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1 Introduction

A class of integrable two-dimensional field theories having an explicit action realization,

were systematically constructed in recent years [1–10]. They typically represent the effec-

tive action corresponding to the deformation of one or more WZW model current algebra

theories at levels ki by current bilinears. They are called λ-deformed σ-models due to the

preferred letter used to denote the deformation parameters. In this context, a research av-

enue is the systematic study of various aspects of the corresponding two-dimensional quan-

tum field theories. Roughly speaking, these fall into two general categories. In the first,

belong studies concerning directly the coupling constants in these theories. In particular,

the computation of their running under the renormalization group flow (RG) (β-functions)

has been exhaustively studied [6, 8, 11, 12, 14–17, 21]. In addition, the geometrical as-

pects of the space of couplings in these theories have been elucidated [18, 19] and the

C-function capturing the number of the degrees of freedom along the RG flow has been
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evaluated [20, 21]. The second category consists of works aiming at discovering how the

operators of the CFT respond to the deformation. That includes the computation of the

anomalous dimension they acquire [18, 22–25] as well as their dressing induced by the

deformation of the original CFT [19]. The above works utilized a combination of CFT

and gravitational techniques together with symmetry arguments in the couplings space of

these models. The results that were obtained are valid to all orders in the deformation

parameters and to leading order at the level k.

Recently a new purely field theoretic approach to the study of λ-deformed theories was

initiated in [26]. This method was applied to the isotropic case having a single coupling

λ. The resulting theory is a theory of free fields having certain interaction terms with

all the coupling constants depending on λ, in a specific manner. Similarly, the dressed

operators of the theory, elementary as well composite ones, can be expressed, building also

on results of [19], in terms of the free fields with specific couplings. In this approach all

computations are organized around a free field theory and not around the conformal point.

The advantage is that all information about the deformation parameter λ is encoded in the

coupling constants appearing in the action and in the various coefficients in the expressions

of the operators which are given in terms of the free fields. This approach delivered results

for the β-function, correlation functions and anomalous dimensions in complete agreement

with the previous methods [18, 19], however with much less effort.

Most of the studies in this direction were done for the λ-deformed WZW current algebra

CFTs. However, λ-deformations can be constructed for coset CFTs which have an action

realization based on gauged WZW models. In particular, λ-deformed models have been

constructed based on the SU(2)/U(1) coset CFT in [1], for more general symmetric spaces

in [2] and the AdS5 × S5 superstring in [3]. In the present paper we will construct and

utilize the field theory based on free fields, analog of the construction for the group case

of [19] for the λ-deformed SU(2)/U(1) coset CFT. With our approach we will be able to

compute the anomalous dimension of parafermionic fields which are seemingly very hard to

do by means of other methods. In particular, it is much more difficult to apply conformal

perturbation theory when the underlying theory is a coset CFT instead of a current algebra

CFT. Essentially, this is due to the fact that in the former case parafermions are involved

instead of currents and they have more complicated correlation functions [27].

The plan of the paper is as follows: in section 2, the perturbative expansion of the

action around the free field point will be performed. In this way we will construct an

interacting field theory by keeping terms up to sixth order in the fields which suffices for

our purposes. In the process we will freely use various field redefinitions in order to simplify

the final form of the action. In section 3, we will use this action to compute the β-function

of the σ-model using standard heat-kernel techniques. In section 4, we will introduce the

λ-dressed parafermions which contain an important Wilson-like phase in their expressions.

Next, we compute the anomalous dimension of the composite operator which is bilinear

in the parafermions and which drives the model away from the conformal point. We also

compute the anomalous dimension of a single parafermion. In this case, the presence of the

non-trivial Wilson-like phase plays the important rôle. In addition, we compute all four-

point functions of parafermions. Finally, in section 5 we will present our conclusions and
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future directions of this work. Last but not least, two appendices follow. In appendix A

we calculate the anomalous dimension of variations of the composite operator deforming

the CFT while in appendix B a list of integrals and the regularization scheme we employ

is considered.

2 Constructing the interacting theory

In this section the interacting field theory corresponding to the λ-deformed coset CFT for

SU(2)/U(1) will be constructed. Our approach follows in spirit that of [26]. In that work

the interacting theory, based on free fields, for the isotropic single λ-deformed σ-model

deformation of the WZW model CFT was constructed.

2.1 Expansion around the free point

Even though we are interested in the coset case, it is convenient to start with the general

λ-deformed σ-model action for the group case given by [1]

Sk,λ(g) = SWZW,k(g) +
k

π

∫
d2σ Ra+(λ−1 −DT )−1

ab L
b
− , (2.1)

where

SWZW,k(g) = − k

2π

∫
d2σTr(g−1∂+gg

−1∂−g) +
k

12π

∫
Tr(g−1dg)3 , (2.2)

is the WZW action for a group element g of a semi-simple Lie group G at level k and

Ra+ = −iTr(ta∂+gg
−1) , La− = −iTr(tag

−1∂−g) , Dab = Tr(tagtbg
−1) . (2.3)

The ta’s are representation matrices satisfying

[ta, tb] = ifabctc , Tr(tatb) = δab , a = 1, 2, . . . , dim G , (2.4)

where the fabc’s are the algebra structure constants which are taken to be real. The coupling

matrix λab parametrizes the deviation from the conformal point at which the currents R+

and L− are chirally, respectively anti-chirally, conserved.

The λ-deformed action for the SU(2)/U(1) coset CFT can be obtained from the above

action specialized to the SU(2) case with ta = σa/
√

2, where the σa’s are the Pauli matrices,

and λab = diag(λ, λ, λ3) where λ3 corresponds to the U(1) subgroup of SU(2) via a limiting

procedure [1]. We review this by first parameterizing the group element as

g = ei(φ+φ1)σ3/2ei(π/2−θ)σ2ei(φ−φ1)σ3/2 , (2.5)

where the range of values of the Euler angles are

θ ∈
[
0,
π

2

]
, φ ∈ [0, 2π] , φ1 ∈ [0, 2π] . (2.6)

Inserting the above into (2.1) and taking the limit λ3 → 1 we obtain that

Sk,λ(g) =
k

π

∫
d2σ

(
1− λ
1 + λ

(∂+θ∂−θ + tan2 θ∂+φ∂−φ)

+
4λ

1− λ2
(cosφ∂+θ − sinφ tan θ∂+φ)(cosφ∂−θ − sinφ tan θ∂−φ)

)
.

(2.7)
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We note that the coordinate φ1 has decoupled at the level of the action and the remaining

two fields are θ and φ. However, this angle will play a very important rôle, as we shall see

in the course of the paper. Its presence will be instrumental in determining the form of

the λ-dressed parafermions and, as a consequence, of their anomalous dimensions.

The action (2.7) is invariant under the following two symmetries [13, 14]

I : λ→ λ−1 , k → −k ,

II : λ→ −λ , φ→ φ+
π

2
.

(2.8)

In what follows we will see that these symmetries will be manifest in the expressions for

the physical quantities of this theory.

Next we proceed with our construction by zooming around θ = 0 by first setting

θ =
ρ√
2k

(2.9)

and defining two new fields as

y1 =

√
1 + λ

1− λ
ρ cosφ , y2 =

√
1− λ
1 + λ

ρ sinφ . (2.10)

Then, in the large k expansion the action becomes

Sk,λ =
1

2π

∫
d2σ

(
∂+y1∂−y1 + ∂+y2∂−y2 +

g11

k
y2

2 ∂+y1∂−y1

+
g22

k
y2

1 ∂+y2∂−y2 +
g12

k
y1y2 (∂+y1∂−y2 + ∂+y2∂−y1)

+
y2

2

k2
(h11y

2
2 + h̃11y

2
1) ∂+y1∂−y1 +

y2
1

k2
(h22y

2
1 + h̃22y

2
2) ∂+y2∂−y2

+
y1y2

k2
(h12y

2
1 + h̃12y

2
2) (∂+y1∂−y2 + ∂+y2∂−y1)

)
+ · · · ,

(2.11)

where we have kept terms up to quartic order in the fields. Note that, this is an expansion

in the number of fields. Retaining appropriate powers of 1
k , is just for book keeping as we

could rescale the fields by a factor of
√
k and have k as an overall coefficient in the action.

