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1 Introduction

Extended operators and the generalized symmetries acting on them provide a new view-

point on various structures in quantum field theory [1, 2]. In many cases they are the

natural language to describe these structures, and in some instances they provide gen-

uinely new insights. For example this has led to a more detailed understanding of duality

in 4d N = 4 SYM theory, where discrete one-form symmetries and the line operators they

act on reveal an intricate structure of duality orbits [1]. Furthermore, through the process

of gauging the one-form symmetries or their subgroups one can relate all N = 4 theories

with a given gauge algebra [2].

Higher form symmetries also appear naturally in string theory and are therefore rel-

evant in holographic descriptions of quantum field theories. In particular the one-form

symmetries of 4d N = 4 SYM theories with gauge algebra su(N) descend from the two-

form symmetries of Type IIB string theory on AdS5×S5 associated to the two-form gauge

fields B and C. From the 5d bulk point of view the different 4d theories correspond to
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different boundary conditions imposed on these two fields at the boundary of AdS5, and

the SL(2,Z) duality action in the field theory corresponds to the SL(2,Z) duality action

in Type IIB string theory on the doublet (B,C) [3]. A crucial observation of [3] was that

the allowed boundary conditions on B and C are constrained by a topological term in the

5d low-energy effective theory,

Stop =
N

2π

∫
X5

B ∧ dC , (1.1)

which is the dominant term near the boundary of AdS5.
1 By itself this action describes a

theory with a ZN one-form gauge symmetry. The field strengths of B and C are trivial,

but the potentials may have non-trivial holonomies taking values in ZN . In the quantum

theory the holonomies of B and C are canonically conjugate variables spanning a discrete

phase space. The simplest boundary conditions correspond to fixing B at the boundary

while allowing the boundary value of C to be free as an element of ZN , or to fixing C at the

boundary while allowing the boundary value of B to be free as an element of ZN . These

two sets of boundary conditions correspond respectively to the 4d field theories with gauge

groups SU(N) and SU(N)/ZN , which as we know are related by S-duality. More general

boundary conditions, and their relation to the 4d field theories were discussed in [2].

In many respects, the three-dimensional version of 4d N = 4 SYM theory is 3d

N = 6 Super-Chern-Simons (SCS) theory, a class of 3d superconformal theories with twelve

Poincaré supersymmetries. Originally three such theories were identified in [5]. The three

are based on the gauge groups and Chern-Simons (CS) levels given by U(N)k × U(N)−k,

SU(N)k × SU(N)−k, and (SU(N)k × SU(N)−k)/ZN , all containing matter fields in the

(N, N̄) representation corresponding in the language of 3d N = 4 supersymmetry to two

hypermultiplets. The latter two theories are generalizations of the BLG theories, which

correspond to the N = 2 cases [6, 7].2 The U×U theory was singled out, via its embedding

in string theory, as the theory describing N M2-branes in the particularly simple geomet-

rical background given by R1,2 × C4/Zk. This also implied that at large N the U × U

theory is dual to M theory on AdS4×S7/Zk, or equivalently to Type IIA string theory on

AdS4 × CP 3, providing the first explicit realization of AdS/CFT in these dimensions. On

the other hand the holographic duals of the SU × SU theories have remained mysterious,

since these theories do not appear in general to describe M2-branes in an eleven-dimensional

geometry.3

All 3d N = 6 SCS theories were subsequently classified, up to discrete quotients,

in [11]. A more complete classification has recently appeared in [12]. This includes theories

with gauge groups (U(N)k × U(N)−k)/Zm′ , where m′ is a divisor of k, and (SU(N)k ×
SU(N)−k)/Zn′ , where n′ is a divisor of N , which interpolate in some sense between the

1See also [4] for a more recent discussion.
2These theories were originally formulated in terms of a Lie 3-algebra, but were subsequently shown to

be equivalent to CS gauge theories in [8].
3For N = 2 and k = 1 the two SU × SU theories turn out to be equivalent to the U(2)2 × U(2)−2

and U(2)1 × U(2)−1 theory, respectively [9, 10], and therefore describe two M2-branes in R8/Z2 and R8,

respectively. A generalization of the second equivalence, conjectured in [9], will be discussed below.
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SU× SU theory and the U × U theory. The authors of [12] have also shown that the first

theory with m′ = k is non-perturbatively equivalent to the second theory with n′ = N ,

verifying the conjecture of [9]. The situation now resembles that of the 4d N = 4 theories

with su(N) algebra. The different 3d N = 6 theories are related by gauging either a

discrete one-form symmetry or a discrete zero-form symmetry.

The main question we wish to address in this paper is how the different 3d N = 6

theories fit into the dual supergravity picture. The role played by the U(N)k × U(N)−k
theory has remained special in that it is the only one that has a geometric interpretation

in terms of M2-branes. All other theories do not appear to have a clear interpretation in

terms of M2-branes, as their moduli spaces involve non-geometric quotients. Nevertheless,

as we will show, they do have a simple large N holographic dual. Similar to the case of the

4d N = 4 theories, the different 3d N = 6 theories will correspond to different boundary

conditions imposed on a set of gauge fields in AdS4. The main ingredient will again be a

topological term in the supergravity action, this time given by

Stop =
1

2π

∫
X4

B ∧ d(NAD0 + kAD4) , (1.2)

where, in the Type IIA string theory description, B is the NSNS two-form gauge field,

and AD0 and AD4 are one-form gauge fields originating in the RR sector. The different

boundary conditions for (B,AD0, AD4) allowed by this term correspond to different 3d

N = 6 theories. We will show that a subset of these is given by the N = 6 SCS theories

listed above. In particular we will identify the boundary conditions in AdS4 corresponding

to the U(N)k ×U(N)−k theory, something that was not explicitly done in [5].

One of the original motivations for this work has been a long-standing puzzle about the

existence of di-baryon states in the supergravity dual of the N = 6 SCS theory [5]. Namely

there exists a state in AdS4 corresponding to a wrapped D4-brane that has the properties

of a di-baryon operator in the 3d field theory, even though in the U(N)k×U(N)−k theory it

is not a gauge invariant operator. As we will see, the identification of the correct boundary

conditions leads to a simple resolution of the puzzle.4

The rest of the paper is organized as follows. In section 2 we will discuss 3d N = 6

SCS theories, highlighting their generalized global symmetries and spectrum of local and

line operators. In section 3 we will describe their supergravity duals and determine the

correspondence between a subset of the allowed boundary conditions and the 3d N = 6

SCS theories. Section 4 contains our conclusions and a number of open questions for the

future. There is also an appendix reviewing monopole operators in 3d gauge theories.

