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1 Introduction

Recently, via the AdS/CFT correspondence, [1], following the grounding works of [2–4],

there has been remarkable development in microscopic counting of microstates of super-

symmetric AdS black holes via twisted or superconformal indices of dual field theories. It

was shown that entropy functional extremizes to give the Bekenstein-Hawking entropy of

the black holes. In the dual field theory, this extremization procedure is understood as the

I-extremization where the Witten index of 1d superconformal quantum mechanics is ex-

tremized to give the entropy. 1d quantum mechanics is dual to the AdS2 horizon geometry

of extremal black hole solutions. See [5] for a review and references.

Therefore, it is natural to try to understand the I-extremization principle from two-

dimensional supergravity point of view. Indeed, a-maximization of 4d SCFTs [6], c-

extremization of 2d SCFTs, [7, 8], and τRR-extremization of 3d SCFTs, [9], are understood

from five-[10, 11], three- [12–14] and four-[15] dimensional gauged supergravity theories by

identifying the corresponding quantities of a, c, and τRR, respectively. On the other hand,

even though supergravity in two dimensions has been studied long enough, [16–21], our

understanding is elementary and two-dimensional supergravity models are rare compare to

the other dimensional theories.

For domain wall backgrounds of gravity theories in dimensions higher than two, by

introduction of superpotential, the second order equations of motion often reduce to first

order flow equations, [22–24]. The flow equations arise naturally, as they are the Hamilton-

Jacobi equations of gravity-scalar theories, [25]. In supergravity, the flow equations, in fact,
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reproduces the BPS equations obtained from the supersymmetry variations, [22]. They also

provide the holographic c-theorem, [22, 23, 26]. Solutions of the flow equations are known

to be non-perturbatively stable, [27]. See section 9 and 10 of [28] for a review. However,

the flow equations are known in dimensions higher than two.

In this work, we extend the known results of holographic renormalization group flows

in dimensions higher than two and derive the flow equations in two-dimensional dilaton

gravity. We begin by considering general two-dimensional dilaton gravity coupled to a

scalar field. By introducing a superpotential, we derive the first order flow equations from

the equations of motion. We find a quantity which decreases monotonically along flows

and give some comments on holographic c-theorem.

As examples, we show that recently studied supersymmetric AdS black holes generi-

cally dimensionally reduce to two-dimensional dilaton gravity. To be specific, we consider

the supersymmetric black holes in AdS4, [2], AdS6, [29], and AdS5, [30]. Their microstates

are counted by topologically twisted index of 3d, [3, 4], 5d, [31, 32], and, 4d, [33], dual

field theories, respectively. We present the flow equations of higher-dimensional AdS black

holes in two dimensions. We show that from the dilaton at the AdS2 fixed point, we can

obtain the Bekenstein-Hawking entropy of higher-dimensional AdS black holes, e.g., [34]

and [35].

In section 2, we review the flow equations of gravity in dimensions higher than two.

In section 3, we consider two-dimensional dilaton gravity and derive their flow equations.

We find a quantity which monotonically decrease along flows and give some comments

on holographic c-theorem. In section 4, as examples, we obtain two-dimensional dilaton

gravity from supersymmetric AdS4, AdS6, and AdS5 black holes. We present their flow

equations. We conclude in section 5.

2 Review of gravity in dimensions higher than two

For domain wall backgrounds in dimensions higher than two, the second order equations

of motion reduce to first order flow equations, [22–24]. The flow equations arise naturally,

as they are the Hamilton-Jacobi equations of dynamical system of gravity-scalar theo-

ries, [25]. In supergravity, the first order equations reproduce the BPS equations obtained

from the supersymmetry variations, [22]. Solutions of the equations are known to be non-

perturbatively stable, [27]. In this section, we review section 9 of [28]. We consider the

gravity coupled to a scalar field,

S =
1

4πG
(d+1)
N

∫
dd+1x

√
+g

[
−1

4
R+

1

2
∂µφ∂

µφ+ V

]
, (2.1)

in Euclidean spacetime. The equations of motion are

Rµν −
1

2
Rgµν = 2

[
∂µφ∂νφ− gµν

(
1

2
∂ρφ∂

ρφ+ V

)]
,

1
√
g
∂µ (
√
ggµν∂νφ)− dV

dφ
= 0 . (2.2)

– 2 –
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Therefore, at critical points, the scalar potential satisfies

dV

dφ

∣∣∣∣
∗

= 0 . (2.3)

2.1 Flow equations

We consider the domain wall background,

ds2 = e2Ads2
d + dr2 . (2.4)

The equations of motion reduce to

(d− 1)A′′ +
d(d− 1)

2
A′2 = −φ′2 − 2V ,

d(d− 1)

2
A′2 = φ′2 − 2V ,

φ′′ + dA′φ′ =
dV

dφ
, (2.5)

where the primes denote the derivative with respect to r. However, the first equation is

obtained from the last two equations. Hence, there are only two independent equations of

motion,

A′2 =
2

d(d− 1)