The various couplings are given by

g11 =
1

3

1 + λ

1− λ
, g22 =

1

3

1− λ
1 + λ

, g12 = −1

3

1 + λ2

1− λ2
,

h11 =
17(1 + λ)2

180(1− λ)2
, h̃11 =

17 + 14λ+ 17λ2

180(1 + λ)2
,

h22 =
17(1− λ)2

180(1 + λ)2
, h̃22 =

17− 14λ+ 17λ2

180(1− λ)2
,

h12 = −17− 10λ+ 17λ2

180(1 + λ)2
, h̃12 = −17 + 10λ+ 17λ2

180(1− λ)2
.

(2.12)

Note that (2.11) with the above couplings is invariant under the transformations

I : λ→ 1

λ
, k → −k ,

II : λ→ −λ , (y1, y2)→ (−y2, y1) .

(2.13)

which of course correspond to (2.8) when the above zoom-in limit is taken.
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Next we perform the following field redefinitions

y1 =

(
1 +

a1

k
x2

2 +
b1
k2
x4

2 +
c1

k2
x2

1x
2
2

)
x1 , y2 =

(
1 +

a2

k
x2

1 +
b2
k2
x4

1 +
c2

k2
x2

1x
2
2

)
x2 . (2.14)

Choosing the coefficients as

a1 = −g11

2
, b1 =

3g2
11

8
− h11

2
, c1 =

g11g22

6
+
g12g22

3
− g2

22

6
− h̃11

6
,

a2 = −g22

2
, b2 =

3g2
22

8
− h22

2
, c2 =

g22g11

6
+
g12g11

3
− g2

11

6
− h̃22

6
,

(2.15)

we obtain the simpler action

Sk,λ =
1

2π

∫
d2σ

(
∂+x1∂−x1 + ∂+x2∂−x2 +

ĝ12

k
x1x2 (∂+x1∂−x2 + ∂+x2∂−x1)

+
x1x2

k2
(ĥ12x

2
1 +

ˆ̃
h12x

2
2) (∂+x1∂−x2 + ∂+x2∂−x1)

)
+ · · · ,

(2.16)

where the new couplings are denoted by a hat and are given by

ĝ12 = g12 − g11 − g22 = −1 + λ2

1− λ2
,

ĥ12 =
1

3

(
g11g22 − g12g22 + 2g2

22 + 3h12 − 6h22 − h̃11

)
= −1

6

(
1− λ
1 + λ

)2

,

ˆ̃
h12 =

1

3

(
g22g11 − g12g11 + 2g2

11 + 3h̃12 − 6h11 − h̃22

)
= −1

6

(
1 + λ

1− λ

)2

.

(2.17)

Obviously, the action (2.16) with the above couplings is invariant under (2.13), where for

the symmetry II the ya’s should be replaced accordingly by the xa’s.

2.2 Computational QFT conventions

We would like to set up a perturbative expansion around the free theory and perform

quantum computations. Passing to the Euclidean regime we have the following basic

propagators which are consistent with our normalizations

〈xa(z1, z̄1)xb(z2, z̄2)〉 = −δab ln |z12|2 , a = 1, 2 , (2.18)

where z12 = z1 − z2. Note that the above propagator implies that

〈∂xa(z1)∂̄xb(z̄2)〉 = π δabδ
(2)(z12) , (2.19)

inducing a coupling of the holomorphic and anti-holomorphic sectors which will be very

important in the calculations that follow, in particular in subsubsections 4.4.1 & 4.4.5.

We will see later that it will be most convenient to define two complex conjugate

bosons as

x± = x1 ± ix2 . (2.20)
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In this complex basis, the only non-vanishing two-point function is

〈x+(z1, z̄1)x−(z2, z̄2)〉 = −2 ln |z12|2 . (2.21)

Finally, for the free theory the holomorphic energy-momentum tensor is given by

T = −1

2

(
(∂x1)2 + (∂x2)2

)
= −1

2
∂x+∂x− , (2.22)

with a similar expression for the anti-holomorphic one.

3 The β-function

In this section we use the field theory action (2.16) in order to compute the β-function for

the deformation parameter λ. The analogous computation for the group case was performed

in [26]. We will find precisely the result of [14] obtained by gravitational methods.

In order to obtain the β-function for λ we will employ the background field heat kernel

method, so that as an initial step we need the equations of motion for the fields x1 and x2

derived from the action (2.16). We obtain, up to O( 1
k2 ), that

∂+∂−x1 +
x1x2

k

(
ĝ12 +

ĥ12x
2
1 +

ˆ̃
h12x

2
2

k

)
∂+∂−x2

+
x1

k

(
ĝ12 +

ĥ12x
2
1 + 3

ˆ̃
h12x

2
2

k

)
∂+x2∂−x2 = 0 ,

∂+∂−x2 +
x1x2

k

(
ĝ12 +

ĥ12x
2
1 +

ˆ̃
h12x

2
2

k

)
∂+∂−x1

+
x2

k

(
ĝ12 +

3ĥ12x
2
1 +

ˆ̃
h12x

2
2

k

)
∂+x1∂−x1 = 0 .

(3.1)

For large k we may simplify them by solving for ∂+∂−xa, a = 1, 2. Keeping terms up to

O( 1
k2 ), we find that

∂+∂−x1 +
ĝ12

k
x1∂+x2∂−x2

+
x1

k2

((
ĥ12x

2
1 + 3

ˆ̃
h12x

2
2

)
∂+x2∂−x2 − ĝ2

12x
2
2 ∂+x1∂−x1

)
= 0 ,

∂+∂−x2 +
ĝ12

k
x2∂+x1∂−x1

+
x2

k2

((ˆ̃
h12x

2
2 + 3ĥ12x

2
1

)
∂+x1∂−x1 − ĝ2

12x
2
1 ∂+x2∂−x2

)
= 0 .

(3.2)

From (3.2) one can derive the equations which the fluctuations δxa of the coordinates xa
obey. The fluctuations will be taken around a classical solution which we will still denote

by xa. They will be casted in the form

D̂ab δxb = 0 , (3.3)

– 6 –
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where the operator D̂ is a certain second order in the worldsheet derivatives that will also

depend on the classical solution around which we expand. We will present its explicit

expression after performing the Euclidean analytic continuation and passing to momentum

space. In the conventions of [8], we replace (∂+, ∂−) by 1
2(p̄, p) ≡ (p+, p−). Then after

dividing by p+p− we obtain for D̂ the result

D̂ab = δab +
1

k

(
F̂2 + F̂ ′2 +

1

k
F̂4

)
ab

, (3.4)

where the matrices are given by

F̂2 =
ĝ12

p+p−

(
∂+x2∂−x2 0

0 ∂+x1∂−x1

)
,

F̂ ′2 = ĝ12

 0 x1∂+x2

p+
+ x1∂−x2

p−

x2∂+x1

p+
+ x2∂−x1

p−
0

 ,

(3.5)

and

F̂4 =
1

p+p−

(
(F̂4)11 (F̂4)12

(F̂4)21 (F̂4)22

)
,

(F̂4)11 = 3
(
ĥ12x

2
1 +

ˆ̃
h12x

2
2

)
∂+x2∂−x2 − ĝ2

12x
2
2 ∂+x1∂−x1 ,

(F̂4)22 = 3
(ˆ̃
h12x

2
2 + ĥ12x

2
1

)
∂+x1∂−x1 − ĝ2

12x
2
1 ∂+x2∂−x2 .