4The di-baryon question was previously addressed in [13] and in [14]. Our resolution is different. We

also note that the holography of 2N D3-branes on an O3−-plane leads to a Pfaffian puzzle. Namely, a

D3-brane wrapped on RP 3 ⊂ RP 5 has the correct property to be identified with the Pfaffian operator of

the boundary 4d N = 4 SO(2N) theory, whose moduli space does not admit a simple interpretation in

terms of 2N D3-branes moving on this background. Rather, such a brane interpretation requires the gauge

group to be O(2N), for which no Pfaffian operator exists. This point was resolved in ([15], section 3.3)

using the boundary condition of the bulk discrete gauge field.
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2 N = 6 Super-Chern-Simons theories

We will first concentrate on the four “basic” 3d N = 6 theories, that are in some sense

the analogs of the the 4d N = 4 SU(N) and SU(N)/ZN theories. The 3d theories are

based on the gauge groups and CS levels given by U(N)k ×U(N)−k, SU(N)k × SU(N)−k,

(U(N)k×U(N)−k)/Zk, and (SU(N)k×SU(N)−k)/ZN , and all have bi-fundamental matter

fields corresponding to two hypermultiplets. Then we will discuss the more general set of

theories that were found in [12].

2.1 U(N)k ×U(N)−k

This is the theory originally featured in [5].

As is well known by now, a 3d U(N) gauge theory has a U(1) global symmetry gen-

erated by the topological current j = ∗Trf . In our case there are two such currents j1, j2
corresponding to the two U(N) gauge fields a1, a2. We denote the corresponding charges

by m1,m2. This symmetry acts only on monopole operators, which are defined as local op-

erators that insert a magnetic flux on the 2-sphere that surrounds them (see the appendix

for a brief review of monopole operators).

For a generic monopole the magnetic fluxes are given by

hi =

∫
S2

fi
2π

= diag(m1
i , . . . ,m

N
i ) , (2.1)

where i = 1, 2 labels the two U(N) factors and ma
i , with a = 1, . . . , N , are integers. The

Weyl transformations allow us to choose m1
i ≥ · · · ≥ mN

i . This operator carries charges

under the two topological U(1) symmetries given by m1 =
∑

am
a
1 and m2 =

∑
am

a
2. A

monopole operator inserting these fluxes will be denoted succinctly by Tm1,m2 .

Due to the CS terms the monopoles also carry non-trivial gauge charges. In partic-

ular the basic monopole T1,0 transforms in the (N)ksym representation of the first U(N)

factor (and therefore carries k units of charge under the U(1) part), and the fundamental

monopole T0,1 transforms in the (N̄)ksym representation of the second U(N) factor (and

therefore carries −k units of charge under the U(1) part). So generically these are not

gauge invariant operators, and are not part of the physical spectrum. However for a spe-

cial class of monopole operators we can form gauge invariant operators by “dressing” the

monopoles with the matter fields. Since the latter transform in the (N, N̄) representation,

this is only possible for monopole operators with m1 = m2. Specifically the BPS operators

are built from monopoles defined by m1
1 = m1

2 = m and ma>1
i = 0, and are given by

Mm = Tm,m · (φ†)mksym , (2.2)

where φ denotes the four complex scalar components of the matter multiplet. Monopole

operators with m1 6= m2 cannot be dressed into gauge invariant operators. For example

the operator T1,−1 (which in our convention means m1
1 = −mN

2 = 1) transforms as (N)ksym
under both U(N) factors, and so cannot be dressed into a gauge invariant operator. There-

fore only the symmetric combination of the two topological U(1) symmetries generated by

j1 + j2 acts nontrivially on the physical spectrum.
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The complete spectrum of BPS operators is given by (2.2) combined with neutral

mesonic operators of the form Tr(φ†φ)n. One can also form a di-baryon operator using an

antisymmetric product of bi-fundamental fields

B = detφ = εa1···aN ε
b1···bNφa1b1 · · ·φ

aN
bN
. (2.3)

This is invariant under SU(N)×SU(N) but carries charges (N,−N) under the U(1) factors.

It seems one could obtain a gauge invariant operator by dressing the di-baryon with a

monopole defined by

h1 = h2 = − diag

(
1

k
, . . . ,

1

k

)
. (2.4)

However this violates the Dirac quantization condition, and is therefore forbidden. The

k-fold product of di-baryons can be properly dressed with integer fluxes, but the resulting

operator is equivalent to an N -fold product of dressed monopoles,

(detφ)k · T{−1,...,−1;−1,...,−1} ∼ [T−1,−1 · (φk)sym]N , (2.5)

and so does not represent an independent gauge invariant local operator.

The U(N)k × U(N)−k theory has two other interesting properties that were not dis-

cussed in [5], and which will play an important role in what follows.

One-form symmetry. The U(N)k×U(N)−k theory has a global Zk one-form symmetry

acting on a subset of Wilson line operators. To see this, let us first consider a single

U(N)k = (SU(N)k ×U(1)Nk)/ZN . The SU(N)k theory has a ZN one-form symmetry, and

the U(1)Nk theory has a ZNk one-form symmetry. Modding out a combined ZN then leaves

just Zk for a single U(N)k. The Wilson line in the representation N has charge 1, and a

collection of k such Wilson lines can be screened by a unit monopole operator T1.

In our situation we have U(N)k and U(N)−k, which naively give us a Zk × Zk one-

form symmetry. However the anti-diagonal combination is absent due to the presence of

matter fields in the (N, N̄) representation: a Wilson line in the representation (N, N̄) can

be screened by a single matter field operator. On the other hand a Wilson line in the

representation (N,N) cannot be screened. This line carries one unit of charge under the

diagonal Zk, and a collection of k such lines can be screened by the monopole operator T1,−1.

A mixed anomaly. The background field for the Zk one-form symmetry is a degree-2

Zk-valued cohomology class B. In particular, the configuration
∫
S2 B = j ∈ Zk is equivalent

to a monopole with the fluxes

h1 = h2 = j diag

(
1

k
, . . . ,

1

k

)
. (2.6)

This implies that the U(1) zero-form symmetry and the Zk one-form symmetry have a

mixed anomaly, for the rather trivial reason that the above monopole in general carries a

fractional U(1) charge m = jN/k. In the presence of a nontrivial background U(1) field
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A, the partition function then has a phase ambiguity of e2πijN/k, signaling the presence of

the anomaly. The 4d characteristic class which describes this anomaly is

exp

(
2πi

N

k

∫
B c1(F )

)
, (2.7)

where F = dA.

2.2 SU(N)k × SU(N)−k

This theory differs from the U(N)k×U(N)−k theory in that the U(1)’s are not gauged. The

anti-diagonal U(1) acts non-trivially on the matter fields and therefore defines a baryonic

U(1) zero-form symmetry in the theory. Let us be more precise about the periodicity of

this U(1) symmetry group. The basic gauge invariant operator charged under the baryonic

U(1) is the di-baryon B (2.3). If we assign charge 1 to φ, B has charge N . But we can in

fact assign charge 1 to B in the following sense. Pick g ∈ U(1), and say that under this

element we have the transformation

B 7→ gB. (2.8)

For this operation we need to assign the transformation rule φ 7→ g1/Nφ. This action has

an ambiguity by N -th roots of unity. However, a multiplication by N -th roots of unity is

part of the SU(N) gauge symmetry, and therefore the transformation (2.8) is well-defined

at the level of the elementary fields in the Lagrangian.

