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1 Introduction and summary

The swampland program aims at characterising low energy effective theories of quantum

gravity. In particular, it provides general criteria for models to descend from string theory,

and be part of the landscape, or not and be part of the swampland. The program al-

lows in principle to discriminate among various phenomenological models, which otherwise

would appear on the same footing, and is thus of interest to phenomenology, especially

for cosmological or particle physics models. However, most of the existing criteria are

for now at the state of conjectures. Still, these conjectures are heavily discussed, tested

and refined. A recent review can be found in [1]. Beyond a mere list of criteria, there

is a hope to understand deeper structures in quantum gravity and effective theories, that

would be responsible for all of these characterisations. As a first step in this direction, it
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appears that most of these conjectures are related to each other, forming more a web of

conjectures rather than a list. In this paper, we are interested in two conjectures and their

refinements, the de Sitter conjecture and the distance conjecture, as well as in tentative

relations between them.

The first conjecture analysed here is the swampland de Sitter conjecture, originally

proposed in [2]. It is notoriously difficult to get de Sitter solutions in string theory, meaning

backgrounds with a de Sitter space-time, in a well-controlled manner. This is particularly

known in the classical regime, where many no-go theorems were established against such

solutions. We give a brief overview of this topic in section 2.1. This situation has motivated

the proposal of a swampland conjecture. It applies to a d-dimensional theory, d > 2, of

scalar fields ϕi coupled to gravity, of the form

S =

∫
ddx
√
|gd|

(
M2
p

2
Rd −

1

2
gij∂µϕ

i∂µϕj − V (ϕ)

)
, (1.1)

with Mp the Planck mass (set to 1 in the following), µ the d-dimensional indices, gij the

field space metric and V (ϕ) the scalar potential. For such a theory to be a low energy

effective theory of string theory, the de Sitter conjecture [2] states that its potential should

obey the following inequality (in Planckian units)

|∇V | ≥ c V , c ∼ O(1) , (1.2)

where |∇V | =
√
gij∂iV ∂jV . At an extremum of the potential where ∇V = 0, from (1.1)

one obtains a static solution verifying Rd = V × 2d/(d − 2). The inequality (1.2) then

implies the absence of any such de Sitter solution. Beyond the extrema, this inequality is

about the slope of the potential. This has important consequences for cosmological models,

in particular for models of inflation in the early universe, as well as for the description of the

late universe, for which quintessence is advocated by this conjecture. These implications

were first explored in [3] and then much debated. Further arguments led to the idea

that this conjecture was too strong and needed a refinement, to allow in particular for de

Sitter maxima. Such a refinement was proposed in [4] (see also [5–8], and the recent [9]).

Additionally, the paper [4] brought the important idea that the conjecture (1.2) would only

be valid in the asymptotics of field space, generalising the result of [10]. Considering such

large field distances corresponds to having specific regimes of string theory, for instance a

classical, perturbative regime, which is the one where we can restrict to 10d supergravities,

as we will do in section 2. This idea of considering the large field limit fits nicely with the

fact that many no-go theorems were obtained precisely in this framework.

More generally, it is fair to say that the initial de Sitter conjecture had two drawbacks:

it was lacking of a deeper physical motivation and it did not provide a definite value for

c, which is crucial for cosmology. Interestingly, the recent Trans-Planckian Censorship

conjecture (TCC) proposed in [11] answers these two points (see also [12]). Based on some

physical arguments regarding quantum fluctuations, an inequality similar to (1.2), with a

specific value for the bound parameter, was derived in an asymptotic or large field distance

limit (assuming a positive, rolling potential). Denoting the field space geodesic distance
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from a point P to Q as D(P,Q), or simply D = |ϕ− ϕi| for a canonically normalised field

ϕ, the derivation of [11] led to

0 < V (ϕ) < V0 e
−c0D ⇒

〈
|V ′|
V

〉
D→∞

≥ c0 =
2√

(d− 1)(d− 2)
, (1.3)

with constants V0, ϕi, and where one averages the ratio |V ′|/V , considered here for a single

field, and takes the limit of large distances. We reproduce and generalize this derivation

around (4.12). This proposal was also extended to the multi-field case [11]. The inequal-

ity (1.3) thus provides a lower bound value for c in (1.2), in particular

TCC bound: c ≥
√

2

3
≈ 0.8165 in d = 4 . (1.4)

This value was verified in [11] to hold for various examples coming from, or related to,

string theory, and in particular for three no-go theorems on classical de Sitter solutions.

The TCC had further consequences, in particular an upper bound on the lifetime of an

expanding universe, that was shown to be a half of the scrambling time in [13]; we will not

consider here these stability-related aspects. Finally, the cosmological implications of the

TCC, especially for inflation, were heavily discussed, and we refrain here from commenting

on those. Regarding the actual number in (1.4), we simply note that the corresponding

single field exponential quintessence model would be allowed by observational data in a 3σ

region, as displayed in figure 2 of [14] (see also the recent [15]). We will come back to this

bound in detail.

The second conjecture of interest is the (refined) swampland distance conjecture [16–18].

This conjecture first asserts that at any point in the scalar moduli space (or a more general

field space [19]) of a string compactification, one can find another point at an arbitrarily

large geodesic distance D. In addition, in the asymptotic limit D → ∞, the conjecture

claims that an infinite tower of states appears and becomes massless, with a mass-scale m

expressed in Planckian units as

m(ϕ) ≈ mi e
−λD for D →∞ , λ ∼ O(1) , (1.5)

with the initial mass-scale mi = m(ϕi). The refined conjecture states that the tower

appears for a super-Planckian distance D, setting λ ∼ O(1). These new light states signal

a breakdown of the effective field theory description. As we will report in section 3, this

conjecture has been successfully checked in various works, determining the value of λ in

different examples.

Interestingly, both conjectures display a number of order one, c and λ. On general

grounds, if conjectures are related, then the various numbers entering them should be re-

lated as well. As we will review in section 4.1, relations between the distance conjecture and

the de Sitter conjecture have been proposed, starting with [4]. We would infer a relation be-

tween c and λ. A natural question is then whether the TCC bound (1.4) gets translated into

a lower bound on λ. These are the topics of this work, and we now summarize our results.
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Summary of the results. In section 2, we focus on no-go theorems against classical de

Sitter solutions and their related c value. The aim is to check to larger extent, namely ten

no-go theorems, whether the TCC bound (1.4) holds. To this end, we first need to translate

known no-go theorems into a condition on a four-dimensional potential, and furthermore

such a condition should be valid away from an extremum. We present the necessary tools

in section 2.2 and in appendix A. We use a previously known potential V (ρ, τ, σ) [20], but

provide for it a proper treatment of the 4d four-form fluxes, modifying the F5 and F6 terms.

We also derive a new scalar potential V (r, τ) depending on a radius and a dilaton scalar

fields. For each no-go theorem, we then give in section 2.3 a 4d formulation in terms of an

inequality of the form

a V +

3∑
i=1

bi ∂ϕ̂iV ≤ 0 , a > 0 , (1.6)

from which we deduce a value for c. The approach and results are summarized and com-

mented in section 2.1, in particular in table 2. A net result is that the TCC bound (1.4) is

always satisfied, with some saturation cases. While this is expected from the swampland

perspective described above, it remains a surprisingly successful check, since we only con-

sidered purely classical supergravity potentials, without considering any quantum gravity

argument, nor any averaging or limit.

In section 3, we report on the literature where the distance conjecture (1.5) was verified,

listing in particular in table 3 the values of λ obtained so far and computing a few more.

We also harmonise various conventions on the field distance in the literature, compatible

with the kinetic terms of (1.1), to be able to compare such λ values. To our surprise, we

note that all these examples (of compactifications to 4d) verify the following bound

λ ≥ 1

2

√
2

3
, (1.7)

i.e. a half of the TCC bound (1.4), with several cases of saturation. We additionally note

that other values in table 2 and 3 match up to the same 1
2 factor. We stressed already

that the compactification setups on both sides, as well as the scalar fields involved, are

very different. The approaches to get these numbers are also completely different, there is

thus at first sight no obvious reason for such a correspondence, except from a swampland

perspective.

Indeed, we then discuss in section 4 the relations between conjectures. After reviewing

in section 4.1 ideas and further conjectures given in the literature, we make some inspired

proposals in section 4.2, based on the data collected in the previous sections. We first

propose in section 4.2.1 to generalize the distance conjecture to a form analogous to (1.3),

namely

0 < m ≤ m0 e
−λ0D for D →∞ , with λ0 =

1

2
c0 =

1√
(d− 1)(d− 2)

. (1.8)

We further prove the implication (without assumption on the sign of m′)

(1.8) ⇒
〈
|m′|
m

〉
D→∞

≥ λ0 . (1.9)
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When specified to the particular case of the standard distance conjecture (1.5), the

bound (1.9) reproduces the observed bound (1.7) on λ, namely

m = mi e
−λD ⇒ λ ≥ λ0 . (1.10)

To avoid confusion, let us mention that another bound on λ was briefly discussed in section

6 of [11]: we never consider the latter in this paper, our bound λ0 given in (1.8) is different.

Finally, the proposal (1.8) interestingly allows more general functions m than in (1.10),

e.g. some including logarithmic corrections. A more detailed presentation can be found in

section 4.2.1.

In section 4.2.2, we then propose the inequality in the right-hand side of (1.9) as a

natural generalization of the scalar weak gravity conjecture [21]. In the case where no

average or limit is needed, it boils down to

(∂ϕm)2 ≥ λ2
0 m

2 . (1.11)

A further proposal generalizing that of [22], and a discussion, are given in section 4.2.2.

Finally, we propose in section 4.2.3 a relation between the generalized distance con-

jecture (1.8) and the de Sitter conjecture in TCC form (1.3). It takes the form of a map

between two compactification setups, together with two field space directions, in each of

which one conjecture applies. The map relates the mass m on one side to the potential V

on the other side in a large field distance limit, as follows

m

mi
'
∣∣∣∣VVi
∣∣∣∣ 12 for D →∞ , (1.12)

up to constants mi, Vi. In the case where m and V are exponentials along the selected field

directions, in the large field limit, one deduces the relation

λ =
1

2
c ≥ λ0 , (1.13)

as further discussed in section 4.3. The relation (1.13) can be observed by comparing

examples of table 2 and 3. In addition, the map (1.12) includes as a particular case (a de

Sitter extension of) the strong anti-de Sitter distance conjecture of [19]. A more detailed

discussion can be found in sections 4.2.3 and 4.3.

The two conjectures considered in this paper show an important dependence on a

selected field direction in field space. On the distance conjecture side, the value of λ

and the nature of the tower of states are dependent on this direction. On the de Sitter

conjecture side, we note a dependence on a specific field direction ϕ2, given by the linear

combination of fields entering the no-go inequality (1.6). This inequality can be rewritten

as follows

a V +
∑
i

bi ∂ϕ̂iV ≤ 0 ↔ c V + ∂ϕ2V ≤ 0 . (1.14)

We verify in several examples that the potential then takes the following asymptotic form

V = Vi e
−cD for D →∞ , (1.15)
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where D = |ϕ2 − ϕi|. This precise exponential form is a non-trivial check of the proposed

map (1.12), to exponential masses m. It also gives a new understanding of the number c,

verifying the relation (1.13). We detail these ideas and checks in section 4.3.

The examples of table 2 and 3 depend on the compactification setups and the specific

field directions just mentioned. These aspects can be very different, but pairs of such

examples can still be related by the proposed map, in large field limits. This is reminiscent

of a duality, and we further comment on this idea at several places in section 4.

2 No-go theorems on classical de Sitter and c values

De Sitter string backgrounds are backgrounds of string theory with a de Sitter space-time.

Here, we specialize to a 10d space-time split as 4d de Sitter times a 6d compact manifold.

Classical string backgrounds are those corresponding to a classical regime of string theory.

In practice, these are solutions of a 10d supergravity theory, for which one verifies that α′

corrections can be neglected (low energy) and that the string coupling gs is small (weak

coupling). We will mainly consider de Sitter solutions of 10d type II supergravities with

Dp-branes and orientifold Op-planes, and will also briefly mention heterotic string at order

(α′)0. It turns out that it is difficult to obtain such classical de Sitter solutions. Indeed,

several no-go theorems against them have been derived, under specific assumptions. In

this section, we recast known no-go theorems on classical de Sitter string backgrounds in

the form of an inequality of the type (1.2) and we compute the corresponding value of

c. We develop the necessary tools and discuss subtleties in the process. In 2.1 we briefly

review the topic, giving a list of the known no-go theorem we will be looking at, and we

present the problem to be addressed. We then summarize our results, namely the values

of c, and comment on them. In 2.2 we present the specific framework we will be working

in and introduce all necessary ingredients. In 2.3 we reformulate the no-go theorems in a

4d language, obtaining for each of them an inequality of the type (1.2) and computing the

associated value of c.

2.1 Summary and c values

It is notoriously difficult to find a classical de Sitter background of string theory. The

typical strategy consists in finding a de Sitter solution in a 10d supergravity theory and

verifying then whether or not such a solution is in the appropriate low energy and weak

coupling regime, with respect to string theory. The first step is already non-trivial and

many no-go theorems or constraints have been established against de Sitter solutions.

One can see [23, 24] or the introduction of [20] for recent reviews and references. Most

of the focus has been in type II supergravities with Dp-branes and Op-planes sources.

It is important to distinguish whether the sources are all parallel, or whether they are

intersecting, i.e. wrapping different directions. Indeed, few de Sitter solutions of 10d type

IIA/B supergravities have been found with intersecting sources [25–31], but none with

parallel ones.1 Accordingly, one verifies that some constraints get much stronger with

1Solutions with parallel sources might be found when allowing for different source boundary condi-

tions [32–34], that we do not consider here.
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A de Sitter solution requires T10 > 0 (1.) and

p R6 ≥ 0 R6 < 0

3 (4.)