(3.6)

Note that we have not provided the expressions for (F̂4)12 and (F̂4)21, since their form will

be irrelevant for the discussion that follows. Integrating out the fluctuations, gives the

effective Lagrangian of our model which reads

− Leff = L(0)
k,λ +

∫ µ d2p

(2π)2
ln(det D̂)−1/2 , (3.7)

where L(0)
k,λ is the Lagrangian (2.16) on the classical solution. This integral is logarithmi-

cally divergent with respect to the UV mass scale µ. The logarithmic term is isolated by

performing the large momentum expansion of the integrand and keeping terms proportional

to 1
|p|2 , where |p|2 = pp̄. Next we use the fact that

ln(det D̂) =
1

k
TrF̂2 +

1

k2

(
TrF̂4 −

1

2
TrF̂ ‘2

2

)
+ . . . , (3.8)

where we have included only terms potentially contributing to the logarithmically divergent

term. Then calculating the traces individually one obtains

TrF̂2 =
ĝ12

p+p−

(
∂+x1∂−x1 + ∂+x2∂−x2

)
,

TrF̂4 =
1

p+p−

[(
(3

ˆ̃
h12 − ĝ2

12)x2
2 + 3ĥ12x

2
1

)
∂+x1∂−x1

+
(
(3ĥ12 − ĝ2

12)x2
1 + 3

ˆ̃
h12x

2
2

)
∂+x2∂−x2

]
,

TrF̂ ‘2
2 = 2ĝ2

12

x1x2

p+p−

(
∂+x1∂−x2 + ∂+x2∂−x1

)
,

(3.9)
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where again we have not included terms which will vanish upon the angular integration

that follows. Using polar coordinates, i.e. p = reiω, p̄ = re−iω, in which the integration

measure is d2p = rdrdω, we evaluate the effective action from (3.7) to be (we return back

to the Lorentzian regime)

Seff =
1

2π

∫
d2σ

[(
1− ĝ12

k
lnµ2

)(
∂+x1∂−x1 + ∂+x2∂−x2

)
+
ĝ12

k
x1x2

(
1 +

ĝ12

k
lnµ2

)(
∂+x1∂−x2 + ∂+x2∂−x1

)
− lnµ2

k2

[(
3ĥ12x

2
1 + (3

ˆ̃
h12 − ĝ2

12)x2
2

)
∂+x1∂−x1

+
(
3
ˆ̃
h12x

2
2 + (3ĥ12 − ĝ2

12)x2
1

)
∂+x2∂−x2

]]
+ · · · .

(3.10)

The wavefunction renormalization and field redefinition

x1 =

(
1 +

ĝ12

2k
lnµ2

)(
1 +

ĥ12x̂
2
1 + (3

ˆ̃
h12 − ĝ2

12)x̂2
2

2k2
lnµ2

)
x̂1 ,

x2 =

(
1 +

ĝ12

2k
lnµ2

)(
1 +

ˆ̃
h12x̂

2
2 + (3ĥ12 − ĝ2

12)x̂2
1

2k2
lnµ2

)
x̂2 ,

(3.11)

puts the kinetic term into a canonical form and (3.10) becomes

Seff =
1

2π

∫
d2σ

[
∂+x̂1∂−x̂1 + ∂+x̂2∂−x̂2

+
1

k

(
ĝ12 +

ĝ2
12 + 3ĥ12 + 3

ˆ̃
h12

k
lnµ2

)
x̂1x̂2

(
∂+x̂1∂−x̂2 + ∂+x̂2∂−x̂1

)]
+ · · · .

(3.12)

Demanding now that the action (3.10) is µ-independent, i.e. dLeff
dlnµ2 = 0, and keeping in

mind that we should keep for consistency the leading term in the 1
k expansion we obtain

dĝ12

d lnµ2
= −1

k

(
ĝ2

12 + 3ĥ12 + 3
ˆ̃
h12

)
. (3.13)

Using the specific expression for the couplings (2.17) we finally get that

βλ =
dλ

d lnµ2
= −λ

k
. (3.14)

We have, thus, reproduced the result of [14].

4 Parafermion correlators

The objects naturally arising in the SU(2)/U(1) coset CFT are the parafermions [27].

These will be denoted by Ψ± and Ψ̄± for the holomorphic and anti-holomorphic sectors,

respectively. In this section, we will calculate correlation functions, namely two and four-

point functions, for the λ-deformed versions of the CFT parafermions. At the CFT point
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all correlation functions with an odd number of parafermions vanish. We will show that

the same statement is true for the deformed versions of the correlators, as well. The first

question we address in subsection 4.1 is how the deformation dresses the chirally conserved

SU(2)/U(1) CFT parafermions which have a classical form in terms of the fields θ and

φ [30] . Equipped with their correct form we proceed to calculate in subsection 4.2 the

anomalous dimension of the bilinear in the parafermions operator that perturbs the theory

away from the free point. Our result is in complete agreement with the one obtained earlier

in [28] by the use of methods involving the geometry in the coupling space. In the next two

subsections, we calculate the anomalous dimension of the single λ-dressed parafermion and

all four-point correlation functions involving parafermionic fields. We will develop methods

to deal with Wilson-line factors present in the expressions for the parafermion fields. All

our results will respect the symmetries (2.8) of the action.

4.1 λ-dressed parafermionic fields

In the σ-model (2.1), derived in [1] throughout a certain gauging procedure, the classical

equations of motion for the gauge fields assume the following form

A+ = i(λ−T −D)−1R+ , A− = −i(λ−T −DT )−1L− . (4.1)

As discussed in [19, 22], these λ-dependent fields are the counterparts of the chiral and

anti-chiral currents of the conformal point to which they reduce, up to overall scales, after

taking the limit λ → 0. Hence they provide the correct form of the operator generalizing

the chiral and anti-chiral currents in the presence of λ. The above form was essential for

obtaining the correct anomalous dimensions and correlation functions of currents in the

free field based approach of [26] and this will be the case here, as well.

The aim of this work is to apply the approach of [26] to the case where the deformed

theory is not a deformation of a group based CFT but of a coset CFT, and more specifically

of the SU(2)/U(1) coset CFT. In this case the natural chiral objects of the CFT are

not currents but parafermions. As it happens for the currents in the group case, the

parafermions are dressed when the deformation parameter λ is turned on. The way the

parafermions are dressed should be derived from the same limiting procedure we used

to obtain the action. In order to proceed, recall that we have parametrized the group

element of SU(2) as in (2.5) and that we have chosen the deformation matrix to take the

form λab = diag(λ, λ, λ3), where λ3 corresponds to the Abelian subgroup U(1) in SU(2).

In order to obtain the σ-model action (2.7) one should set the parameter λ3 = 1. In this

procedure the Euler angle φ1 appearing in the group element (2.5) drops out of the σ-model

which instead of being three-dimensional becomes two-dimensional (2.7). We should follow

the same limiting procedure for the gauge fields (4.1) as well. In doing so, we firstly and

most importantly realize that the gauge fields Aa±, a = 1, 2, 3 retain an explicit dependence

on the angle φ1 which therefore at that level does not decouple. In fact, we will see that

this is a desired feature for the classical description of the parafermions even at the CFT

point. In particular, we find that, after passing to the Euclidean regime, the gauge fields
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projected, via the above limiting procedure, to the coset take the form

A1
+ =

λ√
2

(
Ψ+ −Ψ−

)
, A2

+ = −i λ√
2

(
Ψ+ + Ψ−

)
,

A1
− = − λ√

2

(
Ψ̄+ − Ψ̄−

)
, A2

− = i
λ√
2

(
Ψ̄+ + Ψ̄−

)
,

(4.2)

where the Ψ’s, as we will see, will be the λ-deformed parafermions. They are given in terms

of the angles parametrizing the group element g, as follows after the analytic continuation

to the Euclidean regime

Ψ+ =
1

1− λ2

(
(e−iφ + λeiφ)∂θ − i(e−iφ − λeiφ) tan θ∂φ

)
e−iφ1 ,

Ψ− =
1

1− λ2

(
(eiφ + λe−iφ)∂θ + i(eiφ − λe−iφ) tan θ∂φ

)
eiφ1 ,

Ψ̄+ =
1

1− λ2

(
(eiφ + λe−iφ)∂̄θ + i(eiφ − λe−iφ) tan θ∂̄φ

)
e−iφ1 ,

Ψ̄− =
1

1− λ2

(
(e−iφ + λeiφ)∂̄θ − i(e−iφ − λeiφ) tan θ∂̄φ

)
eiφ1 .

(4.3)

The components of the gauge fields along the subgroup U(1) turn out to be

A3
+ =

i√
2

(∂φ1 + J) , A3
− =

i√
2

(
∂̄φ1 − J̄

)
, (4.4)

where the angle φ1 has become imaginary after the analytic continuation to the Euclidean

regime and J and J̄ are given by

J =

((
1− 2λ cosφ+ λ2

)
tan θ ∂φ − 2λ sin 2φ∂θ

)
tan θ

1− λ2
,

J̄ =

((
1− 2λ cosφ+ λ2

)
tan θ ∂̄φ− 2λ sin 2φ ∂̄θ

)
tan θ

1− λ2
.