There are no topological U(1) symmetries in this theory, and correspondingly the

monopole operators (see appendix) do not carry a conserved charge.

One-form symmetry. There is a ZN one-form symmetry acting on a subset of Wilson

line operators, where the basic one is again in the representation (N,N). As in four

dimensions N such Wilson lines can be screened by a gluon. There is not a second ZN
one-form symmetry acting on the (N, N̄) Wilson line, since that is again screened by the

bi-fundamental field.

A mixed anomaly. The U(1) zero-form symmetry and the ZN one-form symmetry have

a mixed anomaly due to a mechanism similar to the one we saw in the U×U theory above.

This time, the background field is a degree-2 ZN -valued cohomology class B, and the

configuration
∫
S2 B = j ∈ ZN is equivalent to a monopole with fluxes

h1 = h2 = j diag

(
1− 1

N
,− 1

N
. . . ,− 1

N

)
. (2.9)

Due to the Chern-Simons term, it has the gauge charge ((N)ksym, (N̄)ksym), which can be

made gauge invariant by attaching a symmetric product of k bi-fundamental fields. This

however has a fractional baryonic U(1) charge k/N in our normalization where B has charge

1. In the presence of background fields for both the one-form and zero-form symmetries,

B and A, this introduces a phase ambiguity e2πijk/N in the partition function. The 4d

characteristic class which describes this anomaly is

exp

(
2πi

k

N

∫
B c1(F )

)
. (2.10)
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2.3 (U(N)k ×U(N)−k)/Zk

This theory corresponds to gauging the Zk one-form symmetry of the U(N)k × U(N)−k
theory. This removes Wilson lines in representations with non-trivial diagonal k-ality.

In other words only Wilson lines in the representations (Nk,Nk) and (N, N̄), and their

products, are kept. The latter, as we recall, are screened by the matter fields, and the

former by the monopole operator of the form T1,−1. There are no unscreened Wilson lines,

and correspondingly there is no remaining one-form symmetry. At the same time, the

theory admits additional monopole operators corresponding to fractional magnetic fluxes

of the form (2.4), that in turn allow us to dress the di-baryon operator into a gauge invariant

operator,

B := T{
− 1

k
,...,− 1

k
;− 1

k
,...,− 1

k

} · detφ. (2.11)

The relation (2.5) still holds, and implies here a chiral-ring like relation involving the gauge

invariant dressed di-baryons and dressed monopole operators,

M−N = Bk . (2.12)

This theory turns out to have a rather intricate global symmetry structure, that we

shall next explore. First, on physical grounds, we expect two zero-form symmetries. One

is just the topological U(1) symmetry that exists prior to the gauging of the Zk one-form

symmetry. However, after the gauging we expect to gain a new Zk zero-form symmetry

which acts on the newly added monopole operators. In particular, it should also act on the

dressed di-baryon B. At this point we might be tempted to say that the global zero-form

symmetry is U(1) × Zk, but that turns out to be not quite right. The issue is that there

is the possibility that the Zk is not independent, but rather part of the U(1). Specifically,

we seek a U(1) transformation that acts trivially on M1, but acts on B like a Zk zero-form

symmetry. If such a transformation exists then the Zk is actually contained in the U(1).

Under the U(1), M1 has charge 1 while B has charge −N
k . As a result, the action of

elements in Zk except for its Zgcd(N,k) subgroup can be reproduced using the U(1) action.

Thus, we conclude that the zero-form global symmetry is U(1) × Zgcd(N,k).

It will be beneficial for us later to consider the structure of the global symmetry

from a different viewpoint. For that we temporarily introduce two U(1) symmetries,

U(1)M × U(1)B, under which Mm has charge (m, 0) and B` has charge (0, `). We denote

the group element by (gM, gB). The chiral-ring-like relation (2.12) imposes the constraint

that gNMg
k
B = 1. Therefore the zero-form symmetry G0 of this theory is the subgroup of

U(1)2 specified as follows

G0 := {(gM, gB) | gNMgkB = 1} ⊂ U(1)M ×U(1)B. (2.13)

This constraint reduces the continuous part to a single U(1) which can be chosen to be

the previously defined one. However, additionally we also have the discrete transformations,

ZN ⊂ U(1)M and Zk ⊂ U(1)B, but from these we need to mod out the part that is

included in the U(1). By the previous argument this leaves us with only a Zgcd(N,k) discrete

– 7 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
7

symmetry. Note that in the previous argument we naturally chose to present G0 as U(1)×
Zgcd(N,k) with Zgcd(N,k) ⊂ Zk ⊂ U(1)B. But it should be apparent that we could also present

G0 as U(1)× Zgcd(N,k) with Zgcd(N,k) ⊂ ZN ⊂ U(1)M and the U(1) now defined so that it

acts on B with charge 1 and on M1 with charge − k
N . Thus, while G0 is U(1) × Zgcd(N,k)

as a group, there is no canonical way to choose the Zgcd(N,k) part.

We can describe this more formally as follows. First, we introduce the integers p, q by

N = p gcd(N, k), k = q gcd(N, k). (2.14)

We have a natural embedding U(1)→ G0 given by

U(1) 3 g 7→ (g−q, gp) ∈ G0 (2.15)

and the natural projection G0 → Zgcd(N,k) given by

G0 3 (gM, gB) 7→ gpMg
q
B ∈ Zgcd(N,k). (2.16)

These two operations make G0 a group extension

0→ U(1)→ G0 → Zgcd(N,k) → 0. (2.17)

We can split G0 as G0 ' U(1)× Zgcd(N,k) but there are multiple ways to do this.

We can get back to the U(N)k × U(N)−k theory by gauging the Zk subgroup of G0

generated by the element (gM, gB) = (1, e2πi/k). This removes the di-baryon; the remaining

zero-form symmetry is G0/Zk ' U(1)M; here we are utilizing the extension

0→ Zk → G0 → U(1)M → 0 (2.18)

instead of (2.17). Now, the gauging introduces a Zk gauge field, and therefore a global Zk
one-form symmetry. It is a general fact [16] that the gauging of a finite subgroup of an

extension such as (2.18) results in a mixed anomaly (2.7).

2.4 (SU(N)k × SU(N)−k)/ZN

This theory is obtained by gauging the ZN one-form symmetry of the SU(N)k × SU(N)−k
theory. This removes Wilson lines in representations with non-trivial diagonal N -ality.

In other words only Wilson lines in the representations (NN ,NN ) and (N, N̄), and their

products, are kept. The latter, as we recall, are screened by the matter fields, and the former

by the gluons. So, as above, there are no unscreened Wilson lines and no remaining one-

form symmetry. At the same time the theory admits monopole operators with fractional

magnetic fluxes of the form (2.9). These can be dressed into gauge-invariant operators with

matter fields as follows

Mj = T
j
{
1− 1

N
,− 1

N
,...,− 1

N
;1− 1

N
,− 1

N
,...,− 1

N

} · (φ†)jksym . (2.19)

The chiral-ring like relation (2.12) holds in this theory as well.

