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1 Introduction

Wilson loops play an important role in testing the AdS/CFT correspondence [1–3] beyond
the planar approximation [4–6]. Amongst the simplest cases one finds the class of 1

2 -BPS
circular Wilson loops and their correlators in N = 4 Super-Yang-Mills (SYM) theory with
gauge group U(N) or SU(N). On the one hand, the holographic dual configurations of
strings or D-branes fully capture the planar approximation in the limit of large ’t Hooft
coupling λ [7–12], and a lot of effort has been dedicated to obtain corrections in 1/λ [13–24].
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On the other hand, localization [25–27] maps the calculation of these Wilson loop corre-
lators to the solution of a Gaussian matrix model [28–32], which, in principle, is exact
in both, λ and N , although extracting the 1/N expansion in a useful form is not easy.
A standard method to construct the 1/N expansion is topological recursion or the loop
equation approach [33–39]. Colour invariants have also been used [40] or more direct ap-
proaches [29, 41]. More recently, the 1/N expansion of correlators involving Wilson loops
has been studied with the help of the Toda integrability structure [42], with a particular
emphasis on the strong coupling behaviour [43].

A useful approach to Wilson loops is to consider suitable generating functions. Quite
generally, Wilson loop generating functions are most elegantly formulated in the language
of symmetric functions [44], which allows to encode the information on Wilson loops in
arbitrary representations of the gauge group and to translate between different sets of basis
correlators using combinatorial identities. The generating functions for higher rank Wilson
loops introduced in [31] are contained in this language as special cases. In particular, the
connected correlators of multiply would Wilson loops turn out to be a natural basis to
work with and are a key ingredient in the proof of an interesting involution property [38,
40, 45, 46]. In the case of N = 4 SYM theory with gauge group U(N), the expression of
these correlators in terms of the matrix model solution has been worked out in [38, 45, 46],
and it will be one of the aims of this paper to further elaborate on this relation.

At a time when localization had not been established yet as a theorem [25] and the
relation between supersymmetric Wilson loops in N = 4 SYM theory and the Gaussian
matrix model had only been conjectured [28], Drukker and Gross [29] calculated the circular
Wilson loop expectation value exactly, as a series in 1/N and to all orders in λ. To date,
their result remains a rare example of a full series in 1/N that can be obtained from the
exact matrix model solution.

The aim of this paper is to develop methods that allow to extract as many results as
possible about coincident circular Wilson loops from the exact matrix model expression of
the general Wilson loop generating functions. In particular, we shall be interested in the
correlators of multiply wound Wilson loops,

W(k1,k2,...,kh) =
〈

h∏
i=1

TrUki
〉

(1.1)

and their connected variants, where the non-zero integers k1, k2, . . . kh represent the winding
numbers. Following Okuyama’s slight abuse of nomenclature [38], we will also call such
correlators “h-point functions”.

The structure of the paper is as follows. We will start by reviewing, in section 2,
the general theory of Wilson loop generating functions in the language of symmetric func-
tions [44, 46]. This review will end with a generalization to the case of two independent
contours, which is necessary for treating coincident circular loops winding with opposite
orientations. In section 3, we discuss these Wilson loop generating functions in the case of
N = 4 SYM theory, in which they can be obtained exactly by solving a Gaussian matrix
model. The result of this discussion will be a general formula for the connected correlators
of multiply wound Wilson loops in terms of the traces of symmetrized matrix products,
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generalizing the results of [38, 46]. Section 4 is dedicated to the manipulation of the matrix
model result using harmonic oscillator algebra. The deep relation between the Gaussian
matrix model and the harmonic oscillator is well known, but the very elegant treatment
by Okuyama [47] has gone nearly unnoticed. Therefore, we shall review it here. In sec-
tion 5, we will consider the one-point functions W(k1) starting with a review of Drukker
and Gross’ exact series in 1/N . We will be able to add two new results here. First, we
find a recursive set of differential equations, from which the series can be constructed and,
second, we provide a new derivation of the series in 1/N , which results in an explicit com-
binatorial formula for the numerical coefficients in this series that have been defined only
recursively. These two results find their analogues in the treatment of the connected two-
point functions, which is carried out in section 6. The direct approach will result in the
full series in 1/N , but the individual terms are given only as series in λ. It will be checked
that the leading term in 1/N coincides with known results. Using the differential equation
approach, however, we will show that the series can be constructed from the knowledge of
the Drukker and Gross’ series for the one-point functions, resulting in expressions to all
order in λ. A procedure for this construction, which can be coded on the computer, will be
given. Finally, we will conclude in section 7 and add two appendices for technical details.

2 Generating functions of Wilson loops and correlators

2.1 Brief review of combinatorics and symmetric functions

In this subsection, we will recall some basic combinatorial notions and introduce the sym-
metric functions. Readers not familiar with them should consult a standard reference such
as [48] or the lecture notes [49].

A partition λ ` n is a weakly decreasing (or weakly increasing) set of positive integers
λi (i = 1, 2, . . .) such that

∑
i λi ≡ |λ| = n. The numbers λi are called the parts of λ, and

the number of the parts of λ is denoted by l(λ). Obviously, it holds that l(λ) ≤ |λ|. In order
to avoid ambiguities, we will assume l(λ) > 0 throughout the paper, i.e., we exclude the
empty partition. λ can be represented graphically as a Young diagram containing columns
of lengths λ1, λ2, . . .. Flipping the diagram along its diagonal defines the transpose partition
λ†.

Sometimes, the notation
λ =

∏
i

iai (2.1)

is used, meaning that the integer i is contained in λ ai times. Then, we have

l(λ) =
∑
i

ai , |λ| =
∑
i

i ai . (2.2)

The notation (2.1) is particularly useful when relating partitions to permutations. A par-
tition λ is associated with the cycle type of a permutation, if the permutation contains
ai cycles of length i. Thus, λ defines a conjugacy class Cλ of the permutation group Sn.
Defining the centralizer size by

zλ =
∏
i

(ai! iai) , (2.3)
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we have that |Cλ| = |λ|!/zλ is the size of the conjugacy class, i.e., the number of permuta-
tions of cycle type λ.

A composition K is a sequence of positive integers, K = (k1, k2, . . .), which are called
the parts of K. The length l(K) is the number of the parts of K, and the weight of K is the
sum of its parts, |K| =

∑
i ki. Writing the parts of K in weakly decreasing (or increasing)

order uniquely associates K with a partition. Therefore, two sequences of positive integers
that differ in the order of their parts define different compositions, while they are considered
to define the same partition. As for the partitions, we will assume l(K) > 0.

Given a set X, a set partition ν = (ν1, ν2, . . .) of X is a sequence of disjoint sets νi,
called the parts of ν, the union of which is X. The length l(ν) is the number of its parts. Of
particular interest in this paper are the set partitions of X = [n], where n is some positive
integer, and [n] = (1, 2, . . . , n). In particular, given a composition K of weight |K| and
length l(K), let ν be a set partition of [l(K)]. This implies that l(ν) ≤ l(K). Then, let Kν

be defined as the following composition,

Kν =

∑
i∈ν1

ki,
∑
i∈ν2

ki, . . . ,
∑

i∈νl(ν)

ki

 . (2.4)

Clearly, |Kν | = |K| and l(Kν) = l(ν).
Let us now introduce the symmetric functions [48, 49]. Let en, hn, and pn be the

elementary, complete homogeneous and power-sum polynomials of degree n, respectively.
For a ∈ {e, h, p}, given a composition K, we define aK =

∏
i aki . Because a composition

K is uniquely associated with a partition λ, we can identify aλ = aK .1 These functions
form bases of symmetric functions (on some countably infinite alphabet). There are three
additional classical bases, the monomials, mλ, the Schur basis, sλ, and the “forgotten”
basis, fλ. Their role is captured best by considering the Hall inner product, 〈·, ·〉, or the
Cauchy kernel. The monomial basis is the adjoint of the complete homogeneous basis,
〈mλ, hν〉 = δλν , the forgotten basis is the adjoint of the elementary basis, 〈fλ, eν〉 = δλν ,
whereas the power-sum basis and the Schur basis satisfy 〈pλ, pν〉 = zλδλν and 〈sλ, sν〉 = δλν ,
respectively. The Schur functions are related to the monomials by the Kostka matrix [48].2

2.2 Wilson loop generating functions

Generating functions for Wilson loops in arbitrary representations of the gauge group can
be formulated elegantly [44, 46] using the language of symmetric functions. We will restrict
our treatment to unitary gauge groups.

Let U be the holonomy of the gauge connection for a single Wilson loop, an “open”
Wilson loop, so to say. We can take U diagonal, U = diag(u1, u2, . . .) and denote by
u = (u1, u2, . . .) the alphabet of its eigenvalues.3 Then, it is obvious that the n-fold

1Most often, these functions are defined with reference to a partition. For commuting variables, the two
definitions are clearly equivalent. For non-commuting variables [50], using compositions is more appropriate.

2The Kostka matrix was used in [32] to obtain the Wilson loops in irreducible representations (Schur
basis) from the matrix model solution (monomial basis), but we will not use it here.

3We will formally consider a countably infinite set of diagonal entries, almost all of which are zero.
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multiply-wound Wilson loop
TrUn =

∑
i

uni = pn(u) (2.5)

is simply given by the power-sum symmetric polynomial of degree n in the eigenvalues.
Introduce an alphabet of real parameters y = (y1, y2, . . .) and define the two generating
functions4

E(y) =
∏
i,j

(1 + yiuj) , H(y) =
∏
i,j

1
1− yiuj

. (2.6)

Because these two generating functions contain the same information, we shall work with
E(y) in what follows.

Expanding E(y) as a formal power series in the parameters y, one obtains

E(y) = 1 +
∑
λ

eλ(y)mλ(u) , (2.7)

where
∑
λ denotes the sum over all non-empty partitions.5 One may callmλ(u) a monomial

representation of the Wilson loop. A Wilson loop in some irreducible representation of
U(N) is given by a Schur function

Trλ(U) = sλ(u) . (2.8)

Using the Cauchy identity [48] in (2.7) one has,

E(y) = 1 +
∑
λ

sλ(y)sλ†(u) . (2.9)

Products of multiply wound Wilson loops are given by power-sum functions. More
precisely, given a composition K, we have

l(K)∏
i=1

TrUki =
l(K)∏
i=1

pki(u) = pK(u) . (2.10)

Recall that pK(u) = pλ(u), with λ the partition that is associated with K, because the
traces commute in the product. In terms of the power-sum basis, (2.7) reads

E(y) = 1 +
∑
λ

ελ
zλ
pλ(y)pλ(u) , (2.11)

where ελ is a shorthand for
ελ = (−1)|λ|−l(λ) . (2.12)

Wilson loop expectation values 〈.〉 are now encoded in 〈E(y)〉, and connected correlators
〈〈.〉〉 are defined in terms of ln 〈E(y)〉. For example, expanding ln 〈E(y)〉 in the power-sum
basis,

ln 〈E(y)〉 =
∑
λ

ελ
zλ
pλ(y) 〈〈pλ(u)〉〉 , (2.13)

4H(y) is the so-called Cauchy kernel. It is also known as the Ooguri-Vafa operator [51].
5The unity term corresponding to the empty partition has been separated in order to avoid possible

ambiguities, which are present in [46].
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yields the connected correlators of multiply wound Wilson loops. Note that the unity term
is absent in (2.13).

The above argument can be extended to two or more different Wilson loops.6 Let us
consider two of them, with gauge holonomies U and Ū , respectively. We now need two
alphabets of parameters, y and x, and two generating functions, E(y) and Ē(x). Corre-
lators between the two Wilson loops are encoded in the generating function

〈
E(y)Ē(x)

〉
.