(4.5)

Under the non-perturbative symmetries (2.8) the Ψ’s transform as

I : Ψ± → −λe∓2iφ1Ψ∓ , Ψ̄± → −λe∓2iφ1Ψ̄∓ ,

II : Ψ± → ∓iΨ± , Ψ̄± → ±i Ψ̄± .
(4.6)

In addition, the gauge fields satisfy the following equations of motion [2]

∂A
g/h
− = −[A

g/h
− , Ah+] , ∂̄A

g/h
+ = −[A

g/h
+ , Ah−] ,

∂Ah− − ∂̄Ah+ = λ−1[A
g/h
+ , A

g/h
− ] ,

Ah± = A3
±t3 , A

g/h
± = Aα±tα , α = 1, 2 .

(4.7)

In order to elucidate the expressions for the Ψ’s we firstly consider the conformal limit

λ = 0. Then, these become the standard classical parafermions of the coset SU(2)/U(1)

CFT that are given by [30]

Ψ± = (∂θ ∓ i tan θ∂φ) e∓i(φ+φ1) , Ψ̄± =
(
∂̄θ ± i tan θ∂̄φ

)
e±i(φ−φ1) . (4.8)
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Using (4.2) and (4.7), we find that the gauge fixing conditions A3
± = 0 imply that the

parafermions Ψ± and Ψ̄± are on-shell chirally and anti-chirally conserved, respectively1

∂̄Ψ± = 0 , ∂Ψ̄± = 0 . (4.9)

In addition, the constraints A3
± = 0 enforces φ1 to satisfy the following equations

∂φ1 = −J0 , ∂̄φ1 = J̄0 ,

J0 = tan2 θ ∂φ , J̄0 = tan2 θ ∂̄φ .
(4.10)

Note that J0 and J̄0 can be obtained from (4.5) after setting λ = 0. Moreover, using (4.10)

one can show that φ1 satisfies on-shell the compatibility condition(
∂∂̄ − ∂̄∂

)
φ1 = ∂J̄0 + ∂̄J0 = 0 . (4.11)

The above conservation law results from the U(1) isometry of the SU(2)/U(1) coset CFT.

Given (4.11), one can solve (4.10) to express the angle φ1 as a line integral2

φ1(z, z0) = φ1(z)− φ1(z0) =

∫
C

(
∂φ1dz + ∂̄φ1dz̄

)
=

∫
C

(
−J0dz + J̄0dz̄

)
, (4.12)

where C is a curve connecting the arbitrary base point (z0, z̄0) with the end point (z, z̄).

Note that, given the above, the phase φ1 is independent from the choice of C but depends

only the base and end points. However, correlation functions should not depend on the

arbitrary base point. In the following sections, we will see that this is indeed the case.

However, in the case of non-zero deformation λ 6= 0 the conditions A3
± = 0 can no

longer be imposed, as can be seen from the second equation in (4.7). Nevertheless, one can

impose an alternative gauge fixing condition, namely

A3
+ = − i√

2
F , A3

− =
i√
2
F̄ , (4.13)

where F is at the moment an arbitrary function which will be later specified and F̄ is its

complex conjugate. Equivalently, using (4.4), we find

∂φ1 = −JF , ∂̄φ1 = J̄F , (4.14)

with JF = J + F . The equations (4.14) uniquely determines φ1 on-shell provided that the

following consistency condition is satisfied(
∂∂̄ − ∂̄∂

)
φ1 = ∂J̄F + ∂̄JF = 0 . (4.15)

1The second of (4.7) seems singular in the λ = 0 limit. However, it is also satisfied since A
g/h
± ∼ λ, so

that λ−1[A
g/h
+ , A

g/h
− ] ∼ λ, as λ→ 0.

2In a closed curve it would identically vanish due to Stokes theorem and (4.11)

i

2

∮
C

(
−dz J0 + dz̄ J̄0

)
=

∫
S

d2z
(
∂J̄0 + ∂̄J0

)
= 0 , C = ∂S .
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Equivalently, the last equation implies that F and F̄ should satisfy the relation

∂F̄ + ∂̄F =
2λ

1− λ2

(
(∂θ∂̄θ − ∂φ∂̄φ tan2 θ) sin 2φ+ (∂θ∂̄φ+ ∂φ∂̄θ) tan θ cos 2φ

)
. (4.16)

Similarly to (4.12), we can solve (4.14) and (4.15) and express φ1 as a line integral through

φ1(z, z0) = φ1(z)− φ1(z0) =

∫
C

(
−JFdz + J̄Fdz̄

)
. (4.17)

In what follows, we shall expand the parafermions (4.3), as well as the phase (4.14), for

k � 1 and keep terms up to order 1
k . This is a straightforward calculation which can be

summarized in the following steps. Firstly, we zoom θ around zero as in (2.9). Then we

express the variables (ρ, φ) in terms of (y1, y2) by using (2.10). Subsequently, we perform the

field redefinition of (2.14) keeping terms up to order 1
k . Finally, we rewrite all expressions

in terms of chiral coordinates, namely x± = x1 ± ix2. The end result is given by the

following expressions (we dismiss an overall factor of 1√
2k(1−λ2)

)

Ψ+ =

(
∂x− +

F+

8k(1− λ2)

)
e−iφ1 , Ψ− =

(
∂x+ −

F−
8k(1− λ2)

)
eiφ1 ,

Ψ̄+ =

(
∂̄x+ −

F̄+

8k(1− λ2)

)
e−iφ1 , Ψ̄− =

(
∂̄x− +

F̄−
8k(1− λ2)

)
eiφ1 ,

(4.18)

where

F+ = (x2
+ − x2

−)
(
(1 + λ2)∂x+ − 2λ∂x−)

)
,

F− = (x2
+ − x2

−)
(
(1 + λ2)∂x− − 2λ∂x+)

)
,

F̄+ = (x2
+ − x2

−)
(
(1 + λ2)∂̄x− − 2λ∂̄x+)

)
,

F̄− = (x2
+ − x2

−)
(
(1 + λ2)∂̄x+ − 2λ∂̄x−)

)
.

(4.19)

Furthermore, the currents (4.5) have the following large k expansion

J =
i

4k(1− λ2)

(
((1 + λ2)x+ − 2λx−)∂x− − ((1 + λ2)x− − 2λx+)∂x+

)
,

J̄ =
i

4k(1− λ2)

(
((1 + λ2)x+ − 2λx−)∂̄x− − ((1 + λ2)x− − 2λx+)∂̄x+

)
.

(4.20)

Note that the condition (4.14) determines φ1 provided that F satisfies on-shell the condition

∂F̄ + ∂̄F = − iλ

k(1− λ2)
(∂x+∂̄x+ − ∂x−∂̄x−) . (4.21)

Using the equation of motion (3.2), we find that to O( 1
k ) (4.21) is solved by3

F = − iλ

2k(1− λ2)
(x+∂x+ − x−∂x−) , (4.22)

3To O( 1
k

) the equations of motion (3.2) read ∂∂̄x± = 0 .
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Employing the latter and (4.20), we find that

JF =
i

4k

1 + λ2

1− λ2
(x+∂x− − x−∂x+) ,

J̄F =
i

4k

1 + λ2

1− λ2

(
x+∂̄x− − x−∂̄x+

)
,

(4.23)

which generate φ1 through (4.17). Let us note that the parafermions in (4.18), with the

phase factor φ1 of (4.17) with (4.23), are not on-shell chirally and anti-chirally conserved

for λ 6= 0, since

∂̄Ψ± = ∓i ∂x∓ F̄ e∓iφ1 , ∂Ψ̄± = ±i ∂̄x± F e∓iφ1 . (4.24)

We close this subsection by noticing that in this set of variables the two symmetries of (2.8)

are mapped respectively to

I : λ→ λ−1 , k → −k ,

II : λ→ −λ , x± → ±ix± ,
(4.25)

under which the parafermions (4.18) transform as

I : Ψ± → Ψ± , Ψ̄± → Ψ̄± ,

II : Ψ± → ∓iΨ± , Ψ̄± → ±i Ψ̄± ,
(4.26)

while (4.20) and (4.23) remain intact. In the computations which follow we shall make use

of (4.18), with the phase factor φ1 of (4.17), (4.23), keeping terms up to order O( 1
k ).

4.2 The anomalous dimension of parafermion bilinear

The aim of this subsection is to calculate the anomalous dimension of the operator that

perturbs the SU(2)/U(1) CFT. This operator is bilinear in the parafermions and its form

is given by the classical parafermions bilinear [1]

O = Ψ+Ψ̄− + Ψ−Ψ̄+ , (4.27)

where we note that the phase factors cancel, as one may readily verify using (4.8).