The analysis of the global symmetry of this theory turns out to be rather similar to

the previous case. In this case we expect a ZN zero-form symmetry acting on the newly

– 8 –
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(SU(N)k ⇥ SU(N)�k)/ZN = (U(N)k ⇥ U(N)�k)/Zk

SU(N)k ⇥ SU(N)�k U(N)k ⇥ U(N)�k

Z[0]
N

Z[1]
N Z[1]

k

Z[0]
k

Figure 1. The discrete gauging relations between the three basic 3d N = 6 theories.

added monopoles, in addition to the U(1) acting on the di-baryons. However, like in the

previous case, these symmetries are not independent. Specifically, the basic gauge invariant

operators include the basic di-baryon B, which is neutral under ZN and has charge 1 under

the U(1), and the basic dressed monopole M1 which is acted on by the generator of ZN ,

and has charge − k
N under the U(1). We then again see that only the Zgcd(N,k) part of

ZN is independent. Therefore, we again find a U(1) × Zgcd(N,k) global symmetry. In fact

this theory has the same global symmetry structure, G0, as the previous case, only that

here we have naturally chosen a different decomposition as a U(1) × Zgcd(N,k) group, with

Zgcd(N,k) ⊂ ZN ⊂ U(1)M.

We can get back to the SU(N)k×SU(N)−k theory by gauging the ZN subgroup of G0

generated by the element (gM, gB) = (e2πi/N , 1), which forms the extension

0→ ZN → G0 → U(1)B → 0. (2.20)

This removes the dressed monopoles, reducing the zero-form global symmetry from G0

to U(1)B, and at the same time introduces a ZN gauge field, and therefore a global ZN
one-form symmetry. Again the general argument of [16] implies that there is the mixed

anomaly (2.10).

The fact that the global symmetry and the spectrum of the (SU(N)k×SU(N)−k)/ZN
theory is identical to that of the (U(N)k × U(N)−k)/Zk theory is not accidental. These

two theories are in fact equivalent, as was shown in [12]; one simply needs to integrate out

the u(1)× u(1) part with care.

2.5 Generalization

The four, or really three, basic theories we discussed above are related via gauging a

discrete symmetry, which is either Zk or ZN , and either a zero-form symmetry or a one-

form symmetry, figure 1. We can generalize this procedure by gauging a subgroup of the

relevant discrete symmetry. This produces the set of N = 6 theories found in [12].

A good starting point is the (SU(N)k × SU(N)−k)/ZN , or (U(N)k × U(N)−k)/Zk,
theory. This theory has a global zero-form symmetry G0 = U(1) × Zgcd(N,k). There are

two simple ways to proceed from here.

If k = mm′ we can gauge Zm ⊂ Zk ⊂ G0. The resulting theory has a gauge group

(U(N)k×U(N)−k)/Zm′ . From the point of view of the (U(N)k×U(N)−k)/Zk description

of the original theory, the discrete gauging removes the additional monopole operators

whose fluxes are not multiples of m
k , and at the same time introduces Wilson line operators

in the representation (Nm′ ,Nm′), and its multiples. These are naturally charged under the
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resulting Zm one-form symmetry, since m copies of the basic Wilson line can be screened

by the monopole operator T1,−1. The zero-form symmetry of this theory is the quotient

by Zm of G0 = U(1) × Zgcd(N,k), which is U(1) × Zgcd(N,m′).
5 The dressed monopole

operators, which are unaffected by the discrete gauging, carry integer charges under U(1)

and are neutral under Zgcd(N,m′). The di-baryon operators now come in multiples of m,

carry a U(1) charge that is an integer multiple of mN/k, and are charged under Zgcd(N,m′).

Alternatively, we can also define this theory by starting with the U(N)k ×U(N)−k theory

and gauging a Zm′ subgroup of the Zk one-form symmetry (see figure 2). This removes from

the spectrum Wilson lines in representations that are not m′-multiples of (N,N), leaving

a Zm one-form symmetry acting on the remaining Wilson lines. At the same time this

introduces additional monopole operators with magnetic fluxes given by integer multiples

of 1/m′ = m/k, which can in turn be used to dress m multiples of the di-baryon operator.

The dressed-monopole and di-baryon operators satisfy the relation (2.12), now usefully

expressed as

M−N = Bmm′ . (2.21)

If N = nn′ we can gauge a Zn ⊂ ZN ⊂ G0. The resulting theory has a gauge

group (SU(N)k × SU(N)−k)/Zn′ . From the point of view of the (SU(N)k × SU(N)−k)/ZN
description of the original theory, the discrete gauging removes dressed monopole operators

of the form (2.19) with j not a multiple of n, and at the same time introduces Wilson

lines in the representation (Nn′ ,Nn′), and its multiples. These are naturally charged

under the resulting Zn one-form symmetry, since n copies of the basic Wilson line can

be screened by the gluons. The zero-form symmetry of this theory is the quotient by Zn
of G0 = U(1) × Zgcd(N,k), which is U(1) × Zgcd(n′,k). The di-baryon operators, which are

unaffected by the discrete gauging, carry an integer charge under U(1) and are neutral

under Zgcd(n′,k). The dressed monopole operators now come in multiples of n, carry a U(1)

charge that is an integer multiple of nk/N , and are charged under Zgcd(n′,k). Alternatively,

we can also define this theory by starting with the SU(N)k×SU(N)−k theory and gauging

a Zn′ subgroup of the ZN one-form symmetry (see figure 2). This removes Wilson lines

in representations that are not n′-multiples of (N,N), leaving a Zn one-form symmetry

acting on the remaining Wilson lines. At the same time it introduces monopole operators

of the form (2.19) with j a multiple of n. The dressed-monopole and di-baryon operators

satisfy the relation (2.12), now usefully expressed as

M−nn′ = Bk . (2.22)

The properties of both sets of theories, (U(N)k × U(N)−k)/Zm′ and (SU(N)k ×
SU(N)−k)/Zn′ , are summarized in table 1. We denote by B` an `-fold product of the

minimal dressed di-baryon operator, byM` a dressed monopole operator corresponding to

` units of the magnetic flux sourced by the minimal dressed monopole, and by W` a Wilson

line in the `-fold product of the (N,N) representation.