Moreover, taking the logarithm defines the connected correlators. For example,

ln
〈
E(y)Ē(x)

〉
= ln 〈E(y)〉+ ln

〈
Ē(x)

〉
+
∑
λ,ν

ελεν
zλzν

pλ(y)pν(x) 〈〈pλ(u)pν(ū)〉〉 . (2.14)

The first two terms on the right hand side arise from the unity term in (2.11), and we recall
that the sums include only non-empty partitions. Specializing to x = 0 reduces (2.14)
to (2.13). Moreover, one may consider the special case of equal Wilson loops, U = Ū ,
which implies Ē(x) = E(x). In this case, we simply have E(y)E(x) = E(y ⊕ x), where ⊕
is the operation of alphabet addition [49]. Thus, one would not get any new information
from the product.

3 Wilson loop generating functions in N = 4 SYM theory

3.1 Review of the single loop case

In this subsection, we briefly review the results of [46]. In N = 4 SYM theory, 1
2 -BPS

circular Wilson loops can be mapped by localization to a Gaussian matrix model [28–32].
Our conventions for the matrix model are

〈f(X)〉mm =
∫
DX f(X) e−

1
2X

2
, 〈1〉mm = 1 . (3.1)

We shall consider only the case of U(N) as gauge group, in which the matrix integral is
over hermitian matrices X.7

In terms of the Gaussian matrix model, the Wilson loop generating function 〈E(y)〉
defined in (2.6) is given by

〈E(y)〉 =
〈∏

i

det
(
1 + yi egX

)〉
mm

=
〈

det
[ ∞∑
k=0

ek(y) ekgX
]〉

mm

, (3.2)

where g = 1
2gYM. The ’t Hooft coupling is then λ = 4Ng2. The matrix model integral can

be done with standard techniques [52], and the result is [41]

〈E(y)〉 = det
[ ∞∑
k=0

ek(y)Ak

]
, (3.3)

where Ak represents the N ×N matrix [38, 41]

(Ak)m,n = (Ak)n,m =

√
n!
m! e

1
2k

2g2 (kg)m−n Lm−nn

(
−k2g2

)
. (3.4)

6By different we mean following different contours.
7For SU(N), the matrices must be hermitian and traceless.
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Lm−nn (x) denotes an associated Lagurerre polynomial, and m,n = 0, . . . , N − 1. It is
important to notice that the integer k only appears in the product kg.

Taking the logarithm of (3.3) yields

ln 〈E(y)〉 =
∑
λ

eλ(y)(−1)l(λ)−1

zλ
[l(λ)− 1]!

(∏
i

λi

)
Tr
[
A(λ1Aλ2 · · ·Aλl(λ))

]
, (3.5)

which tells us, from (2.7), that the traces of the symmetrized matrix products8 are related
to the connected Wilson loop expectation value in the monomial basis,

Tr
[
A(λ)

]
≡ Tr

[
A(λ1Aλ2 · · ·Aλl(λ))

]
= (−1)l(λ)−1

[l(λ)− 1]!
zλ∏
i λi
〈〈mλ(u)〉〉 . (3.6)

Using purely combinatorial relations, the monomials can be translated into any other basis.
For the power-sum basis, which represents the correlators of multiply wound loops, the
relation is [49]

Tr
[
A(λ)

]
= (−1)l(λ)−1

[l(λ)− 1]!
∑

ν∈P([l(λ)])
M(ν) 〈〈pλν (u)〉〉 . (3.7)

In (3.7), the sum is over all set partitions, ν, of [l(λ)] = (1, 2, . . . , l(λ)),M(ν) denotes the
Möbius function

M(ν) =
∏
i

(−1)l(νi)−1[l(νi)− 1]! , (3.8)

and the composition λν was defined in (2.4).9 In [46], the inverse of (3.7) was given
without proof, but we refrain from reviewing it here, because a more general relation will
be derived below.

In the above equations, all λi are strictly positive, because λ always denotes a proper
partition. This implies that all of the loops in the correlator (2.10) have the same orien-
tation. For unitary groups, inverting the orientation of the loop maps each representation
to its complex conjugate. In the above calculation, this amounts to swapping the sign of
the gauge coupling, g. Therefore, denoting the generating function of the Wilson loops in
the complex conjugate representations by Ē(y), one has

〈
Ē(y)

〉
=
〈∏

i

det
(
1 + yi e−gX

)〉
mm

= det
[ ∞∑
k=0

ek(y)A−k

]
. (3.9)

As is obvious from (3.4), we have A−k 6= Ak, the difference arising from the term (kg)m−n.
However, because this term cancels in matrix products, it holds that TrA−λ = TrAλ, where
−λ = (−λ1,−λ2, . . . ,−λl(λ)). In turn, together with (3.5), this implies

〈
Ē(y)

〉
= 〈E(y)〉.

This result is of course expected, because the choice of the common orientation of all the
loops is irrelevant.

In order to discuss correlators of loops with opposite orientations, we need to consider
the case of two different loops discussed at the end of subsection 2.2. This is what we will
do next.

8Symmetrization includes a normalization factor 1/l(λ)!.
9One needs to substitute λ in place of K in (2.4).
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3.2 Oppositely wound loops

In this subsection, our aim is to generalize the results reviewed in the previous subsec-
tion to products of multiply would Wilson loops with arbitrary orientation. The loops
are still spacially overlapping to ensure that the configuration remains 1

2 -BPS, so that it
can be mapped to the Gaussian matrix model. This is the general case considered by
Okuyama [38]. Specifically, we are interested in correlators of the form

W(k1,k2,...,kh) =
〈

h∏
i=1

TrUki
〉
, (3.10)

where k1, k2, . . . , kh are non-zero integers.10 The results of the previous subsection can
be applied to (3.10), if either all ki are positive, or all ki are negative. These two cases
are equivalent, because U−k = (U−1)k, but we have seen that 〈E(y)〉 =

〈
Ē(y)

〉
holds

for representations that are complex conjugates of each other. In the general case, we
can collect the positive and negative integers into two sets using the commutativity of the
traces and rewrite (3.10) as

W(λ1,λ2,...,−ν1,−ν2,...) = 〈pλ(u)pν(ū)〉 . (3.11)

These correlators belong to the generic two-loop case discussed at the end of subsection 2.2.
Consider the two-loop generating function

〈
E(y)Ē(x)

〉
, where y and x are two indepen-

dent alphabets of parameters. The matrix model expression of this generating function is〈
E(y)Ē(x)

〉
=
〈∏
i,j

det
[(

1 + yi egX
) (

1 + xj e−gX
)]〉

mm

= det

 ∞∑
k,l=0

ek(y)el(x)Ak−l

 , (3.12)

with the N ×N matrices Ak again given in (3.4).
There are different ways to proceed from here. The first way is to rewrite (3.12) as

〈
E(y)Ē(x)

〉
= det

1+
∞∑
k=1

ek(y)Ak+
∞∑
l=1

el(x)A−l+
∞∑

k,l=1
ek(y)el(x)Ak−l


= det


[
1+

∞∑
k=1

ek(y)Ak

][
1+

∞∑
l=1

el(x)A−l

]
+
∞∑

k,l=1
ek(y)el(x)(Ak−l−AkA−l)


= 〈E(y)〉

〈
Ē(x)

〉
det

{
1+
[
1+

∞∑
l=1

el(x)A−l

]−1[
1+

∞∑
k=1

ek(y)Ak

]−1

(3.13)

×
∞∑

k,l=1
ek(y)el(x)(Ak−l−AkA−l)

}
.

One could now take the logarithm in (3.13), which would yield the generating function of
the connected correlators (2.14). While this would reproduce nicely the first two terms

10Zeros lead to trivial modifications, because TrU0 = N .
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on the right hand side of (2.14), expanding the remaining term in y and x would seem
dreadfully complicated, because of the matrix inverses. Let alone the conversion to the
power-sum basis.

Another way of manipulating (3.12) is to reorder the double sum and collect the terms
with equal Ak. This yields〈

E(y)Ē(x)
〉

= det
{
α0(y, x) +

∞∑
k=1

[αk(y, x)Ak + αk(x, y)A−k]
}

= α0(y, x)N det
{

1 +
∞∑
k=1

[
αk(y, x)
α0(y, x)Ak + αk(x, y)

α0(y, x)A−k
]}

, (3.14)

where the functions αk(y, x) are defined by

αk(y, x) =
∞∑
l=0

ek+l(y)el(x) . (3.15)

This time, after taking the logarithm, the expansion in powers of αk/α0 is straightforward,
but the conversion into the power sum basis still seems dreadful. Therefore, we shall
proceed differently and follow Okuyama [38].

Okuyama considered the generating function of multiply wound Wilson loops,

G(k1,k2,...,kh)(y) =
〈

h∏
i=1

det
(
1 + yi ekigX

)〉
mm

, (3.16)

where y denotes the finite alphabet of parameters y = (y1, y2, . . . , yh). Because of

det
(
1 + yi ekigX

)
= 1 + yi Tr ekigX +O(y2

i ) ,

the correlator (3.10) is the coefficient of the maximum-rank elementary polynomial eh(y) in
the Taylor expansion of G(k1,k2,...,kh)(y). Similarly, the connected correlator is the coefficient
of eh(y) in the Taylor expansion of lnG(k1,k2,...,kh)(y).

Evaluating the matrix model expectation value in (3.16) results in

G(k1,k2,...,kh)(y) = det

1 +
∑

∅6=µ⊆[h]
yµAkµ

 , (3.17)

where the sum runs over all non-empty subsets of [h], and we defined

yµ =
∏
i∈µ

yi , kµ =
∑
i∈µ

ki . (3.18)

Then, taking the logarithm in (3.17) yields

lnG(k1,k2,...,kh)(y) =
∞∑
c=1

(−1)c−1

c
Tr

 c∏
i=1

∑
∅6=µi⊆[h]

yµiAkµi

 . (3.19)

In (3.19), the terms containing the maximum-rank elementary polynomial eh(y) are pre-
cisely those in which (µ1, µ2, . . . , µc) constitutes a set partition of [h] (for the definition of
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a set partition, see section 2.1), such that each parameter yi appears exactly once in the
product. Therefore,

W(k1,k2,...,kh)
conn ≡

〈〈
h∏
i=1

TrUki
〉〉

=
∑

ν∈P([h])

(−1)l(ν)−1

l(ν) TrAKν , (3.20)

where the sum is over all set partitions of [h]. In analogy with (2.4), Kν denotes the set11

Kν =

∑
i∈ν1

ki,
∑
i∈ν2

ki, . . . ,
∑

i∈νl(ν)

ki

 , (3.21)

and we introduced

AKν =
l(ν)∏
i=1

A(Kν)i . (3.22)

Eq. (3.20) is our final result of this subsection, which generalizes the expressions given
by Okuyama [38] to arbitrary h. It is also equivalent to formula (4.18) of [46], which it
generalizes to arbitrary integers ki.12

To end this section, let us consider the special (trivial) case when at least one of the
integers ki is zero. We simply have〈

TrU0
〉

= Tr (A0) = N , (3.23)

and 〈〈
TrU0 TrUk2 . . .TrUkh

〉〉
= 0 (h ≥ 2) . (3.24)

Eq. (3.24) is a consequence of 〈1O〉 = 〈1〉 〈O〉 for any operator O, which means that the
connected part of the correlator is trivial. To see this explicitly in (3.20), take k1 = 0 and
separate the set partitions into two groups. In the first group, the integer 1 sits alone in
a set, in the second group not. Consider first a set partition ν with l(ν) = c parts, which
belongs to the first group, i.e., in which one part is νi = {1}, and the remainder ν ′ = ν/νi
is a set partition of {2, 3, . . . , h} with l(ν ′) = c − 1 parts. There are c equivalent choices
for i, so that these set partitions contribute

c
(−1)c−1

c
TrAkν = (−1)c−1 TrAkν′

to (3.20). Compare this to the contribution of the set partitions ν ′′ of length c − 1 that
belong to the second group. These set partitions are obtained by adding the number 1 to
one of the c− 1 parts of ν ′ defined above. Their contribution to (3.20) is

(c− 1)(−1)c−2

c− 1 TrAkν′′ = −(−1)c−1 TrAkν′ .