4 F6−p (2.),

5 (3.) f ||⊥⊥ (5.), (6.), (9.), f⊥⊥|| (7.), (8.),

6 linear combi (5.), (6.)

7

8 (2.), (3.) (2.)

9

Table 1. Most of the constraints known on the existence of type II supergravity de Sitter solutions

with parallel Dp/Op sources (with single size p). Few more constraints, and an analogous table for

intersecting sources, can be found in [24]. An empty cell implies the absence of de Sitter solutions,

while an entry (flux, etc., defined in section 2.2) means that it is a necessary ingredient to get a de

Sitter solution. The (number.) refer to the no-go theorems, discussed in this paper, that prove

the absence of solution or the need of some ingredient and constraints on it.

parallel sources compared to intersecting ones [35, 36]. In table 1, we summarize most of

the constraints known on the existence of solutions with parallel sources, on which we focus

in this paper. The corresponding table for the intersecting case can be found in [24]. It

excludes actually the same cases, but it leaves more freedom in the required ingredients.

Once one has few supergravity de Sitter solutions, one may wonder about their validity

as classical string backgrounds. Several works argued against it [24, 31, 37–39] in specific

settings suggesting for now that no classical de Sitter string background exists, in agreement

with the swampland inequalities (1.2) and (1.3) of [4, 11], but loopholes were also indicated

in [24, 37, 40] (see also [41]).

In the present work we want to translate all the no-go theorems or constraints indicated

in table 1 into an inequality of the form (1.2) and, from that, read-off the value of the

parameter c. Getting to the inequality (1.2) is not straightforward, for at least two reasons.

First, several no-go theorems were only derived in 10d, using in particular equations of

motion, and one should then translate them into a 4d potential and its first derivatives:

this is not always straightforward. Second, the inequality (1.2) is an off-shell one, in the

sense that it should be valid at any point in field space and not just at critical points

of the potential, i.e. de Sitter solutions in our case. This will lead to some additional

complications as we will see.

In the following, we will deal with the two difficulties just mentioned and work-out

systematically the translation of the no-go theorems. For each of them, we then compute

the parameter c, as explained below. We summarize our findings in table 2. Each no-go

theorem relies on some assumptions or conditions, most of the time previously worked-

out on-shell, especially when the no-go was obtained with the use of the 10d equations

of motion. The additional complication occurring in this case is that such assumptions
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No-go Condition No field Use of

number for the no-go in condition BI c

1. T10 ≤ 0 X
√

2

2. p = 7, 8, or p = 4, 5, 6 & F6−p = 0 X
√

2(p−3)2

3+(p−4)2
≥
√

2
3

3. R6 ≥ 0, p ≥ 4 X
√

2(p+3)2

3+p2
> 1

4. p = 3 X X 2
√

2
3

5. R|| +R⊥|| + σ−12

2 |f ||⊥⊥ |
2 ≤ 0, p ≥ 4 ×

√
2(p−3)
p−1 ≥

√
2
3

6. −2ρ2σ2(p−6)(R|| +R⊥|| ) + |H(2)|2 ≤ 0 × X 2
√

2
3

7. λ = −
δcdfb⊥a||c⊥f

a||
b⊥d⊥

1
2 δ
abδcdδeff

e||
a⊥c⊥f

f||
b⊥d⊥

≤ 0, p ≥ 4 X X
√

2
3

8. λ ≥ σ−6, p ≥ 4 ×
√

2p
p−2 > 1

9. ∃ a|| s.t. fa|| ij = 0 ∀i, j 6= a||, p ≥ 4 X
√

2
3

10. Heterotic at order (α′)0 X
√

2
3

Table 2. No-go theorems translated into an inequality of the form (1.2) and the corresponding

value of c. The various properties specified for each no-go theorem are discussed in the text. All

no-gos are obtained in type II supergravities except the last one.

or conditions, once established off-shell, sometimes become field dependent, as indicated

in table 2. We believe that such a field dependence is in general not what one expects

from a no-go theorem, whose assumptions should be generic. When considering such no-go

theorems off-shell, we propose then to take them with caution or view them as weaker. As

discussed further in the text however, for some special cases where part of the condition

vanishes, one may loose the field dependence making the no-go more interesting. Another

point that we specify is the use for some no-go theorems of the sourced Bianchi identity (BI)

or tadpole. This identity is an extra input which comes from 10d, but it does not appear

in the 4d theory and scalar potential. It can then be interesting to see when it is needed.

The first observation to be made from table 2 is that all computed values verify the

TCC bound (1.4). This was essentially observed in [11] for the no-go theorems 2., 3.

and 7. and we complete here the analysis by adding seven more. Interestingly, the no-go

theorems 7. and 9. saturate the bound c =
√

2
3 independently of the value of p (as long

as p ≥ 4) and have conditions that are field independent. The result of the no-go 9. does

not even require the BI. This no-go was obtained in 10d in [24], but its 4d formulation is

non-trivial as it requires the derivation of a new scalar potential.
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These results are at first sight remarkable: we obtained inequalities of the form (1.2)

just by combining supergravity equations. Contrary to the TCC reasoning, we have not

used any quantum gravity argument, there was no need of averaging any quantity and we

did not take any large distance limit. This surprising matching could be explained by inter-

preting supergravity equations as the classical limit of string theory (intended as quantum

gravity) and by inserting this result into the wider picture of the swampland program.

2.2 Framework, 4d scalar potentials and kinetic terms

We present now the framework in more detail, together with the derivation of the 4d scalar

potentials and the scalar kinetic terms. Then, we will derive each of the no-go theorems in

this 4d language and we will compute the corresponding values of the parameter c.

2.2.1 The (ρ, τ, σ)-potential

Our starting point is type IIA/B 10d supergravities with Dp-branes and orientifold Op-

planes, collectively called sources, and we follow conventions of [35]. This is the common

framework where to look for classical de Sitter solutions, as reviewed in [24]. The 10d

action in string frame is (up to additional Chern-Simons terms that will not contribute)

S =
1

2κ2
10

∫
d10x

√
|g10|e−2φ (LNSNS + LRR + Lsources) . (2.1)

The definitions of these quantities can be found in [35]. Here, we just recall that the RR

contribution in type IIA/B is explicitly given by2

LIIARR = −e
2φ

2

(
|F0|2 + |F2|2 + |F 10

4 |2
)
, LIIBRR = −e

2φ

2

(
|F1|2 + |F3|2 +

1

2
|F 10

5 |2
)
, (2.2)

where for any q-form Aq we denote |Aq|2 = AqM1...MqAq N1...Nqg
M1N1 . . . gMqNq/q!. In the

following we will simply add these two contributions together, LRR = LIIARR +LIIBRR , to treat

both theories at once; which flux should be kept would then be obvious according to the

theory considered.

We are interested here in 10d backgrounds with metric

ds2
10 = ds2

4 + ds2
6 , ds2

4 = gµν(x)dxµdxν , ds2
6 = gmn(y)dymdyn , (2.3)

where for simplicity in this paper we do not include any warp factor. This compactification

ansatz is that of a 4d maximally symmetric space-time, e.g. de Sitter, and a 6d compact

internal manifold M. The sources, of size p, with 3 ≤ p ≤ 8, are space-filling in 4d and

wrap p − 3 internal directions. We consider that these p − 3 directions parallel to the

sources are identified in the flat basis of the internal manifold and denoted a||, while the

9− p transverse directions are denoted a⊥. Then, the 6d metric is written as

ds2
6 = δabe

aeb = ds2
|| + ds2

⊥ , ds2
|| ≡ e

a||
me

b||
nδabdy

mdyn , ds2
⊥ ≡ ea⊥meb⊥nδabdymdyn ,

2This 10d starting point somewhat differs from that of the seminal paper [42]. The final 4d potential

is however the same, at least in IIA. In our case, this has been obtained with a specific treatment of the

4d four-forms (or three-form gauge potentials) that is presented in appendix A.1 and that is crucial for a

proper dimensional reduction from 10d to 4d. Our results could then be especially important in IIB.
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with the vielbeins eam depending a priori on all internal coordinates y. Any internal form,

and in particular an internal flux Fq, can get decomposed on the basis {ea||}, {ea⊥} and we

denote F
(n)
q the component with n internal parallel flat indices. More explicitly

Fq =
1

q!
F (0)
a1⊥...aq⊥

ea1⊥∧. . .∧eaq⊥+
1

(q−1)!
F (1)
a1||a2⊥...aq⊥

ea1||∧ea2⊥∧. . .∧eaq⊥+. . . (2.4)

and |Fq|2 =
∑

n |F
(n)
q |2. We refer to [20, 35] for more details on these conventions.

We then consider fluctuations ρ, τ, σ > 0 around such a background (labeled with 0

when necessary). These fluctuations were first introduced in [43], and most of the following

derivation was made in [20]. They will eventually correspond to 4d scalar fields and are

defined as follows

ds2
6 = ρ

(
σA(ds2

||)
0 + σB(ds2

⊥)0
)
, ea||m =

√
ρσA (ea||m)0 , ea⊥m =

√
ρσB (ea⊥m)0 , (2.5)

φ = φ0 + δφ , τ = e−δφρ
3
2 , eφ

0
= gs ,

where A = p− 9 and B = p− 3, i.e. A(p− 3) + B(9− p) = 0. From such definitions, one

should keep in mind that the background, i.e. the 10d solution, is recovered by setting

Background value: ρ = σ = τ = 1 . (2.6)

Given these scalar fields and the compactification ansatz for the background, one can

perform a dimensional reduction as described in detail in [20]: one fluctuates all 10d

quantities, separates 4d and 6d contributions and eventually goes to 4d Einstein frame.

The final 4d action is

S =

∫
d4x
√
|g4|

(
M2

4

2
R4 −

1

2

(
(∂τ̂)2 + (∂ρ̂)2 + (∂σ̂)2

)
− V

)
, (2.7)

where, with respect to [20], we dropped a subscript E for Einstein frame and the 4d Planck

mass M4 differs by a factor of 2, being now given by

M2
4 =

1

κ2
10

∫
d6y
√
|g0

6| g
−2
s . (2.8)

We keep the Planck mass in the whole of section 2.2, but set it to 1 in the rest of the paper.

The fields appearing in the canonically normalized kinetic terms are given by

τ̂ =
√

2M4 ln τ , ρ̂ =

√
3

2
M4 ln ρ , σ̂ =

√
−3AB

2
M4 lnσ , (2.9)

where σ̂ was obtained in appendix B of [24]. A full computation of these kinetic terms will

be provided in [41]. The scalar potential is the same as in [20], except for the ∗6F5 and F6

terms; those terms require a proper treatment of the 4d four-forms that we will come back
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to. The potential is given by

V =
1

2κ2
10

g−2
s

∫
d6y
√
|g0

6|

[
− τ−2

(
ρ−1R6(σ)− 1

2
ρ−3

∑
n

σ−An−B(3−n)|H(n)0|2
)

(2.10)

− gsτ−3ρ
p−6
2 σB

p−9
2

T 0
10

p+ 1

+
1

2
g2
sτ
−4

(
5∑
q=0

ρ3−q
∑
n

σ−An−B(q−n)|F (n)0
q |2 + ρ−3|F 0

6 |2
)]

.

The sources contribution T10, defined in [35], contains the charges and the δ localizing the

sources in their transverse directions. A general expression for R6(σ) can be found in [20].

On compact group manifolds, it can be expressed in terms of the structure constants fabc as

R6(σ) = σ−B R0
6 + (σ−A − σ−B)

(
R|| +R⊥||

)0
− 1

2
(σ−2B+A − σ−B)|f ||0⊥⊥ |

2 , (2.11)

where we introduce the notations

R6 = R|| +R⊥|| −
1

2
|f ||⊥⊥ |

2 − δcdf b⊥a||c⊥f
a||
b⊥d⊥ , (2.12)

2R|| = −δcdfa||b||c||f
b||
a||d|| −

1

2
δadδ

beδcgfa||b||c||f
d||
e||g|| , (2.13)

2R⊥|| = −δcdf b⊥a⊥c||f
a⊥

b⊥d|| − δ
bgδcdδah

(
fh⊥g⊥c||f

a⊥
b⊥d|| + fh⊥g||c||f

a⊥
b||d||

)
, (2.14)

|f ||⊥⊥ |
2 = 1

2δ
abδcdδeff

e||
a⊥c⊥f

f||
b⊥d⊥ . (2.15)

Finally, on compact group manifolds with constant fluxes, the orientifold projects out many

components, leaving us only with the following F
(n)
q , H(n),

F
(0)
6−p, F

(1)
8−p, F

(2)
10−p, F

(3)
12−p, H

(0), H(2) . (2.16)

This simplifies considerably the potential and we refer to [20] for more details. Using a

shorthand notation where we drop the superscript 0 and the integrals

2

M2
4

1

2κ2
10

g−2
s

∫
d6y
√
|g0

6| |H
(n)0|2 =

∫
d6y
√
|g0

6| |H(n)0|2∫
d6y
√
|g0

6|
→ |H(n)|2 , (2.17)

the useful reduced potential can be written as

Ṽ =
2

M2
4

V = −τ−2

(
ρ−1R6(σ)− 1

2
ρ−3

∑
n

σ−An−B(3−n)|H(n)|2
)

− gsτ−3ρ
p−6
2 σB

p−9
2

T10

p+ 1
(2.18)

+
1

2
g2
sτ
−4

 5∑
q=0

ρ3−q
∑
n

σ−An−B(q−n)|F (n)
q |2 + ρ−3|F6|2

 .
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The generalization of this whole framework and potential to the case of intersecting sources,

with scalars σI , can be found in [24, 36]. By freezing σ = 1, we reproduce the standard

potential of the universal moduli (ρ, τ) given in [42], namely

Ṽ =
2

M2
4

V =−τ−2

(
ρ−1R6−

1

2
ρ−3|H|2

)
−gsτ−3ρ

p−6
2
T10

p+1
+

1

2
g2
sτ
−4

6∑
q=0

ρ3−q|Fq|2 . (2.19)

This V (ρ, τ) will be enough for several no-go theorems to be derived.

