ(1− z)δ(2)(r), (4.10)

and the hard function is given by

H(0)(zAPA, zBPB → pC) = |M (0)|(zAPA, zBPB → pC) = e2
q(1− ε)zAzBs. (4.11)

Plugging them into eq. (4.4) gives the same result as eq. (4.9), hence confirming the validity
of factorization at the Born level.

4.3 Factorization at one loop

At O(αs), the off-diagonal amplitude squared for the general formula in eq. (4.3) contains
both virtual and real diagrams. Instead of evaluating them exactly, we constrict ourselves
to showing that expanding them to leading order in λ yields the one-loop factorized result
given by eq. (4.4).

The virtual diagrams include the quark/antiquark self-energies and the one-loop quark-
photon vertex function. In dimensional regularization, the quark/antiquark self-energies
vanish due to the cancellation between ultraviolet (UV) and infrared (IR) poles for massless
onshell particles. Therefore, one only needs to include the one-loop quark-photon vertex
function, which contains both UV and IR divergences. Since its counterterm cancels with
that for quark/antiquark self-energies, the UV pole is, effectively, converted into an IR
pole and the singularities in the virtual diagrams are of IR origin. Using the Laudau
equation [50], one can see that there are three potentially IR divergent regions in the phase
space of the virtual gluon: 1) nA-collinear region; 2) nB-collinear region; and 3) the soft
region. These regions produce a double IR pole in ε. The one-loop quark-photon vertex
function is well known, which only depends on 2pA · pB (see, e.g., ref. [51]). Its explicit
form is not relevant for our discussion here, and we write its contribution to the total cross
section in the following compact form

dσ
(1)
r

d2b = π

s

∫
d2q

(2π)2 e
iq·b|M (1)

v |2(pA, pB → pC ← p̄A, p̄B)

× δ((pA + pB)2 −Q2) (4.12)

with |M (1)
v |2 the spin-averaged amplitude squared which contains virtual-gluon contri-

butions.
The real amplitude includes two diagrams:

iM (1)
r (pA, pB → pC , k) ≡

pA pB
k pC

pA pB

kpC
+ . (4.13)
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Accordingly, the real correction in perturbative QCD takes the form

dσ
(1)
r

d2b = π

s

∫
d2q

(2π)2 e
iq·b

∫
dΓk|M

(1)
r |2(pA, pB → pC , k ← p̄A, p̄B)

× δ((pA + pB − k)2 −Q2). (4.14)

It also contains collinear and soft divergences.
We use the method of regions (see ref. [45] for an introduction) to expand the real

(eq. (4.12)) and virtual (eq. (4.14)) integrals in each relevant region of the gluon momentum
kµ in order to verify the factorization formula at one loop. The relevant regions include:

1. The hard region: kµ ∼ Q .

In this region, upon expanding the off-diagonal amplitude squared, at leading order
in λ it equals the conventional amplitude squared with pi and p̄i both replaced by
their design values Pi. As a result, the expansion of the virtual and real integrals in
this region gives

dσ
(1)
h

d2b =δ(2)(b)σ(1)(PA, PB → pC) (4.15)

with σ(1) the conventional one-loop cross section for qq̄ → γ∗, which can be found
in, e.g., ref. [51]. The double poles in virtual and real contributions cancel out but
the collinear divergences do not cancel, which produces the 1/ε pole in the final
result of σ(1). If one inserts into the factorization formula the zeroth-order transverse
spatial PDFs in eq. (4.10) and the spin-averaged virtual and real amplitude squared
with incoming momenta equal to Pi as the one-loop hard function, one evidently
reproduces the same result as eq. (4.15).

2. Two collinear regions: kµ ∼ Q(λ2, 1, λ)nin̄i .

Expanded in these regions, the virtual diagrams become scaleless integrals and, hence,
vanish. As a result, one only needs to consider the real diagrams as shown in
eq. (4.13).

Let us take for example the nA-collinear region in which

pµA ∼ p̄
µ
A ∼ k

µ ∼ (λ2, 1, λ)nAn̄A , pµB ∼ p̄
µ
B ∼ (1, λ2, λ)nAn̄A . (4.16)

With the above scaling in mind, expanding the δ function in eq. (4.14) gives

δ(zAs−Q2) (4.17)

with (1− zA) ≡ n̄A · k/n̄A · PA. Then, expand the real amplitude M (1)
r in λ as well.