Thus, the two contributions cancel, which proves (3.24) after iterating through all c.
11Here, we cannot call Kν a composition, because the integers ki are not necessarily positive.
12Formula (4.18) of [46] is expressed in terms of a partition λ and contains explicit symmetrizations both

over the kis and over the matrix products. To establish the equivalence with (3.20), one can use the unique
association of a partition λ with a given set partition, as explained in [46]. The factor |Pλ| stems from the
multiplicity of set partitions associated to the same partition λ. The other factor l(λ)! is the normalization
factor in the symmetrized product of matrices.
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4 Exact results from the matrix model

4.1 Matrix model results from harmonic oscillator

In this section, we will review and elaborate on exact results that can be obtained from
the Gaussian matrix model (3.1). Our analysis will be based on the very elegant treatment
of Okuyama [47] and exploits the intricate relation between the hermitian matrix model
and the simple harmonic oscillator quantum mechanics. Mathematically, this relation ap-
pears, because the Vandermonde determinant, which is introduced in the matrix integral
by the matrix diagonalization, is most conveniently expressed in terms of Hermite polyno-
mials [52], which represent the eigenfunctions of the harmonic oscillator [38, 41]. Therefore,
the matrices Ak given in (3.4) are nothing but the matrix elements [47]

(Ak)ij = 〈i| ekg(a+a†) |j〉 , (4.1)

where a and a† are the oscillator lowering and raising operators satisfying

[a, a†] = 1 , (4.2)

and the states |i〉 are the normalized eigenstates of the number operator,

|i〉 = (a†)i√
i!
|0〉 . (4.3)

Before going on, let us slightly change notation by introducing

z = kg = k

√
λ

4N , (4.4)

which can be treated as a continuous (real or complex) variable. Because k appears in Ak
only within z, we will also let Az ≡ Ak, so that (4.1) reads

(Az)ij = 〈i| ez(a+a†) |j〉 . (4.5)

Whereas the harmonic oscillator eigenstates are given by i, j = 0, 1, . . . ,∞, the matrix
model involves only the elements i, j = 0, 1, . . . , N−1.13 The clever insight of Okuyama [47]
is that one can work in the infinite-dimensional Hilbert space, if one truncates any sum
over the eigenstates by inserting the projector

P =
N−1∑
i=0
|i〉〈i| . (4.6)

13The relation between the matrix Az and the algebra of the truncated harmonic oscillator was made
explicit in [41]. The truncated harmonic oscillator is defined by N×N matrix lowering and raising operators
b and b† satisfying [b, b†] = 1 − NPN−1, where PN−1 is the projector onto the highest eigenstate. This is
required by the fact that the trace of any commutator must vanish in a finite-dimensional system, in contrast
to the infinite-dimensional system of the standard harmonic oscillator. Nevertheless, the number operator
nb = b†b retains the standard commutators [nb, b] = −b and [nb, b†] = b†.
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The elegance of this approach can already be seen in the calculation of the matrix ele-
ment (4.5), which we wish to report here from [47]. One starts with rewriting (4.5) as

(Az)ij = e−
z2
2 〈i| eza eza† |j〉 = e−

z2
2

√
i!j!
〈0|ai eza eza†(a†)j |0〉

= e−
z2
2

√
i!j!

∂is∂
j
t 〈0| e(z+s)a e(z+t)a† |0〉|s=t=0

= e−
z2
2

√
i!j!

∂is∂
j
t e(z+s)(z+t) |s=t=0

= e
z2
2

√
i!j!

∂is(z + s)j ezs |s=0 . (4.7)

After introducing w = z
s , the generating function of the Laguerre polynomials [53] can be

recognized, so that (4.7) becomes

(Az)ij = e
z2
2

√
i!j!

zj−i∂iw

∞∑
n=0

Lj−nn (−z2)wn|w=0

=
√
i!
j! e

z2
2 zj−iLj−ii (−z2) , (4.8)

reproducing (4.5).

4.2 One-point functions

Although the calculation of the one-point function

W(k) ≡
〈

TrUk
〉

= TrAz (4.9)

is very easy by tracing over the matrix (4.8), it is instructive to do the calculation in the
infinite-dimensional system [47]. One starts with

W(k) = Tr∞
(
ez(a+a†) P

)
, (4.10)

where Tr∞ denotes the trace in the infinite-dimensional Hilbert space. Then, one exploits
the relations

z ez(a+a†) = [a, ez(a+a†)] = [ez(a+a†), a†] , (4.11)

the cyclic property of the trace, as well as the commutators

[a, P ] = −
√
N |N − 1〉〈N | , [a†, P ] =

√
N |N〉〈N − 1| . (4.12)

Thus, one can write

zW(k) = Tr∞
(
z ez(a+a†) P

)
= Tr∞

(
[a, ez(a+a†)]P

)
= Tr∞

(
ez(a+a†)[P, a]

)
=
√
N〈N | ez(a+a†) |N − 1〉 =

√
N(Az)N,N−1 =

√
N(Az)N−1,N

= z e
z2
2 L1

N−1(−z2) , (4.13)

which reproduces the known result

W(k) = e
z2
2 L1

N−1(−z2) . (4.14)
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4.3 Two-point functions

Let us extend the procedure of the previous subsection to the two-point function
Tr(Az1Az2). A similar calculation yields [47]

(z1 + z2) Tr(Az1Az2) =
√
N〈N | ez1(a+a†) P ez2(a+a†) |N − 1〉+ (z1 ↔ z2) . (4.15)

Furthermore, one can write (abbreviating ∂n = ∂zn for n = 1, 2)

(z1 + z2)(∂1 − ∂2) Tr(Az1Az2) =
√
N〈N | ez1(a+a†)[a+ a†, P ] ez2(a+a†) |N − 1〉 − (z1 ↔ z2)

= N [(Az1)N,N (Az2)N−1,N−1 − (Az2)N,N (Az1)N−1,N−1]

= N e
z2

1+z2
2

2
[
L0
N (−z2

1) L0
N−1(−z2

2)− L0
N (−z2

2) L0
N−1(−z2

1)
]
.

(4.16)

This is where the calculation stops in [47], and we will take it from there. First, using the
sum [53, 8.974.1], (4.16) can be rewritten as

(z1 + z2)(∂1 − ∂2) Tr(Az1Az2) = (z2
1 − z2

2) e
z2

1+z2
2

2

N−1∑
m=0

L0
m(−z2

1) L0
m(−z2

2) , (4.17)

which gives

(∂1 − ∂2) Tr(Az1Az2) = (z1 − z2) e
z2

1+z2
2

2

N−1∑
m=0

L0
m(−z2

1) L0
m(−z2

2) . (4.18)

Then, using [53, 8.976.4], (4.18) is equal to

(∂1 − ∂2) Tr(Az1Az2) = (z1 − z2) e
z2

1+z2
2

2

N−1∑
m=0

m∑
k=0

L2k
m−k(−z2

1 − z2
2)(z1z2)2k

(k!)2 . (4.19)

After reordering the summations, one obtains

(∂1 − ∂2) Tr(Az1Az2) = (z1 − z2) e
z2

1+z2
2

2

N−1∑
k=0

N−1−k∑
m=0

L2k
m (−z2

1 − z2
2)(z1z2)2k

(k!)2

= (z1 − z2) e
z2

1+z2
2

2

N−1∑
k=0

L2k+1
N−1−k(−z

2
1 − z2

2)(z1z2)2k

(k!)2 . (4.20)

We will further manipulate this expression and integrate it in section 6.

5 One-point functions

In this section, we revisit the one-point functions W(k) =
〈

TrUk
〉
, with k of order unity

(as opposed to order N or
√
N , for example). Without loss of generality, we can set

k = 1, keeping in mind that k appears in the exact result (4.14) only in the combination
z2 = k2 λ

4N . The general case can be recovered from the case k = 1 by scaling λ → k2λ.
The 1/N expansion of W(1) was obtained by Drukker and Gross [29]. We will review their
solution and provide a very simple check of it. The solution contains certain numerical
coefficients, which are defined through a recursive procedure. Then, we will present an
explicit construction, which results in a direct combinatorial formula for these coefficients.
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

k →
m 1 0 0 0 0 0
↓ 0 1

12 0 0 0 0
0 1

80
1

288 0 0 0
0 1

448
1

960
1

10368 0 0
0 1

2304
71

268800
1

23040
1

497664 0
0 1

11264
31

483840
23

1612800
1

829440
1

29859840



Table 1. Some values of B(m, k).

5.1 Drukker and Gross’ series in 1/N

The expansion into a series in 1/N of the exact result (4.14),

W(1) = e
λ

8N L1
N−1

(
− λ

4N

)
, (5.1)

has the form [29]

W(1) =
∞∑
m=0

N1−2mWm , (5.2)

where the genus-m contributions Wm are given by14

Wm =
m∑
k=0

B(m, k)
(√

λ

2

)2m+k−1

I2m+k−1(
√
λ) . (5.3)

Here, Iα(z) are the modified Bessel functions of the first kind, and the coefficients B(m, k)
are determined by the recurrence relation (for m, k > 0)

(2m+ k)B(m, k) = 1
4(2m+ k − 2)B(m− 1, k) + 1

4B(m− 1, k − 1) , (5.4)

together with the initial values

B(m, 0) = δm,0 , B(0, k) = δk,0 . (5.5)

Some values of B(m, k) are listed in table 1. Notice that B(m, k) = 0 for k > m.
Other particular values are

B(m, 1) = 1
4m(2m+ 1) , B(m,m) = 1

12mm! , B(m,m− 1) = 1
5 · 4m · 3m−2(m− 2)! .

(5.6)
We find it useful to expressWm in terms of generalized hypergeometric series, see (B.7).

In particular, for m = 0,

W0 = 2√
λ

I1(
√
λ) = 0F1

(
−; 2; λ4

)
. (5.7)

14Our coefficients B(m, k) are related to Drukker and Gross’ Xi
k by B(m, k) = Xm−k

m . Morever, we
include the term with m = k = 0 in the sum.
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

k →
m 1 0 0 0 0
↓ 1 1

3 0 0 0
1 8

15
1
18 0 0

1 71
105

11
90

1
162 0

1 248
315

299
1575

7
405

1
1944



Table 2. Some values of C(m, k).

For m > 0, we have

Wm =
m∑
k=1

C(m− 1, k − 1)
4m(2m+ k)!

(
λ

4

)2m+k−2
0F1

(
−; 2m+ k; λ4

)
, (5.8)

where we have introduced the new coefficients

C(m, k) = 4m+1(2m+ k + 3)B(m+ 1, k + 1) . (5.9)

The recurrence relation for C(m, k) is easily found from (5.4) and reads

C(m, k) = C(m− 1, k) + C(m− 1, k − 1)
(2m+ k) , (5.10)

with the start values C(0, 0) = 12B(1, 1) = 1 and C(m,−1) = C(−1, k) = 0. Some values
are listed in table 2.

There is a slightly different form of (5.8), which we wish to derive for later purposes.
Let us first use a recurrence relation for the modified Bessel function to write (5.3) as

Wm =
m∑
k=0

B(m, k)

(√λ
2

)2m+k−1

I2m+k+1(
√
λ) + (2m+ k)

(√
λ

2

)2m+k−2

I2m+k(
√
λ)

 .
(5.11)

Next, consider the second term in the bracket in (5.11). For k = 0, this term does not
contribute to the sum (B(m, 0) = 0 for m > 0), nor would it for k = m + 1, so we can
safely shift the summation index by one for this term. After this, the two terms can be
combined using (5.4) to give

Wm = 4
m∑
k=0

(2m+ k + 3)B(m+ 1, k + 1)
(√

λ

2

)2m+k−1

I2m+k+1(
√
λ)

=
m∑
k=0

C(m, k)
4m(2m+ k + 1)!