In the derivation of the 4d scalar potential from the 10d theory, there is a non-trivial

step consisting in taking care properly of the 4d four-forms coming from F 10
4 and F 10

5

(or equivalently of the 4d three-form gauge potentials). We describe this in detail in

appendix A.1. Such a step was missed in [20, 24] and consequently the ∗F5 and F6 terms

there in the potential are not correct. However, as discussed in appendix A.1, the first

derivatives ∂ϕV |ϕ=1 evaluated on the background and the 4d Ricci scalar R4 appearing

in [20, 24] are still correct. Indeed, they were already noticed to match with the 10d

equations of motion. Only the second derivatives would differ in these two terms, but

those were barely used.3 In addition, ∗F5 and F6 never played any crucial role in works on

classical de Sitter, as far as we know. Therefore most results of [20, 24] remain correct or

unaltered. Here, we will verify this by reproducing no-go theorems obtained in these papers.

A last, useful ingredient is the sourced Bianchi identity (BI). With notations of [35]

and projected on the transverse volume to a source, this BI is written as follows

εp
T10

p+ 1
= (dF8−p)⊥ − (H ∧ F6−p)⊥ , εp = (−1)p+1(−1)[

9−p
2 ] (2.20)

⇔ 2τ−3ρ
p−6
2 σB

p−9
2 gs

T10

p+ 1
= 2τ−3ρ

p−6
2 σB

p−9
2 εp gs(dF8−p)⊥

− 2εp

(
τ−1ρ−

3
2σ−B

3
2H ∧ τ−2ρ

p−3
2 σB

p−6
2 gsF6−p

)
⊥

= 2τ−3ρ
p−6
2 σB

p−9
2 εp gs(dF8−p)⊥ −

∣∣∣τ−1ρ−
3
2σ−B

3
2 ∗⊥ H(0) + εpgsτ

−2ρ
p−3
2 σB

p−6
2 F

(0)
6−p

∣∣∣2
+ τ−2ρ−3σ−3B|H(0)|2 + g2

sτ
−4ρp−3σB(p−6)|F (0)

6−p|
2 .

In the rewriting of the second row, we have multiplied by scalar fields and rearranged them

conveniently for the coming off-shell formulation of the no-go theorems. The background

valued expression with ρ = τ = σ = 1 was already written and used e.g. in [35]. Fur-

thermore, we can also rewrite the term (dF8−p)⊥ as in [20]. Indeed, on compact group

manifolds with an orientifold one has

2τ−3ρ
p−6
2 σB

p−9
2 εpgs(dF8−p)|⊥ = 2τ−3ρ

p−6
2 σB

p−9
2 εpgs(dF

(1)
8−p)|⊥ (2.21)

= 2εpgs

(
τ−2ρ

p−5
2 σ

B−A−B(8−p)
2 ι∂a||F

(1)
8−p

)
∧ τ−1ρ−

1
2σ

A−2B
2 (dea||)|⊥

= −
∑
a||

∣∣∣τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea||)|⊥ − τ−2ρ

p−5
2 σ

B−A−B(8−p)
2 εpgs(ι∂a||F

(1)
8−p)

∣∣∣2
+ τ−4ρp−5σB−A−B(8−p)g2

s |F
(1)
8−p|

2 + τ−2ρ−1σA−2B|f ||⊥⊥ |
2 ,

3Only part of the stability island section in [20] could be revisited, which amounts to minor results in

any case.
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where again we multiplied appropriately by scalar fields for future convenience. We will

use these formulations of the sourced BI in some no-go theorems.

2.2.2 A new scalar potential for the radius

We derive here the scalar potential for a different metric fluctuation: a radius r to be defined

below, together with a 4d dilaton τ . The derivation is analogous to the one contained in

the previous section, therefore we only present the main steps. We start with the same 10d

action, where again the Chern-Simons and Wess-Zumino terms do not contribute because

they are topological. The compactification ansatz is the same, with the metric of the

compact manifold given in the flat basis as ds2
6 = δabe

aeb, and we proceed as above for

what concerns the sources and the fluxes. The fluctuations are defined as follows. We first

choose one internal flat direction, for example a = 1, along which we consider a fluctuation

r. We thus split flat indices as {a} = {1, i = 2 . . . 6} and define

e1
m = r (e1

m)0 , eim = (eim)0 , φ = φ0 + δφ , eφ
0

= gs , τ = e−δφ r
1
2 . (2.22)

We stress that the fluctuations r and τ are 4d scalar fields, depending on 4d coordinates.

As before, their background expectation value is

Background value: r = τ = 1 . (2.23)

The definition of τ is chosen such that, as above, the metric in 4d Einstein frame is given

by gE µν = τ2gµν . After fluctuating 10d quantities in the 10d initial action, separating

between 4d and 6d and going to 4d Einstein frame, one reaches eventually the following

action

S =

∫
d4x
√
|g4|

(
M2

4

2
R4 −

1

2

(
(∂τ̂)2 + (∂r̂)2

)
− V (r, τ)

)
, (2.24)

where we drop a subscript E for Einstein frame and where the Planck mass is defined as

in (2.8). The canonical fields τ̂ and r̂ are given by

τ̂ =
√

2M4 ln τ , r̂ = M4 ln r . (2.25)

Their kinetic terms are computed as usual from derivative terms, namely from R10+4(∂φ)2;

we will come back to it.4 The scalar potential is obtained by fluctuating all internal

quantities, as well as by going on-shell with respect to the four-form fluxes. As we did

previously for σ, we need to distinguish the internal flux components which are along

direction 1 and those which are not:

Fq =
1

q!
F

(0)
i1...iq

ei1 ∧ . . . ∧ eiq +
1

(q − 1)!
F

(1)
1 i2...iq

e1 ∧ ei2 ∧ . . . ∧ eiq . (2.26)

In particular, we get |Fq|2 = |F (0)
q |2+|F (1)

q |2 = |F (0)0
q |2+r−2|F (1)0

q |2. Similarly for the source

contribution, coming from the DBI action, one has to distinguish whether the direction 1

4In the framework of section 2.2.1, one may specify to the following subcase: p = 4, ρ = σ−B = σ−1.

In that case, the fluctuations considered there match the ones considered here, with r = σ−3 = ρ3. One

verifies then that τ is the same, as well as the kinetic terms. These are interesting cross-checks. Note that

here formulas remain valid for any p ≥ 4.
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is parallel or transverse to the source. This is done with the symbols δ
||
1 and δ⊥1 . The 4d

potential in (2.24) is therefore given by

V (r, τ) =
1

2κ2
10

g−2
s

∫
d6y
√
|g0

6|

− τ−2

(
R6(r)− 1

2
(|H(0)0|2 + r−2|H(1)0|2)

)
(2.27)

− gsτ−3(δ
||
1r

1
2 + δ⊥1 r

− 1
2 )

T 0
10

p+ 1

+
1

2
g2
sτ
−4

 5∑
q=0

(r|F (0)0
q |2 + r−1|F (1)0

q |2) + r−1|F 0
6 |2
 .

The F5 and F6 terms are obtained after taking care of four-form fluxes, a point we detail

in appendix A.2. Finally, R6(r) is obtained by fluctuating

R6 = δabRab = −1

2
δcd
(
f bacf

a
bd + δef δab f

a
ec f

b
fd −

1

2
δeh δfg δacδbd f

a
ef f

b
hg

)
(2.28)

= −1

2
δcdf bac f

a
bd −

1

4
δeb δfc δga f

a
ef f

g
bc ,

where we specialized to compact group manifolds, for which f bac are constant and faac = 0.

After some rewriting, we obtain

R6(r) = R0
6 + (r−2 − 1)R0

11 +
1

4
(2− r2 − r−2)δik δjl f1

ij
0
f1

kl
0
. (2.29)

One can easily verify that R6(r = 1) = R0
6 as it should in the background. Introducing

the same simplified notations as in (2.17), we obtain eventually the reduced potential

Ṽ =
2

M2
4

V = −τ−2

(
R6(r)− 1

2
(|H(0)|2 + r−2|H(1)|2)

)
− gsτ−3(δ

||
1r

1
2 + δ⊥1 r

− 1
2 )

T10

p+ 1
(2.30)

+
1

2
g2
sτ
−4

 5∑
q=0

(r|F (0)
q |2 + r−1|F (1)

q |2) + r−1|F6|2
 .

To compute the kinetic terms, we can specify without loss of generality to the following

10d metric

ds2
10 = τ−2(x)ηµνdxµdxν + r2(x)(dy1)2 + δijdy

idyj , (2.31)

where ηµν is the 4d Einstein frame flat metric, used to raise and lower indices in the

expressions below, as well as in the squares. One then computes

R10 = τ2∂µ (6 ∂µ ln τ − 2 ∂µ ln r)− 6(∂τ)2 − 2τ2(∂ ln r)2 + 4τ2 ∂µ ln r ∂µ ln τ , (2.32)

4|∂φ|2 = 4(∂τ)2 + τ2(∂ ln r)2 − 4τ2 ∂µ ln r ∂µ ln τ , (2.33)

where |∂φ|2 is the 10d string frame square. The kinetic part of the 10d action (2.1) contains

the terms

Skin =
1

2κ2
10

∫
d10x

√
|g10|e−2φ

(
R10 + 4|∂φ|2

)
(2.34)

=

∫
d4x
√
|g4|

g−2
s

2κ2
10

∫
d6y
√
|g0

6| τ
−2
(
R10 + 4|∂φ|2

)
,
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where in the second line we moved to 4d Einstein frame. The factor τ−2 makes the first

term in R10 in (2.32) a total derivative that we drop when substituting it into the action,

leaving us with

Skin =

∫
d4x
√
|g4|

M2
4

2

(
−2τ−2(∂τ)2 − (∂ ln r)2

)
. (2.35)

Using a more general metric, we would have obtained terms with R4, R6 and ∇µ. However,

we can easily see that the expression (2.35) is sufficient to reproduce the kinetic terms (2.24)

for the canonical fields (2.25).

2.3 No-go theorems in 4d

Having constructed the scalar potentials (2.18) and (2.30) of the four-dimensional theory,

we now take a step forward and reproduce in 4d the known no-go theorems on de Sitter

solutions, by considering appropriate combinations of the scalar potential and its first

derivatives. These combinations can be shown to be negative, provided that some condition

holds, which is the assumption of the no-go theorem. In other words, we will obtain

inequalities of the type

a V +

3∑
i=1

bi ∂ϕ̂iV ≤ 0 , a > 0 , ∃ bi 6= 0 , (2.36)

where ϕ̂i are the canonically normalized scalar fields, i.e. for which gij = δij ; we will

not consider more than three fields here. Such an inequality clearly forbids a de Sitter

extremum, so it provides a no-go. Moreover, it will also play a crucial role in section 4.3.

From (2.36), one can then obtain an inequality of the form (1.2) and deduce a value for c.

To that end, we follow section 3.1 of [24] and the method of [42]: we get a lower bound on

|∇V |/V using the inequality (2.36) and minimizing a function. This bound c is given by

c2 =
a2

b21 + b22 + b23
. (2.37)

This is how we proceed in the following for each no-go theorem. In this section we set

M4 = 1 for simplicity.

We first consider no-go theorems 1.–4. that only require the two-field potential

V (ρ, τ) (2.19). They are thus valid for both parallel or intersecting sources.

1. Maldacena-Nuñez

We reproduce this no-go theorem [44] through the following combination

2Ṽ + τ∂τ Ṽ = τ−3ρ
p−6
2 gs

T10

p+ 1
− g2

sτ
−4

6∑
q=0

ρ3−q|Fq|2 (2.38)

⇒ 2V +
√

2 ∂τ̂V ≤ 0 if T10 ≤ 0 (2.39)

⇒ c2 = 2 . (2.40)
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2. No-go for p = 7, 8, or p = 4, 5, 6 with F6−p = 0

This no-go was derived in 4d in [45] (see also [46] and references therein) and in 10d in [35].

As pointed-out in [20], for p = 4 sources, the O4 projection combined with the F0 BI imply

F0 = 0. So one only needs to consider F2 for p = 4. One shows explicitly

2(p−3)Ṽ +(p−4)τ∂τ Ṽ +2ρ∂ρṼ (2.41)

=−τ−2ρ−32|H|2+g2
sτ
−4

6∑
q=0

ρ3−q(8−p−q)|Fq|2

⇒ 2(p−3)V +(p−4)
√

2∂τ̂V +
√

6∂ρ̂V ≤ 0 if p= 7,8, or p= 4,5,6 & F6−p = 0 (2.42)

⇒ c2 =
2(p−3)2

3+(p−4)2
. (2.43)

We get c2 = 2
3 for p = 4 and higher otherwise. Although the equations are valid for p = 3,

they do not provide an appropriate inequality since the V term vanishes. This c value was

obtained already in [45]. It matches the values given for R6 < 0 in table 1 of [2].