After some algebra, we have

|Mr,nA |2(pA,pB→ pC ,k← p̄A, p̄B) = e2
q(1−ε)s

g2
sCF
2

Nqq(z)
[
4|k|2−(1−z)2|q|2

]∣∣k+(1−z)q
2
∣∣2 ∣∣k−(1−z)q

2
∣∣2
(4.18)
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with

Nqq(z) =
(
1 + z2

)
− ε(1− z)2. (4.19)

In this way, one can get the leading-order contribution from the nA-collinear region.
In order to verify the factorization formula, we need to show that

dσ
(1)
r,nA

d2b = π

s

∫
d2q

(2π)2 e
iq·b

∫
dΓk|Mr,nA |2(pA, pB → pC , k ← p̄A, p̄B)δ(zAs−Q2)

= π

s

∫
dzA
zA
T (1)
q/q (b, zA)H(0)(zAPA, PB → pC)δ(zAs−Q2) (4.20)

with the zeroth-order hard function H(0) given in eq. (4.11) and T (1)
q/q the one-loop

transverse spatial quark distribution function to be calculated below. The physical
meaning of this equation is quite obvious: the quark, recoiling against a radiated
gluon, approaches to the antiquark located at b and then they annihilate into a
photon of virtuality Q2.

Let us confirm eq. (4.20) using the factorization formula in eq. (4.4). Here, we need to
calculate the one-loop transverse spatial quark distribution function in the incoming
quark. According to its definition in eq. (3.25), one has, in n̄ ·A = 0 lightcone gauge,

T (1)
q/q (r, z) =

∫
d2q

(2π)2 e
iq·r

∫
d2−2εk

(2π)2−2ε
M

4π(1− z)n̄ · P (4.21)

with

M =

p p

k

_

= g2
sCF

1
2
Tr
[
uspū

s
p̄/ε
∗
λ(k) (/̄p− /k) /̄n

2

(
/p− /k

)
/ελ(k)

]
(p− k)2 (p̄− k)2 . (4.22)

Here, the gluon polarization sum in the lightcone gauge is given by∑
λ

εµλ(k)ε∗νλ(k) = −gµν + n̄µkν + n̄νkµ

n̄ · k
. (4.23)

The incoming quark momenta in the amplitude (p ≡ P + qT /2) and the conjugate
amplitude (p̄ ≡ P − qT /2) are both onshell:

Pµ ± qµT
2 ≡ −

q2
T

4n̄ · P
n̄µ

2 + n̄ · P n
µ

2 ±
qµT
2 . (4.24)

The gluon momentum kµ can be decomposed as

kµ = − k2
T

(1− z)n̄ · P
n̄µ

2 + (1− z)n̄ · P n
µ

2 + kµT . (4.25)
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Accordingly, the denominators in eq. (4.22) are given by(
P ± qT

2 − k
)2

=
(
kT ∓ (1− z) qT2

)2
1− z ∼ λ2. (4.26)

One only needs to keep terms of O(λ−2) inM. After expanding it according to the
scaling in eq. (4.16), one can easily obtain

M = g2
sCF n̄ · P

Nqq(z)
[
4|k|2 − (1− z)2|q|2

]
2
∣∣k + (1− z)q

2
∣∣2 ∣∣k− (1− z)q

2
∣∣2 (4.27)

with Nqq(z) given in eq. (4.19). The equality of eq. (4.20) is confirmed by pluggingM
in the above equation (via eq. (4.21)) and the zeroth-order hard function in eq. (4.11)
into the last line of eq. (4.20).

The one-loop transverse spatial quark distribution in a fast-moving quark can be
calculated analytically. One combines the denominators on the right-hand side of
eq. (4.27) by introducing a Feynman parameter x:

x

∣∣∣∣k + (1− z)q
2

∣∣∣∣2 + (1− x)
∣∣∣∣k− (1− z)q

2

∣∣∣∣2 =
∣∣∣k̃∣∣∣2 + ∆ (4.28)

with

k̃ = k− 1
2(1− 2x)(1− z)q, ∆ = x(1− x)(1− z)2|q|2. (4.29)

Then, by changing variables to k̃, one can easily integrate out k in eq. (4.21) and
obtain