(
λ

4

)2m+k
0F1

(
−; 2m+ k + 2; λ4

)
. (5.12)

The expression (5.12) is valid for all m ≥ 0, but it has one summand more than (5.8) for
m > 0.
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To the best of my knowledge, the easiest way to check the series of Drukker and Gross
(and find it, as one might say with hindsight) is as follows. Consider the exact solution (5.1).
Laguerre polynomials satisfy the differential equation [53]

x
d2 Lαn(x)

dx2 + (α− x+ 1) d Lαn(x)
dx + nLαn(x) = 0 . (5.13)

With the help of (5.13) it is straightforward to verify that (5.1) satisfies the differential
equation (

∂2
λ + 2

λ
∂λ −

1
4λ

)
W(1) = 1

64N2W
(1) . (5.14)

Knowing that W(1) has an expansion of the form (5.2), (5.14) implies a differential recur-
rence relation for the genus-m contributions Wm,(

∂2
λ + 2

λ
∂λ −

1
4λ

)
Wm = 1

64Wm−1 . (5.15)

The leading term W0 is the unique homogeneous solution of (5.15) (up to a normalization
constant) that can be written as a power series in λ. Furthermore, one can show that
the functions Wm given in (5.3) [or (5.8)] satisfy (5.15). In doing so, one must use some
recurrence relation of the modified Bessel functions (or the generalized hypergeometric
functions), and the recurrence relation (5.4) [or (5.10)] is essential. Vice versa, given
Wm−1 for some m > 0, the function Wm is the unique particular solution of (5.15), if one
demands that it be a power series in λ and start with λ2m.

5.2 Explicit construction

In this subsection, we shall present a new explicit construction of W(1) as a series in 1/N .
Our immediate aim is to find non-recursive expressions for the coefficients B(m, k) and
C(m, k). The calculation will also serve as a blueprint for the analogous calculation in the
case of the two-point function, which we consider in the next section.

Let us start with the exact expression (5.1), which can be rewritten in terms of a
Whittaker function as [54, 18.11.2]

W(1) = −4N2

λ
MN, 1

2

(
− λ

4N

)
. (5.16)

This, in turn, allows for the series expansion [54, 13.14.6]

W(1) = N
∞∑
n=0

1
n!2F1 (−n, 1−N ; 2; 2)

(
λ

8N

)n
. (5.17)

This expression reproduces (A.8) and (A.9) of [29]. Because 2F1 (−n, 1−N ; 2; 2) is a
polynomial of degree n in N , and because of the identity [53]

2F1 (−n, 1−N ; 2; 2) = (−1)n2F1 (−n, 1 +N ; 2; 2) , (5.18)

we see that it must have the form

2F1 (−n, 1−N ; 2; 2) = NnP[n2 ]
(
N−2

)
, (5.19)
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where P[n2 ] is some polynomial of degree [n2 ]. This is far from obvious by direct inspection
of the hypergeometric series. To get a procedure where this property is evident, we can
use either of the identities [53]

2F1 (−n, 1−N ; 2; 2) = (−1)n(1−N)n
(2)n 2F1 (−n, 1 +N ;N − n;−1) (5.20)

= (1 +N)n
(2)n 2F1 (−n, 1−N ;−N − n;−1) . (5.21)

Using the expression on the second line, writing out the hypergeometric series and simpli-
fying the Pochhammer symbols, one finds

2F1 (−n, 1−N ; 2; 2) = 1
N(n+ 1)!

n∑
l=0

(
n

l

)
(N − l)n+1 . (5.22)

We remark that this has the form of a Meixner polynomial [54] in N . To continue, we
write the Pochhammer symbol in (5.22) as

(N − l)n+1 = 1
N

(N − l)l+1(N)n−l+1 (5.23)

and note that (N − l)l+1 and (N)n−l+1 are lowering and rising factorials of N , respectively.
These can be expanded in terms of the (signed and unsigned) Stirling numbers of the
first kind,15

(N − l)l+1 =
l∑

k=0
s(l + 1, k + 1)Nk+1 , (5.24)

(N)n−l+1 =
n−l∑
k=0

(−1)n−l−ks(n− l + 1, k + 1)Nk+1 . (5.25)

Therefore,

(N−l)n+1 =
l∑

k=0

n−l∑
p=0

(−1)n−l−ps(l+1,k+1)s(n−l+1,p+1)Nk+p+1

=
n∑

m=0
N1+n−m∑

k

(−1)l+m+ks(l+1,k+1)s(n−l+1,n−m−k+1) , (5.26)

where we have reordered the double summation, and the sum over k is over all values for
which the summand is non-vanishing.

After putting everything back into (5.17), one gets

W(1) =
∞∑
n=0

1
n!(n+ 1)!

(
λ

8N

)n n∑
l=0

(
n

l

)
(N − l)n+1

=
∞∑
n=0

1
n!(n+ 1)!

(
λ

8

)n n∑
m=0

N1−m

×
n∑
l=0

(
n

l

)∑
k

(−1)l+m+ks(l + 1, k + 1)s(n− l + 1, n−m− k + 1) . (5.27)

15We denote by s(n, k) the signed Stirling numbers of the first kind, the unsigned ones being simply
(−1)n−ks(n, k).
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Then, reordering the summations over n and m gives

W(1) =
∞∑
m=0

N1−m
∞∑
n=0

1
(n+m)!(n+m+ 1)!

(
λ

8

)n+m
(5.28)

×
n+m∑
l=0

(
n+m

l

)∑
k

(−1)l+m+ks(l + 1, k + 1)s(n+m− l + 1, n− k + 1) .

To see that the terms with odd m are absent in (5.28), we can relabel the summation
indices on the second line by k → n− k and l → n+m− l, which returns the summands
with parity (−1)m. Therefore, after dropping the terms with odd m, we can read off the
genus-m contributions to (5.2) as

Wm =
∞∑
n=0

(
λ

4

)n+2m
A(n,m) , (5.29)

where the coefficients A(n,m) are given explicitly by

A(n,m) = 2−n−2m

(n+ 2m)!(n+ 2m+ 1)!

n∑
k=0

2m∑
l=0

(
n+ 2m
k + l

)
(5.30)

× (−1)ls(k + l + 1, k + 1)s(n− k + 2m− l + 1, n− k + 1) .

We remark that an alternative representation of A(n,m) can be found by a similar
calculation that starts with the hypergeometric series 2F1 (−n, 1−N ; 2; 2). It yields

A(n,m) = 1
(n+ 2m)!

2m∑
l=0

2−l
(
n+ 2m

l

)
s(n+ 2m− l + 1, n+ 1)

(n+ 2m− l + 1)! . (5.31)

In this approach, however, the vanishing of the terms with even powers of N is not obvious
from the explicit expression and must be checked by other means. Moreover, to establish
the equivalence of (5.30) and (5.31), some convolution formula of the Stirling numbers [55]
might be employed. In any case, we have verified using computer algebra [56] that the two
formulae give the same values.

Another remark is that one can use the recurrence relations of the Stirling numbers
and the binomial coefficients to show that the coefficients A(n,m) satisfy the recurrence
relation

(n+ 2m)(n+ 2m+ 1)A(n,m) = A(n− 1,m) + 1
4A(n,m− 1) . (5.32)

This is equivalent to the recurrence relation (5.10). Moreover, (5.32) implies the differential
equation (5.15) and, in turn, (5.14).

At this point, we can make contact with the Drukker-Gross series. Taking (5.12) and
substituting the generalized hypergeometric series, one finds

Wm = 4−m
m∑
k=0

C(m, k)
∞∑
l=0

1
l!(2m+ k + l + 1)!

(
λ

4

)2m+k+l
. (5.33)
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Because C(m, k) = 0 for k > m, we can extend the sum over k to infinity and reorder the
two sums by setting n = k + l. This yields

Wm = 4−m
∞∑
n=0

(
λ

4

)2m+n min(m,n)∑
k=0

C(m, k)
(n− k)!(2m+ n+ 1)! . (5.34)

Confronting this with (5.29), we can read off

A(n,m) = 1
4m(2m+ n+ 1)!

min(m,n)∑
k=0

C(m, k)
(n− k)! . (5.35)

The inverse of this relation is

C(m, k) = 4m
k∑

n=0

(−1)k−n(2m+ n+ 1)!
(k − n)! A(n,m) , (k ≤ m) . (5.36)

Finally, combining (5.36) with (5.30) or (5.31) yields explicit expressions for the coefficients
C(m, k), without the need of a recursion.16 For example, with (5.31),

C(m, k) =
k∑

n=0

(−1)k−n

(k − n)!

2m∑
l=0

2l
(

2m+ n+ 1
2m− l

)
s(n+ 1 + l, n+ 1)

(n+ l)! . (5.37)

6 Connected two-point functions

In this section, we will evaluate the 1/N expansion of the connected two-point functions17

W(k1,k2)
conn =

〈〈
TrUk1 TrUk2

〉〉
= TrAz1+z2 − Tr(Az1Az2) . (6.1)

In subsection 6.1, we will perform an explicit calculation along the same line as we did for
the one-point function in subsection 5.2. This will result in a series in 1/N2 with coefficients
that are series in λ and functions of k1 and k2. In subsection 6.2, the leading term will be
compared to known expressions from the literature. In subsection 6.3 we develop a new
procedure. It will be shown how the connected correlators (6.1) can be constructed from
the knowledge of the one-point functions W(k) and develop a procedure by which the 1/N
series can be construced. This will be the main new result of the paper.

6.1 Explicit construction

Our starting point is the exact expression (4.20),

(∂1 − ∂2) Tr(Az1Az2) = (z1 − z2) e
z2

1+z2
2

2

N−1∑
k=0

L2k+1
N−1−k(−z

2
1 − z2

2)(z1z2)2k

(k!)2 . (6.2)

16For the sake of a computer algebra implementation, using the recurrence relation is faster.
17We recall our definitions z = kg and Az ≡ Ak.
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Unfortunately, there does not appear to be an easy way to integrate (6.2) in this form, but
we can proceed to expand it as we did with the one-point function in subsection 5.2. First,
we use [54, 18.11.2] to express the Laguerre polynomial in terms of a Whittaker function,

(∂1−∂2) Tr(Az1Az2) = (z1−z2)
∞∑
k=0

(
N + k

2k + 1

)
(z1z2)2k

(−z2
1 − z2

2)k+1(k!)2 MN,k+ 1
2
(−z2

1−z2
2) , (6.3)

where we have formally extended the summation over k to∞, which is safe, because of the
binomial coefficient. Then, expanding the Whittaker function into a series [54, 13.14.6],
we get

(∂1 − ∂2) Tr(Az1Az2) = (z1 − z2)
∞∑
k=0

∞∑
n=0

S(n, k;N)(z1z2)2k
(
z2

1 + z2
2

2

)n
, (6.4)

where we have introduced the coefficients

S(n, k;N) = 1
(k!)2n!