5If one starts from a theory whose zero-form flavor symmetry is G and gauge its anomaly-free subgroup

H, the flavor symmetry of the resulting gauged theory is NG(H)/H, where NG(H) is the normalizer of H

within G. When G is abelian this reduces to G/H.
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(U(N)k ×U(N)−k)/Zk

(U(N)k ×U(N)−k)/Zm′

U(N)k ×U(N)−k

Z[0]
m

Z[0]
m′Z[1]

m′

Z[1]
m

= (SU(N)k × SU(N)−k)/ZN

(SU(N)k × SU(N)−k)/Zn′

SU(N)k × SU(N)−k

Z[0]
n

Z[0]
n′Z[1]

n′

Z[1]
n

Figure 2. The general discrete gauging relations for N = 6 SCS theories.

theory global symmetry spectrum charges

(U(N)k ×U(N)−k)/Zm′ U [1][0] × Z[0]
gcd(N,m′) M` (`, 0)

where k = mm′ Bm`
(
−m`N

k , `mod gcd(N,m′)
)

Z[1]
m Wm′` `modm

(SU(N)k × SU(N)−k)/Zn′ U [1][0] × Z[0]
gcd(n′,k) B` (`, 0)

where N = nn′ Mn`

(
−n`k

N , `mod gcd(n′, k)
)

Z[1]
n Wn′` `modn

Table 1. Global symmetries and charge spectrum of N = 6 SCS theories.

3 AdS/CFT with boundary conditions

Next we will determine how all the theories in table 1 fit into the dual supergravity de-

scription.

3.1 Review of the basics

As argued in [5], the U(N)k × U(N)−k theory is dual to M-theory on AdS4 × S7/Zk, or

equivalently to Type IIA string theory on AdS4 × CP 3. Let us briefly recall the relevant

details of the Type IIA description, which is the one that will be more convenient for our

purpose. The Type IIA string theory background has RR fluxes given by∫
CP 3

F6

2π
∼ N ,

∫
CP 1⊂CP 3

F2

2π
∼ k , (3.1)

corresponding, respectively, to the rank and the CS level of the gauge theory. Upon re-

duction on CP 3 we can identify three Abelian gauge fields in AdS4. The first is the NSNS

two-form B that couples electrically to fundamental strings. This field will be related to

the one-form symmetry of the gauge theory. The other two gauge fields are both one-forms,

and are given by the RR one-form C1 and by the reduction of the RR three-form C3 on the

CP 1 two-cycle inside CP 3. These couple electrically to D0-branes and to D2-branes wrap-

ping CP 1, respectively. It is actually more convenient in the latter case to work with the 4d

magnetic dual gauge field that couples electrically to D4-branes wrapping CP 2 ⊂ CP 3. We

will therefore denote the two one-form gauge fields as AD0 and AD4, respectively. There are

also magnetically charged objects: a D6-brane wrapped on CP 3 is charged magnetically

under AD0, and a D2-brane wrapped on CP 1 is charged magnetically under AD4. However
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these two objects come with strings attached due to worldvolume tadpoles induced by the

RR fluxes (3.1): the wrapped D6-brane has N strings attached, and the wrapped D2-brane

has k strings attached.

The one-form gauge fields in AdS4 should be related to the zero-form symmetry of

the gauge theory. However, as was already noted in [5], only one combination of the two

one-form gauge fields is massless. Here we note that this is directly related to the following

topological term in the 4d effective action,

Stop =
1

2π

∫
AdS4

B ∧ d(NAD0 + kAD4). (3.2)

This represents a Stückelberg-like term for the combination NAD0 + kAD4, where the

role of the would-be Goldstone boson is played by the magnetic dual of the two-form B.

This means that the zero-form gauge symmetry in the bulk is spontaneously broken to

U(1)× Zgcd(N,k) ⊂ U(1)D0 ×U(1)D4. The massless U(1) gauge field A is parametrized as

(AD0, AD4) = (−qA, pA) , (3.3)

where we recall that the co-prime integers p, q were defined by N = p gcd(N, k) and k =

q gcd(N, k). The D0-brane and the wrapped D4-brane are both charged under the unbroken

U(1) gauge symmetry, with the ratio of their charges given by q/p = k/N . This leads us to

identify AD0 and AD4 as the bulk gauge fields dual to the U(1)M and U(1)B symmetries,

respectively, and correspondingly to identify the D0-brane and the wrapped D4-brane as

the bulk states dual to the dressed-monopole operator M1 and the di-baryon operator B,

respectively. The masses and dimensions also agree, since

∆M = mD0R ∼
R

gs`s
∼ k/2 , (3.4)

and

∆B = mD4R ∼ TD4R
5 ∼ R5

gs`5s
∼ kR4

`4s
∼ N/2 . (3.5)

But this is puzzling given that this AdS4 background was originally found as the dual

of the U(N)k×U(N)−k theory, which as we have explained does not have a gauge invariant

di-baryon operator. As we will soon see, the resolution of this puzzle lies in understanding

the boundary conditions.

But before we discuss the boundary conditions, let us first be more precise about the

meaning of the topological term (3.2) in the bulk. This is the dominant term for the gauge

fields in the 4d low energy effective theory near the boundary of AdS4. The equations of

motion that follow from this action are

NdB = 0 (3.6)

kdB = 0 (3.7)

d(NAD0 + kAD4) = gcd(N, k)d(pAD0 + qAD4) = 0 . (3.8)
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Figure 3. A holographic description of (a) a dressed monopole and a di-baryon, and (b) the

relation Bk =M−N , in the (U(N)k ×U(N)−k)/Zk = (SU(N)k × SU(N)−k)/ZN theory.

The first two equations imply that B is a Zgcd(N,k)-valued two-form gauge field, and the

third one implies that the combination pAD0 + qAD4 is a Zgcd(N,k)-valued one-form gauge

field. The orthogonal combination given by A as defined in (3.3) remains as a U(1) one-form

gauge field. This is basically what we observed above.

3.2 “Standard” boundary conditions

We begin with the “standard” set of boundary conditions fixing the values of the one-

form gauge fields AD0 and AD4 on the boundary. In other words AD0 and AD4 satisfy

Dirichlet boundary conditions. We can then allow the two-form gauge field B to be free

on the boundary, but the boundary values of AD0 and AD4 need to be compatible with

this. Due to the topological term (3.2), the boundary values of AD0 and AD4 must satisfy

NAD0 + kAD4 = 0. This means that the background gauge field one can specify at the

boundary is G0 ∼ U(1)×Zgcd(N,k). In other words the boundary theory is the (SU(N)k ×
SU(N)−k)/ZN , or equivalently (U(N)k ×U(N)−k)/Zk theory.

We can understand this more concretely as follows. On the one hand, the free boundary

condition for B forbids strings from ending on the boundary, and therefore the boundary

theory has no unscreened Wilson lines. On the other hand the boundary conditions for AD0

and AD4 mean that D0-branes and wrapped D4-branes are allowed to end on the boundary.

The boundary theory should therefore have two types of local operators charged under the

global U(1) symmetry, with a charge ratio k/N . These are the dressed monopole and

di-baryon operators, see figure 3a. Furthermore, N D0-branes can turn into k wrapped

D4-branes via an instantonic NS5-brane wrapped on CP 3, realizing the chiral-ring-like

relation (2.12) between the di-baryon and dressed monopole, see figure 3b.6 All of this is

consistent with the identification of the boundary theory as the (SU(N)k×SU(N)−k)/ZN =

(U(N)k ×U(N)−k)/Zk theory.