3. Positive or vanishing curvature

This no-go was derived in 4d in [45] (see also references therein) and in 10d in [35]. As

above, we use the argument of [20] to conclude that F0 = 0 for p = 4. One shows explicitly

2(p+ 3)Ṽ + p τ∂τ Ṽ + 2ρ∂ρṼ (2.44)

= −τ−2ρ−14R6 + g2
sτ
−4

6∑
q=0

ρ3−q(6− p− q)|Fq|2

⇒ 2(p+ 3)V + p
√

2 ∂τ̂V +
√

6 ∂ρ̂V ≤ 0 if R6 ≥ 0 and p ≥ 4 (2.45)

⇒ c2 =
2(p+ 3)2

3 + p2
> 1 . (2.46)

This can be extended to p = 3 with F1 = 0. This c value was given in [45] already and

matches those for R6 ≥ 0 in [2]. The case p = 6 is the one discussed in the seminal

paper [42].

4. No-go for p = 3

This no-go was derived in 10d in [35, 47]. This is the first instance where we use additionally

the sourced Bianchi identity (2.20), where we can for now set σ = 1. One shows

2(p+ 1)Ṽ + p τ∂τ Ṽ + 2ρ∂ρṼ (2.47)

= τ−3ρ
p−6
2 4gs

T10

p+ 1
− τ−2ρ−32|H|2

+ g2
sτ
−4

6∑
q=0

ρ3−q(4− p− q)|Fq|2

= 4τ−3ρ
p−6
2 εp gs(dF8−p)⊥ − 2

∣∣∣τ−1ρ−
3
2 ∗⊥ H(0) + εpgsτ

−2ρ
p−3
2 F

(0)
6−p

∣∣∣2
− 2τ−2ρ−3(|H|2 − |H(0)|2)− 2g2

sτ
−4ρp−3(|F6−p|2 − |F (0)

6−p|
2)

+ g2
sτ
−4

6∑
q=0, q 6=6−p

ρ3−q(4− p− q)|Fq|2 . (2.48)
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All terms on the right-hand side are negative, except the first one in (dF8−p)⊥ that has a

priori no definite sign. By the notation (dF8−p)⊥, we mean the coefficient of dF8−p along

the transverse directions vol⊥. We recall that each term appearing above is to be read

with the simplified notation (2.17), where an integral and a vacuum value are understood,

in particular ∫
d6y
√
|g0

6|(dF 0
8−p)⊥∫

d6y
√
|g0

6|
↔ (dF8−p)⊥ . (2.49)

For p = 3, the whole 6d space is transverse, so
∫

d6y
√
|g0

6|(dF5)⊥ =
∫

dF5 = 0 since this

is a total derivative over a compact space. So the first term vanishes for p = 3 leaving us

with a no-go. More generally, we deduce from above

⇒ 2(p+ 1)V + p
√

2 ∂τ̂V +
√

6 ∂ρ̂V ≤ 0 if εp (dF8−p)⊥ ≤ 0 (2.50)

⇒ c2 =
2(p+ 1)2

3 + p2
. (2.51)

For p = 3 we obtain c2 = 8
3 , and smaller values (greater than 2) for higher p.

For the no-go theorems 5.–8., we will use the complete potential V (ρ, τ, σ) (2.18),

i.e. we consider also the dependence on σ. This means we now focus on parallel sources

only. For simplicity, we restrict ourselves to compact group manifolds with constant fluxes,

even though several no-go theorems can be extended beyond this case [35, 36]. These

assumptions provide many simplifications in the potential, as detailed in (2.11)–(2.16).

5. The internal parallel Einstein trace

With the above information and restrictions, we use the potential (2.18) to show

3BṼ +
3

2
Bτ∂τ Ṽ +Bρ∂ρṼ − σ∂σṼ (2.52)

= (A−B)

(
− τ−2ρ−1σ−A(R|| +R⊥|| )−

1

2
τ−2ρ−1σ−2B+A|f ||⊥⊥ |

2

+
1

2

∑
n

n

(
τ−2ρ−3σ−An−B(3−n)|H(n)|2 + g2

sτ
−4

5∑
q=0

ρ3−qσ−An−B(q−n)|F (n)
q |2

))
− 3Bg2

sτ
−4ρ−3|F6|2 ,

and we recall A−B < 0. We deduce, with the usual values B = p− 3, A = p− 9,

3BV +
3

2
B
√

2 ∂τ̂V +B

√
3

2
∂ρ̂V −

√
−3AB

2
∂σ̂Ṽ ≤ 0 , (2.53)

if R|| +R⊥|| + 1
2σ

2(A−B)|f ||⊥⊥ |2 ≤ 0

⇒ c2 =
6B

4B −A
=

2(p− 3)

p− 1
. (2.54)

We get c2 = 2
3 for p = 4 and higher otherwise; again one cannot apply this inequality to

p = 3 since the term proportional to V would have a vanishing coefficient.
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We face for the first time the phenomenon that the condition for a no-go becomes

field dependent off-shell. This no-go was first derived in 10d in [35], where the condition

was necessarily on-shell, so field independent. The off-shell field dependence puts such a

no-go on weaker grounds, since one rather asks for generic assumptions in a no-go theorem.

However we notice that the corresponding requirement for a de Sitter solution can become

field independent, namely |f ||⊥⊥ |2 > 0, in the case where R|| + R⊥|| ≤ 0, which often

happens. In this perspective, such a condition remains interesting.

6. The linear combination

We first consider the following combination

8Ṽ + 3τ∂τ Ṽ +
2

3
(6− p)ρ∂ρṼ +

2

3
σ∂σṼ (2.55)

= 4τ−3ρ
p−6
2 σB

p−9
2 gs

T10

p+ 1
− 2τ−2ρ−1σ−2B+A|f ||⊥⊥ |

2

− 4τ−2ρ−1σ−A(R|| +R⊥|| ) + 2
∑
n

τ−2ρ−3σ−An−B(3−n)(n− 1)|H(n)|2

− g2
sτ
−4

5∑
q=0

ρ3−qσ−An−B(q−n)(p+ q − 4− 2n)|F (n)
q |2 − g2

sτ
−4ρ−3(8− p)|F6|2 ,

using A−B = −6. We now use the sourced BI (2.20) combined with (2.21) to replace T10

in the above combination. We get

8Ṽ + 3τ∂τ Ṽ +
2

3
(6− p)ρ∂ρṼ +

2

3
σ∂σṼ (2.56)

= −2
∣∣∣τ−1ρ−

3
2σ−B

3
2 ∗⊥ H(0) + εpgsτ

−2ρ
p−3
2 σB

p−6
2 F

(0)
6−p

∣∣∣2
− 2

∑
a||

∣∣∣τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea||)|⊥ − τ−2ρ

p−5
2 σ

B−A−B(8−p)
2 εpgs(ι∂a||F

(1)
8−p)

∣∣∣2
+ 2τ−2ρ−3σ−2A−B|H(2)|2 − 4τ−2ρ−1σ−A(R|| +R⊥|| )

+ 2τ−4ρp−5σB−A−B(8−p)g2
s |F

(1)
8−p|

2 + 2g2
sτ
−4ρp−3σB(p−6)|F (0)

6−p|
2

− g2
sτ
−4

5∑
q=0

ρ3−qσ−An−B(q−n)(p+ q − 4− 2n)|F (n)
q |2 − g2

sτ
−4ρ−3(8− p)|F6|2 .

One can show that the last two lines, i.e. the RR fluxes contributions, are negative. We

deduce

8V + 3
√

2 ∂τ̂V +

√
2

3
(6− p) ∂ρ̂V +

√
−2AB

3
∂σ̂Ṽ ≤ 0 , (2.57)

if −2ρ2σA+B(R|| +R⊥|| ) + |H(2)|2 ≤ 0

⇒ c2 =
8

3
. (2.58)

This no-go theorem was first derived on-shell in 10d in [35]. It was shown that the linear

combination −2(R||+R⊥|| )+|H(2)|2 is a special one, being in some cases T-duality invariant.
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Now we face again the phenomenon that it becomes a field dependent quantity off-shell,

which weakens the generality of this no-go. However, one of the two terms could be zero

(no constraint forbids it so far), in which case one recovers a field independent condition.

Let us also recall that this no-go theorem can be combined with the previous one (where

one can include an additional |H(2)|2 term), leading to the requirement |f ||⊥⊥ |2 6= 0 for de

Sitter. Finally, we add that this no-go is the p ≥ 4 generalization of the no-go 4., as the c

value and the use of the BI suggest; in particular for p = 3 the linear combination vanishes.

7. The requirement λ > 0

Given the requirement for de Sitter to have |f ||⊥⊥ |2 6= 0, we can introduce the parameter

λ = −
δcdf b⊥a||c⊥f

a||
b⊥d⊥

|f ||⊥⊥ |2
. (2.59)

We obtained in [20] the following no-go theorem on-shell, that we generalize here off-shell

2Ṽ +
3

2
τ∂τ Ṽ +

A+B

A−B
ρ∂ρṼ +

2

B −A
σ∂σṼ (2.60)

= −2 δcdf b⊥a||c⊥f
a||
b⊥d⊥τ

−2ρ−1σ3−p

− 2
∣∣∣τ−1ρ−

3
2σ−B

3
2 ∗⊥ H(0) + εpgsτ

−2ρ
p−3
2 σB

p−6
2 F

(0)
6−p

∣∣∣2
− 2

∑
a||

∣∣∣τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea||)|⊥ − τ−2ρ

p−5
2 σ

B−A−B(8−p)
2 εpgs(ι∂a||F

(1)
8−p)

∣∣∣2
+ 2τ−4g2

s(ρ
p−5σB−A−B(8−p)|F (1)

8−p|
2 + ρp−3σB(p−6)|F (0)

6−p|
2)

− 1

2
g2
sτ
−4

5∑
q=0

ρ3−qσ−An−B(q−n)(p+ q − 2− 2n)|F (n)
q |2 −

1

2
g2
sτ
−4ρ−3(10− p)|F6|2 ,

where we used the sourced BI (2.20), (2.21). Again, the RR fluxes terms are negative. We

deduce

⇒ 2V +
3

2

√
2 ∂τ̂V +

A+B

A−B

√
3

2
∂ρ̂V +

1

B −A
√
−6AB ∂σ̂Ṽ ≤ 0 if λ ≤ 0

⇒ c2 =
2

3
, as computed on-shell in section 3.1 of [24] . (2.61)

Remarkably, we get the same value of c value for all of the allowed p. We implicitly

restricted to p ≥ 4 given the presence of parallel directions; it would be interesting to see

if this inequality could survive for p = 3.

8. The (on-shell) requirement λ < 1

We obtained in [20] the following no-go theorem on-shell, that we generalize here off-shell

2Ṽ +
1

2

A− 5B

A− 3B
τ∂τ Ṽ +

1

3
ρ∂ρṼ +

2

3(A− 3B)
σ∂σṼ (2.62)

= −2

p
τ−2ρ−1σ−3−p|f ||⊥⊥ |

2(λσ6 − 1)− 2

p
τ−2ρ−3σ−(B+2A)|H(2)|2

− 1

2p
g2
sτ
−4

5∑
q=0

ρ3−qσ−An−B(q−n)(p+ q − 6 + 2n)|F (n)
q |2 −

3

2p
g2
sτ
−4ρ−3(p− 2)|F6|2 .
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All fluxes contributions are negative in our setting, so we deduce

⇒ 2V +

√
2

2

A− 5B

A− 3B
∂τ̂V +

√
1

6
∂ρ̂V +

1

A− 3B

√
−2AB

3
∂σ̂V ≤ 0 if λ ≥ σ−6

⇒ c2 = 6
A− 3B

A− 7B
=

2p

p− 2
> 1 , as computed on-shell in section 3.1 of [24] . (2.63)

Unfortunately, the condition for the no-go has now become field dependent, and contrary

to previous no-gos, we do not see any interesting subcase where the field dependence can

disappear. This no-go theorem may therefore not make sense off-shell.

All no-go theorems considered so far got generalized to some extent in [24, 36] to cases

with intersecting sources. We however do not find it relevant to recall these generalizations:

either they eventually lead to the same inequalities on the potential (up to generalizations

of the assumptions), or there exists no good generalization. Further no-go theorems were

obtained in [24] in both the case of parallel or intersecting sources by using the H-flux

e.o.m. The latter is however complicated to obtain generically with our scalar potential,

so we refrain from translating those here.

9. The internal parallel Einstein equation

We aim here at reproducing in 4d and off-shell the 10d no-go theorem on parallel internal

Einstein equations discussed in section 3.2 of [24]. It requires to use the new scalar poten-

tial (2.30) derived in section 2.2.2 that depends on a new scalar field, the radius r, as well

as the 4d dilaton τ . We now consider the case in which the radius direction 1 is parallel to

the sources, meaning δ⊥1 = 0. This requires in particular p ≥ 4. From the potential (2.30),

one obtains

2Ṽ + τ∂τ Ṽ + 2r∂rṼ = −2τ−2
(
r∂rR6(r) + r−2|H(1)|2

)
(2.64)

− 2τ−4r−1g2
s

 5∑
q=0

|F (1)
q |2 + |F6|2

 ,

where all terms in the right-hand side are negative except the first one. One has

−2r∂rR6(r) = 4r−2R11 + (r2 − r−2)δik δjl f1
ij f

1
kl (2.65)

= −2r−2
(
f j i1f

i
j1 + δij δkl f

k
i1 f

l
j1

)
+ r2δik δjl f1

ij f
1
kl ,

and we recall that

f j i1f
i
j1 + δij δkl f

k
i1 f

l
j1 =

1

2
(δjk f

k
i1 + δil f

l
j1)2 , (2.66)

where the square is given by contractions with δ.., without a factor. So the square

δik δjl f1
ij f

1
kl is the only possible positive contribution. We deduce that a de Sitter so-

lution requires at least some i, j such that f1
ij 6= 0. This reproduces the no-go theorem
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of [24], since 1 stands in fact for any parallel direction. Note that on-shell, one can also re-

quire R11 > 0 as in [24], but this gets modified off-shell. Using the canonically normalized

fields (2.25), we deduce

⇒ 2V +
√

2∂τ̂V +2∂r̂V ≤ 0 if f1
ij = 0 for any parallel direction 1 and all i, j (2.67)

⇒ c2 =
2

3
. (2.68)

Remarkably, this value is independent of p ≥ 4.