(
φ′2 − 2V

)
,

φ′′ + dA′φ′ =
dV

dφ
. (2.6)

Miraculously, by employing a superpotential, W , the second order equations reduce to first

order flow equations,

dφ

dr
=
dW

dφ
,

dA

dr
= − 2

d− 1
W , (2.7)

where the superpotential generates the scalar potential,

V =
1

2

(
dW

dφ

)2

− d

d− 1
W 2 . (2.8)

This result trivially extends to theories with multiple scalar fields. A large class of solutions

in supergravity falls into the flat domain wall backgrounds we considered, like, holographic

RG flows, and easily extended to wrapped branes, and black hole solutions. For more

complicated backgrounds, like Janus solutions, [27, 36–38], which are AdS domain walls,

and also sphere domain walls, the basic structure of the flow equations stays the same, but

gets more involved.
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2.2 Holographic c-theorem

The, so-called, monotonicity theorems provide measures of degrees of freedom which mono-

tonically decreases along the renormalization group flows in field theories. There are

c-theorem, [39], a-theorem, [40, 41], and F -theorem, [42, 43], in two-, four-, and three-

dimensional field theories, respectively. There are attempts at a-theorem in six-dimensional

field theories, e.g, [44–46].

One of the immediate applications of holographic RG flows is the holographic c-

theorem, [22, 23, 26] and [47, 48]. See section 10 of [28] for a review. Though the following

argument is valid in d > 1 dimensions, we will restrict to the AdS5/CFT4 correspondence

as it provides a holographic c-function which is indeed dual to the c-function of four-

dimensional field theories, [22]. For the domain wall background, from the difference of the

first and the second equations in (2.5), we find that

A′′ = − 2

d− 1
φ′2 ≤ 0. (2.9)

We define a function,

C(r) =
π

8GN

1

A′3
. (2.10)

Due to (2.9), derivative of the function is always nonnegative,

C ′(r) =
π

8GN

−3A′′

A′4
≥ 0 . (2.11)

Therefore, this function naturally introduces a holographic c-function. Moreover, from the

flow equations, (2.7), we have, [22],

C(r) ∼ − 1

W 3
. (2.12)

See [11] also for a relation of holographic a-theorem and a-maximization.

3 Two-dimensional dilaton gravity

We consider two-dimensional dilaton gravity coupled to a scalar field,

S =
1

16πG
(2)
N

∫
d2x
√
−ge2Φ

[
R+ 2(2α+ 1)∂µΦ∂µΦ− 1

2
∂µφ∂

µφ− e−2ΦV (Φ, φ;α)

]
,

(3.1)

where Φ is the dilaton and φ is the scalar field. In two dimensions, we cannot go to

Einstein frame by performing conformal transformations, and they just transform to other

string frames. Choosing value of the constant parameter, α, is equivalent of conformal

transformations. When we study examples from higher dimensions latter in (4.17), it will

be clear why we have chosen the factor to be (2α + 1). See [49] for a review of two-

dimensional dilaton gravity.

– 4 –
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The equations of motion are

Rµν −
1

2
Rgµν − e−2Φ

(
∇µ∇νe2Φ − gµν∇ρ∇ρe2Φ

)
= −2(2α+ 1)∂µΦ∂νΦ + (2α+ 1)gµν∂ρΦ∂

ρΦ +
1

2
∂µφ∂νφ−

1

4
gµν∂ρφ∂

ρφ− 1

2
e−2ΦV gµν ,

2(2α+ 1)
1√
−g

∂µ
(√
−ggµν∂νΦ

)
− 2(2α+ 1)∂µΦ∂µΦ− 1

2
∂µφ∂

µφ+R− 1

2
e−2Φ∂V

∂Φ
= 0 ,

1√
−g

∂µ
(√
−ggµν∂νφ

)
+ 2∂µΦ∂µφ− e−2Φ∂V

∂φ
= 0 .

(3.2)

On the left hand side of the Einstein equation in (3.2), in addition to the Einstein tensor,

there are derivative terms of the dilaton. In two dimensions, the Einstein tensor vanishes

identically,

Rµν −
1

2
Rgµν = 0 . (3.3)

There are two classes of solutions: i) solutions with constant dilaton and scalar field and

ii) solutions with linear dilaton. See, for instance, around (12) and (13) of [50]. The first

class of solutions are maximally symmetric, i.e., Minkowski, de Sitter, and anti-de Sitter,

and we will concentrate on the first class of solutions. For the first class of solutions,

Φ = Φ∗ and φ = φ∗, from the equations of motion, we obtain

V |∗ = 0 , R− 1

2
e−2Φ∂V

∂Φ

∣∣∣∣
∗

= 0 ,
∂V

∂φ

∣∣∣∣
∗

= 0 . (3.4)

Curvatures of the solutions are determined by the second equation in (3.4). For the so-

lutions satisfying the conditions, i.e., constant dilaton and scalar field with maximally

symmetric background, we refer to them as critical points.