(
N + k

2k + 1

)
2F1 (−n, k + 1−N ; 2k + 2; 2) . (6.5)

It is helpful to express (6.4) in terms of the variables

z± = 1
2(z1 ± z2) , (6.6)

and expand it in powers of z2
+ − z2

−, which gives

∂−Tr(Az1Az2) = 2z−
∞∑
k=0

∞∑
n=0

S(n, k;N)
n∑
j=0

(
n

j

)
(−1)j(z2

+ − z2
−)2k+j(2z2

+)n−j . (6.7)

Equation (6.7) can be readily integrated. The result is

Tr(Az1Az2) = F (z+)−
∞∑
k=0

∞∑
n=0

S(n, k;N)
n∑
j=0

(
n

j

)
(−1)j

(z2
+ − z2

−)2k+j+1(2z2
+)n−j

2k + j + 1 . (6.8)

The integration constant F (z+) is determined uniquely by considering the special case
z2 = 0, in which z+ = z− and

Tr(Az1A0) = TrAz1 = TrA2z+ . (6.9)

Therefore, F (z+) = TrAz1+z2 . Comparing this with (6.1) reveals that the rest of (6.8)
represents the connected two-point function,

W(k1,k2)
conn =

∞∑
k=0

∞∑
n=0

S(n, k;N)
n∑
j=0

(
n

j

)
(−1)j

(z2
+ − z2

−)2k+j+1(2z2
+)n−j

2k + j + 1 . (6.10)

Our next aim is to rewrite (6.10) as a series in 1/N . First, let us return to using z1
and z2,

W(k1,k2)
conn =

∞∑
k=0

∞∑
n=0

S(n, k;N)(z1z2)2k+n+1
n∑
j=0

(
n

j

)
(−1)j

2k + j + 1∆n−j , (6.11)
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where by ∆ we denote the N - and λ-independent combination18

∆ = (z1 + z2)2

2z1z2
= (k1 + k2)2

2k1k2
. (6.12)

We show in appendix A that S(n, k;N) has the form

S(n, k;N) =
k+[n2 ]∑
m=0

N2k+n+1−2mσ(n, k,m) . (6.13)

Therefore, substituting z = kg and g2 = λ
4N into (6.11) yields

W(k1,k2)
conn =

∞∑
k=0

∞∑
n=0

k+[n2 ]∑
m=0

N−2mσ(n, k,m)
(
k1k2λ

4

)2k+n+1 n∑
j=0

(
n

j

)
(−1)j

2k + j + 1∆n−j .

Then, pulling the sum over m in front, we get

W(k1,k2)
conn =

∞∑
m=0

N−2mW (k1,k2)
m , (6.14)

where the coefficients are given by

W (k1,k2)
m =

∞∑
k=0

∞∑
n=max(0,2m−2k)

σ(n, k,m)
(
k1k2λ

4

)2k+n+1 n∑
j=0

(
n

j

)
(−1)j

2k + j + 1∆n−j ,

=
∞∑
n=0

m+[n2 ]∑
k=0

σ(n+ 2m− 2k, k,m)
(
k1k2λ

4

)n+2m+1

×
n+2m−2k∑

j=0

(
n+ 2m− 2k

j

)
(−1)j

2k + j + 1∆n+2m−2k−j ,

=
∞∑
n=0

(
k1k2λ

4

)n+2m+1 n+2m∑
j=0

(−1)j∆n+2m−j

(j + 1)!(n+ 2m− j)!A(n, j,m) . (6.15)

Here, we have performed a sequence of sum rearrangements and introduced the coefficients

A(n, j,m) =
[ j2 ]∑
k=0

j!(n+ 2m− 2k)!
(j − 2k)! σ(n+ 2m− 2k, k,m) . (6.16)

Equation (6.15) is our main result of this subsection. It provides an explicitly calcula-
ble expression for W (k1,k2)

m as a series in λ and function of k1 and k2. The coefficients
σ(n, k,m) are given by double sums involving combinatorial functions, see (A.5) or (A.11),
which makes the whole result quite unwieldy except for the leading case m = 0. Neverthe-
less, (6.15) can be used to check the series expansion of expressions of W (k1,k2)

m derived by
other means.

18The connected correlator vanishes when one of k1 or k2 vanishes.
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6.2 Leading term

In the case of the leading term,W (k1,k2)
0 , the sum (6.15) simplifies significantly. Using (A.6),

the coefficient A(n, j, 0) becomes

A(n, j, 0) =
∑
k

j! 2n−2k

(j − 2k)!(n+ 1)!(k!)2

= 2n−j

(n+ 1)!
∑
k

∑
p

(
j

2k

)(
2k
k

)(
j − 2k
p

)
.

Then, relabelling p→ p− k and exchanging the order of summation gives

A(n, j, 0) = 2n−j

(n+ 1)!
∑
p

∑
k

(
j

p

)(
j − p
k

)(
p

k

)

= 2n−j

(n+ 1)!
∑
p

(
j

p

)2

= 2n−j

(n+ 1)!

(
2j
j

)
= 2n+j

(n+ 1)!j!

(1
2

)
j
. (6.17)

Substituting (6.17) into (6.15) yields

W
(k1,k2)
0 = k1k2λ

4

∞∑
n=0

(
∆
2 k1k2λ

)n
n!(n+ 1)!

n∑
j=0

(−n)j
(

1
2

)
j

(
2
∆

)j
j!(j + 1)!

= k1k2λ

4

∞∑
n=0

(
∆
2 k1k2λ

)n
n!(n+ 1)! 2F1

(
−n, 1

2; 2; 2
∆

)
. (6.18)

Using hypergeometric function identities, this can be written in several equivalent forms.
In particular,

W
(k1,k2)
0 = k1k2λ

4

∞∑
n=0

(
∆−2

2 k1k2λ
)n (1

2

)
n

n!(2)n(2)n 2F1

(
−n, 3

2; 1
2 − n; ∆

∆− 2

)
(6.19)

= k1k2λ

4

∞∑
n=0

(
∆
2 k1k2λ

)n (3
2

)
n

n!(2)n(2)n 2F1

(
−n, 1

2;−1
2 − n; ∆− 2

∆

)
. (6.20)

We remark that
∆

∆− 2 =
(
k1 + k2
k1 − k2

)2
.

The above expressions do not simplify further in terms of generalized hypergeometric series,
except for the special cases |k1| = |k2|. Setting, without loss of generality, |k1| = |k2| = 1,
we have

W
(1,1)
0 = λ

4 1F2

(3
2; 2, 2;λ

)
, (6.21)

W
(1,−1)
0 = −λ4 1F2

(1
2; 2, 2;λ

)
. (6.22)
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Let us compare these expressions with the results of Beccaria and Tseytlin [42]. They
have calculated the genus expansion of the correlators

〈TrU TrU〉 = N2
1F2

(3
2; 2, 3;λ

)
+ λ

4 1F2

(3
2; 2, 3;λ

)
+ 7λ2

192 1F2

(5
2; 3, 4;λ

)
+ · · · (6.23)

and〈
TrU TrU−1

〉
= N2

1F2

(3
2; 2, 3;λ

)
− λ

4 1F2

(1
2; 2, 3;λ

)
− λ2

1921F2

(3
2; 3, 4;λ

)
(6.24)

+ λ3

23041F2

(5
2; 4, 5;λ

)
+ · · · .

In order to find the connected contributions to (6.23) and (6.24), we need to subtract
〈TrU〉2. From (5.2) and (5.3) we have

〈TrU〉 = N0F1

(
−; 2; λ4

)
+ λ2

384N 0F1

(
−; 3; λ4

)
+ · · · . (6.25)

To square this, we can use the product formula (B.8), in which, for our parameters, the
2F3 ()’s simplify to 1F2 ()’s. Furthermore, one can use the contiguous function relations of
the generalized hypergeometric functions, which we review in appendix B. This gives

〈TrU〉2 = N2
1F2

(3
2; 2, 3;λ

)
+ λ2

1921F2

(5
2; 3, 4;λ

)
+ · · · . (6.26)

After subtracting (6.26) from (6.23) and (6.24) and using again the contiguous function
relations of appendix B, one finds (6.21) and (6.22), respectively.

Another form of W (k1,k2)
0 is [30, 38]

W
(k1,k2)
0 =

√
λk1k2

2(k1 + k2)
[
I0(k1

√
λ) I1(k2

√
λ) + I0(k2

√
λ) I1(k1

√
λ)
]
. (6.27)

To prove the equivalence with our result, let us first expand the modified Bessel functions
in (6.27) into series. After some rearrangement of the two infinite sums one gets

W
(k1,k2)
0 = λk1k2

4

∞∑
n=0

(
λ
4

)n
n!(n+ 1)!

n∑
j=0

(
n

j

)(
n+ 1
j

)
k2j

1 k
2(n−j)+1
2 + k

2(n−j)+1
1 k2j

2
k1 + k2

. (6.28)

Thus, to show that (6.18) is equal to (6.27), we have to establish that

n∑
j=0

(
n

j

)(
n+ 1
j

)
k2j

1 k
2(n−j)+1
2 + k

2(n−j)+1
1 k2j

2
k1 + k2

= (2∆k1k2)n2F1

(
−n, 1

2; 2; 2
∆

)
. (6.29)

Consider first the left hand side of (6.29). For simplicity, we shall omit the summation
limits using the convention to sum over all possible non-zero summands. Using the identity(

n+ 1
j

)
=
(
n

j

)
+
(

n

j − 1

)
(6.30)
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and letting j → n− j in the term with even powers of k2 in the numerator, we find

l.h.s. =
∑
j

(n
j

)2

k2j
1 k

2(n−j)
2 +

(
n

j

)(
n

j + 1

)
k2j+1

1 k
2(n−j)−1
2

 . (6.31)

This can be written even shorter as

l.h.s. =
2n∑
m=0

(
n[
m
2
])( n[

m+1
2

])km1 k2n−m
2 . (6.32)

To manipulate the right hand side of (6.29), we first use the hypergeometric function
identity [53, 9.137.16], which leads to

r.h.s. = (2∆k1k2)n
[

2F1

(
−n− 1, 1

2; 1; 2
∆

)
+ n+ 2

2∆ 2F1

(
−n, 3

2; 3; 2
∆

)]
.

By means of the quadratic transformation law [53, 9.134.2] and recalling the definition of
∆ (6.12), this is equal to

r.h.s. = (2∆k1k2)n
[(

1 + k1
k2

)−2n−2
2F1

(
−n− 1,−n− 1; 1; k

2
1
k2

2

)

+n+ 2
2∆

(
1 + k1

k2

)−2n
2F1

(
−n,−n− 1; 2; k

2
1
k2

2

)]
.

After writing out the hypergeometric series, this becomes

r.h.s. = 1
(k1 + k2)2

∑
j

(n+ 1
j

)2

k2j
1 k

2(n+1−j)
2 +

(
n

j

)(
n+ 2
j + 1

)
k2j+1

1 k
2(n−j)+1
2

 .
Finally, with the help of the identity (6.30) one can show that

r.h.s. =
∑
j

(n
j

)2

k2j
1 k

2(n−j)
2 +

(
n

j

)(
n

j + 1

)
k2j+1

1 k
2(n−j)−1
2

 , (6.33)

which is just (6.31). Thus, we have proven (6.29).

6.3 Recursive construction

The result (6.15) for the genus-m contribution to the connected two-point function, al-
though exact as a power series in λ, is extremely unwieldy. Beyond the leading order term,
a general pattern is not apparent, and operations such as finding the large-λ behaviour
would require further work. Therefore, we shall abandon this explicit approach. Which
alternatives do we have for making progress? A look at the one-point function can help.
As explained in subsection 5.1, the easiest way to find the genus expansion of the one-point
functionW(k) is to use the differential equation (5.14) to construct a recursive series of dif-
ferential equations for Wm, (5.15). Although these are second-order differential equations,
the physically relevant solutions are unique once the leading order solution W0 is taken as
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the start of the recursion. So, the question is whether a similar technique exists for the
two-point functions. In this section we shall see that the answer to this question is indeed
affirmative.

To start, let us return to the exact expression (4.16),

(z1 + z2)(∂z1 − ∂z2) Tr(Az1Az2) = N e
z2

1+z2
2

2
[
L0
N (−z2

1) L0
N−1(−z2

2)− L0
N (−z2

2) L0
N−1(−z2

1)
]
.

(6.34)
Tr(Az1Az2) differs from the connected correlatorW(k1,k2)

conn by a minus sign and an additional
term that depends only on k1 + k2, cf. (6.1). Therefore, (6.34) implies that

(z1 + z2)(∂z1 − ∂z2)W(k1,k2)
conn = −N e

z2
1+z2

2
2

[
L0
N (−z2

1) L0
N−1(−z2

2)− L0
N (−z2

2) L0
N−1(−z2

1)
]
.