T (1)
q/q (r, z) = αsCF

2π

∫ 1

0
dx

∫
d2q

(2π)2 e
iq·r

Nqq(z)(1− 2ε)Γ(ε)
(

eγEµ2

x(1−x)|q|2
)ε

(1− z)1+2ε

= αsCF
2π

Γ(ε)Γ2(1− ε)
Γ(1− 2ε)

Nqq(z)
(1− z)1+2ε

∫
d2q

(2π)2 e
iq·r

(
eγEµ2

|q|2

)ε

= αsCF

2π
5
2 r2

cos(πε)Γ2(1− ε)Γ
(
ε+ 1

2

)
Nqq(z)

(1− z)1+2ε

(
eγEµ2r2

)ε
, (4.30)

where we have used the integral in eq. (A.6) and replaced the bared coupling g2
s by

g2
s

4π = αs

(
µ2eγE

4π

)ε
(4.31)

with µ the MS renormalization scale and γE the Euler constant. At the end, by using
1

(1− z)1+2ε = − 1
2εδ(1− z) + 1

(1− z)+
, (4.32)

we have

T (1)
q/q (r, z) = αsCF

2π2r2

[
−
(1
ε

+ LT

)
δ(1− z) + 1 + z2

(1− z)+

]
(4.33)
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with

LT ≡ 2 log
(

rµ

2e−γE

)
. (4.34)

The singularity in ε arises from the fact that the virtual-gluon radiation can only
contribute to the prefactor in front of δ(r) and there is no real-virtual cancellation
at a nonzero transverse distance r.
Similarly, one can also identify the contribution from the transverse spatial antiquark
distribution function of the incoming q̄ by expanding the integrand of eq. (4.14) in the
nB-collinear region. One hence confirms the contributions from one-loop transverse
spatial PDFs in the factorization formula.

3. The soft region: kµ ∼ λQ .
As a consistency check, we show that the contribution from the soft region vanishes.
We expand both the diagram for the one-loop spatial quark distribution function in
eq. (4.22) and the virtual and real integrals for the general formula given respectively
by eqs. (4.12) and (4.14) in this region. The former corresponds to the zero-bin con-
tribution to the spatial PDFs while the latter corresponds to the one-loop correction
to the soft function. In both cases, one ends up with scaleless integrals, which vanish
in dimensional regularization. Therefore, the soft region is indeed irrelevant.
In summary, we have verified the validity of the factorization formula at one loop: the
correction from the one-loop hard function is given by the expansion of the virtual
and real integrals for the general formula in the hard region, as given in eq. (4.15);
the correction from one-loop transverse spatial PDFs is equivalent to expanding these
virtual and real integrals respectively in the two collinear regions, as given in eq. (4.20)
for the quark collinear region; and the correction from the soft function vanishes.
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A An integral

In this appendix, we evaluate the integral

I =
∫

d2q
(2π)2

eiq·r

(|q|2)ε . (A.1)
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C

C1 C2

Re

Im
x

Figure 2. Integration contour for Ix. The two branch cuts extend respectively from i0+ to i∞
and from i0− to −i∞.

One can choose r to align with the positive x-axis and split the integral into two pieces:

I = 1
(2π)2

1
r2−2ε IxIy. (A.2)

Here,

Ix ≡
∫
dx(x2)

1
2−εeix with x = qxr

=
∫
C

dx[(x− i0+)(x− i0−)]
1
2−εeix (A.3)

with the contour C running from −∞ to +∞. This integral is well-defined only for the
range 1

2 < Re ε < 1, where one can deform the contour from C to C1+C2 as shown in
figure 2. On C1 the arguments of x− i0+ and x− i0− are −i3π

2 and iπ2 respectively while
on C2 they are both equal to iπ2 . Using this fact, one has

Ix = i

∫ ∞
0

dxx1−2εe−x[ei(
1
2−ε)π − e−i(

1
2−ε)π] = −2 cos(επ)Γ(2− 2ε). (A.4)

Iy is defined as

Iy ≡
∫
dy

1
(1 + y2)ε =

√
πΓ(ε− 1

2)
Γ(ε) . (A.5)

With Ix and Iy evaluated above, one finally has

I =
∫

d2q
(2π)2

eiq·r

(|q|2)ε = − 1
2π

3
2

1
r2−2ε cos(επ)

Γ(2− 2ε)Γ(ε− 1
2)

Γ(ε) . (A.6)
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