3.1 Flow equations

We consider the domain wall background,

ds2 = e2A
(
−dt2 + dr2

)
. (3.5)

The equations of motion reduce to

2
(
Φ′′ + 2Φ′Φ′

)
− 2A′Φ′ − (2α+ 1)Φ′Φ′ +

1

4
φ′φ′ +

1

2
e−2Φ+2AV = 0 ,

−2A′Φ′ − (2α+ 1)Φ′Φ′ +
1

4
φ′φ′ − 1

2
e−2Φ+2AV = 0 ,

(2α+ 1)
(
Φ′′ + Φ′Φ′

)
+A′′ +

1

4
φ′φ′ +

1

4
e−2Φ+2A∂V

∂Φ
= 0 ,

φ′′ + 2Φ′φ′ − e−2Φ+2A∂V

∂φ
= 0 , (3.6)

where the primes denote the derivative with respect to r.
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From the sum of the first and the second equations in (3.6), we obtain a relation

between derivatives of functions without the scalar potential,(
Φ′′ + 2Φ′Φ′

)
− 2A′Φ′ − (2α+ 1)Φ′Φ′ +

1

4
φ′φ′ = 0 . (3.7)

Starting from this relation, we look for the first order flow equations by trial and error. By

introducing a superpotential, W , we obtain the flow equations,

dΦ

dr
e−A = W ,

dφ

dr
e−A = −4

∂W

∂φ
,

dA

dr
e−A =

∂W

∂Φ
+ 2W − (2α+ 1)W . (3.8)

Therefore, at critical points, the superpotential satisfies

W |∗ = 0 ,
∂W

∂φ

∣∣∣∣
∗

= 0 . (3.9)

The superpotential produces the scalar potential by

V = e2Φ

[
8

(
∂W

∂φ

)2

− 4W
∂W

∂Φ
− 8W 2 + 2(2α+ 1)W 2

]
. (3.10)

This result trivially extends to theories with multiple scalar fields.1

3.2 Comments on holographic c-theorem

In this subsection, we analogously follow the derivation of holographic c-theorem in dimen-

sions higher than two in section 2.2. From the difference of two equations of motion, (3.7),

we obtain (
e−2AΦ′

)′
= ((2α+ 1)− 2) e−2AΦ′Φ′ − 1

4
e−2Aφ′φ′ ≤ 0 , (3.11)

where we choose the free parameter, α, to be2

α ≤ 1

2
. (3.12)

From the supersymmetry equations, (3.8), we also find that

e−2AΦ′ = e−AW . (3.13)

Thus, finally, we find a quantity,

C(r) = e−AW , (3.14)

1Similar first order equations in two-dimensional dilaton gravity were also considered in [51], see (5.14)

and appendix A.1 therein.
2At α = 1/2, the kinetic term of the dilaton field is canonically normalized. As we can freely perform

conformal transformations, we can choose α to be at any value.

– 6 –
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whose derivative is negative or zero,

C ′(r) ≤ 0 . (3.15)

In fact, as C(r) vanishes at critical points by (3.9), this quantity may not play the role

of holographic c-function. However, whether it is a holographic c-function or not, there is

an intriguing interpretation of the quantity. From (3.9) and (3.15), we have

W |∗ = 0 , (3.16)

(e−AW )′ ≤ 0 . (3.17)

These conditions mean that C(r) vanishes at critical points, (3.16), and C(r) decreases

monotonically along the flows, (3.17). Therefore, it implies that there can be only one

critical point.

In the following section, we will see that the only critical point corresponds to the IR

fixed point from higher dimensions, which is the near horizon in the case of black hole

solutions. However, there is no UV fixed point in two-dimensional gravity. The running

dilaton in the UV means that the two-dimensional description breaks down and one must

uplift to higher dimensions.3 An example of such a flow is discussed in section 2.3 of [52],

in which case, the UV fixed point is the BTZ black hole in AdS3.

4 Two-dimensional dilaton gravity from gauged supergravity

4.1 Supersymmetric AdS4 black holes

We review the supersymmetric AdS4 black hole solutions of [2, 54, 55] from gauged N = 2

supergravity. We employ the conventions of appendix A in [4]. Their microstates are

counted by topologically twisted index of 3d SCFTs, [3, 4]. The action is given by4

S =
1

16πG
(4)
N

∫
d4x
√
−g4

[
R4 −

3∑
i=1

1

2
∂µφi∂

µφi −
4∑

a=1

1

2
L−2
a F 2

a − V4

]
, (4.1)

where the scalar potential is

V4 = −4g̃2 (coshφ1 + coshφ2 + coshφ3) ,

= −2g̃2 (L1L2 + L3L4 + L1L3 + L2L4 + L1L4 + L2L3) , (4.2)

If we define the superpotential by

W4 = −1

4
(L1 + L2 + L3 + L4) , (4.3)

then, the scalar potential is obtained from

V4 = 8

3∑
i=1

(
∂W4

∂φi

)2

− 6W 2
4 . (4.4)

3We would like to thank the anonymous referee for comment on this.
4In [4] the scalar fields are denoted by φ1 = φ12, φ2 = φ13, φ3 = φ14.
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We set the gauge coupling constant to be

g̃ =
1√
2
. (4.5)