(6.35)
Let us also recall the exact one-point function (4.14)

W(k) = e
z2
2 L1

N−1(−z2) , (6.36)

which satisfies the differential equation(
∂2
z + 3

z
∂z − z2 − 4N

)
W(k) = 0 . (6.37)

Equation (6.37) can be established either by direct calculation or by changing the inde-
pendent variable in (5.15). One can show by direct comparison with (6.36) and using some
Laguerre polynomial identities that (6.35) is nothing but

(z1 + z2)(∂z1 − ∂z2)W(k1,k2)
conn = − 1

2N
[
2(z2

1 − z2
2) + z2

1z2∂z2 − z2
2z1∂z1

]
W(k1)W(k2) . (6.38)

To continue, let us rewrite (6.37) and (6.38) in terms of k, k1 and k2 as independent
variables, recalling that z = kg = k

√
λ

4N . Therefore, (6.37) becomes(
∂2
k + 3

k
∂k − λ−

k2λ2

16N2

)
W(k) = 0 . (6.39)

Similarly, (6.38) takes the form

(∂1 − ∂2)W(k1,k2)
conn = 1

N2 D̃
(k1,k2)
0 W(k1)W(k2) , (6.40)

where, here and henceforth, ∂n is a shorthand for ∂n ≡ ∂kn , and D̃(k1,k2)
0 denotes the

operator
D̃(k1,k2)

0 = − λ

8(k1 + k2)
[
2(k2

1 − k2
2) + k2

1k2∂2 − k2
2k1∂1

]
. (6.41)

Next, consider the operator

D(k1,k2)
0 = λk1k2

8(k1 + k2) [2(k1 + k2) + k1k2(∂1 + ∂2)] . (6.42)
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Applying (∂1 − ∂2) from the left yields

(∂1 − ∂2)D(k1,k2)
0 = λ

8(k1 + k2)
[
−2(k2

1 − k2
2) + 4k2

2k1∂1 − 4k2
1k2∂2 + k2

1k
2
2(∂2

1 − ∂2
2)
]
.

(6.43)
When acting with this on W(k1)W(k2), one can use (6.39) to replace the second derivatives,
which yields

(∂1 − ∂2)D(k1,k2)
0 W(k1)W(k2) =

(
D̃(k1,k2)

0 − 1
N2 D̃

(k1,k2)
1

)
W(k1)W(k2) , (6.44)

where we have introduced the new operator

D̃(k1,k2)
1 = −λ

3

27 k
2
1k

2
2(k1 − k2) . (6.45)

Clearly, (6.40) and (6.44) imply that

(∂1 − ∂2)W(k1,k2)
conn =

[ 1
N2 (∂1 − ∂2)D(k1,k2)

0 + 1
N4 D̃

(k1,k2)
1

]
W(k1)W(k2) . (6.46)

This suggests the following recursive procedure. Let D(k1,k2)
n and D̃(k1,k2)

n be operators
independent of N and containing at most first derivatives with respect to k1 or k2 (the only
allowed second derivative is the mixed ∂1∂2). They are defined in a recursive fashion by

(∂1 − ∂2)D(k1,k2)
n W(k1)W(k2) =

(
D̃(k1,k2)
n − 1

N2 D̃
(k1,k2)
n+1

)
W(k1)W(k2) (6.47)

and by fixing the integration constant in D(k1,k2)
n such that D(k1,0)

n = D(0,k2)
n = 0. In (6.47),

second derivatives acting onW(k1)W(k2) are eliminated using (6.39). Then, we immediately
have the solution19

W(k1,k2)
conn =

∞∑
n=0

N−2−2nD(k1,k2)
n W(k1)W(k2) , (6.48)

from which we can read off the N−2m coefficient

W (k1,k2)
m =

m∑
n=0
D(k1,k2)
n

m−n∑
l=0

W
(k1)
l W

(k2)
m−n−l . (6.49)

It is reassuring to verify that the leading order term W
(k1,k2)
0 is just (6.27).

Let us flesh out this procedure. We start by writing

D(k1,k2)
n = an∂1∂2 + b+n (∂1 + ∂2) + b−n (∂1 − ∂2) + cn , (6.50)

and
D̃(k1,k2)
n = b̃+n (∂1 + ∂2) + b̃−n (∂1 − ∂2) + c̃n , (6.51)

19To rewrite (6.48) for the two-point correlator
〈
TrUk1 TrUk2

〉
, one can add a term with n = −1

and D(k1,k2)
−1 = 1.
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where an, b±n , cn, as well as b̃±n and c̃n are functions of k1, k2 and λ. After inserting (6.50)
and (6.51) into (6.47) and eliminating the second derivatives by means of (6.39), the terms
of order N0 give rise to the following system of equations,

(∂1 − ∂2)an −
3
k1
an + 3

k2
an − 2b−n = 0 , (6.52a)

(∂1 − ∂2)b+n + 3
2k1k2

[(k1 − k2)b+n − (k1 + k2)b−n ] = b̃+n , (6.52b)

(∂1 − ∂2)b−n + 3
2k1k2

[(k1 − k2)b−n − (k1 + k2)b+n ] + cn − λan = b̃−n , (6.52c)

(∂1 − ∂2)cn + 2λb−n = c̃n . (6.52d)

Moreover, the terms of order N−2 determine the coefficients in D̃(k1,k2)
n+1 ,

b̃+n+1 = −λ
2

32an
(
k2

1 − k2
2

)
, (6.53a)

b̃−n+1 = λ2

32an
(
k2

1 + k2
2

)
, (6.53b)

c̃n+1 = −λ
2

16
[(
k2

1 − k2
2

)
b+n +

(
k2

1 + k2
2

)
b−n

]
. (6.53c)

The functions corresponding to D̃(k1,k2)
0 (6.41) are

b̃+0 = − λ(k1 − k2)
16(k1 + k2)k1k2 , b̃−0 = λ

16k1k2 , c̃0 = −λ4 (k1 − k2) , (6.54)

and the first solution D(k1,k2)
0 (6.42) is given by

a0 = 0 , b+0 = λk2
1k

2
2

8(k1 + k2) , b−0 = 0 , c0 = λ

4k1k2 . (6.55)

In order to make progress for n > 0, let us introduce the variables

y = λk1k2 , z =
√
λ(k1 + k2) , (6.56)

and let

an = 1
λ
ân , b+n = (k1 + k2)b̂+n , b−n = (k1 − k2)b̂−n , cn = ĉn , (6.57)

where the new variables ân, b̂±n and ĉn are functions of y and z. The various factors
of λ serve the purpose of removing it from the system. Moreover, we note from (6.53a)
and (6.53b) that (

k2
1 + k2

2

)
b̃+n +

(
k2

1 − k2
2

)
b̃−n = 0 , (6.58)

which can be used to form a homogeneous equation from (6.52b) and (6.52c) (for n > 0
only). Then, the system (6.52), with the right hand sides determined by (6.53), can be
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n â b̂+ b̂− ĉ

1 1 0 0 1

2 4y−4(z2+4) y+2 −2 −y

3 (z2+24)y2−16(3z2+20)y 4y2−(5z2+8)y −(z2+24)y (z2−4)y2

+8(3z4+40z2+160) −8(3z2+20) +8(3z2+20) +4(3z2+20)y

4 12(z2+16)y3 (z2+24)y3 −18(z2+16)y2 3(z2−8)y3

−12(z4+60z2+480)y2 −18(3z2+16)y2 +12(z4+60z2 −6(z4−24z2

+576(z4+20z2+112)y +36(z4+4z2−32)y +480)y −288)y2

−192(z6+30z4+336z2 +288(z4+20z2+112) −288(z4+20z2 −144(z4+20z2

+1344) +112) +112)y

Table 3. Table of the coefficients ân, b̂±n and ĉn. The displayed expressions must be multiplied by
γny

3, where γn = 2−(5n+3)/
( 3

2
)

n
.

transformed into the following recursive system for the hatted variables,

∂yân−
3
y
ân+2b̂−n = 0 , (6.59a)

(4y−z2)∂y b̂−n +(2y−z2)∂y b̂+n −3b̂+n −b̂−n +ĉn−ân = 0 , (6.59b)

∂y b̂
+
n −

3
2y
(
b̂+n −b̂−n

)
= 1

32 ân−1 , (6.59c)

∂y ĉn−2b̂−n = 1
16
[
z2b̂+n−1+(z2−2y)b̂−n−1

]
. (6.59d)

The case n = 0 is special. In that case, the right hand sides of (6.59) are to be replaced
by 0, y2

8z2 , y
16z2 and 1

4 , respectively. The start values are given by

â0 = 0 , b̂+0 = γ0
y2

z2 , b̂−0 = 0 , ĉ0 = γ02y
(
γ0 = 1

8

)
. (6.60)

The system (6.59) can be solved recursively for n > 0. In each step, one must impose
that ân, b̂±n and ĉn vanish for y = 0, which gives a unique solution and ensures that
it corresponds to the connected 2-point function. This essentially implies that one can
construct a particular solution of the inhomogeneous equation in the form of polynomials
in y. More precisely, one can make a solution ansatz in which the functions ân, b̂±n and ĉn are
given by y3 times polynomials of degree n−1, with coefficients that depend algebraically on
z. Then, finding the coefficients amounts to solving a system of linear algebraic equations.
This can be easily coded. The solutions until n = 4, obtained with the help of [56], are
listed in table 3.

6.4 Special cases |k1| = |k2|

For completeness, we shall provide the explicit expressions for a few subleading terms in
the special cases k1 = k2 and k1 = −k2. In these cases, it is possible to simplify the
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general expressions that result from (6.49) by applying the product formula (B.8) and the
contiguous function relations listed in appendix B. As before, we can limit the discussion to
|k1| = |k2| = 1, because the general case can be recovered by rescaling λ. Without further
details, the first sub-leading terms in the case k1 = k2 are

W
(1,1)
1 = λ3

1921F2

(5
2; 3, 4;λ

)
+ 5λ4

122881F2

(7
2; 4, 5;λ

)
, (6.61)

W
(1,1)
2 = λ5

230401F2

(7
2; 5, 6;λ

)
+ 217λ6

442368001F2

(9
2; 6, 7;λ

)
(6.62)

+ 23λ7

1769472001F2

(11
2 ; 7, 8;λ

)
+ 77λ8

905969664001F2

(13
2 ; 8, 9;λ

)
.

For k1 = −k2, we have

W
(1,−1)
1 = − λ4

368641F2

(5
2; 4, 5;λ

)
, (6.63)

W
(1,−1)
2 = − λ6

442368001F2

(7
2; 4, 7;λ

)
− λ8

31708938240001F2

(11
2 ; 8, 9;λ

)
. (6.64)

Like the leading term, these results can be compared to the results of [42] using the con-
tiguous function relations of appendix B.

7 Conclusions

In this paper, we have discussed various aspects of 1
2 -BPS Wilson loops in N = 4 SYM

theory, focusing one exact results that can be obtained starting from the Gaussian matrix
model representation.

First, we have reviewed the formulation of general Wilson loop generating functions in
the language of symmetric functions, which allows to use combinatorial tools to translate
different basis representations into each other. We have generalized this formulation to two-
loop generating functions, where by two-loop we mean loops running along two different
contours.

Second, this formalism has been applied to the generating functions of 1
2 -BPS Wilson

loops in N = 4 SYM theory. These Wilson loops have a circular contour, but can run
along this contour in either direction, so that the generic two-loop case is needed for the
most general treatment. We have considered the generating function of the correlators
of multiply wound Wilson loops, W(k1,...,kh), which was introduced earlier by Okuyama,
and provided a generalization of his result to all orders in combinatorial terms, cf. (3.20).
Specifically, the connected h-point function of multiply wound Wilson loops (with arbitrary
orientation) is obtained in terms of the traces of products of certain matrices Ak.