6One way to see this is by going to the M-theory description, in which the N D0-branes become Nk units

of momentum on S7, which can become a maximal giant M5-brane, which in turn maps to k D4-branes

wrapping CP 2 [5]. Another way to see this is from the worldvolume theory of the fully wrapped NS5-brane,

in which the worldvolume scalar potential has an electric tadpole of size N due to the RR 6-form flux

on CP 3, and a magnetic tadpole of size k due to the RR two-form flux on CP 1. The former is cancelled

by having N D0-brane worldlines end on the NS5-brane, and the latter is cancelled by having k wrapped

D4-brane worldlines end on it.
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3.3 “Alternative” boundary conditions

The fact that the “standard” boundary conditions that fix the boundary values of both one-

form fields correspond to the (SU(N)k × SU(N)−k)/ZN = (U(N)k × U(N)−k)/Zk theory

mirrors the fact that this is in some sense the most “basic” N = 6 SCS theory, from which

all other theories can be obtained by gauging a discrete subgroup of the global zero-form

symmetry. From the bulk viewpoint, all other N = 6 theories will correspond to changing

the boundary conditions for B,AD0 and AD4 in a way that is consistent with the topological

term (3.2). We will not attempt to classify all allowed boundary conditions. But we will

find the boundary conditions that correspond to the set of N = 6 SCS theories discussed

in [12]. In particular we will identify the boundary conditions dual to the U(N)k×U(N)−k
theory, which will allow us to resolve the di-baryon puzzle.

3.3.1 U(N)k ×U(N)−k

To get the U(N)k × U(N)−k theory, we fix the boundary value of AD0, but allow the

boundary value of AD4 to be free.7 The boundary theory therefore has a U(1)M global

zero-form symmetry, but the U(1)B symmetry is gauged. More precisely, the boundary

values of AD4 are free to fluctuate in Zk, which in essence means that the Zk subgroup

of G0 ⊂ U(1)M × U(1)B, the global symmetry in the case of the “standard” boundary

conditions, is gauged. Due to the free boundary condition on AD4, we cannot take the

boundary value of B to be free. The coupling k
2πB ∧ dAD4 requires the boundary value of

B to be fixed, such that its holonomy takes a boundary value in Zk, namely k
∫
S2 B|∂ = 0

mod 2π. With a slight abuse of notation we will denote the boundary holonomy of B simply

by B, so the boundary condition is kB = 0 mod 2π. The boundary theory therefore also

has a global Zk one-form symmetry. These are precisely the global symmetries of the

U(N)k × U(N)−k theory. The remaining bulk coupling N
2πB ∧ dAD0 is identified with

the 4d characteristic class corresponding to the 3d mixed anomaly (2.7), upon identifying

B = (2π/k)B and AD0 = A.

In terms of branes, D0-branes are allowed to end on the boundary of AdS4, but wrapped

D4-branes are not. This agrees with what we know about the U(N)k × U(N)−k theory.

The boundary gauge theory has dressed monopole operators corresponding to the endpoints

of D0-brane worldlines, but does not have a di-baryon operator which would correspond

to the endpoint of a wrapped D4-brane worldline. In addition, the boundary condition

for B allows a fundamental string worldsheet to end on the boundary, and the resulting

boundary line corresponds to the (N,N) Wilson line of the gauge theory. A collection

of k such strings can end on a wrapped D2-brane, which, being the magnetic dual of the

wrapped D4-brane, is allowed to end on the boundary. This is the bulk description of the

T1,−1 monopole screening a k-fold product of the basic Wilson line. Finally, the wrapped

D6-brane is not allowed to end on the boundary since the D0-brane is, so there is not an

additional N -fold screening of the Wilson lines. See figure 4 for illustrations.

7It may be possible to allow both AD0 and AD4 to be free at the boundary, but we will not consider that

possibility here. This corresponds to performing Witten’s SL(2,Z) operation [17] on the ABJM theory, and

presumably is not compatible with N = 6 supersymmetry.
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Figure 4. A holographic description of (a) a dressed monopole, and (b) k Wilson lines being

screened by an antisymmetric monopole in the U(N)k ×U(N)−k theory.

3.3.2 SU(N)k × SU(N)−k

The SU(N)k × SU(N)−k theory corresponds to exchanging the roles of AD0 and AD4.

Namely, we fix the boundary value of AD4, but allow the boundary value of AD0 to be free.

In this case the boundary theory has a U(1)B global zero-form symmetry, but the U(1)M
symmetry is gauged. More precisely, the boundary values of AD0 are free to fluctuate

in ZN , which in essence means that the the ZN subgroup of G0 ⊂ U(1)M × U(1)B is

gauged. Due to the coupling N
2πB ∧ dAD0, the free boundary condition for AD0 requires

the boundary value of B to be fixed to a value in ZN , i.e. NB = 0 mod 2π (using the

same abuse of notation as before). The boundary theory therefore also has a global ZN
one-form symmetry. These are precisely the global symmetries of the SU(N)k × SU(N)−k
theory. The remaining bulk coupling k

2πB ∧ dAD4 is identified with the 4d characteristic

class corresponding to the 3d mixed anomaly (2.10), upon identifying B = (2π/N)B and

AD4 = A.

Now wrapped D4-branes are allowed to end on the boundary whereas D0-branes are

not. This agrees with what we know about the SU(N)k × SU(N)−k theory. The bound-

ary gauge theory has a di-baryon operator corresponding to the endpoint of a wrapped

D4-brane worldline, but does not have monopole operators which would correspond to the

endpoints of D0-brane worldlines. The boundary condition for B again allows a fundamen-

tal string worldsheet to end on the boundary, and the resulting boundary line corresponds

to the (N,N) Wilson line of the gauge theory. Now a collection of N such strings can

end on a wrapped D6-brane, which, being the magnetic dual of the D0-brane, is allowed

to end on the boundary. This is the bulk description of the gluon screening an N -fold

product of the basic Wilson line. Finally, the wrapped D2-brane is not allowed to end on

the boundary since the wrapped D4-brane is, so there is not an additional k-fold screening

of the Wilson lines. See figure 5 for illustrations.

3.4 Generalization

In the two “alternative” boundary conditions we discussed above, we fixed one of the one-

form gauge fields at the boundary, while keeping the other one maximally free, within the

discrete symmetry imposed by the action (3.2), Zk or ZN . This in turn required fixing

the boundary condition for the two-form gauge field B to take a value in this group. If

either Zk or ZN have a non-trivial subgroup there is a natural way to generalize these

boundary conditions, by partially restricting the freedom of the free one-form gauge field
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Figure 5. A holographic description of (a) a baryon, and (b) N Wilson lines being screened by

gluons in the SU(N)k × SU(N)−k theory.

AdS4 boundary conditions 3d N = 6 theory

AD0 fixed (U(N)k ×U(N)−k)/Zm′
AD4 free mod Zm′ ⊂ Zk where k = mm′

B free mod Zm ⊂ Zk
AD4 fixed (SU(N)k × SU(N)−k)/Zn′
AD0 free mod Zn′ ⊂ ZN where N = nn′

B free mod Zn ⊂ ZN

Table 2. Generalized AdS4/CFT3 dualities.

to this subgroup, which allows us at the same time to partially loosen the restriction on the

two-form gauge field, giving it freedom within the complement of this subgroup. In either

case we will keep the Dirichlet boundary condition for the other one-form gauge field.8 Our

results are summarized in table 2 below, and the details are contained in the following two

subsections.