10. Heterotic at order (α′)0

De Sitter string backgrounds at all orders in α′ and tree-level in gs have been completely

excluded in heterotic string [48–51]. At order α′, a simple reason is the universal scaling

of the action with the dilaton [49]: this leads to the same linear combination as the one

of no-go 1., which excludes de Sitter and gives c =
√

2. Interestingly, there is another

combination one can consider at order (α′)0, forgetting about the dilaton but considering

the volume. At order (α′)0, the (bosonic) effective action for heterotic string is just the

NSNS piece of (2.1): the (ρ, τ) potential (2.19) is then reduced to only the R6 and H-flux

terms. From this we get the following identities

Ṽ + ρ∂ρṼ = −τ−2ρ−3|H|2 (2.69)

⇒ V +

√
3

2
∂ρ̂V ≤ 0 (2.70)

⇒ c2 =
2

3
. (2.71)

It would be interesting to understand how this lower bound on c gets modified at order α′.

Unfortunately, the ρ potential becomes then too complicated to be able to obtain a simple

inequality as the present one. We would then be back to include τ as well. It remains

interesting to see that in the pure classical regime, we manage once again to saturate the

TCC bound.

All our results are summarized in table 2 and discussed in section 2.1.

3 Distance conjecture and λ values

In this section we focus on the (refined) swampland distance conjecture introduced

around (1.5). We report on various examples in the literature where this conjecture has

been tested, and we are particularly interested in the value of λ. We also compute λ for

few further examples and, after harmonising conventions on the distance definition, we

precisely compare all of the λ values obtained.

In order to test the distance conjecture, one first has to identify an infinite tower of

states having the predicted properties. This is a non-trivial task, and there is often not

only one tower of states becoming massless, but rather a competing collection of towers.

Such states were studied e.g. in [52–62]. Further works [63–70] studied the relation of
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such towers to the weak gravity conjecture and the distance conjecture. Identifying a

tower becoming massless is not enough: one further needs to show that the mass scale is

suppressed exponentially in the distance, as given in (1.5), and finally estimate λ. In the

following, we will focus on works that obtained such results for Kaluza-Klein states [53, 60]

or brane states [52, 54, 56, 57, 59, 62]. This will provide us with estimates of λ for different

states and various (infinite distance) directions in the moduli space or field space.

To that end, let us first clarify the notion of distance D(P,Q) from a point P to Q on

a (field) space, here a manifold. For real coordinates xi, the metric can be expressed as

ds2 = gijdx
idxj , and the distance along a curve γ from P to Q parameterized by an affine

parameter s is given by

D(P,Q) =

∫
γ

√
gij
∂xi

∂s

∂xj

∂s
ds . (3.1)

When the manifold is complex of real dimension 2r, one can introduce complex holomorphic

coordinates zα and anti-holomorphic ones zα = z̄ᾱ, α = 1 . . . r, and the metric can then be

rewritten as follows (see e.g. appendix A.2 of [71])

ds2 = gijdx
idxj = 2gαβ̄dzαdz̄β̄ + gαβdzαdzβ + gᾱβ̄dz̄ᾱdz̄β̄ . (3.2)

An Hermitian metric, to be considered in the following, is such that gαβ = gᾱβ̄ = 0, so the

line element simplifies to ds2 = 2gαβ̄dzαdz̄β̄ . The distance (3.1) then becomes

D(P,Q) =

∫
γ

√
2 gαβ̄

∂zα

∂s

∂z̄β̄

∂s
ds . (3.3)

This definition of the distance, also compatible with the kinetic term convention of (1.1), is

the one to be used below. The factor
√

2 in this definition was not included in [1, 53, 57, 60].

We will consider in the following the values of λ obtained in these works rescaled by this

factor of
√

2.

3.1 Kaluza-Klein states

In [53, 60] concrete values of λ were obtained by studying trajectories in the Kähler moduli

space5 of Calabi-Yau (CY) hypersurfaces and complete intersections in projective spaces.

The tower becoming massless was taken to be that of Kaluza-Klein states. As a result,

the range of values of λ obtained in these works (divided by
√

2 as explained above) is the

following

0.6013 ≤ λ ≤
√

2 . (3.4)

The individual λ values can be found in table 3. We indicate there various information on

the references and the details of the model (space, phase, the number of Kähler moduli h1,1).

Some cases exhibit a range of values: this corresponds to different field space directions

or different phases in which λ has been computed; we refer to the original works for more

details. Note also that in these references, Θλ = 1
λ was given, while we give here the

5To be precise in [53] trajectories in the complex structure moduli space were studied and the results

were then translated to the Kähler moduli space using mirror symmetry.
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value of λ directly (divided by
√

2). Finally, we take the opportunity to compute values

for P5[33],P5
1422 [44] and P5

122232 [66], which to the best of our knowledge have not been

calculated before. The results for P4
1223 [8] and P4

12226[12] are very close, which is expected

given that their moduli spaces are very similar.

In the 2 parameter models (h1,1 = 2), it is more difficult to compute explicit geodesics.

In [53], the calculation was then done with an asymptotic expansion of the Kähler poten-

tial in the various phases, and the focus was on geodesics deep in a phase: see sections

5.1.3, 5.1.4 of [53] for more details. We simply list in table 3 the results obtained in

different phases.

3.2 Brane states

We now study the relation between brane states and the distance conjecture. We focus

on the complex structure moduli space Mcs of type IIB string theory compactified on a

Calabi-Yau threefold, CY3 (see e.g. [72] for a review). In general Mcs is not smooth and

admits singularities. These special points can always be moved to lie at divisors which

intersect normally [73, 74]. In [52] singular points in Mcs were studied by means of the

monodromy around these points.6 In particular they used a theorem by Schmid [75] which

allows one to get the asymptotic form of the Kähler potential near special points in Mcs.

In the one parameter case (one field) the expansion of the Weil-Petersson metric on the

moduli space is given by

gtt̄ =
1

4

n

(Im t)2
+

#

(Im t)3
+ · · ·+O(e2πit) , (3.5)

where n, a nilpotency index,7 encodes the nature of the singular point and t is the coordi-

nate on Mcs, such that the singular locus lies at t → i∞. We refer to [52] and references

therein for more details. Importantly, the leading term in (3.5) is universal, in the sense

that it does not depend on the details of the moduli space. The distance displays now the

following leading behaviour

D(P,Q) =

∫ Q

P

√
2gtt̄ |dt| ≈

√
n

2
ln

Im t|Q
Im t|P

→ ∞ . (3.6)

Furthermore, in [52] BPS states were identified as possible candidate states which become

massless, when approaching an infinite distance singularity. More precisely, the authors

of [52] looked at BPS states in N = 2 supergravity originating from wrapped D3-branes.

The mass of these states is equal to the central charge, Mq = |Zq| with q the charge vector.

From the comparison of the asymptotic form near singular points of the mass Mq of these

BPS states, which become light, with the behaviour of the distance, an important result

of [52] was
Mq(Q)

Mq(P )
' (Im t)s|P

(Im t)s|Q
' e−λ D(P,Q) , (3.7)

6Part of the results of [52] also apply to CY of different complex dimension D; however some aspects of

this work, such as the masses of the states, use N = 2 supersymmetry in d = 4 dimensions, which from 10d

type IIB requires to have D = 3. We thus restrict to these dimensions here.
7Equivalently, n is the degree of the polynomial P (Imt) appearing in an expansion of the Kähler potential

near a singular point [52]: e−K = P (Imt) +O(e2πit).
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where the second equality is obtained from (3.6), with

λ = s

√
2

n
s =

{
1 if n mod 2 = 0
1
2 if n mod 2 6= 0

. (3.8)

Note that n is bounded by the complex dimension of the CY, i.e. here n = {1, 2, 3}, giving

the following three possible values

λ =

{
1

2

√
2 , 1 ,

1

2

√
2

3

}
, (3.9)

that we report in table 3.

These remarkable general results were reproduced in various concrete examples.8 For

one parameter models as here, it is sufficient to give the λ values for one class of examples,

namely the complete intersection cases of the form P5[cc] with two infinite distance points,

because all remaining models have the same type of singularity at the large complex struc-

ture point (LCS). The small complex structure (SCS) point is at finite distance for the

remaining models. All one parameter models were actually studied in detail in [57], where

the following results were obtained

P5[cc] : λLCS =
1√
6
, λSCS =

1√
2
, (3.10)

for D3-branes at the SCS point in the P5[33] model and mirror D0-D2 bound states at the

LCS point. In the latter, D0-branes are less dominant with λ =
√

3/2.

Various extensions were considered in [52]. In general, having determined possible

states, one still has to show that there is an infinite tower of them and verify if they are

stable against decay. A systematic study of the existence of such towers at different types

of singularities has been performed in [52, 54]. Similar questions have been addressed

from the perspective of the Kähler moduli space in [56]. Finally, an analogous analysis

can be found in [59, 62] where possible states were studied in type IIA/IIB orientifold

compactifications, i.e. with N = 1 supersymmetry in 4d. In particular, considering O3/O7

on CY3 in type IIB [62], the values λ = 1/
√

6 and λ =
√

3/2 were also obtained with

D3-branes. We summarize all these results in table 3.

3.3 Comments and λ values

All λ values for the distance conjecture (1.5) obtained in the various settings discussed

above are now summarized in table 3. Let us give few comments on these values. A first

striking point is that all values verify

λ ≥ 1

2

√
2

3
≈ 1

2
0.8165 ≈ 0.4082 , (3.11)

with several examples of saturation. A very convincing case is the general analysis of [52]

on CY3 in type IIB with n = 3, that provides precisely this value. The result (3.11)

8Our short review of the results of [52] corrects some typos present in that paper; in addition, the results

of [57] are here rescaled with the
√

2 factor mentioned at the beginning of this section.
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is remarkable because it corresponds exactly to a half of the TCC bound (1.4), verified

by c in the de Sitter no-go theorems as discussed in section 2.1. While it was already

surprising for these no-go theorems, it is here at first sight extremely puzzling for the

distance conjecture. It is fair to say that studies of CY3 moduli space and their BPS states

seem a priori perfectly unrelated to the TCC concepts and framework, and the numbers

obtained in [52] could have been completely different, even if close to 1. The swampland

perspective may however provide some clarification, as we will discuss in section 4.

Let us make few more comments on the λ values in table 3. It is interesting to note

that twice the bound (3.11) is also sometimes obtained, and similarly with the value
√

2.

The same values and factor of 2 were observed as well for c, as can be seen in table 2. The

matching of these c and λ values will be further discussed in section 4. Finally, regarding

the numerical values appearing in the ranges of λ, it is interesting to note that the lowest

value of the upper range bounds is 0.8165, which is precisely the estimate of
√

2
3 . Other

upper bounds are close to 1, which is another analytical value which appears. We are

however not sure how to interpret these points nor the lower range bounds; it remains

remarkable that
√

2
3 appears there once again.

4 The web of conjectures

We have observed in previous sections that the two numbers of order one in the de Sitter

conjecture and in the distance conjecture, namely c and λ, both admit a lower bound, at

least in the examples analysed. For c, this bound is consistent with the TCC bound (1.4),

but this result remains impressive. For λ, to our surprise, it matches a half of the TCC

bound (3.11). In addition, further values obtained for these numbers, listed in table 2 and 3,

also match up to a 1
2 factor. In our view, these results can hint at a relation between the

two conjectures, that we will present as a map and discuss in detail. The idea of such a

relation is not new, and we will first review in section 4.1 similar ideas already present

in the literature. The lower bound on λ also calls, in our view, for a modification of the

distance conjecture that we will detail. All of our proposals on swampland conjectures and

their relations are then given in section 4.2; that section will necessarily be more speculative

than the rest of this paper. We finally discuss important aspects of the aforementioned

map and provide non-trivial checks in section 4.3. In the entire section, we work again in

Planckian units.