We introduced a parametrization of three real scalar fields,

L1 = e−
1
2

(φ1+φ2+φ3) , L2 = e−
1
2

(φ1−φ2−φ3) ,

L3 = e−
1
2

(−φ1+φ2−φ3) , L4 = e−
1
2

(−φ1−φ2+φ3) , (4.6)

where L1L2L3L4 = 1. The field strength of four U(1) gauge fields are

Fa = dAa . (4.7)

For the supersymmetric AdS4 black hole solutions of [2], we consider the background of

ds2 = e2f
(
−dt2 + dr2

)
+ e2gds2

Σ , (4.8)

where Σ denotes the Riemann surfaces of curvatures, k = ±1. The field strength of the

gauge fields are

Fa = − aa√
2

VolΣ , (4.9)

where the magnetic charges, aa, are constant and VolΣ is the unit volume form. The first

order BPS equations are obtained by solving the supersymmetry variations of the fermionic

fields,5

f ′e−f = −1

4
(L1 + L2 + L3 + L4)− 1

4
e−2g

(
a1

L1
+
a2

L2
+
a3

L3
+
a4

L4

)
,

g′e−f = −1

4
(L1 + L2 + L3 + L4) +

1

4
e−2g

(
a1

L1
+
a2

L2
+
a3

L3
+
a4

L4

)
,

φ′1e
−f = −1

2
(L1 + L2 − L3 − L4)− 1

2
e−2g

(
a1

L1
+
a2

L2
− a3

L3
− a4

L4

)
,

φ′2e
−f = −1

2
(L1 − L2 + L3 − L4)− 1

2
e−2g

(
a1

L1
− a2

L2
+
a3

L3
− a4

L4

)
,

φ′3e
−f = −1

2
(L1 − L2 − L3 + L4)− 1

2
e−2g

(
a1

L1
− a2

L2
− a3

L3
+
a4

L4

)
, (4.10)

and there is a twist condition on the magnetic charges,

a1 + a2 + a3 + a4 =
k

g̃2
. (4.11)

One can solve the BPS equations and obtain the supersymmetric black hole solutions which

are interpolating between the AdS4 boundary and the AdS2 horizon.

5We suspect that the signs in front of e−2g should be flipped in (A.27) of [4].
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There is an AdS2 × Σ solution of the horizon. We introduce another parametrization

of the scalar fields,

z1,2,3 =
L1,2,3

L4
, (4.12)

or, equivalently,

L4
1 =

z3
1

z2z3
, L4

2 =
z3

2

z3z1
, L4

3 =
z3

3

z1z2
, L4

4 =
1

z1z2z3
. (4.13)

The horizon is at

z1 =
2(a2 + a3)(a1 − a4)2 − (a1 + a4)[(a2 − a3)2 + (a1 − a4)2] + 4(a4 − a1)

√
Θ

2a4(a4 − a1 + a2 − a3)(a4 − a1 − a2 + a3)
,

z2 =
2(a1 + a3)(a2 − a4)2 − (a2 + a4)[(a1 − a3)2 + (a2 − a4)2] + 4(a4 − a2)

√
Θ

2a4(a4 + a1 − a2 − a3)(a4 − a1 − a2 + a3)
,

z3 =
2(a1 + a2)(a3 − a4)2 − (a3 + a4)[(a1 − a2)2 + (a3 − a4)2] + 4(a4 − a3)

√
Θ

2a4(a4 + a1 − a2 − a3)(a4 − a1 + a2 + a3)
, (4.14)

and

e2f =
1

r2

Π√
2Θ

(
F2 +

√
Θ
)1/2

,

e2g =
1√
2

(
F2 +

√
Θ
)1/2

, (4.15)

where

Θ = F 2
2 − 4a1a2a3a4 ,

F2 =
1

4
(a1 + a2 + a3 + a4)2 − 1

2

(
a2

1 + a2
2 + a2

3 + a2
4

)
,

Π =
1

8
(a1 + a2 − a3 − a4)(a1 − a2 + a3 − a4)(a1 − a2 − a3 + a4) . (4.16)

Now we dimensionally reduce the action on the background of supersymmetric AdS4

black holes. The reduction ansatz for the metric is

ds2
4 = e2αgds2

2 + e2gds2
Σ , (4.17)

where α is a constant parameter. The reduced action is two-dimensional dilaton gravity,

S =
volΣ

16πG
(4)
N

∫
d2x
√
−g2e

2g

[
R2 + 2(2α+ 1)∂µg∂

µg −
3∑
i=1

1

2
∂µφi∂

µφi − e−2gV2

]
, (4.18)

where the scalar potential is

V2 = e2(α+1)g

[
− 2g̃2 (L1L2 + L3L4 + L1L3 + L2L4 + L1L4 + L2L3)

+ e−4g

(
a2

1

L2
1

+
a2

2

L2
2

+
a2

3

L2
3

+
a2

4

L2
4

)
− 2ke−2g

]
. (4.19)
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The scalar potential satisfies the relations, (3.4), at the AdS2, critical point in (4.14)

and (4.15).