Third, we have reviewed how the matrices Ak can be reformulated in terms of harmonic
oscillator quantum mechanics. The simplest results of the matrix model, in particular
the one-point functions W(k) = TrAk, arise in this formulation in a curiously elegant
fashion. For the two-point functions, this approach results in an exact first-order differential
equation, upon which one can build. Although we have not considered the three- and
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higher-point correlators in this paper, it is reasonable to believe that the harmonic oscillator
formulation carries a lot of potential for further progress also in these cases.

Fourth, we have reviewed the Drukker and Gross expansion of the one-point function
W(1) as a series in 1/N2 and added two new approaches. We have shown that the entire
series can be constructed also from a recursive system of differential equations, cf. (5.15).
Furthermore, the direct approach, in which the power series in λ is reordered such as to
give a series in 1/N2, results in several explicit expressions of the numerical (rational)
coefficients of the Drukker and Gross series, which were originally defined only in terms of
a recursion.

Last, we have considered the 1/N2 expansion of the connected two-point functions,
W(k1,k2)

conn , using two different approaches, both of which start from the exact result of the
harmonic oscillator approach mentioned above. The direct approach of reordering the series
in λ into a series in 1/N2 results in an exact, although unwieldy, solution to this problem.
However, we have also shown how the connected two-point functions, W(k1,k2)

conn , are related
to the product of one-point functions, W(k1)W(k2), and constructed a systematic procedure
to calculate the series coefficients W (k1,k2)

m in terms of the series coefficients W (k1)
m and

W
(k2)
m , cf. (6.49). This construction is perhaps the main result of the paper. It is possible

that this result is related to other methods that exploit the integrability of the Gaussian
matrix model, such as the Toda integrability structure, and it would be very interesting
to investigate this. Finally, a generalization of our construction to three- and higher-point
functions is left for the future.
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A Explicit forms of S(n, k;N) and σ(n, k,m)

In this appendix, we will derive several forms of the coefficients S(n, k;N) defined in (6.5).
Using a hypergeometric function identity, (6.5) can be also written as

S(n,k;N) = 1
(k!)2n!

(
N+k

2k+1

)
(N+k+1)n

(2k+2)n 2F1 (−n,k+1−N ;−k−n−N ;−1) . (A.1)

Depending on which expression we start with, we shall find different, but non-trivially
equivalent, results. This is similar to the expressions (5.30) and (5.31) for the coefficients
A(n,m). We shall start by considering (A.1), which will directly show that S(n, k;N) has
an expansion in 1/N2. Writing out the hypergeometric series in (A.1) and simplifying gives

S(n, k;N) = 1
(k!)2n!

(
N + k

2k + 1

)
(N + k + 1)n

(2k + 2)n 2F1 (−n, k + 1−N ;−k − n−N ;−1)

= 1
(k!)2n!

n∑
l=0

(
n

l

)(
N + k + n− l

2k + n+ 1

)

= 1
(k!)2n!(2k + n+ 1)!

n∑
l=0

(
n

l

)
(N − k − l)2k+n+1 , (A.2)
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where we have let l→ n− l in the last step. Next, we use (5.26) to get

S(n, k;N) =
2k+n∑
m=0

N2k+n+1−m 1
(k!)2n!(2k + n+ 1)!

n∑
l=0

(
n

l

)
(A.3)

×
∑
i

(−1)m+k+l+is(k + l + 1, i+ 1)s(n+ k − l + 1, 2k + n−m− i+ 1) ,

where the sum over i comprises all non-vanishing summands. Changing the summation
indices by l→ n− l and i→ 2k+n−m− i returns the same summand with parity (−1)m,
which shows that terms with odd m are absent. Therefore, we find

S(n, k;N) =
k+[n2 ]∑
m=0

N2k+n+1−2mσ(n, k,m) (A.4)

with

σ(n, k,m) = 1
(k!)2n!(2k + n+ 1)!

n∑
l=0

(
n

l

)
(A.5)

×
∑
i

(−1)k+l+is(k + l + 1, i+ 1)s(n+ k − l + 1, 2k + n− 2m− i+ 1) .

The special case m = 0, which gives the leading order result, can be calculated in closed
form. In this case, only the term with i = l + k contributes in the sum on the second line
of (A.5), so that one finds

σ(n, k, 0) = 1
(k!)2n!(2k + n+ 1)!

n∑
l=0

(
n

l

)
= 2n

(k!)2n!(2k + n+ 1)! . (A.6)

Another form of σ(n, k,m) can be obtained by starting from (6.5), which gives

S(n, k;N) = 1
(k!)2n!

(
N + k

2k + 1

)
2F1 (−n, k + 1−N ; 2k + 2; 2)

= 1
(k!)2n!

n∑
l=0

(
n

l

)
2l (N − k − l)2k+l+1

(2k + l + 1)! . (A.7)

This time, however, we write (N − k − l)2k+l+1 = (N + k − 2k − l)2k+l+1 to find

S(n, k;N) = 1
(k!)2n!

n∑
l=0

(
n

l

)
2l

(2k + l + 1)!

2k+l+1∑
i=0

s(2k + l + 1, i)(N + k)i . (A.8)

Expanding the binomial (N + k)i and exchanging the order of summation yields

S(n, k;N) = 1
(k!)2n!

n∑
l=0

(
n

l

)
2l

(2k + l + 1)!

2k+l+1∑
j=0

N j
2k+l+1−j∑

i=0
s(2k + l + 1, i+ j)

(
i+ j

i

)
ki .

(A.9)
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Now, the sum over l can be extended to −2k − 1, because of the binomial coefficient
(n
l

)
,

after which we can exchange the sums over j and l to get

S(n,k;N) = 1
(k!)2n!

2k+n+1∑
j=0

N j
2k+n+1−j∑

l=0

(
n

l+j−2k−1

)
2l+j−2k−1

(l+j)!

l∑
i=0

s(l+j, i+j)
(
i+j
i

)
ki .

(A.10)
Note that the summand with j = 0 can be omitted, because the first binomial would be
non-zero only for l ≥ 2k + 1, but

l∑
i=0

s(l, i)ki = (k − l + 1)l

vanishes for l > k. Moreover, letting m = 2k + n + 1 − j, we know from above that the
terms with odd m vanish, although this is not evident here. Omitting these terms, we
find (A.4) with

σ(n, k,m) = 1
(k!)2n!

2m∑
l=0

(
n

l + n− 2m

)
2l+n−2m

(l − 2m+ 2k + n+ 1)!

×
l∑

i=0
s(l − 2m+ 2k + n+ 1, i− 2m+ 2k + n+ 1)

(
2k + n+ 1− 2m+ i

i

)
ki

= 1
(k!)2

2m∑
i=0

k2m−i
(

2k + n+ 1− i
2m− i

)
i∑
l=0

2n−ls(2k + n+ 1− l, 2k + n+ 1− i)
l!(n− l)!(2k + n+ 1− l)! ,

(A.11)

where we have again exchanged the order of the sums. The special case (A.6) can be read
off directly. I have checked using computer algebra [56] that (A.5) and (A.11) give the
same values.

B Some properties of generalized hypergeometric functions

In this appendix, we will review some properties of generalized hypergeometric series, with
special regard to relations between contiguous functions. The main sources of this material
are [57] and the earlier [58], as well as [54].

For non-negative integers p and q and with coefficients

a = (a1, . . . , ap) , b = (b1, . . . , bq) , (B.1)

we define

(a)n =
p∏
i=1

(ai)n , (b)n =
q∏
i=1

(bi)n . (B.2)

Then, the generalized hypergeometric series is defined by

pFq (a; b; z) =
∞∑
n=0

(a)nzn

(b)nn! . (B.3)
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The series (B.3) is convergent for all z if p ≤ q and diverges for all z in the case p > q+1.
In the case p = q + 1, it is convergent for |z| < 1, divergent for |z| > 1 and convergent
for |z| = 1 if Re(

∑
i bi −

∑
i ai) > 0. If one of the coefficients ai is a negative integer or

zero, the series terminates, in which case the above generic statements of divergence or
convergence are irrelevant. If an element of a coincides with an element of b, then this
pair of parameters can be omitted. For example,

pFq (a, a2, . . . , ap; a, b2, . . . , bq; z) = p−1Fq−1 (a2, . . . , ap; b2, . . . , bq; z) . (B.4)

Some notable special cases are

0F0 (−;−; z) = ez , (B.5)

1F0 (a;−; z) = (1− z)−a , (B.6)

0F1

(
−; b+ 1; 1

4z
2
)

= Γ(b+ 1)
(
z

2

)−b
Ib(z) . (B.7)

Amongst the few known product formulas, there is [54, 16.12.1]

0F1 (−; a; z) 0F1 (−; b; z) = 2F3

(
a+ b

2 ,
a+ b− 1

2 ; a, b, a+ b+ 1; 4z
)
. (B.8)

The derivative of pFq () is

d
dz pFq (a; b; z) =

∏
i ai∏
i bi

pFq (a + 1; b + 1; z) , (B.9)

where by a + 1 we intend that every element of a is increased by unity.
Let

θ = z
d
dz . (B.10)

Then, using θzk = kzk one can easily derive that the generalized hypergeometric function
satisfies the following differential equation of degree q + 1,[

θ
q∏
i=1

(θ + bi − 1)− z
p∏
i=1

(θ + ai)
]
pFq (a; b; z) = 0 . (B.11)

Two generalized hypergeometric functions are said to be contiguous, if their parameters
differ by integers. As in the case of the standard hypergeometric functions, there exist a
number of linear relations between contiguous functions. The differential equation (B.11),
together with (B.9), is an example, but there are others. Following [58], we shall introduce
some shorter notation,

F = pFq (a; b; z) , (B.12)
F(a1±) = pFq (a1 ± 1, a2, . . . ; b; z) , (B.13)
F(b1±) = pFq (a; b1 ± 1, b2, . . . ; z) , (B.14)
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and so on. Then, one has

(θ + ai) F = ai F(ai+) , (B.15)
(θ + bi − 1) F = (bi − 1) F(bi−) , (B.16)

from which follow the contiguous function relations

(ai − aj) F = ai F(ai+)− aj F(aj+) , (B.17)
(bi − bj) F = (bi − 1) F(bi−)− (bj − 1) F(bj−) , (B.18)

(ai − bj + 1) F = ai F(ai+)− (bj − 1) F(bj−) . (B.19)

Other relations can be found in [57], but will not be used here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859
[hep-th/9803002] [INSPIRE].

[2] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and
anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[3] N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60
(1999) 125006 [hep-th/9904191] [INSPIRE].

[4] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461
[INSPIRE].

[5] E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys.
59 (1978) 35 [INSPIRE].

[6] C. Itzykson and J.B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411
[INSPIRE].

[7] N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02
(2005) 010 [hep-th/0501109] [INSPIRE].

[8] S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22
(2007) 1353 [hep-th/0601089] [INSPIRE].

[9] S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05
(2006) 037 [hep-th/0603208] [INSPIRE].

[10] J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074
[hep-th/0604007] [INSPIRE].

[11] O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026
[hep-th/0604133] [INSPIRE].

[12] J. Gomis and F. Passerini, Wilson Loops as D3-branes, JHEP 01 (2007) 097
[hep-th/0612022] [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803002
https://doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803001
https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1103/PhysRevD.60.125006
https://arxiv.org/abs/hep-th/9904191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904191
https://doi.org/10.1016/0550-3213(74)90154-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB72%2C461%22
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C59%2C35%22
https://doi.org/10.1063/1.524438
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C21%2C411%22
https://doi.org/10.1088/1126-6708/2005/02/010
https://doi.org/10.1088/1126-6708/2005/02/010
https://arxiv.org/abs/hep-th/0501109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501109
https://doi.org/10.1142/S0217751X07035070
https://doi.org/10.1142/S0217751X07035070
https://arxiv.org/abs/hep-th/0601089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0601089
https://doi.org/10.1088/1126-6708/2006/05/037
https://doi.org/10.1088/1126-6708/2006/05/037
https://arxiv.org/abs/hep-th/0603208
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603208
https://doi.org/10.1088/1126-6708/2006/08/074
https://arxiv.org/abs/hep-th/0604007
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604007
https://doi.org/10.1088/1126-6708/2006/06/026
https://arxiv.org/abs/hep-th/0604133
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604133
https://doi.org/10.1088/1126-6708/2007/01/097
https://arxiv.org/abs/hep-th/0612022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0612022


J
H
E
P
0
7
(
2
0
2
1
)
0
0
1

[13] S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4
superYang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].