3.4.1 (U(N)k ×U(N)−k)/Zm′

If k = mm′ we can restrict the boundary value of AD4 to be free within Zm ⊂ Zk, while

fixing the boundary value of AD0. We can also say that AD4 is free in Zk modulo fixing

it in Zm′ ⊂ Zk, namely m′AD4 = 0.9 From the point of view of the boundary theory

we are gauging Zm ⊂ Zk ⊂ G0, leaving a discrete zero-form global symmetry Zgcd(N,m′),

in addition to the U(1)M global zero-form symmetry dual to AD0. The restriction on

the boundary freedom of AD4 in turn allows us to relax the boundary condition for B,

giving it freedom in Zm′ ⊂ Zk. We can say that B is free in Zk modulo fixing it in

Zm ⊂ Zk, namely mB = 0. This gives rise to a Zm global one-form symmetry. The full

global symmetry of the boundary theory is therefore U(1)
[0]
M × Z[0]

gcd(N,m′) × Z[1]
m , which we

recognize as the symmetry of the (U(N)k × U(N)−k)/Zm′ theory. The above boundary

condition interpolates between the “standard” boundary condition for (m,m′) = (1, k) and

the U(N)k × U(N)−k boundary condition for (m,m′) = (k, 1). As in the previous cases,

8In principle there is a more general possibility of restricted free boundary conditions on both one-form

gauge fields. We will not consider that here.
9More explicitly, AD4 is allowed to vary in the set {0,m′, 2m′, . . . , k−m′} or {1,m′+ 1, 2m′+ 1, . . . , k−

m′ + 1} or {2,m′ + 2, 2m′ + 2, . . . , k −m′ + 2},. . . , or {m′ − 1, 2m′ − 1, 3m′ − 1, . . . , k − 1}.
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Figure 6. AdS4 dual of (U(N)k×U(N)−k)/Zm′ : (a) Dressed-monopole and m-di-baryon operators.

(b) Chiral ring relation. (c) k = m′m fundamental Wilson lines screened by an anti-symmetric

monopole.

the bulk coupling should reproduce the mixed anomaly expected between the one-form and

zero-form symmetries.

The Dirichlet boundary condition for AD0 allows D0-branes to end on the boundary,

giving the dressed monopole operatorsM`. The Zm restricted-free, or equivalently the Zm′
fixed, boundary condition for AD4, allows also wrapped D4-branes to end on the boundary

in multiples of m. These correspond to m-fold products of the di-baryon operator Bm`. The

chiral ring relation, as in the case with the “standard” boundary conditions, is described

in the bulk as a fully wrapped Euclidean NS5-brane. The Zm fixed boundary condition

for B allows string worldsheets to end on the boundary in multiples of m′, describing the

Wilson linesWm′`, with m of these multiples screened by a wrapped D2-brane. See figure 6

for illustrations. All of this agrees with the properties of (U(N)k × U(N)−k)/Zm′ theory

shown in table 1.

3.4.2 (SU(N)k × SU(N)−k)/Zn′

If N = nn′ we can restrict the boundary value of AD0 to be free within Zn ⊂ ZN , while

fixing the boundary value of AD4. In other words AD0 is free in ZN modulo fixing it

in Zn′ ⊂ ZN , namely n′AD0 = 0. From the point of view of the boundary theory we are

gauging Zn ⊂ ZN ⊂ G0, leaving a discrete zero-form global symmetry Zgcd(n′,k), in addition

to the U(1)B global zero-form symmetry dual to AD4. The restriction on the boundary

freedom of AD0 in turn allows us to relax the boundary condition for B, giving it freedom

in Zn′ ⊂ ZN . We can say that B is free in ZN modulo fixing it in Zn ⊂ ZN , namely nB = 0.

This gives rise to a Zn global one-form symmetry. The full global symmetry of the boundary

theory is therefore U(1)
[0]
B × Z[0]

gcd(n′,k) × Z[1]
n , which we recognize as the symmetry of the

(SU(N)k×SU(N)−k)/Zn′ theory. The above boundary condition interpolates between the

“standard” boundary condition for (n, n′) = (1, N) and the SU(N)k × SU(N)−k boundary

condition for (n, n′) = (N, 1). The bulk coupling should again reproduce the mixed anomaly

expected between the one-form and zero-form symmetries.

The Dirichlet boundary condition for AD4 allows wrapped D4-branes to end on the

boundary, giving the di-baryon operators B`. The Zn restricted-free, or equivalently the

Zn′ fixed, boundary condition for AD0, allows also D0-branes to end on the boundary

in multiples of n. These correspond to the dressed monopoles Mn`. The chiral ring

relation is again described in the bulk as a fully wrapped Euclidean NS5-brane. The
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Figure 7. AdS4 dual of (SU(N)k × SU(N)−k)/Zn′ : (a) n-dressed-monopole and di-baryon opera-

tors. (b) Chiral ring relation. (c) N = nn′ fundamental Wilson lines screened by gluons.

Zn fixed boundary condition for B allows string worldsheets to end on the boundary in

multiples of n′, describing the Wilson lines Wn′`, with n of these multiples screened by a

wrapped D6-brane. See figure 7 for illustrations. All of this agrees with the properties of

(SU(N)k × SU(N)−k)/Zn′ theory shown in table 1.

4 Conclusions and outlook

We have shown that Type IIA string theory in AdS4 × CP 3, or equivalently M-theory in

AdS4×S7/Zk, incorporates a larger class of three-dimensional N = 6 superconformal field

theories than was previously appreciated. As in the case of 4d N = 4 SYM theories, the

different 3d N = 6 theories correspond to different boundary conditions at the bound-

ary of AdS4 imposed on the bulk gauge fields, and the allowed boundary conditions are

constrained by a specific topological term in the bulk supergravity theory. The resulting

holographic dualities generalizing the case of the U(N)k × U(N)−k theory were shown in

table 2 above.

If one were to single out one N = 6 theory as the “mother” theory, the analog of the

SU(N) theory in four dimensions, it would be the (SU(N)k×SU(N)−k)/ZN theory, which

is equivalently formulated as the (U(N)k × U(N)−k)/Zk theory. This theory is dual to

the AdS4 background with the “standard” Dirichlet boundary condition for both one-form

gauge fields. It enjoys an ordinary global symmetry given by G0 = U(1) × Zgcd(N,k), and

has two types of charged local operators carrying U(1) charges in the ratio k/N , one of

which is also charged under the discrete Zgcd(N,k). All other N = 6 SCS theories with

equal ranks of the two gauge groups, including the original U(N)k × U(N)−k theory, are

obtained by gauging a discrete subgroup of G0. This procedure has two effects in general.