We consider the background,

ds2
2 = e2f

(
−dt2 + dr2

)
. (4.20)

We obtain the flow equations which satisfy the equations of motion of two-dimensional

dilaton gravity,

f ′e−f = W +
∂W

∂g
,

g′e−f = W ,

φ′ie
−f = −4

∂W

∂φi
, (4.21)

where the superpotential is given by

W = −1

4
(L1 + L2 + L3 + L4) +

1

4
e−2g

(
a1

L1
+
a2

L2
+
a3

L3
+
a4

L4

)
. (4.22)

The superpotential satisfies the relations, (3.9), at the AdS2 critical point in (4.14)

and (4.15). The scalar potential is obtained from

V2 = e2g

[
8

3∑
i=1

(
∂W

∂φi

)2

− 4W
∂W

∂g
− 6W 2

]
. (4.23)

By introducing the superpotential, we note that the flow equations are merely a rewriting

of the BPS equations in AdS4, (4.10), as it should. Moreover, we could reproduce the flow

equations from the general analysis of section 2 by replacing

Φ → g , φ → φi , A → f , W →W , V → V2 , (4.24)

and setting

α = 0 . (4.25)

Finally, we reproduce the Bekenstein-Hawking entropy of the supersymmetric AdS4

black holes obtained in [4],

SBH =
e2gvolΣ

4G
(4)
N

∣∣∣∣∣
∗

, (4.26)

where volΣ is the area of Riemann surfaces of unit radius, in this case. We make an

observation that the two-dimensional dilaton, Φ → g, contains the information of the

Bekenstein-Hawking entropy of higher dimensional AdS black holes.

– 10 –
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4.2 Supersymmetric AdS6 black holes

We review the supersymmetric AdS6 black hole solutions of pure F (4) gauged supergravity

in [29], which were generalized to solutions of matter coupled F (4) gauged supergravity

in [53, 56]. Their microstates are microscopically counted by topologically twisted index

of 5d SCFTs, [31]. See also [32].

The bosonic field content of pure F (4) gauged supergravity, [57], consists of the metric,

gµν , a real scalar, φ, an SU(2) gauge field, AIµ, I = 1, 2, 3, a U(1) gauge field, Aµ, and a

two-form gauge potential, Bµν . The field strengths are defined by

Fµν = ∂µAν − ∂νAµ ,
F Iµν = ∂µA

I
ν − ∂νAIµ + g̃εIJKAJµA

K
ν ,

Gµνρ = 3∂[µBνρ] ,

Hµν = Fµν +mBµν . (4.27)

The action is given by

S =
1

4πG
(6)
N

∫
d6x
√
−g6

[
−1

4
R+

1

2
∂µφ∂

µφ−1

4
e−
√
2φ
(
HµνHµν+F IµνF

Iµν
)
+

1

12
e2
√
2φGµνρG

µνρ

−1

8
εµνρστκBµν

(
FρσFτκ+mBρσFτκ+

1

3
m2BρσBτκ+F IρσF

I
τκ

)
−V6

]
,

(4.28)

where g̃ is the SU(2) gauge coupling constant and m is the mass parameter of the two-form

field. The scalar potential is

V6 = −1

8

(
g̃2e
√

2φ + 4g̃me−
√

2φ −m2e−3
√

2φ
)
, (4.29)

If we define the superpotential by

W6 = − 1

4
√

2

(
g̃e

φ√
2 +me

− 3φ√
2

)
, (4.30)

then, it gives the scalar potential by

V6 = 2

(
∂W6

∂φ

)2

− 5W 2
6 . (4.31)

We employ the mostly-minus signature.

For the supersymmetric AdS6 black hole solutions, we consider the background of

ds2 = e2f
(
dt2 − dr2

)
− e2g1

(
dθ2

1 + sinh2 θ1dφ
2
1

)
− e2g2

(
dθ2

2 + sinh2 θ1dφ
2
2

)
. (4.32)

The gauge fields are

A3 = a1 cosh θ1dφ1 + a2 cosh θ2dφ2 , (4.33)

where the magnetic charges, a1 and a2, are constant, and the U(1) gauge field is Aµ = 0.

The two-form field is given by

Btr = − 2

m2
a1a2e

√
2φ+2f−2g1−2g2 , (4.34)
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and the three-form field strength of the two-form gauge potential vanishes identically. The

first order BPS equations are obtained by solving the supersymmetry variations of the