[14] N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS5 × S5: Semiclassical
partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].

[15] G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl.
Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].

[16] M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string
solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].

[17] A. Faraggi and L.A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops,
JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].

[18] A. Faraggi, W. Mueck and L.A. Pando Zayas, One-loop Effective Action of the Holographic
Antisymmetric Wilson Loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].

[19] C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring
in AdS5 × S5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].

[20] A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank
Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].

[21] A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography
with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].

[22] M. Horikoshi and K. Okuyama, α′-expansion of Anti-Symmetric Wilson Loops in N = 4
SYM from Fermi Gas, PTEP 2016 (2016) 113B05 [arXiv:1607.01498] [INSPIRE].

[23] V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop
corrections to Wilson loop minimal surfaces in AdS5 × S5, JHEP 03 (2017) 003
[arXiv:1702.02164] [INSPIRE].

[24] J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee and G.A. Silva, Zeta-function
Regularization of Holographic Wilson Loops, Phys. Rev. D 98 (2018) 046011
[arXiv:1802.03016] [INSPIRE].

[25] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[26] V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)
440301 [arXiv:1608.02952] [INSPIRE].

[27] K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011
[arXiv:1608.02963] [INSPIRE].

[28] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric
Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

[29] N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory,
J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

[30] G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory
from random matrix theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. 524 (2002) 400]
[hep-th/0101225] [INSPIRE].

[31] S.A. Hartnoll and S.P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08
(2006) 026 [hep-th/0605027] [INSPIRE].

– 35 –

https://doi.org/10.1088/1126-6708/1999/08/013
https://arxiv.org/abs/hep-th/9903042
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903042
https://doi.org/10.1088/1126-6708/2000/04/021
https://arxiv.org/abs/hep-th/0001204
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001204
https://doi.org/10.1016/S0550-3213(01)00455-2
https://doi.org/10.1016/S0550-3213(01)00455-2
https://arxiv.org/abs/hep-th/0106015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106015
https://doi.org/10.1088/1126-6708/2008/05/064
https://arxiv.org/abs/0803.0315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.0315
https://doi.org/10.1007/JHEP05(2011)018
https://arxiv.org/abs/1101.5145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.5145
https://doi.org/10.1103/PhysRevD.85.106015
https://arxiv.org/abs/1112.5028
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.5028
https://doi.org/10.1007/JHEP09(2012)053
https://arxiv.org/abs/1206.5660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.5660
https://doi.org/10.1016/j.physletb.2014.11.060
https://arxiv.org/abs/1409.3187
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.3187
https://doi.org/10.1007/JHEP04(2016)053
https://arxiv.org/abs/1601.04708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04708
https://doi.org/10.1093/ptep/ptw156
https://arxiv.org/abs/1607.01498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.01498
https://doi.org/10.1007/JHEP03(2017)003
https://arxiv.org/abs/1702.02164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.02164
https://doi.org/10.1103/PhysRevD.98.046011
https://arxiv.org/abs/1802.03016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.03016
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.2824
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02952
https://doi.org/10.1088/1751-8121/aa585b
https://arxiv.org/abs/1608.02963
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02963
https://doi.org/10.1016/S0550-3213(00)00300-X
https://arxiv.org/abs/hep-th/0003055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003055
https://doi.org/10.1063/1.1372177
https://arxiv.org/abs/hep-th/0010274
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0010274
https://doi.org/10.1016/S0370-2693(01)00675-X
https://arxiv.org/abs/hep-th/0101225
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0101225
https://doi.org/10.1088/1126-6708/2006/08/026
https://doi.org/10.1088/1126-6708/2006/08/026
https://arxiv.org/abs/hep-th/0605027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605027


J
H
E
P
0
7
(
2
0
2
1
)
0
0
1

[32] B. Fiol and G. Torrents, Exact results for Wilson loops in arbitrary representations, JHEP
01 (2014) 020 [arXiv:1311.2058] [INSPIRE].

[33] J. Ambjørn, L. Chekhov, C.F. Kristjansen and Y. Makeenko, Matrix model calculations
beyond the spherical limit, Nucl. Phys. B 404 (1993) 127 [Erratum ibid. 449 (1995) 681]
[hep-th/9302014] [INSPIRE].

[34] K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP
06 (2006) 057 [hep-th/0604209] [INSPIRE].

[35] X. Chen-Lin, Symmetric Wilson Loops beyond leading order, SciPost Phys. 1 (2016) 013
[arXiv:1610.02914] [INSPIRE].

[36] J. Gordon, Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit, JHEP 01
(2018) 107 [arXiv:1708.05778] [INSPIRE].

[37] K. Okuyama, Phase Transition of Anti-Symmetric Wilson Loops in N = 4 SYM, JHEP 12
(2017) 125 [arXiv:1709.04166] [INSPIRE].

[38] K. Okuyama, Connected correlator of 1/2 BPS Wilson loops in N = 4 SYM, JHEP 10
(2018) 037 [arXiv:1808.10161] [INSPIRE].

[39] M. Beccaria and A. Hasan, On topological recursion for Wilson loops in N = 4 SYM at
strong coupling, JHEP 04 (2021) 194 [arXiv:2102.12322] [INSPIRE].

[40] B. Fiol, J. Martínez-Montoya and A. Rios Fukelman, Wilson loops in terms of color
invariants, JHEP 05 (2019) 202 [arXiv:1812.06890] [INSPIRE].

[41] A.F. Canazas Garay, A. Faraggi and W. Mück, Antisymmetric Wilson loops in N = 4 SYM:
from exact results to non-planar corrections, JHEP 08 (2018) 149 [arXiv:1807.04052]
[INSPIRE].

[42] M. Beccaria and A.A. Tseytlin, On the structure of non-planar strong coupling corrections to
correlators of BPS Wilson loops and chiral primary operators, JHEP 01 (2021) 149
[arXiv:2011.02885] [INSPIRE].

[43] S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect
OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys. A 52 (2019) 125401
[arXiv:1811.02369] [INSPIRE].

[44] M. Mariño, Chern-Simons theory, matrix models, and topological strings, Int. Ser. Monogr.
Phys. 131 (2005) 1 [INSPIRE].

[45] A.F. Canazas Garay, A. Faraggi and W. Mück, Note on generating functions and connected
correlators of 1/2-BPS Wilson loops in N = 4 SYM theory, JHEP 08 (2019) 149
[arXiv:1906.03816] [INSPIRE].

[46] W. Mück, Combinatorics of Wilson loops in N = 4 SYM theory, JHEP 11 (2019) 096
[arXiv:1908.11582] [INSPIRE].

[47] K. Okuyama, Spectral form factor and semi-circle law in the time direction, JHEP 02 (2019)
161 [arXiv:1811.09988] [INSPIRE].

[48] I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press,
2nd edition (1995).

[49] A. Lascoux, Symmetric functions,
https://www.emis.de/journals/SLC/wpapers/s68vortrag/ALCoursSf2.pdf .

– 36 –

https://doi.org/10.1007/JHEP01(2014)020
https://doi.org/10.1007/JHEP01(2014)020
https://arxiv.org/abs/1311.2058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2058
https://doi.org/10.1016/0550-3213(93)90476-6
https://arxiv.org/abs/hep-th/9302014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9302014
https://doi.org/10.1088/1126-6708/2006/06/057
https://doi.org/10.1088/1126-6708/2006/06/057
https://arxiv.org/abs/hep-th/0604209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604209
https://doi.org/10.21468/SciPostPhys.1.2.013
https://arxiv.org/abs/1610.02914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02914
https://doi.org/10.1007/JHEP01(2018)107
https://doi.org/10.1007/JHEP01(2018)107
https://arxiv.org/abs/1708.05778
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.05778
https://doi.org/10.1007/JHEP12(2017)125
https://doi.org/10.1007/JHEP12(2017)125
https://arxiv.org/abs/1709.04166
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04166
https://doi.org/10.1007/JHEP10(2018)037
https://doi.org/10.1007/JHEP10(2018)037
https://arxiv.org/abs/1808.10161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.10161
https://doi.org/10.1007/JHEP04(2021)194
https://arxiv.org/abs/2102.12322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.12322
https://doi.org/10.1007/JHEP05(2019)202
https://arxiv.org/abs/1812.06890
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06890
https://doi.org/10.1007/JHEP08(2018)149
https://arxiv.org/abs/1807.04052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04052
https://doi.org/10.1007/JHEP01(2021)149
https://arxiv.org/abs/2011.02885
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02885
https://doi.org/10.1088/1751-8121/ab046c
https://arxiv.org/abs/1811.02369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02369
http://inspirehep.net/record/706152
https://doi.org/10.1007/JHEP08(2019)149
https://arxiv.org/abs/1906.03816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.03816
https://doi.org/10.1007/JHEP11(2019)096
https://arxiv.org/abs/1908.11582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11582
https://doi.org/10.1007/JHEP02(2019)161
https://doi.org/10.1007/JHEP02(2019)161
https://arxiv.org/abs/1811.09988
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.09988
https://www.emis.de/journals/SLC/wpapers/s68vortrag/ALCoursSf2.pdf


J
H
E
P
0
7
(
2
0
2
1
)
0
0
1

[50] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon,
Noncommutative symmetric functions, hep-th/9407124 [INSPIRE].

[51] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000)
419 [hep-th/9912123] [INSPIRE].

[52] M.L. Mehta, A Method of Integration Over Matrix Variables, Commun. Math. Phys. 79
(1981) 327 [INSPIRE].

[53] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press,
New York, 5th edition (1994).

[54] F.W.J. Olver eds., NIST Digital Library of Mathematical Functions, Release 1.0.22 of
2019-03-15 [http://dlmf.nist.gov/].

[55] T. Agoh and K. Dilcher, Convolution Identities for Stirling Numbers of the First Kind,
Integers 10 (2010) 101.

[56] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.0),
(2020) [10.5281/zenodo.593563] [https://www.sagemath.org].

[57] E. Rainville, Special Functions, Mac Millan, New York (1960).

[58] E. Rainville, The contiguous function relations for pFq with appliactions to Bateman’s Ju,v
n

and Rice’s Hn(ζ, p, v), Bull. Am. Math. Soc. 51 (1945) 714.

– 37 –

https://arxiv.org/abs/hep-th/9407124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407124
https://doi.org/10.1016/S0550-3213(00)00118-8
https://doi.org/10.1016/S0550-3213(00)00118-8
https://arxiv.org/abs/hep-th/9912123
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9912123
https://doi.org/10.1007/BF01208498
https://doi.org/10.1007/BF01208498
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C79%2C327%22
http://dlmf.nist.gov/
https://doi.org/10.1515/integ.2010.009
https://doi.org/10.5281/zenodo.593563
https://www.sagemath.org
https://doi.org/10.1090/s0002-9904-1945-08425-0

	Introduction
	Generating functions of Wilson loops and correlators
	Brief review of combinatorics and symmetric functions
	Wilson loop generating functions

	Wilson loop generating functions in N = 4 SYM theory
	Review of the single loop case
	Oppositely wound loops

	Exact results from the matrix model
	Matrix model results from harmonic oscillator
	One-point functions
	Two-point functions

	One-point functions
	Drukker and Gross' series in 1/N
	Explicit construction

	Connected two-point functions
	Explicit construction
	Leading term
	Recursive construction
	Special cases |k(1)| = |k(2)|

	Conclusions
	Explicit forms of S(n,k;N) and sigma(n,k,m)
	Some properties of generalized hypergeometric functions