4.1 Relating conjectures in the literature

It has been argued and tested that the swampland conjectures are not independent of each

other but form a web [1]. Relations between conjectures are not all established on the

same footing, some are stronger than others. As we will see, the de Sitter swampland

conjecture(s) have been argued to be related to some forms of the distance conjecture or

the weak gravity conjecture, even though not in a very precise manner. Given the results

of the previous sections, we are interested in making such a relation more precise. To this

end, we first give here a brief overview of the literature on this matter.
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Tower states Setting Reference λ

P4[5], h1,1 = 1 Table 3 of [53] 0.7168 ≤ λ ≤ 0.8168

P4
142[6], h1,1 = 1 Table 4 of [53] 0.7389 ≤ λ ≤ 0.8165

P4
144[8], h1,1 = 1 Table 5 of [53] 0.7579 ≤ λ ≤ 0.8175

P4
1325[10], h1,1 = 1 Table 6 of [53] 0.7451 ≤ λ ≤ 0.8175

P6
17 [322], h1,1 = 1 Table 4 of [60] 0.6013 ≤ λ ≤ 1.0177

P5
16 [42], h1,1 = 1 Table 5 of [60] 0.6121 ≤ λ ≤ 0.9650

P5
153[62], h1,1 = 1 Table 6 of [60] 0.6654 ≤ λ ≤ 1.0425

Kaluza-Klein P5
152[43], h1,1 = 1 Table 7 of [60] 0.6591 ≤ λ ≤ 0.9600

states P5[33], h1,1 = 1 new 0.7834 ≤ λ ≤ 0.8837

P5
1422 [44], h1,1 = 1 new 0.7835 ≤ λ ≤ 0.9182

P5
122232 [66], h1,1 = 1 new 0.7828 ≤ λ ≤ 0.9447

P4
1223 [8], h1,1 = 2, Hybrid-Orbifold Section 5.1.4 of [53]

√
2
3

P4
1223 [8], h1,1 = 2, Hybrid-P1 Section 5.1.4 of [53]

√
2

P4
12226[12], h1,1 = 2, Hybrid-Orbifold Section 5.2 of [53]

√
2
3

P4
12226[12], h1,1 = 2, Hybrid-P1 Section 5.2 of [53]

√
2

P4
1369[18], h1,1 = 2, Hybrid-Orbifold Section 5.3 of [53]

√
2
3

P4
1369[18], h1,1 = 2, Hybrid-P2 Section 5.3 of [53] 1

CY3, type IIB, n = 1 [52] 1
2

√
2

CY3, type IIB, n = 2 [52] 1

Brane CY3, type IIB, n = 3 [52] 1
2

√
2
3

states
P5[cc], large complex struct. point (6.5) of [57] 1

2

√
2
3

P5[cc], small complex struct. point (6.22) of [57] 1
2

√
2

CY3 with orientifold, type IIB Section 4.2 of [62] 1
2

√
6, 1

2

√
2
3

Table 3. Values of λ in the distance conjecture (1.5) that were obtained in the literature, as well

as few new ones. The states of the tower becoming massless are either Kaluza-Klein states or brane

states. For each value or range of values, we give the setting in which it was obtained and the

reference in the literature. More details can be found in the main text.
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Let us start with some clarifications. On the one hand, the distance conjecture is

a statement that was mostly checked on Calabi-Yau compactifications (typically to 4d

Minkowski) and their moduli spaces. On the other hand, the de Sitter statement is typically

verified in compactifications on curved manifolds with fluxes and sources, generating a non-

trivial 4d scalar potential V and a cosmological constant Λ. The two setups are therefore

at first sight very different. The conjectures are however supposed to hold in any setup.

It is then unclear whether a relation between the two statements could be established in

any framework, or even in a single setup. Rather, one possibility is to view the relation

between the conjectures as a relation between two different setups or theories, which can be

understood to some extent as a duality. This idea was sketched in [4]. If one was to consider

both conjectures in a single setup, it would be tempting to compare the mass entering the

distance conjecture, m(ϕ), to the mass of ϕ itself, related to ∂2
ϕV for a scalar potential

V (ϕ). These two masses are however those of different states, thus they have a priori no

relation. Rather we think on general grounds that the former m could be compared to V

itself (in Planckian units), and we will further elaborate on this.

One guideline followed in the literature when comparing conjectures are the exponen-

tials that appear as saturating cases of certain inequalities. For example, in the present

work we have already found them in (the saturation of) (1.2), (1.3) and (1.5). We are

especially interested in a relation between the O(1) numbers in these exponentials. Since

these exponentials appear in large field limits, those limits should also play a role in the

relation between conjectures. It was argued in [4] that such limits typically correspond

to parametrically controlled regimes in string theory where, considering the whole string

framework, one has at his disposal a dual description. It could then be argued that one

conjecture would apply on one side of the duality, and could be mapped (by identifying the

exponential behaviour of some quantity) to another side into a different statement. In [4],

such an idea was used to count the number of light states (see e.g. [56]) contributing to

the entropy of a quasi-de Sitter space-time. In the large field limit, this led to the identi-

fication of the asymptotic form of the scalar potential V with the exponential behaviour

of m (modulo a function counting the number of towers becoming light). In this relation,

the power of the exponential was however not given explicitly and seemed dependent on

the context. From these ideas, we still infer the possibility of having the following type

of relation
m

mi
≈
∣∣∣∣VVi
∣∣∣∣α ≈ e−λD when D →∞ , (4.1)

with some constants mi, Vi, α and D the geodesic field distance. Considering the saturation

case in the de Sitter conjecture, we deduce a possible equality

λ = α c . (4.2)

Another swampland conjecture of interest is the scalar weak gravity conjecture [21].

Considering a field of mass m coupled to a scalar field ϕ through a Yukawa coupling,

the conjecture requires gravity to be the weakest force, in the spirit of the original weak

gravity conjecture [76]. This is to be distinguished from the requirement of avoiding bound

states, which implies that repulsive forces overcome attractive ones [68, 77], and leads
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to different modifications of the weak gravity conjecture due to scalars. Comparing the

Yukawa coupling to that of gravity, the scalar weak gravity conjecture is written as follows

for a single scalar field ϕ

(∂ϕm)2 ≥ m2 . (4.3)

Interestingly, this inequality is very similar in form to the de Sitter conjecture (1.2); we will

come back to this point. The saturation of the inequality also gives back the exponential

of the distance conjecture. This will be another important relation in the following. A

generalization of this conjecture was proposed in [22] under the name “strong scalar weak

gravity conjecture” (see [78] for a recent extension). This new conjecture applies such an

inequality to self-interactions of a single scalar field ϕ governed by a potential V (ϕ). It

follows from the idea that m2 in (4.3) could be traded for the second derivative V ′′, and

the inequality would get corrected by quartic interactions. The result would be

2
(V ′′′)2

V ′′
− V ′′′′ ≥ V ′′ ↔ (V ′′)2

(
1

V ′′

)′′
≥ V ′′ . (4.4)

It is again interesting to consider the saturation case, where one obtains(
1

V ′′

)′′
− 1

V ′′
= 0 ↔ V ′′ =

(
Aeϕ +Be−ϕ

)−1
, (4.5)

with two integration constants A,B.9 Therefore, in the saturation case one recovers the

exponentials.10 Trading V ′′ for m2, one obtains again a distance conjecture behaviour.

Rewriting (4.4) as

m2

(
1

m2

)′′
≥ 1 , (4.6)

it has been further proposed in the unpublished work [79] to trade m for the scalar potential

V of a de Sitter conjecture. More precisely, a relation V = m2γ for some unspecified

number γ was proposed, which is nothing but the first relation in (4.1). Doing so, the

inequality (4.6) translates into a refined de Sitter conjecture à la [5], when allowing in [5]

the limiting case q = 2. This web of conjectures is interesting, and illustrates the various

key ideas in this discussion. A crucial role is played by an identification of the type (4.1)

between m and V , in order to connect the distance conjecture (and related conjectures) to

a de Sitter conjecture.

Finally, a conjecture has been recently proposed regarding the distance conjecture in

an anti-de Sitter space-time [19] (see also [80] and the recent [81, 82]). It states that in the

near-flat limit, where the cosmological constant Λ → 0, a tower of states of mass scale m

becomes light, obeying

m ∼ |Λ|α for Λ→ 0 . (4.7)

9One may generalize (4.4) and its saturation to allow for different coefficients, namely

n
(V ′′′)2

V ′′
− V ′′′′ = V ′′ ↔ 1

n− 1

(
1

(V ′′)n−1

)′′
− 1

(V ′′)n−1
= 0 for n ∈ R, n 6= 1 .

10Interestingly, these two exponentials are mapped into one another by eϕ → (eϕ)−1, a fact which is

reminiscent of the relation between momentum and winding modes of the string under T-duality.
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It is further suggested that α ≥ 1
2 , and one should have α = 1

2 for supersymmetric vacua

(strong version). Some discussion in [19] on an extension to de Sitter allows various options

for α, including the value 1
2 as a bound. Here, by extrapolating this conjecture to quasi-de

Sitter or anti-de Sitter space-times, we replace Λ by V in (4.7) and then reproduce, up

to extra constant factors, the relation (4.1) in an asymptotic limit. This can motivate

once more the tentative (4.1). A difference though is that the tower of states and the

cosmological constant Λ are considered in [19] in the same setup, while here we argued at

first for such a map between two different setups.

Further works proposing interesting relations between all these conjectures include [83–

85]. Having reviewed ideas on the web of conjectures discussed in the literature, we now

focus on our results.

4.2 Proposals

Inspired by the ideas reviewed above, as well as our results discussed around table 2 and 3,

we now propose several conjectured statements.

4.2.1 Distance conjecture

We first propose to relax the distance conjecture (1.5) to a weaker, thus more general,

statement. It takes a TCC form (1.3) and is inspired by the bound on λ (3.11) as well

as by a map to the potential V of the de Sitter conjecture. We propose the following

statement

Consider a field space (e.g. a scalar moduli space) appearing in a d-dimensional low en-

ergy effective theory of a quantum gravity, and a geodesic distance D in this field space.

Whenever D → ∞, a tower of states becomes light, with a typical mass scale m verifying

in Planckian units

0 < m ≤ m0 e
−λ0D , (4.8)

with positive constants m0, λ0, where

λ0 =
1√

(d− 1)(d− 2)
. (4.9)

Consider that the distance is given as a function of a single canonically normalized

field ϕ, namely D = |ϕ− ϕi|. Taking without loss of generality ϕ > ϕi, one has

−
〈
m′

m

〉
= − 1

ϕ− ϕi

∫ ϕ

ϕi

dϕ̃
∂ϕ̃m

m
= −

ln m(ϕ)
m(ϕi)

ϕ− ϕi
≥ −

ln m0
m(ϕi)

ϕ− ϕi
+ λ0 , (4.10)

where in the last step we used (4.8). We further observe, by definition and using the

formula above, that 〈
|m′|
m

〉
≥
∣∣∣∣〈m′m

〉∣∣∣∣ ≥ | ln m0
m(ϕi)

|
D

+ λ0 , (4.11)

for a large distance. We conclude that

(4.8) ⇒
〈
|m′|
m

〉
D→∞

≥ λ0 . (4.12)
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This derivation mimics that of the TCC (1.3) in [11], without assuming any sign for m′. As

in [11], the first derivative m′ = ∂ϕm gets naturally replaced in a multi-field case by ∇m.

The distance is then defined along a geodesic path in the (multi-)field space. Importantly,

the inequality (4.12) is nothing but a (generalized) scalar weak gravity conjecture (4.3).

We will come back to this point below.

The inequality (4.8) includes as a particular case the situation when the standard

distance conjecture (1.5) is verified,11 namely when the mass scale goes like an exponential

in the large distance limit D → ∞. In that case, we deduce from (4.8) or (4.12) the

following constraint

m = mi e
−λD ⇒ λ ≥ λ0 . (4.13)

Another way to understand the proposal (4.8) is that it allows m to have an exponential

behaviour in various directions, but these exponentials should be subdominant compared

to the saturation case of the inequality. In particular, one deduces the bound

λ ≥ 1

2

√
2

3
in d = 4 , (4.14)

which was verified very precisely in all examples summarized in table 3, as discussed

around (3.11). In the framework of [52], this bound was actually proven to hold in general

for wrapped D3-brane states. This motivates in d = 4 the value of λ0 (4.9) being a half

of the TCC one (1.3), i.e. λ0 = 1
2c0. The extension to other d seems natural, and further

motivated by the proposal of section 4.2.3, even though we did not check it here against

concrete examples. As detailed in footnote 6, we did not find for d 6= 4 a counter-example

to this value in the distance conjecture literature.

The inequality (4.8) also allows for different behaviours of the mass m than an ex-

ponential. The examples considered in this paper present only exponentials, but the idea

of allowing logarithmic corrections was recently put forward following [11], especially for

masses in e.g. [86]. Indeed, one already sees in the ratio m′/m in (4.10) the appearance

of some logarithmic corrections, that disappear in the limit of infinite distance in (4.12).

The extra room allowed by the inequality (4.8), compared to the distance conjecture (1.5),

is then interesting, e.g. for what concerns quantum corrections. However, while the TCC

inequality (1.3) on the potential V was originally derived from a physical argument, we

are lacking for now of an analogous argument behind (4.8); we hope to come back to this

question in future work.

11An inequality which reminds (4.8), though it has some differences, actually appears in [1], where the

refined distance conjecture is presented. However, we could not find that inequality explicitly in the original

papers [17, 18], so its motivation is unclear to us. The main difference with (4.8) is that the exponent in [1]

is a generic number of order one, while in our case the bounding exponential is fixed, with a definite

constant λ0. This and the fact that the review [1] appeared before the TCC paper [11], are to us important

conceptual differences between these inequalities. Finally, a similar inequality is also sketched in [11], with

however a different exponent.
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4.2.2 Scalar weak gravity conjecture

Our generalization (4.8) of the distance conjecture implies the inequality (4.12) that we

repeat here for convenience 〈
|∂ϕm|
m

〉
D→∞

≥ λ0 (4.15)

and that has the form of a scalar weak gravity conjecture. We thus promote the scalar

weak gravity conjecture inequality (4.3) to the more general one (4.15). Its relation to

the distance conjecture, reviewed before, is now even more apparent. As discussed, the

inequality (4.15) allows for more general behaviours of m. In particular cases where neither

the average nor the limit is needed, e.g. for m being an exponential, the scalar weak gravity

conjecture inequality (4.15) boils down to

(∂ϕm)2 ≥ λ2
0 m

2 , (4.16)

with a straightforward multi-field generalization by replacing the left-hand side with (∇m)2.

With respect to the original scalar weak gravity conjecture (4.3), the novelty is now only the

parameter λ0. Given that in 4d, one has 1 > λ0, this modified version (4.16) is then verified

by all cases where the original conjecture (4.3) holds. Our modification suggests the possible

existence of other cases to be discovered where this lower bound λ0 will be reached. As

noticed already for the distance conjecture, the value obtained in these inequalities depends

on the compactification setup and on the field direction.