Taking the large k-limit we obtain that the leading term of O is given by 2(∂x1∂̄x1 −
∂x2∂̄x2). Had we kept the leading correction, a bilinear in the parafermions operator would

have been of the generic form (we ignore the irrelevant factor of 2)

O = ∂x1∂̄x1 − ∂x2∂̄x2 +
1

k

4∑
i=1

ciOi + . . . , (4.28)

for some coefficients ci and a basis of operators with engineering dimension (1, 1) Oi.4

However, notice that the overlap of the leading and subleading term in (4.28) is zero. This

4Such a basis is

O1 = x1x2∂x1∂̄x2 , O2 = x1x2∂x2∂̄x1 , O3 =
1

2
x2

1∂x2∂̄x2 , O4 =
1

2
x2

2∂x1∂̄x1 .
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means that one can safely ignore the subleading term in (4.28), at least up to O( 1
k ) which

is the order we are working in the present paper.

In order to proceed, we will also need the interaction terms of the action (2.16) up to

order O( 1
k ). There is a single such term which in the Euclidean regime reads

Sint =
ĝ12

2πk

∫
d2z x1x2(∂x1∂̄x2 + ∂x2∂̄x1)

= − ĝ12

16πk

∫
d2z (x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−) .

(4.29)

The two-point function then reads

〈O(z1, z̄1)O(z2, z̄2)〉 =
2

|z12|4
− ĝ12

2πk

∫
d2z 〈

(
∂x1(z1)∂̄x1(z̄1)− ∂x2(z1)∂̄x2(z̄1)

)
×
(
∂x1(z2)∂̄x1(z2)− ∂x2(z2)∂̄x2(z̄2)

)
×
(
x1x2(∂x1∂̄x2 + ∂x2∂̄x1)

)
(z, z̄)〉

=
2

|z12|4
+ 2

ĝ12

2πk
(I1 + I2) ,

(4.30)

where the minus sign in the second term above, corresponding to a single insertion of the

interaction term, is due to the fact that in the Euclidean regime we have the term e−Sint

in the correlators. By inspecting (4.30) it is straightforward to see that we need two kinds

of contractions, namely

I1 =

∫
d2z 〈∂x1(z1)∂̄x1(z̄1)∂x1(z)x1(z, z̄)〉〈∂x2(z2)∂̄x2(z̄2)∂̄x2(z̄)x2(z, z̄)〉

=

∫
d2z

(z − z1)2(z − z2)(z̄ − z̄1)(z̄ − z̄2)2

(4.31)

and

I2 =

∫
d2z 〈∂x1(z1)∂̄x1(z̄1)∂̄x1(z̄)x1(z, z̄)〉〈∂x2(z2)∂̄x2(z̄2)∂x2(z)x2(z, z̄)〉

=

∫
d2z

(z − z1)(z − z2)2(z̄ − z̄1)2(z̄ − z̄2)
.

(4.32)

Using (B.4) twice we find that

〈O(z1, z̄1)O(z2, z̄2)〉 =
2

|z12|4

(
1 +

2ĝ12

k

(
1 +ln

ε2

|z12|2

))
, (4.33)

from which we read the anomalous dimension of the parafermion bilinear to be

γO =
2ĝ12

k
= −2

k

1 + λ2

1− λ2
. (4.34)

This expression is in perfect agreement with equation (4.16) of [28], where the anoma-

lous dimension of the perturbing operator was found by using the geometry in the space
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of couplings. Notice that in the conformal point the anomalous dimension of the com-

posite operator is twice the anomalous dimension of the holomorphic (anti-holomorphic )

parafermion which equals − 1
k [27].

The reader may wonder if there are other operators with the same engineering dimen-

sion as O which may mix with it. The operators of such equal engineering dimension are

Õ = ∂x1∂̄x1 + ∂x2∂̄x2 +O
(

1

k

)
, Õ± = ∂x1∂̄x2 ± ∂x2∂̄x1 +O

(
1

k

)
, (4.35)

where the corrections are of same form with those for O in (4.28). It turns out that these

operator does not mix with O and among themselves at the free field point and also at

O( 1
k ). Moreover, one may easily show that Õ has the opposite anomalous dimension as that

in (4.34). The anomalous dimension of Õ± is computed for completeness in appendix A.

4.3 Anomalous dimension of the single parafermion

The goal of this subsection is to compute, using the free field expansion, the two-point

functions of the parafermions to order 1
k from which one can read the anomalous dimension

of the deformed parafermion.

We first consider the correlator 〈Ψ+Ψ+〉 . This vanishes at the conformal point since

it is not neutral. Employing the expressions above we find that

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)〉

= +
ĝ12

16πk

∫
d2z〈∂x−(z1)∂x−(z2)

(
(x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−)

)
(z, z̄)〉

+
1

8k(1− λ2)
(〈F+(z1, z̄1)∂x−(z2)〉+ 〈∂x−(z1)F+(z2, z̄2)〉)

− i〈∂x−(z1)∂x−(z2)φ1(z1, z0)〉 − i〈∂x−(z1)∂x−(z2)φ1(z2, z0)〉 = 0 ,

(4.36)

where for the phase φ1 we will use the leading O( 1
k ) of (4.17) with (4.23) so that the corre-

sponding terms in (4.36) are indeed of O( 1
k ). The second of (4.36) involves the interaction

term of the action and vanishes due to the fact that the interaction term is normal ordered.

The third and fourth line of (4.36) originate from the O( 1
k ) corrections to the parafermion

operators and from the phase φ1, respectively. They both vanish either because in the

process one necessarily encounters propagators of the form 〈x+ x+〉 or 〈x− x−〉 which are

identically zero (terms in the fourth line) or because of normal ordering (terms in the

third line).

We now turn to the neutral two point function 〈Ψ+Ψ−〉 . To O( 1
k ) this correlator

equals to

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)〉

= − 2

z2
12

+
1

8k(1− λ2)
(〈F+(z1, z̄1)∂x+(z2)〉 − 〈∂x−(z1)F−(z2, z̄2)〉)

+
ĝ12

16πk

∫
d2z〈∂x−(z1)∂x+(z2)

(
(x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−)

)
(z, z̄)〉

− i〈∂x−(z1)∂x+(z2)φ1(z1, z0)〉+ i〈∂x−(z1)∂x+(z2)φ1(z2, z0)〉 .

(4.37)
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In the above expression, apart from the free part, only the last two terms related to the

phase factor in the parafermions are non-vanishing and equal to

z12

k

1 + λ2

1− λ2

(
−
∫ z1

z0

dz +

∫ z2

z0

dz

)
1

(z − z1)2(z − z2)2

=
1

z2
12

2

k

1 + λ2

1− λ2

(
1 + ln

ε2

z2
12

)
+

2

k

1 + λ2

1− λ2

1

ε z12
.

(4.38)

All other terms in (4.38) vanish due to the fact that both the interaction term and F±
are normal ordered. In evaluating the line integrals of (4.38) we have introduced a small

distance cut-off ε so that the integration point never coincides with the end points of the

integration. Therefore, we find that

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)〉 = − 2

z2
12

(
1− 1

k

1 + λ2

1− λ2

(
1 + ln

ε2

z2
12

))
+

2

ε k

1 + λ2

1− λ2

1

z12
. (4.39)

The 1
ε pole can be absorbed by a field redefinition of the Ψ±’s, namely Ψ± → Ψ± +

δΨ±, where

δΨ± = −f±
ε k
x∓ , f+ − f− =

1 + λ2

1− λ2
. (4.40)

Note that we do not need to specify both parameters f±, just their difference as above

and in addition this relation is invariant under the symmetries (4.26). At λ = 0, the

correlator (4.38) is in agreement with the CFT result to leading order in 1
k after one makes

the following rescaling

Ψ = i
√

2

(
1− 1

2k

)
ΨCFT . (4.41)

Finally, from (4.39) one can read the anomalous dimension of Ψ which is given by

γΨ = −1

k

1 + λ2

1− λ2
. (4.42)

Notice that γΨ is half the anomalous dimension of the composite operator (4.34). At the

conformal point it is indeed, the deviation from unity of the holomorphic dimension (equal

to the anti-holomorphic one) of the parafermion which, as already noted, equals 1− 1
k . For

completeness, we note that the conjugate correlator 〈Ψ̄+Ψ̄−〉 takes the form (4.39) as well.