fermionic fields,

f ′e−f = − 1

4
√

2

(
g̃e

φ√
2 +me

− 3φ√
2

)
+

k

2
√

2g̃
e
− φ√

2
(
e−2g1+e−2g2

)
− 3√

2g̃2m
e
φ√
2
−2g1−2g2 ,

g′1e
−f = − 1

4
√

2

(
g̃e

φ√
2 +me

− 3φ√
2

)
− k

2
√

2g̃
e
− φ√

2
(
3e−2g1−e−2g2

)
+

1√
2g̃2m

e
φ√
2
−2g1−2g2 ,

g′2e
−f = − 1

4
√

2

(
g̃e

φ√
2 +me

− 3φ√
2

)
− k

2
√

2g̃
e
− φ√

2
(
3e−2g2−e−2g1

)
+

1√
2g̃2m

e
φ√
2
−2g1−2g2 ,

1√
2
φ′e−f =

1

4
√

2

(
g̃e

φ√
2−3me

− 3φ√
2

)
− k

2
√

2g̃
e
− φ√

2
(
e−2g1+e−2g2

)
− 1√

2g̃2m
e
φ√
2
−2g1−2g2 ,

(4.35)

and there are twist conditions on the magnetic charges,

a1 = − k

λg̃
, a2 = − k

λg̃
, (4.36)

where k = ±1 are curvatures of the Riemann surfaces and λ = ±1. The AdS2 × Σg1 ×Σg2

horizon solution is given by

ef =
21/4

g3/4m1/4

1

r
, eg1 = eg2 =

23/4

g3/4m1/4
, e

φ√
2 =

21/4m1/4

g1/4
, (4.37)

where g1 > 1 and g2 > 1 are genus of the Riemann surfaces. The full black hole solutions

are interpolating between the AdS6 boundary and the AdS2 horizon.

Now we dimensionally reduce the action on the background of supersymmetric AdS6

black holes. The reduction ansatz for the metric is

ds2
6 = ds2

2 − e2g
(
ds2

Σg1
+ ds2

Σg2

)
. (4.38)

The reduced action is two-dimensional dilaton gravity,

S =
volΣg1

volΣg2

4πG
(6)
N

∫
d2x
√
−g2e

2g1+2g2

[
−1

4
R2 −

1

2
∂µg1∂

µg1 −
1

2
∂µg2∂

µg2 − 2∂µg1∂
µg2

+
1

2
∂µφ∂

µφ− e−2g1−2g2V2

]
, (4.39)

where the scalar potential is

V2 = e2g1+2g2

[
−1

8

(
g̃2e
√

2φ + 4g̃me−
√

2φ −m2e−3
√

2φ
)
− k1

2
e−2g1 − k2

2
e−2g2

+
1

2g̃2
e−
√

2φ
(
e−4g1 + e−4g2

)
+

2

g̃4m2
e
√

2φ−4g1−4g2

]
. (4.40)

The scalar potential satisfies the relations, (3.4), at the AdS2, critical point, (4.37). This

reduction was previously performed in [58].
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We consider the background,

ds2
2 = e2f

(
dt2 − dr2

)
. (4.41)

We only consider the case of

g ≡ g1 = g2 > 1 , k ≡ k1 = k2 = −1 . (4.42)

We obtain the flow equations which satisfy the equations of motion of two-dimensional

dilaton gravity,

f ′e−f = W +
∂W

∂g
,

g′e−f = W ,

1√
2
φ′e−f = −

√
2
∂W

∂φ
, (4.43)

where the superpotential is given by

W = − 1

4
√

2

(
g̃e

φ√
2 +me

− 3φ√
2

)
− k√

2g̃
e
− φ√

2
−2g

+
1√

2g̃2m
e
φ√
2
−4g

. (4.44)

The superpotential satisfies the relations, (3.9), at the AdS2 critical point, (4.37). The

scalar potential is obtained from

V2 = e4g

[
2

(
∂W

∂φ

)2

− 2W
∂W

∂g
− 5W 2

]
. (4.45)

By introducing the superpotential, we note that the flow equations are merely a rewriting

of the BPS equations in AdS6, (4.35), as it should.

Finally, we reproduce the Bekenstein-Hawking entropy of the supersymmetric AdS6

black holes obtained in [29],

SBH =
e4gvolΣg1

volΣg2

4G
(6)
N

∣∣∣∣∣
∗

. (4.46)

We make an observation that the two-dimensional dilaton, Φ → g, contains the information

of the Bekenstein-Hawking entropy of higher dimensional AdS black holes.

4.3 Supersymmetric AdS5 black holes

We review the supersymmetric AdS5 black hole solutions of gauged N = 4 supergravity

in five dimensions in [30]. See also [59]. The microstates are microscopically counted by

topologically twisted index of 4d N = 4 super Yang-Mills theory, [33].

The bosonic field content of SU(2) × U(1)-gauged N = 4 supergravity in five di-

mensions, [60], consists of the metric, gµν , a real scalar, ϕ,6 an SU(2) gauge field, AIµ,

6In [60] the scalar field is parametrized by ϕ =
√

2
3
φ.
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I = 1, 2, 3, a U(1) gauge field, aµ, and two-form gauge potentials, Bα
µν . The field strengths

are defined by

fµν = ∂µaν − ∂νaµ ,
F Iµν = ∂µA

I
ν − ∂νAIµ + g2ε

IJKAJµA
K
ν . (4.47)

The action is given by

S =
1

4πG
(5)
N

∫
d5x
√
−g5

[
−1

4
R+ 3∂µϕ∂

µϕ− 1

4
e−4ϕfµνf

µν − 1

4
e2ϕ
(
F IµνF

Iµν +Bα
µνB

αµν
)