It removes from the spectrum the subset of local operators that are charged under the

discrete subgroup, and at the same time introduces line operators that are allowed by

Dirac quantization. The line operators are charged under a one-form symmetry given by

the same discrete subgroup that was gauged.

There are a number of interesting directions for further exploration. First, it is not clear

that we have exhausted all the allowed boundary conditions, in the AdS4 background that

we discussed, that preserve N = 6 supersymmetry. A more careful analysis of the boundary

conditions consistent with the low energy bulk theory and with N = 6 supersymmetry is

necessary. Given the tight constraints imposed on 3d N = 6 Chern-Simons theories, it
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would be surprising to find new N = 6 boundary conditions. But of course those may

correspond to 3d SCFT’s that do not have a (Chern-Simons) Lagrangian description.

Second, the theories discussed in this paper do not in fact exhaust the list of N = 6

Super-Chern-Simons theories. There is another class of N = 6 theories with gauge groups

U(N +M)k×U(N)−k with 1 ≤M ≤ k−1 [18], and some discrete quotients thereof [12].10

The U(N +M)k×U(N)−k theories were argued to be dual to the AdS4×CP 3 background

of Type IIA string theory with an additional RR flux and a holonomy for the B field,11∫
CP 2

F4

2π
= M ,

∫
CP 1

B

2π
= − M

k
+

1

2
. (4.1)

In the M-theory description this corresponds to a discrete holonomy of the 3-form potential

over the torsion 3-cycle in H3(S
7/Zk,Z) = Zk. It would be interesting to extend the

analysis of boundary conditions to this background, especially in view of the fact that

there is no N = 6 version of the SU(N + M)k × SU(N)−k theory for M 6= 0, and in

view of the additional constraints that are imposed on the allowed discrete quotients of the

U(N +M)k ×U(N)−k theory [12].

Finally, there are many more examples of AdS4/CFT3 pairs with less supersymmetry

in which one can study the role of boundary conditions. For example with N = 5 su-

persymmetry we have the orientifold theories USp(2N + 2M)k × O(N)−2k, which have a

relatively simple bulk dual [18]. It would be interesting to work out the N = 5 version of

the story.
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A Monopole operators

A monopole operator in three dimensions is the reduction of a four-dimensional ’t Hooft

line operator on a circle. It is defined by the magnetic flux on the two-sphere surrounding

it. In general the spectrum of monopoles and the spectrum of Wilson lines (or equivalently

allowed charges) is constrained by Dirac quantization, and depends on the precise global

structure of the gauge symmetry. Roughly speaking a smaller gauge group restricts the

Wilson line spectrum more, and therefore restricts the monopole spectrum less. Here are

some examples.

For a U(1) gauge field, Dirac quantization requires

H =
1

2π

∫
S2

F = m ∈ Z . (A.1)

The integer m is a conserved charge corresponding to a topological U(1) symmetry with

conserved current j = ∗F . In the presence of a CS term

LCS =
k

4π
A ∧ dA (A.2)

an m-monopole operator carries an electric charge q = km.

For an SU(N) gauge field, a monopole is defined by the the magnetic fluxes in the

Cartan subgroup,

H = diag(m1,m2, . . . ,mN ) (A.3)

with
∑N

i=1mi = 0. Using the Weyl symmetry we can order the fluxes as m1 ≥ m2 ≥ · · · ≥
mN without a loss of generality. Since Wilson lines are permitted in all representations of

SU(N), Dirac quantization requires mi ∈ Z. These monopoles do not carry a conserved

charge. The current j = ∗F is not gauge invariant. In the presence of a CS term

LCS =
k

4π
Tr(AdA− 2i

3
A3) (A.4)

the above monopole transforms in an SU(N) representation given by a Young diagram

with N − 1 rows, where the ith row has k(mi −mN ) boxes.

For SU(N)/ZN there are additional possibilities for monopoles, since Wilson lines are

permitted only in representations that are invariant under the center of SU(N), namely

in N -fold products of the fundamental representation. This is equivalent to gauging the

electric ZN global one-form symmetry of the SU(N) theory. In addition to (A.3) one also

has monopoles given by the magnetic fluxes:

H = m diag

(
N − 1

N
,− 1

N
, . . . ,− 1

N

)
. (A.5)

This generates a gauge transformation given by ei2πH , which is an element of the center

ZN , and is therefore the identity in SU(N)/ZN . There is no gauge-invariant conserved

current, but the monopoles carry a conserved charge taking values in ZN . This is the

– 20 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
7

. . .

k(m1 �mN )
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Figure 8. SU(N) representation of an SU(N) monopole in the presence of a level k CS term.

reduction of the magnetic one-form ZN symmetry of the 4d theory, and can be seen for

example from π1(SU(N)/ZN ) = ZN . In the presence of a level k CS term (A.4) the new

monopoles transform simply as the symmetric mk-fold product of fundamentals (Nmk)sym.

Finally consider the case of U(N). As a simple generalization of the U(1) case, the

U(N) monopoles take the form

HU(N) = (m1,m2, . . . ,mN ) (A.6)

where mi ∈ Z and m1 ≥ m2 ≥ · · · ≥ mN , without a condition on the sum. These carry

a conserved charge given by
∑
mi corresponding to the conserved current j = ∗Tr(F ). It

is also useful to describe these in terms of SU(N) monopoles. Locally U(N) is similar to

SU(N) × U(1), but the precise global relation is U(N) = (SU(N) × U(1))/ZN , where ZN
acts simultaneously as the center of SU(N) and e−2πik/N ∈ U(1). In particular a Wilson

line in the N of SU(N) must also have a unit of charge under U(1). From this point of

view one can have U(1) monopoles (A.1), SU(N) monopoles (A.3), , and also monopoles

of the form

HSU(N) = m diag

(
N − 1

N
,− 1

N
, . . . ,− 1

N

)
HU(1) =

m

N
(A.7)

where m ∈ Z. This is easily seen to be an equivalent description to (A.6) by decomposing

the U(N) gauge field into an SU(N) gauge field and a U(1) gauge field as A = A+ aI. In

particular the monopole above takes the form HU(N) = (m, 0, . . . , 0). In the presence of

CS terms the monopoles again acquire gauge charges. In general the SU(N) and U(1) CS

levels may be different, but the difference must be a multiple of N . The CS action for the

so-called U(N)k,k+Nk′ theory is given by

LCSk,k+Nk′ =
k

4π
Tr

(
AdA− 2i

3
A3

)
+
k′

4π
Tr(A)dTr(A)

=
k

4π
Tr

(
AdA− 2i

3
A3

)
+
N(k +Nk′)

4π
ada . (A.8)

For k′ = 0 the CS levels are the same and this describes the U(N)k,k theory. The general

U(N) monopole (A.6) transforms in the SU(N) representation shown in figure 8, and carries

a U(1) charge q = (k + Nk′)
∑N

i=1mi. In particular the monopole in (A.7) transforms in

the (Nmk)sym and has q = (k +Nk′)m.
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