4.4 Four-point correlation functions

In this section, we calculate four-point correlators of parafermions. To begin with, note

that at the CFT point correlation functions with an odd number of parafermions vanish. In

the following we will argue that the same is true for the deformed model as well. Indeed, to

O( 1
k ) the number of fields involved in the correlator is odd since the phase may contribute

two and the insertion from the interacting part of the action four fields. Any correlator with

an odd number of free fields vanishes. This argument should hold to all orders in the large

k expansion since every extra power of 1
k contributes two more fields in the correlators.

At the CFT point correlators with odd number of holomorphic (or antiholomorphic)

parafermions also vanish identically due to charge conservation. However, CFT point
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correlators with an even number of holomorphic (or antiholomorphic) parafermions and

neutral do not vanish. Away from the CFT point correlators with an even number of fields

receive corrections. Using conformal perturbation one can easily convince oneself that the

corrections come to even order in the λ expansion.

4.4.1 Correlation function 〈Ψ+Ψ−Ψ+Ψ−〉

Consider, as our first example, the four-point function

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)Ψ+(z3, z̄3)Ψ−(z4, z̄4)〉

=
4

z2
12z

2
34

+
4

z2
14z

2
23

+
1

8k(1− λ2)

(
〈F+(z1, z̄1)∂x+(z2)∂x−(z3)∂x+(z4)〉

+〈F+(z3, z̄3)∂x+(z2)∂x−(z1)∂x+(z4)〉
−〈F−(z2, z̄2)∂x−(z1)∂x−(z3)∂x+(z4)〉

−〈F−(z4, z̄4)∂x−(z1)∂x+(z2)∂x−(z3)〉
)

(4.43)

−i〈φ1(z1, z0)∂x−(z1)∂x+(z2)∂x−(z3)∂x+(z4)〉
−i〈φ1(z3, z0)∂x−(z1)∂x+(z2)∂x−(z3)∂x+(z4)〉
+i〈φ1(z2, z0)∂x−(z1)∂x+(z2)∂x−(z3)∂x+(z4)〉
+i〈φ1(z4, z0)∂x−(z1)∂x+(z2)∂x−(z3)∂x+(z4)〉

+
ĝ12

16πk

∫
d2z〈∂x−(z1)∂x+(z2)∂x−(z3)∂x+(z4)

×
(
(x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−)

)
(z, z̄)〉 .

To calculate this is a rather tedious but straightforward task. To start, let us briefly

describe the various contributions. The lines 3–6 of (4.43), originate from the 1
k corrections

of Ψ’s (4.19) and involve only free contractions, straightforwardly yielding

2

k

1 + λ2

1− λ2

(
1

z14z34z2
24

+
1

z12z14z2
13

− 1

z12z23z2
24

− 1

z23z24z2
12

)
. (4.44)

The lines 7–10, which originate from the phase φ1, give after performing ordinary integra-

tions over z the following contribution

− 8

k

1 + λ2

1− λ2

(
1

z2
12z

2
34

+
1

z2
14z

2
23

)
+

8

k

1 + λ2

1− λ2

1

z12z23z14z34

+
8

k

1 + λ2

1− λ2

(
1

z2
12z

2
34

+
1

z2
14z

2
23

)
ln
z12z23z14z34

z13z24
.

(4.45)

Finally, from the last two lines we find

2ĝ12

k

(
1

z14z34z2
24

+
1

z12z14z2
13

− 1

z12z23z2
24

− 1

z23z24z2
12

)
. (4.46)

This result is easily obtained since the integration over z is immediately performed since

the free contractions necessarily give contact terms of the form δ(2)(z − zi).
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Adding the various contributions we finally find

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)Ψ+(z3, z̄3)Ψ−(z4, z̄4)〉

= 4
1− 2

k
1+λ2

1−λ2

z2
12z

2
34

+ 4
1− 2

k
1+λ2

1−λ2

z2
14z

2
23

+
8

k

1 + λ2

1− λ2

1

z12z23z14z34
+

8

k

1 + λ2

1− λ2

(
1

z2
12z

2
34

+
1

z2
14z

2
23

)
ln
z12z23z14z34

z13z24
.

(4.47)

At λ = 0, this is in agreement with the CFT result [27] after the rescaling (4.41) and

of course in the large k expansion up to O( 1
k ). Furthermore, this result is in agreement

with perturbation which predicts that corrections to the correlator under consideration

should start at order λ2. This is so because the contribution linear in λ will involve a

single anti-holomorphic parafermion and will, thus, be vanishing. Lastly, we would like to

comment on the efficiency of the method initiated in [26] and further developed here. Our

method provides the exact in the deformation parameter λ correlators in contradistinction

to the usual conformal perturbation theory which only gives results order by order in the

λ expansion. The power of our approach resides on the fact that the exact in λ effective

action (see (2.7)) is at hand.

4.4.2 Correlation function 〈Ψ+Ψ+Ψ̄−Ψ̄−〉

Our second four-point correlation function has the following large k expansion

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)Ψ̄−(z3, z̄3)Ψ̄−(z4, z̄4)〉

=
1

8k(1− λ2)

(
〈F+(z1, z̄1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)〉

+〈F+(z2, z̄2)∂x−(z1)∂̄x−(z̄3)∂̄x−(z̄4)〉
+〈F̄−(z3, z̄3)∂x−(z1)∂x−(z2)∂̄x−(z̄4)〉

+〈F̄−(z4, z̄4)∂x−(z1)∂x−(z2)∂̄x−(z̄3)〉
)

(4.48)

−i〈φ1(z1, z0)∂x−(z1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)〉
−i〈φ1(z2, z0)∂x−(z1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)〉
+i〈φ1(z3, z0)∂x−(z1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)〉
+i〈φ1(z4, z0)∂x−(z1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)〉

+
ĝ12

16πk

∫
d2z 〈∂x−(z1)∂x−(z2)∂̄x−(z3)∂̄x−(z̄4)

×
(
(x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−)

)
(z, z̄)〉 .

A non-vanishing correlator requires equal number of x+ and x−’s. Clearly, only the last

two lines may contribute, giving

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)Ψ̄−(z3, z̄3)Ψ̄−(z4, z̄4)〉

=
ĝ12

16πk

∫
d2z〈∂x−(z1)∂x−(z2)∂̄x−(z̄3)∂̄x−(z̄4)(x2

+∂x+∂̄x+)(z, z̄)〉
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=
ĝ12

πk

∫
d2z

(
1

(z − z1)(z − z2)2(z̄ − z̄3)(z̄ − z̄4)2

+
1

(z − z1)2(z − z2)(z̄ − z̄3)(z̄ − z̄4)2

+
1

(z − z1)(z − z2)2(z̄ − z̄3)2(z̄ − z̄4)

+
1

(z − z1)2(z − z2)(z̄ − z̄3)2(z̄ − z̄4)

)
. (4.49)

To evaluate the above integrals, we use (B.3) four times with appropriate renaming of the

zi’s. Adding them up we find a vanishing result

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)Ψ̄−(z3, z̄3)Ψ̄−(z4, z̄4)〉 = 0 . (4.50)

4.4.3 Correlation function 〈Ψ+Ψ−Ψ̄+Ψ̄−〉

The third four-point correlator that we will consider is the following

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)Ψ̄+(z3, z̄3)Ψ̄−(z4, z̄4)〉

=
4

z2
12z̄

2
34

+
1

8k(1− λ2)

(
〈F+(z1, z̄1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)〉

−〈F−(z2, z̄2)∂x−(z1)∂̄x+(z̄3)∂̄x−(z̄4)〉
−〈F̄+(z3, z̄3)∂x−(z1)∂x+(z2)∂̄x−(z̄4)〉

+〈F̄−(z4, z̄4)∂x−(z1)∂x+(z2)∂̄x+(z̄3)〉
)

(4.51)

−i〈φ1(z1, z0)∂x−(z1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)〉
+i〈φ1(z2, z0)∂x−(z1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)〉
−i〈φ1(z3, z0)∂x−(z1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)〉
+i〈φ1(z4, z0)∂x−(z1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)〉

+
ĝ12

16πk

∫
d2z〈∂x−(z1)∂x+(z2)∂̄x+(z̄3)∂̄x−(z̄4)

×
(
(x2

+ − x2
−)(∂x+∂̄x+ − ∂x−∂̄x−)

)
(z, z̄)〉 .