+
1

4
εµνρστ

(
1

g1
εαβB

α
µνDρB

β
στ − F IµνF Iρσaτ

)
− V5

]
, (4.48)

where g1 and g2 are the U(1) and SU(2) gauge coupling constants, respectively, and we

define

g̃ ≡
√

2g1 = g2 . (4.49)

The scalar potential is

V5 = −1

8
g2

(
g2e
−2ϕ + 2

√
2g1e

ϕ
)
, (4.50)

If we define the superpotential by

W5 =
g̃

6
√

2

(
2e−ϕ + e2ϕ

)
, (4.51)

then, it gives the scalar potential by

V5 =
3

4

(
∂W5

∂ϕ

)2

− 3W 2
5 . (4.52)

We employ the mostly-minus signature.

For the supersymmetric AdS5 black hole solutions, we consider the background of

ds2 = e2f
(
dt2 − dr2

)
− e2gds2

H3
, (4.53)

where

ds2
H3

= dφ2 + sinh2 φdθ2 + sinh2 φ sin2 θdψ2 . (4.54)

The gauge fields are

A1
θ = a coshφ , A2

ψ = b cos θ , A3
ψ = c sin θ coshφ , (4.55)

where the magnetic charges, a, b, and c, are constant. The U(1) gauge field and two-form

field are vanishing. The first order BPS equations are obtained by solving the supersym-

metry variations of the fermionic fields,

f ′e−f =
g̃

6
√

2

(
2e−ϕ + e2ϕ

)
+

√
2

g̃
eϕ−2g ,

g′e−f =
g̃

6
√

2

(
2e−ϕ + e2ϕ

)
−
√

2

g̃
eϕ−2g ,

ϕ′e−f =
g̃

3
√

2

(
e−ϕ − e2ϕ

)
+

√
2

g̃
eϕ−2g , (4.56)

– 14 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
9

and there are twist conditions on the magnetic charges,

a =
1

g̃
, b =

1

g̃
, c = −1

g̃
. (4.57)

The AdS2 × H3 horizon solution is given by

e2f =
1

44/3

1

r2
, e2g =

1

41/3
, e3ϕ = 4 , (4.58)

where g̃ = 2
√

2. The full black hole solutions are interpolating between the AdS5 boundary

and the AdS2 horizon.

Now we dimensionally reduce the action on the background of supersymmetric AdS5

black holes. The reduction ansatz for the metric is

ds2
5 = ds2

2 − e2gds2
H3
. (4.59)

The reduced action is two-dimensional dilaton gravity,

S =
volH3

4πG
(5)
N

∫
d2x
√
−g2e

3g

[
−1

4
R2 −

3

2
∂µg∂

µg + 3∂µϕ∂
µϕ− e−3gV2

]
, (4.60)

where the scalar potential is

V2 = e3g

[
−1

8
g̃2
(
e−2ϕ + 2eϕ

)
+

3

2
e−2g +

3

2g̃2
e2ϕ−4g

]
. (4.61)

The scalar potential satisfies the relations, (3.4), at the AdS2, critical point, (4.58).

We consider the background,

ds2
2 = e2f

(
dt2 − dr2

)
. (4.62)

We obtain the flow equations which satisfy the equations of motion of two-dimensional

dilaton gravity,

f ′e−f = W +
∂W

∂g
,

g′e−f = W ,

ϕ′e−f = −∂W
∂ϕ

, (4.63)

where the superpotential is given by

W =
g̃

6
√

2

(
2e−ϕ + e2ϕ

)
−
√

2

g̃
eϕ−2g . (4.64)

The superpotential satisfies the relations, (3.9), at the AdS2 critical point, (4.37). The

scalar potential is obtained from

V2 = e3g

[
3

4

(
∂W

∂ϕ

)2

− 3

2
W
∂W

∂g
− 3W 2

]
. (4.65)
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By introducing the superpotential, we note that the flow equations are merely a rewriting

of the BPS equations in AdS5, (4.56), as it should.

Finally, we reproduce the Bekenstein-Hawking entropy of the supersymmetric AdS5

black holes obtained in [33],

SBH =
e3gvolH3

4G
(5)
N

∣∣∣∣∣
∗

. (4.66)

We make an observation that the two-dimensional dilaton, Φ → g, contains the information

of the Bekenstein-Hawking entropy of higher dimensional AdS black holes.

5 Conclusions

In this paper, we derived the flow equations in two-dimensional dilaton gravity. We com-

mented on holographic c-theorem by introducing a quantity which monotonically decreases

along the flow. As we have seen in the examples, two-dimensional dilaton gravity is ubiqui-

tous from dimensional reduction of AdS black hole solutions in string and M-theory. Their

dynamics and entropy could be understood from two-dimensional perspective.

This opens several intriguing directions we may pursue. Following the studies of

higher-dimensional holographic renormalization group flows, [22–24], it is natural to fur-

ther investigate the flow equations in two-dimensional dilaton gravity. There could be

the Hamilton-Jacobi formulation origin of the flow equations analogous to the higher-

dimensional flows, [25]. It is also interesting to study the non-perturbative stability of

solutions, [27].