Finally, it would be natural to modify known extensions of the scalar weak gravity

conjecture in the same manner. For example, one could consider the proposal (4.6) of [22],

and turn it into

m2

(
1

m2

)′′
≥ λ2

0 . (4.17)

It would be more satisfactory to “derive” such a modification analogously to what was

done for (4.15) from (4.8). To this end, studying (m2)′′ could be useful, as it would involve

quartic couplings. This is reminiscent of the study of V ′′ in [7] that led to a refined de

Sitter conjecture.

4.2.3 Relating the distance and de Sitter conjectures

We have reviewed in section 4.1 possible relations between the distance and the de Sitter

conjectures, with an emphasis on a link between m and V . If one allows for the inequality

version of the distance conjecture (4.8), and given the TCC inequality (1.3), the analogy

between m and V becomes striking. The relations between the values of c in table 2 and

λ in table 3, as well as their lower TCC bounds, are to us an additional hint. The values

of c and λ are very dependent on each side on details of the compactification and the

chosen field direction. In addition, as discussed at the beginning of section 4.1, the two

conjectures seem to operate in different compactification setups, at least in the examples

analysed. Having all these ideas in mind, we propose the following correspondence or map.
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We conjecture the existence of a map between two compactification setups to d dimensions

where, in each of them, a direction ϕk in field space is selected: (setup1, ϕ1)↔ (setup2, ϕ2).

In the first setup, the generalized distance conjecture (4.8) with mass m applies, and in the

second one the de Sitter conjecture in TCC form (1.3) applies. We denote generically by

D the field space geodesic distance along ϕk=1,2; it can on both sides be arbitrarily large.

The proposed map is then

m

mi
'
∣∣∣∣VVi
∣∣∣∣ 12 for D →∞ , (4.18)

for some constants mi, Vi. The symbol ' is understood as an equality of the two functions

m,V up to the exchange ϕ1 ↔ ϕ2.

When the mass and the potential are exponentials in the large field distance, both

sides of (4.18) are equal to e−λD. We then match the tentative relation (4.1) with the

value α = 1
2 and we also have

λ =
1

2
c ≥ λ0 =

1

2
c0 . (4.19)

We will comment further on the number c and on the asymptotic (exponential) form of

V in section 4.3. This relation between λ and c is well illustrated by pairs of examples in

table 2 and 3. More generally, it is straightforward to infer from (4.18) and for a single field

that |m′|/m ' 1
2 |V

′|/V in the large distance limit. This relation generalizes (4.19) beyond

the exponential case. One could also define λ and c as the minimum of these ratios (or their

average) in the large distance limit, consistently with the bounds discussed previously.

Note that the exponent 1
2 in (4.18) is consistent with the (strong) anti-de Sitter distance

conjecture [19] and extensions discussed around (4.7). In the latter though, the setups

related by the above map would actually be the same, while we allow here in general

for two different ones. In addition, we divide here by constants, while it is not the case

in (4.7). As a consequence, we have in general nothing to say about scale separation.

The anti-de Sitter distance conjecture can still be viewed as a particular case of (4.18),

where the scales mi and |Vi|
1
2 are precisely the same and the two setups are identified.

When the scales are different, the resulting multiplicative constant may account for the

one discussed in [81]. However, we recall that, strictly speaking, we can only discuss a

de Sitter version of the anti-de Sitter distance conjecture, which was only sketched in [19]

and mentioned around (4.7). Indeed, our map assumes a positive potential through the

TCC (1.3). Nevertheless, we find this connection to the anti-de Sitter distance conjecture

satisfactory, to say the least.

We provide additional detailed checks and discussions on this map in the section 4.3.

However, a more fundamental reason underlying the existence of this map remains unclear

to us at this stage. We also comment further on this in the next section.

4.3 Asymptotic exponential form of V , the number c and more on the map

In section 2, we presented no-go theorems in the form of inequalities of the type (2.36),

involving a linear combination of fields. This linear combination can be viewed as a single
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field direction. For future purposes, we find it convenient to denote it by ϕ2, and rewrite

the generic no-go inequality (2.36) as follows

a V +
∑
i

bi ∂ϕ̂iV ≤ 0 ↔ c V + ∂ϕ2V ≤ 0 . (4.20)

Then, the technique to get a value for c in section 2 essentially amounts to use the following

inequalities (considering V > 0)

|∇V |
V
≥ |∂ϕ2V |

V
≥ c , (4.21)

and, in section 2, we further verified that c ≥ c0. This discussion highlights the fact that

c, as defined above, is dependent on the selected field direction. This is somehow different

from the original de Sitter conjecture (1.2), which rather considered c as a universal bound,

a role played in our discussion by c0.12 The table 2 emphasizes already that c depends on

the compactification setup, i.e. the no-go assumptions, but these are intimately related to

the no-go inequality (4.20) and thus to a field direction.

This situation is very analogous to that of the distance conjecture. There as well, the

behaviour of the mass, especially for what concerns the value of λ, depends on the field

direction in the moduli space. The nature of the tower having this mass also depends

on the field direction. This is highlighted by the different lines in table 3, which in turn

indicate the dependence of the field space on the compactification setup. Therefore, when

trading λ for c, one should exchange also the associated field directions. This point is

further enforced by the map (4.18) as we now detail.

In all examples on the distance conjecture considered in this paper and summarized in

table 3, the mass m verifies the exponential behaviour (1.5). In that case, the map (4.18)

implies that also the associated potential V has to have an exponential behaviour in the

large distance limit. More precisely, we should have that

V = Vi e
−cD for D →∞ , (4.22)

where D = |ϕ2−ϕi|, Vi, ϕi are some constants, and ϕ2 is the field (direction) mentioned in

the map (4.18). The fact that the exponent is precisely c was already announced in (4.19),

and is motivated by (4.20). Indeed, in the case of an exponential, the right-hand side

inequality of (4.20) calls for a saturation, fixing the exponent to be c. We now want to

check the behaviour (4.22) on some examples, and thus verify the map (4.18). In this

respect, a non-trivial step is to identify the appropriate field direction ϕ2 to be sent to

infinity. As anticipated above with (4.20), the field combination entering the no-go theorem

inequality (2.36) provides a good candidate. We now illustrate these points with several

examples.13

12The number c is here not equal to the minimum value of |∇V |/V , but rather to the minimum of

|∂ϕ2V |/V along a direction ϕ2. The latter is a priori different and smaller than the former.
13Given that the no-go theorems inequalities (4.20) define field space directions, one may wonder whether

those giving the same c value involve the same direction. Looking at the no-gos that saturate the TCC

bound, namely 2., 5., 7., 9. and 10., we can see that it is not always true. It only happens for the no-go 2.

with p = 4 and 10., which involve the same linear combination of V and its derivative. Overall, there is

therefore not a single preferred scalar field direction.
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We start with examples where a single field enters the no-go theorem inequality (2.36).

We begin with the no-go theorem 10.. Its inequality (2.70), when compared to (4.20),

indicates the field direction to be ϕ2 = ρ̂. Then, the large field distance is ρ̂ → ∞, which

also corresponds to ρ → ∞. Here and in the following, we freeze the other fields at fixed

values, taken to be 1 for simplicity. In the framework of this no-go, the potential along the

direction ϕ2 = ρ̂ is then given, in Planckian units, by

V (ρ, τ = 1) = −ρ−1 1

2
R6 +

1

4
ρ−3|H|2 ≈ −ρ−1 1

2
R6 =

(
−1

2
R6

)
e
−
√

2
3
ρ̂
, (4.23)

where the ≈ sign corresponds to taking the large field limit. The result is in perfect

agreement with (4.22). Another single field example is the no-go theorem 1., for which we

take ϕ2 = τ̂ . With a similar calculation, we obtain the potential in the large field limit

τ →∞
V (ρ = 1, τ) ≈ τ−2 1

2

(
−R6 +

1

2
|H|2

)
=

(
−R6 +

1

2
|H|2

)
e−
√

2 τ̂ , (4.24)

and verify again (4.22). In both cases, the map is then verified.

We turn to an example with two fields in the no-go inequality (2.36). In that case,

one has to introduce the appropriate field ϕ2 and the orthogonal direction ϕ2⊥. Given the

inequalities (4.20), we propose to define these fields through the following rotation

ϕ2 =
b1√
b21 + b22

ϕ̂1 +
b2√
b21 + b22

ϕ̂2 , ϕ2⊥ = − b2√
b21 + b22

ϕ̂1 +
b1√
b21 + b22

ϕ̂2 . (4.25)

Indeed, this definition leads to the following field derivatives

b1∂ϕ̂1 + b2∂ϕ̂2 =
√
b21 + b22 ∂ϕ2 , (4.26)

that allows the rewriting (4.20), using also the formula for c in (2.37), while preserving the

canonical normalization of the fields

(∂ϕ2)2 + (∂ϕ2⊥)2 = (∂ϕ̂1)2 + (∂ϕ̂2)2 . (4.27)

We apply the definition (4.25) to the no-go 9., and obtain

ϕ2 =
1√
3
τ̂ +

√
2

3
r̂ =

√
2

3
ln(τ r) , ϕ2⊥ = −

√
2

3
τ̂ +

1√
3
r̂ =

1√
3

ln(τ−2 r) . (4.28)

Introducing

x = τ r = e

√
3
2
ϕ2 , y = τ−2 r = e

√
3ϕ2⊥ , (4.29)

we rewrite the potential V (r, τ) given in (2.30) in terms of x, y. We then set y = 1, and

send x→∞, corresponding to the large distance (ϕ2) limit. We are then left with

V (r,τ)≈ 1

8
δik δjl f1

ij f
1
kl e

√
2
3
ϕ2 (4.30)

+
1

2

−R6+R11−
1

2
δik δjl f1

ij f
1
kl+

1

2
|H(0)|2−gsδ||1

T10

p+1
+

1

2
g2
s

5∑
q=0

|F (0)
q |2

e−√ 2
3
ϕ2 ,
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where we kept the two dominant terms. The first term diverges, but it vanishes under the

assumption of the no-go theorem 9., namely that f1
ij = 0. Taking this into account, we

obtain

V (r, τ) ≈ 1

2

−R6 +R11 +
1

2
|H(0)|2 − gsδ||1

T10

p+ 1
+

1

2
g2
s

5∑
q=0

|F (0)
q |2

 e
−
√

2
3
ϕ2 , (4.31)

which verifies once again (4.22) and the map.

At this stage, one may wonder in general why the exponential behaviour of the po-

tential (4.22) and thus the proposed map are actually verified in the examples considered.

We give here a possible explanation. The potentials considered are sums of terms where

the dependence on the fields ϕ are simple powers. It turns out that the canonical fields are

always given by ϕ̂ ∝ lnϕ, such that the potential can be rewritten as a sum of terms with

exponential dependence on the canonical fields. If we define the direction ϕ2 of interest as

in (4.20), then this is given by a linear combination of canonical fields, and thus appears

as well in exponentials. If we freeze the other fields, we are left with the following

V (ϕ2) =
∑
i

ai e
−γi ϕ2 , c V + ∂ϕ2V =

∑
i

ai e
−γi ϕ2 (c− γi) ≤ 0 , (4.32)

where we define the ai such that all γi are different. Usually, the appropriate combinations

of the potential and its derivatives entering the no-go theorem are built in such a way that

some specific contribution cancels-out. This implies that there exists one γi, say i = 1,

such that c = γ1. In addition, the remaining terms in the combination are such that they

all have the same definite sign (thanks to the assumptions of the no-go). To realise this, a

possibility is that ai ≥ 0, which implies that γi > c, for i ≥ 2. The opposite signs would

also work, but they imply that V would be negative in the large field limit, so we neglect for

now this other option. With γi > c, for i ≥ 2, and c = γ1, we conclude that the potential

has the appropriate form to match (4.22) in the large field distance, and the map is then

verified. This scenario applies in the examples above, since the terms entering the constant

Vi are precisely those not appearing in the combination of V and ∂V . We hope to study

further these questions in future work, as well as to analyse more examples, in order to get

a better understanding of the behaviour of the potential in the large field limit.

Few more comments are now in order. What remains surprising about the map (4.18)

is that the two setups and the two fields are very different. We take for instance the

setup1 to be a Minkowski compactification on a CY3 with an index n, indicating a specific

asymptotic structure [52]; the field ϕ1 in that case is a complex structure modulus. The

setup2 is a compactification on e.g. a group manifold with parallel Op/Dp sources, that

obeys the assumptions of the various no-go theorems considered, and the field ϕ2 depends

on the no-go. For example, for n = 1, one gets c = 2λ =
√

2. The compactification setup2

can be specified to have T10 ≤ 0, R6 < 0, and the map is then verified with ϕ2 being the

4d dilaton, as shown above. Similarly, for n = 3, one has c = 2λ =
√

2
3 . The setup2 can be

either heterotic string at order (α′)0 with e.g. R6 < 0 and ϕ2 being the volume, or type II

on a group manifold with p ≥ 4, obeying assumptions of no-go 9., with ϕ2 a combination
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of a radius and the dilaton. In all these examples, the setups and the field directions are

both very different.

This is related to the question on the physical reason underlying the existence of the

proposed map. A nice interpretation would be a duality between string theory in differ-

ent compactifications, in some specific regimes corresponding to some large field distances

on both sides. For instance, the map between a CY framework and a complex structure

modulus to a curved manifold and a Kähler modulus (radius, volume) is reminiscent of

a T-duality or a (generalized) mirror symmetry. However such dualities typically require

some restrictions on the compactification setups, and it is here unclear what is the extent

or the generality of the above map. Candidate counter-examples to the de Sitter conjec-

ture, e.g. [30, 41], or to the strong anti-de Sitter distance conjecture, [87–89], may also

indicate possible compactification setups that circumvent the applicability of such a map.