To evaluate (4.51) is a rather cumbersome but straightforward computation. Let us briefly

describe the various contributions. The lines 3–6, related to the 1
k corrections of the

parafermions Ψ’s (4.19), trivially vanish once we ignore contact terms involving only exter-

nal points. The lines 7–10, that are related to the phase φ1 of Ψ’s, yield after performing

ordinary integrations the following result

1

k

1 + λ2

1− λ2

4

z2
12z̄

2
34

(
−2− ln

ε2

z2
12

− ln
ε2

z̄2
34

+ ln
|z23|2|z14|2

|z13|2|z24|2

+
1

2

(
z12z34

z24z23
+
z12z34

z13z14
+
z̄12z̄34

z̄23z̄13
+
z̄12z̄34

z̄14z̄24

))
.

(4.52)
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Finally, the last two lines of (4.51) originating from the interaction insertion equals to

4

k

ĝ12

z2
12z̄

2
34

(
ln
|z23|2|z14|2

|z13|2|z24|2
+

1

2

(
z12z34

z24z23
+
z12z34

z13z14
+
z̄12z̄34

z̄23z̄13
+
z̄12z̄34

z̄14z̄24

))
. (4.53)

In order to obtain the last result, we have used twice (B.3) with an appropriate renaming

of the zi’s.

Adding all the above contributions we find that

〈Ψ+(z1, z̄1)Ψ−(z2, z̄2)Ψ̄+(z3, z̄3)Ψ̄−(z4, z̄4)〉

=
4

z2
12z̄

2
34

(
1− 2

k

1 + λ2

1− λ2
− 1

k

1 + λ2

1− λ2

(
ln

ε2

z2
12

+ ln
ε2

z̄2
34

))
.

(4.54)

At λ = 0, this result is under the rescaling (4.41) in agreement with the CFT result which

enforces factorization of the four-point function into two-point functions holomorphic and

anti-holomorphic, respectively.

4.4.4 Correlation function 〈Ψ+Ψ+Ψ+Ψ−〉

The only contribution for this correlator comes from the free contractions involving the 1
k

terms in the expression for the parafermions Ψ’s (4.18) and (4.19), yielding finally

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)Ψ+(z3, z̄3)Ψ−(z4, z̄4)〉

=
4λ

k(1− λ2)

(
1

z2
14z12z13

− 1

z2
24z12z23

+
1

z2
34z23z13

− 1

z2
14z24z34

− 1

z2
24z14z34

− 1

z2
34z14z24

)
= 0 . (4.55)

We should mention that the result above is consistent with perturbation theory around

the conformal point which predicts that it is exactly zero to all orders in the 1
k expansion

since the correlator at hand is not a neutral one.

4.4.5 Correlation function 〈Ψ+Ψ+Ψ+Ψ+〉

There are two contributions for this correlator. The first one comes from the 1
k terms of

the Ψ’s (4.18) and (4.19), it involves only free contractions and reads

1 + λ2

8k(1− λ2)

(
〈(x2

+∂x+)(z1, z̄1)∂x−(z2)∂x−(z3)∂x−(z4)〉

+ 〈(x2
+∂x+)(z2, z̄2)∂x−(z1)∂x−(z3)∂x−(z4)〉

+ 〈(x2
+∂x+)(z3, z̄3)∂x−(z1)∂x−(z2)∂x−(z4)〉

+ 〈(x2
+∂x+)(z4, z̄4)∂x−(z1)∂x−(z2)∂x−(z3)〉

)
.

(4.56)

The second contribution comes from the interaction insertion and is given by

ĝ12

16πk

∫
d2z 〈∂x−(z1)∂x−(z2)∂x−(z3)∂x−(z4)(x2

+∂x+∂̄x+)(z, z̄)〉 . (4.57)
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To evaluate this integral we contract ∂̄x+ with the (∂x−)i’s yielding contact terms pro-

portional to δ(2)(z − zi). Evaluating then the integral we obtain an expression with free

contractions among external point only, which is, after substituting ĝ12 from (2.17), is

precisely the opposite of that in (4.56). Combining these two contributions we find the

vanishing result

〈Ψ+(z1, z̄1)Ψ+(z2, z̄2)Ψ+(z3, z̄3)Ψ+(z4, z̄4)〉 = 0 . (4.58)

As in the previous correlation function this result is in full agreement with perturbation

theory around the conformal point and vanishes to all orders in the 1
k expansion.

A couple of important comments are in order. The first one concerns the 1
ε poles in

the calculation of the four-point functions. These infinite contributions have been sup-

pressed in the presentation because on can absorb them by employing precisely the same

redefinition (4.40) used in the two-point function (4.37). The second comment concerns

the form of the two and four-point correlators. By just inspecting the results one can see

that they behave as if the theory was conformal albeit with a redefined level k̃ = k 1−λ2

1+λ2 . In

particular, this implies that the λ-dressed parafermions of the deformed theory will satisfy

the same Poisson bracket algebra as the one satisfied by the parafermions at the conformal

point but with k̃ in the place of k.

5 Discussion and future directions

We studied the λ-deformed SU(2)/U(1) σ-model by using a free field expansion instead of

conformal perturbation and the underlying parafermionic algebras. Expanding along the

lines of [26] the perturbation is organized as a series expansion for large values of k. This

approach has the advantage that all deformation effects are fully encoded in the coupling

constant coefficients and in the form of the operators. This prescription allowed for the

computation the RG flow of the deformation parameter λ and the anomalous dimension of

the parafermion bilinear perturbation, driving the theory away from the conformal point,

as exact functions of λ and up to O( 1
k ). Then, we introduced the corresponding λ-dressed

parafermions containing a non-local phase in their expressions — which ensures on-shell

chirality at the conformal point. Subsequently, we evaluate their anomalous dimensions

and their four-point functions, odd-point correlation functions identically vanish, again to

all-orders in λ and up to O( 1
k ). The derived results are in agreement with CFT expectations

at λ = 0 and are invariant under the duality-type symmetries (2.8).

The SU(2)/U(1) is the simplest possible symmetric coset space. It should be possible

to study other λ-deformed coset CFT based on symmetric spaces using free fields as a

basis. Furthermore, it was argued in [28] that the λ-deformed SU(2) × SU(2)/U(1) and

SU(2)/U(1) CFTs are closely related since they share the same symmetries and β-function

to all-orders in λ and k. It would be interesting to check and understand this relation

further using the techniques of the present work.

Another interesting direction is to extend the current set for deformations of non-

symmetric coset CFTs. A class of such integrable models is the λ-deformed Gk1 ×
Gk2/Gk1+k2 coset CFTs, which, assuming that k1 > k2, flows in the infrared to the

Gk2 × Gk1−k2/Gk1 coset CFT [6]. These models have a richer parameter space and as a
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result a very interesting generalization of the duality-type symmetries (2.8) (see eq. (2.17)

in that work) which dictates their behavior and which reduces to the first one in (2.8)

for equal levels. In addition, in these models the perturbation is driven by non-Abelian

parafermion bilinears [31] which are much less understood than their Abelian counter-

parts [30] we utilized in the present work. We believe that our free field techniques will be

instrumental in understanding these type of non-symmetric coset CFTs.

The present setup may be applied in the study of the two-parameter integrable de-

formations of symmetric coset spaces constructed in [7]. Such type of deformations are

applicable to a restricted class of symmetric spaces provided that they satisfy a certain

gauge invariance condition involving a non-trivial solution of the Yang-Baxter equation (see

eq. (5.19) in that work). Examples include the SU(2)/U(1) [7], the SO(N + 1)/SO(N) [32]

and the recently studied CPn models [33]. In the aforementioned examples, this second

parameter can be set to zero via parameter redefinitions and/or diffeomorphisms. Such

redefinitions come with caveats due to the topological nature of k and the non-trivial mon-

odromies that the associated parafermions will presumably have. Therefore, a proper study

of this class of models, in the presence context in terms of free fields, should include both

deformation parameters.
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A The anomalous dimension of Õ±

In this appendix we compute the anomalous dimension of the operator Õ± defined in (4.35).

The operator Õ+ arises, in the large k-limit, if we had we considered a perturbation of the

form (4.27) but with a negative relevant sign. At the CFT point this should have anomalous

dimension − 2
k since it corresponds to just the difference of two parafermion bilinears.