There are more supersymmetric black holes in AdS4, [61–66], AdS6, [29, 53, 56], and

AdS7, [67, 68]. Furthermore, in addition to the magnetically charged static black holes we

studied in this work, there is a different class of AdS black holes with electric charges and

rotations, e.g., [69–71]. It would be interesting to consider them from two dimensions.

In relation of AdS black holes from two-dimensional perspective, further understanding

of dual 1d superconformal quantum mechanics could be pursued, e.g., appendix B of [4].

Our construction provides examples of two-dimensional dilaton gravity from string

and M-theory. Although we did not attempt to show by dimensional reduction of higher

dimensional gravity, such consistent truncations have been obtained in [72] for generic

dimensions and in [52] and [51] for AdS3 and AdS5 gravity, respectively. See also [73]. It

would be interesting to understand the physics of two-dimensional theories along the line

of [74–77].
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[61] A. Guarino and J. Tarŕıo, BPS black holes from massive IIA on S6, JHEP 09 (2017) 141

[arXiv:1703.10833] [INSPIRE].

[62] A. Guarino, BPS black hole horizons from massive IIA, JHEP 08 (2017) 100

[arXiv:1706.01823] [INSPIRE].

[63] F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of

black hole microstates in AdS4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].

[64] S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS4 black

holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].

[65] F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class.

Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].

[66] N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS4, JHEP 03

(2018) 050 [arXiv:1801.03135] [INSPIRE].

[67] J.P. Gauntlett, N. Kim and D. Waldram, M Five-branes wrapped on supersymmetric cycles,

Phys. Rev. D 63 (2001) 126001 [hep-th/0012195] [INSPIRE].

[68] J.P. Gauntlett and N. Kim, M five-branes wrapped on supersymmetric cycles. 2, Phys. Rev.

D 65 (2002) 086003 [hep-th/0109039] [INSPIRE].

[69] S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of

rotating BPS black holes in AdS5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].

[70] S.M. Hosseini, K. Hristov and A. Zaffaroni, A note on the entropy of rotating BPS AdS7 × S4

black holes, JHEP 05 (2018) 121 [arXiv:1803.07568] [INSPIRE].

[71] S. Choi, C. Hwang, S. Kim and J. Nahmgoong, Entropy Functions of BPS Black Holes in

AdS4 and AdS6, J. Korean Phys. Soc. 76 (2020) 101 [arXiv:1811.02158] [INSPIRE].

[72] B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for

Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012)

089 [arXiv:1110.2320] [INSPIRE].
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[77] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and

holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

– 20 –

https://doi.org/10.1140/epjc/s10052-019-6775-7
https://arxiv.org/abs/1812.10122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10122
https://doi.org/10.1016/0550-3213(86)90398-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB267%2C433%22
https://doi.org/10.1007/JHEP09(2017)141
https://arxiv.org/abs/1703.10833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.10833
https://doi.org/10.1007/JHEP08(2017)100
https://arxiv.org/abs/1706.01823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.01823
https://doi.org/10.1007/JHEP02(2018)054
https://arxiv.org/abs/1707.04257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.04257
https://doi.org/10.1007/JHEP10(2017)190
https://arxiv.org/abs/1707.06884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06884
https://doi.org/10.1088/1361-6382/aa9f5b
https://doi.org/10.1088/1361-6382/aa9f5b
https://arxiv.org/abs/1707.06886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06886
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://arxiv.org/abs/1801.03135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03135
https://doi.org/10.1103/PhysRevD.63.126001
https://arxiv.org/abs/hep-th/0012195
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0012195
https://doi.org/10.1103/PhysRevD.65.086003
https://doi.org/10.1103/PhysRevD.65.086003
https://arxiv.org/abs/hep-th/0109039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0109039
https://doi.org/10.1007/JHEP07(2017)106
https://arxiv.org/abs/1705.05383
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05383
https://doi.org/10.1007/JHEP05(2018)121
https://arxiv.org/abs/1803.07568
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07568
https://doi.org/10.3938/jkps.76.101
https://arxiv.org/abs/1811.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02158
https://doi.org/10.1007/JHEP01(2012)089
https://doi.org/10.1007/JHEP01(2012)089
https://arxiv.org/abs/1110.2320
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.2320
https://doi.org/10.1140/epjc/s10052-018-6267-1
https://doi.org/10.1140/epjc/s10052-018-6267-1
https://arxiv.org/abs/1804.09742
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09742
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6334
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06098
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01857
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.03438

	Introduction
	Review of gravity in dimensions higher than two
	Flow equations
	Holographic c-theorem

	Two-dimensional dilaton gravity
	Flow equations
	Comments on holographic c-theorem

	Two-dimensional dilaton gravity from gauged supergravity
	Supersymmetric AdS(4) black holes
	Supersymmetric AdS(6) black holes
	Supersymmetric AdS(5) black holes

	Conclusions