In addition, having a relation between the two different quantities that are the mass and

the potential remains unmotivated for now. Related ideas discussed in [4, 39] could provide

further hints. We would like to come back to these questions in future work, and hope that

the present formulation of these ideas will still be helpful.
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A 4d four-forms and the scalar potential

A.1 In V (ρ, τ, σ)

When performing the dimensional reduction from the 10d type II supergravities action (2.1)

to the final 4d one (2.7) with a scalar potential depending on (ρ, τ, σ), there is a non-trivial

step involving 4d four-forms that we now detail. Because of 4d maximal symmetry, most

fluxes can only be internal and can then be collected into a scalar potential U . Only

F 10
4,5, depending on the theory, can have 4d components, which have to be proportional

to vol4. Following [20, 35], we separate their 4d and 6d components as F 10
4 = F 4

4 + F4,

F 10
5 = F 4

5 + F5. We further introduce F 4
5 = H4 ∧ f5: F 4

4 and H4 are 4d four-forms, F4,

F5 and f5 are purely 6d forms, f5 being a one-form. Considering the fluctuations and

dimensional reduction presented in section 2.2, and proceeding as in [20], we arrive in 4d

Einstein frame at the following action

S =

∫
dx4
√
|g4|

(
M2

4

2
R4 − kin− U(ρ, σ, τ) (A.1)

− 1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s ×

1

2
τ4ρ3g2

s

(
|F 4

4 |2 +
1

2
|H4|2 ρ−1

∑
n=0,1

σ−An−B(1−n)|f (n)
5 |

2

))
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where for the conventions on the Planck mass and the kinetic terms we refer to section 2.2.

In particular, the square of 4d four-form fluxes are in Einstein frame and we defined

U(ρ, σ, τ) =
1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s (−τ−2ρ−1R6(σ) + . . . ) , (A.2)

where dots collect the purely internal fluxes and the sources contributions. One is tempted

to identify U together with the second line in (A.1) as the complete 4d scalar potential

V . This is in principle correct, but one has first to use the on-shell values (in a sense

defined below) for the fluxes containing the 4d four-forms. Such a step requires particular

attention. To understand the problem related to the on-shell evaluation of 4d four-forms,

it will be enough to consider a simpler, purely 4d, action of the type

S ′ =
∫

d4x
√
|g4|

(
R4 − ϕ|F4|2

)
, (A.3)

where F4 = dC3, C3 being an abelian three-form gauge potential, and ϕ a function of 4d

coordinates (playing the role of our scalar fields). We recall that d4x
√
|g4||F4|2 = F4∧∗4F4.

To obtain a background, as intended in the main text, one has to derive and solve the

equations of motion. The equation of motion of C3 is given by

d(ϕ ∗4 F4) = 0 , (A.4)

and its derivation requires a standard integration by parts that introduces a boundary term

2d(C3 ∧ ϕ ∗4 F4). In particular, to get the equation of motion, this boundary term should

vanish, implying C3 = 0 on the boundary. While this requirement is usually supposed to

be physical (fields vanish far away), it is formally not valid here, as C3 = 0 is not a gauge

invariant boundary condition. One should therefore consider an action corrected by this

boundary term

S ′′ =
∫

d4x
√
|g4|

(
R4 − ϕ|F4|2

)
+

∫
2d(C3 ∧ ϕ ∗4 F4) . (A.5)

When taking the variation of C3 no gauge-invariant boundary condition is now needed to

get the equations of motion, since the problematic boundary term now cancels against the

correction introduced. This correction should actually be introduced for any gauge theory,

but usually the difference is not manifest, since the equations of motion are defined up to

boundary terms. However, the specific case of 4d four-forms which are field strengths of

gauge three-forms is an exception in this sense. Indeed, the equation (A.4) indicates that

ϕ ∗4 F4 is constant, therefore ϕF4 is not propagating any degree of freedom and should be

viewed as an auxiliary field. It should then be integrated out and its on-shell value should

be inserted in the action. This is precisely where having another term in the action makes

a difference. On-shell, i.e. using the equation of motion, the boundary term reduces to

d(C3 ∧ ϕ ∗4 F4) = F4 ∧ ϕ ∗4 F4 = d4x
√
|g4|ϕ|F4|2, and the action becomes

S ′′|on-shell =

∫
d4x
√
|g4|

(
R4 + ϕ|F4|2

)
, (A.6)

– 37 –



J
H
E
P
0
7
(
2
0
2
0
)
1
6
2

i.e. the |F4|2 term has flipped its sign. However, one should still evaluate this term on-

shell. The equation of motion gives ϕ ∗4 F4 = −f , for some constant f and with a minus

sign for later convenience. Due to the 4d signature, one has ∗24 = −1, so F4 = fϕ−1vol4.

Again because of the signature, the contraction denoted |F4|2 is actually negative, i.e. here

|F4|2 = −f2ϕ−2. We finally obtain

S ′′|on-shell =

∫
d4x
√
|g4|

(
R4 − ϕ−1f2

)
, where F4 = fϕ−1vol4 . (A.7)

These results are well-known; some recent developments on the role of gauge three-forms

in 4d, in connection to effective theories coming from string flux compactifications, can be

found for example in [90–94].

Coming back to our initial action (A.1), we need to correct it in the same manner

by the appropriate boundary term, and evaluate it on-shell. The function ϕ corresponds

to our set of scalar fields. To determine f for our four-forms, we can further consider

background values where for us ϕ = 1. We proceed as in [20, 35], using the fact that the 4d

space-time is maximally symmetric. In IIA we introduce a six-form F 0
6 so that the function

∗6F 0
6 captures all 6d dependence in the background: F 4 0

4 = vol4 ∧ ∗6F 0
6 . We insist that

this F 0
6 is only a convenient notation and there is no such degree of freedom or flux in IIA;

we are not using a democratic formalism here. In IIB, we can without loss of generality

consider that all the 6d dependence has been captured by f5, i.e. H0
4 = vol4. Because of the

background self-duality constraint of F 10
5 , one must have f0

5 = − ∗6 F 0
5 . We then calculate

in the aforementioned procedure the various integration constants f2 and conclude that

we should proceed with the following action

S =

∫
dx4
√
|g4|

(
M2

4

2
R4−kin−U(ρ,σ,τ) (A.8)

− 1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s ×

1

2
g2
sτ
−4

(
ρ−3|F 0

6 |2+
1

2
ρ−2

∑
n=0,1

σAn+B(1−n)|(∗6F 0
5 )(n)|2

))

In other words, the full scalar potential V to be considered is

S =

∫
dx4
√
|g4|

(
M2

4

2
R4−kin−V (ρ,σ,τ)

)
(A.9)

V =U+
1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s ×

1

2
g2
sτ
−4

ρ−3|F 0
6 |2+

1

2
ρ−2

∑
n=0,1

σAn+B(1−n)|(∗6F 0
5 )(n)|2

 .

From this one derives the 4d Einstein equation and traces it to obtain, in the background,

R4 =
4

M2
4

V |0 . (A.10)

Let us now compare to [20, 24], where the scalar potential for σ was first fully derived.

Keeping in mind the different M4 convention, the value of R4 (A.10) is precisely the one

used there, matching the one obtained from 10d. The scalar potential V used in [20, 24],
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however, presents differences in the ∗6F5 and F6 terms, since these terms were not evaluated

on-shell as done above. Integrating them out following the above procedure changes the

sign of the ∗6F5 and F6 terms, and inverts the powers of the scalars. As a consequence,

the first derivatives, in the background, are not affected: for instance,

∂τ
(
−τ4|F 0

6 |2
)
|τ=1 = ∂τ

(
τ−4|F 0

6 |2
)
|τ=1 . (A.11)

This explains why all combinations of R4 and first derivatives in the background in [20, 24]

are still correct, and match the 10d equations of motion, as checked. The second derivatives

however would be changed in these two terms, but those were barely playing any crucial

role in those papers.

To simplify further the potential (A.9) in type IIB, one notes an equality, for each

source size p, between some σ−An−B(5−n)|F 0 (n)
5 |2 and a σAn

′+B(1−n′)|(∗6F 0
5 )(n′)|2. Indeed,

one has

p = 3 : σ0|F 0 (n=0)
5 |2 = σ0|(∗6F 0

5 )(n=0)|2 (A.12)

p = 5 : σ−4|F 0 (n=1)
5 |2 = σ−4|(∗6F 0

5 )(n=1)|2 , σ2|F 0 (n=2)
5 |2 = σ2|(∗6F 0

5 )(n=0)|2

p = 7 : σ−2|F 0 (n=3)
5 |2 = σ−2|(∗6F 0

5 )(n=1)|2 , σ4|F 0 (n=4)
5 |2 = σ4|(∗6F 0

5 )(n=0)|2

p = 9 : σ0|F 0 (n=5)
5 |2 = σ0|(∗6F 0

5 )(n=1)|2

This implies that
∑

n σ
−An−B(5−n)|F 0 (n)

5 |2 =
∑

n σ
An+B(1−n)|(∗6F 0

5 )(n)|2, thus simplifying

these terms. Another way to see this simplification is to note that −AnF5 −B(5− nF5) =

An∗6F5 +B(1−n∗6F5), or equivalently to nF5 = p− 3−n∗6F5 . With this, we finally obtain

the potential

V =
1

2κ2
10

g−2
s

∫
d6y
√
|g0

6|

[
− τ−2

(
ρ−1R6(σ)− 1

2
ρ−3

∑
n

σ−An−B(3−n)|H(n)0|2
)

(A.13)

− gsτ−3ρ
p−6
2 σB

p−9
2

T 0
10

p+ 1

+
1

2
g2
sτ
−4

(
5∑
q=0

ρ3−q
∑
n

σ−An−B(q−n)|F (n)0
q |2 + ρ−3|F 0

6 |2
)]

,

which corresponds to (2.10) in the main text. Note that the F6 term could be incorporated

in the last sum by verifying that for each source size p, the corresponding σ power is

vanishing. Indeed, one has for q = 6 that −An − B(q − n) = 6(n − (p − 3)) and, for a

six-form, there is only one n which equates the number of internal source directions, namely

p− 3. For clarity of the σ dependence however, we leave the F6 term aside.

A.2 In V (r, τ )

We proceed similarly for the fluctuations considered in section 2.2.2, namely the radius r

and the 4d dilaton τ . Starting from the 10d action, we reach as above the following 4d
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action

S =

∫
dx4
√
|g4|

(
M2

4

2
R4−kin−U(r,τ) (A.14)

− 1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s ×

1

2
τ4rg2

s

(
|F 4

4 |2+
1

2
|H4|2 (|f (0)

5 |
2+r−2|f (1)

5 |
2)

))
where the square of 4d four-form fluxes are in Einstein frame and we defined

U(r, τ) =
1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s

(
−τ−2R6(r) +

g2
s

2
τ−4r

1

2
|F5|2(r) + . . .

)
, (A.15)

with dots standing for the rest of the contributions. It is straightforward to proceed as

explained above: one must add the total derivative term, and integrate-out the four-form

fluxes, by evaluating the resulting action on-shell. This operation results in the following

changes in the previous action

τ4r|F 4
4 |2 → −τ−4r−1|F 4

4 |2 = +τ−4r−1|F6|2 , (A.16)

τ4r|H4|2 (|f (0)
5 |

2 + r−2|f (1)
5 |

2)→ −τ−4|H4|2 (r−1|f (0)
5 |

2 + r|f (1)
5 |

2)

= +τ−4 (r−1|(∗6F5)(0)|2 + r|(∗6F5)(1)|2) ,

with fluxes now on-shell, and we dropped the superscript 0. As above, we further simplify

the F5 terms by noticing that

|(∗6F5)(0)|2 = |F (1)
5 |

2 , |(∗6F5)(1)|2 = |F (0)
5 |

2 . (A.17)

This eventually leads us to the following potential

V (r,τ)

=U(r,τ)+
1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s ×

g2
s

2
τ−4

(
r−1|F6|2+

1

2
(r−1|(∗6F5)(0)|2+r|(∗6F5)(1)|2)

)
=

1

2κ2
10

∫
d6y
√
|g0

6| g
−2
s

(
−τ−2R6(r)+

g2
s

2
τ−4

(
r|F (0)

5 |
2+r−1|F (1)

5 |
2+r−1|F6|2

)
+. . .

)
,

fully expressed in (2.27). As before, the F5 terms simplify and get incorporated to the sum

of other fluxes. The F6 could be included as well, since a six-form is necessarily such that

F
(0)
6 = 0.

Given this simple final result, one may question the need to go through this treatment

of 4d four-forms, and not simply fluctuate F5 and F6 from the start, as done e.g. in type IIA

in [42]. For F6 we are reluctant to do so because there is fundamentally no six-form in type

IIA 10d theory, as well as no square of a six-form which would involve six inverse internal

metrics; here it is only introduced as a convenient notation through ∗6F6 to capture an

internal function. Similarly for F5, the 10d starting action is different than simply |F5|2.

In addition, F 10
5 is also required to satisfy the self-duality constraint, which we prefer to

impose on an on-shell background flux value, that forces us to proceed as we did. The final

potential remains the same as in [42] for IIA, and as in follow-up papers.

– 40 –



J
H
E
P
0
7
(
2
0
2
0
)
1
6
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037

[arXiv:1903.06239] [INSPIRE].

[2] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland,

arXiv:1806.08362 [INSPIRE].

[3] P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the

String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].

[4] H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the

Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

[5] D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570

[arXiv:1806.10999] [INSPIRE].

[6] S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11

(2019) 075 [arXiv:1807.05193] [INSPIRE].

[7] D. Andriot and C. Roupec, Further refining the de Sitter swampland conjecture, Fortsch.

Phys. 67 (2019) 1800105 [arXiv:1811.08889] [INSPIRE].

[8] T. Rudelius, Conditions for (No) Eternal Inflation, JCAP 08 (2019) 009

[arXiv:1905.05198] [INSPIRE].
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