Consider the two-point function

〈Õc(z1, z̄1)Õc(z2, z̄2)〉 =
1 + c2

|z12|4
− ĝ12

2πk

∫
d2z 〈

(
∂x1(z1)∂̄x2(z̄1) + c ∂x2(z1)∂̄x1(z̄1)

)
×(∂x1(z2)∂̄x2(z̄2) + c ∂x2(z2)∂̄x1(z̄2))

×
(
x1x2(∂x1∂̄x2 + ∂x2∂̄x1)

)
(z, z̄)〉

=
1 + c2

|z12|4
− ĝ12

2πk

2∑
i,j,k=1

ci+j−2Iijk , (A.1)
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where for convenience we have slightly generalize Õ± to Õc(z, z̄) = ∂x1(z)∂̄x2(z̄) +

c ∂x2(z)∂̄x1(z̄) by introducing an arbitrary relative constant c. In the various integrals

Iijk the index structure implies that it arises from the i-th, the j-th and the k-th term in

the first, second and third factors in the integrand in (A.1). They are given by

I111 =

∫
d2z 〈∂x1(z1)∂x1(z2)∂x1(z)x1(z, z̄)〉〈∂̄x2(z̄1)∂̄x2(z̄2)∂̄x2(z̄)x2(z, z̄)〉

=

∫
d2z

∣∣∣∣ 1

(z − z1)2(z − z2)
+

1

(z − z2)2(z − z1)

∣∣∣∣2 . (A.2)

To evaluate the integral we first expand the absolute value

I111 =

∫
d2z

|z − z1|4|z − z2|2
+

∫
d2z

|z − z2|4|z − z1|2
(A.3)

+

∫
d2z

(z − z1)2(z − z2)(z̄ − z̄1)(z̄ − z̄2)2
+

∫
d2z

(z − z2)2(z − z1)(z̄ − z̄2)(z̄ − z̄1)2
.

Then we use twice (B.5) and (B.4) for the first and second line respectively, yielding

I111 = − 4π

|z12|4

(
1 + ln

ε2

|z12|2

)
+

4π

|z12|4

(
1 + ln

ε2

|z12|2

)
= 0 . (A.4)

Finally, note that the integrand in (A.2) is positive definite. The explanation why the

integral turns out to be zero lies in the fact that it is actually divergent and we may absorb

the divergent piece by a field redefinition of the operators Õ± as explained below (B.5).

It is easily seen that adding to Õ± in (4.35) a term proportional to 1
ε2k
x1x2 does the job

without giving rise to a mixing with the other operators of engineering dimension two, i.e.

with O and Õ.

In addition, we have that

I112 =

∫
d2z 〈∂x1(z1)∂x1(z2)∂̄x1(z̄)x1(z, z̄)〉〈∂̄x2(z̄1)∂̄x2(z̄2)∂x2(z)x2(z, z̄)〉 , (A.5)

has no contribution since it gives rise to contact terms on external points. In addition,

I211 =

∫
d2z 〈∂̄x1(z̄1)∂x1(z2)∂x1(z)x1(z, z̄)〉〈∂x2(z1)∂̄x2(z̄2)∂̄x2(z̄)x2(z, z̄)〉

=

∫
d2z

|z − z1|2|z − z2|4
,

(A.6)

and

I212 =

∫
d2z 〈∂̄x1(z̄1)∂x1(z2)∂̄x1(z̄)x1(z, z̄)〉〈∂x2(z1)∂̄x2(z̄2)∂x2(z)x2(z, z̄)〉

=

∫
d2z

|z − z1|4|z − z2|2
,

(A.7)

Adding the last two integrals and using twice (B.5) we find

I211 + I212 = − 4π

|z12|4

(
1 + ln

ε2

|z12|2

)
, (A.8)
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where the divergent pieces have been dismissed (see discussion below (A.4)). Similarly,

I121 =

∫
d2z 〈∂x1(z1)∂̄x1(z̄2)∂x1(z)x1(z, z̄)〉〈∂̄x2(z̄1)∂x2(z2)∂̄x2(z̄)x2(z, z̄)〉

= I212

(A.9)

and

I122 =

∫
d2z 〈∂x1(z1)∂̄x1(z̄2)∂̄x1(z̄)x1(z, z̄)〉〈∂̄x2(z̄1)∂x2(z2)∂x2(z)x2(z, z̄)〉

= I211 .

(A.10)

Finally,

I221 =

∫
d2z 〈∂̄x1(z̄1)∂̄x1(z̄2)∂x1(z)x1(z, z̄)〉〈∂x2(z1)∂x2(z2)∂̄x2(z̄)x2(z, z̄)〉 ,

= I112

(A.11)

and

I222 =

∫
d2z 〈∂̄x1(z̄1)∂̄x1(z̄2)∂̄x1(z̄)x1(z, z̄)〉〈∂x2(z1)∂x2(z2)∂x2(z)x2(z, z̄)〉

= I111 .

(A.12)

Putting all together in (A.1) and using (A.8), we find:

〈Õc(z1, z̄1)Õc(z2, z̄2)〉 =
1 + c2

|z12|4

(
1 +

4c

1 + c2

ĝ12

k

(
1 + ln

ε2

|z12|2

))
. (A.13)

Hence, the anomalous dimension of Õ± reads

γÕ± = ±2ĝ12

k
= ∓2

k

1 + λ2

1− λ2
. (A.14)

Hence, the operator Õ+ has an anomalous dimension that matches with (4.34) as expected

and now has been explicitly verified. The operator Õ− corresponds to a marginally irrele-

vant operator.

B Various integrals

In this appendix we shall provide the various (single) integrals which appear in the present

work. Our regularization scheme is as follows: internal points in integrals can coincide with

external ones but coincident external points are not allowed. In addition, to regularize

infinities we introduce a very small disc of radius ε around external points as well.

We shall need the basic integrals∫
d2z

(z − z1)(z̄2 − z̄)
= π ln |z12|2 ,

∫
d2z

(z − z1)(z̄1 − z̄)
= π ln ε2 ,∫

d2z

(z − z1)2(z̄2 − z̄)
=

π

z12
,

∫
d2z

(z − z1)(z̄ − z̄2)2
=

π

z̄12
,

(B.1)
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along with the identity

1

(z − z1)(z − z2)
=

1

z12

(
1

z − z1
− 1

z − z2

)
. (B.2)

Using the above regularization scheme and (B.1), (B.2) we find that∫
d2z

(z − z1)(z − z2)2(z̄ − z̄3)(z̄ − z̄4)2

= − π

z2
12z̄

2
34

(
ln
|z23|2|z14|2

|z13|2|z24|2
+
z12z34

z24z23
+
z̄12z̄34

z̄13z̄23

)
. (B.3)∫

d2z

(z − z1)2(z − z2)(z̄ − z̄1)(z̄ − z̄2)2

=
2π

|z12|4

(
1 + ln

ε2

|z12|2

)
+

π

|z12|2

∫
d2z

(
z̄−1

12

(z − z1)2(z̄ − z̄1)
− z−1

12

(z − z2)(z̄ − z̄2)2

)
=

2π

|z12|4

(
1 + ln

ε2

|z12|2

)
, (B.4)

since it can be easily seen that in our regularization scheme the integral in the last line

of (B.4) is zero. For instance,
∫

d2z
(z−z1)(z̄−z̄1)2 = i

2

∮
Cε

dz
|z−z1|2 , where Cε is a small circle

of radius ε surrounding z = z1. Then, the last integral indeed vanishes. In addition,

using (B.1), (B.2) we find∫
d2z

|z − z1|4|z − z2|2
= − 2π

|z12|4

(
1 + ln

ε2

|z12|2

)
+

1

|z12|2

∫
d2z

|z − z1|4
. (B.5)

Finally, the integral in the last line of (B.5) equals π
ε

2 and is clearly divergent as ε → 0.

This integral arises in the computation of the anomalous dimension of the operators Õ±
in appendix A. In order to absorb this divergent piece the operators require a redefinition

similar to that for the single parafermion in subsection 4.3. With this in mind we may

safely ignore this term all together and set it to zero.

Finally, using (B.1), (B.2) we find∫
d2z

|z − z1|2|z − z2|2
= − 2π

|z12|2
ln

ε2

|z12|2
. (B.6)
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