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1 Deformations, actions and spectra

1.1 Moving in the space of physical theories

To orient ourselves in the space of physical theories, it can be useful to think of c,G and ~
as parameters that tell us whether we are in a regime which is relativistic/non-relativistic,

gravitational/non-gravitational or quantum/classical. Most of the combinations of these

descriptors apply to theories which are familiar to all physicists.

Another way to move in theory space is to start with a known theory and deform it

by adding to the action a coupling to some operator in the original theory. A surprising

example of this is the T T̄ deformation [1–3], see the lectures [4] for a nice introduction,

which deforms a two-dimensional QFT using a coupling to the determinant of the energy-

momentum tensor (hence the name). Although this deformation is irrelevant, it turns out
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to be unreasonably well-behaved as we go to the UV (corresponding to sending the coupling,

or deformation parameter, λ→∞). For instance, if we know the original spectrum we can

obtain the deformed one, while, remarkably, integrability of the original theory is preserved.

This deformation has turned out to have a direct link to string theory. The T T̄

deformation of a theory of D free bosons corresponds to the Nambu-Goto action in D + 2

dimensions, with the two extra directions fixed to static gauge [3, 5]. As well as the usual

Nambu-Goto square root term, we also need a non-zero B-field with a component in the

longitudinal direction proportional to 1/λ. Both this B-field and the Nambu-Goto square

root are naively divergent in the limit λ → 0, but these divergences cancel such that we

recover the original undeformed theory.

String theory (or more broadly its M-theoretic completion) is meant to occupy the

position in c,G, ~ space corresponding to relativistic quantum gravity. Starting there, and

thinking about moving in all possible directions of the c,G, ~ cube, we might wonder about

the limit of string theory when c2 →∞, which should correspond to non-relativistic quan-

tum gravity. This limit may exhibit novel features of string theory, or more speculatively

provide an alternative route to insights into quantum gravity more generally. Either way,

understanding this corner of theory space has been a motivation for recent progress in

non-relativistic string theory.

The direct way to obtain a non-relativistic string theory is to take the string sigma

model in a background spacetime and perform a scaling limit which treats the longitudinal

time and spatial directions of the string separately to the transverse ones [6–9]. Effectively,

the longitudinal components of the metric should scale like c2,1 and to obtain a finite

result, the B-field to which the string couples needs to have a longitudinal component also

proportional to c2. The naive divergence of both the metric and the B-field then cancel in

the limit.

This scaling limit, with cancellation of divergences between metric and B-field contri-

butions, should sound similar to what happens in the T T̄ deformation as we return to the

initial λ = 0 undeformed theory. Working out how to make this connection explicit is the

main goal of this paper.

The first part of our observations will focus on the scaling limit we have mentioned,

working directly with Nambu-Goto action (in section 1.2) and also with the spectrum

(in section 1.4).

The second part concerns the geometrical viewpoint. Interpreting the T T̄ deforma-

tion in terms of a string worldsheet theory, we can ask whether there is a target space

perspective. One is provided by realising the effect of the deformation in terms of TsT

transformations [11] of a string theory geometry [12–16], working in the Hamiltonian for-

mulation of the string (see also [17]). The TsT transformations act on the two additional

longitudinal transformations by which we extend the theory we wish to deform. We will

be able to extend this picture to deformed geometries which are singular in the limit λ = 0

1For a point particle, only the time coordinate need be scaled, in which case this sort of limit is directly

related to sending the speed of light to infinity. For branes, it is necessary to scale all worldvolume directions,

in which case the parameter one is sending to infinity should not be directly thought of as the speed of

light [10]. For that reason we will denote the actual parameter that we send to infinity by ω2 below.
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(owing to the need to carry out one of the T-duality transformations of the TsT in a

null direction [13, 16]), and interpret the apparently singular background describing the

undeformed theory as a non-relativistic geometry.

The prototypical non-relativistic background for us is known as Newton-Cartan geom-

etry. In a Newton-Cartan geometry the non-degenerate spacetime metric is replaced by

a pair of orthogonal degenerate metrics, one for the timelike direction and one for spatial

hypersurfaces. The combination of names signifies that the geometry is non-relativistic

(Newton) but geometric i.e. generally covariant (Cartan). One way to think of this is as

general relativity with Galileo substituted for Lorentz. As the string is an extended ob-

ject, the coordinates corresponding both to the time and a single spatial direction of the

target space are treated on a different footing to the other spatial coordinates, and in the

worldsheet theory couple differently to the geometry.

The version of Newton-Cartan which arises naturally via the c2 → ∞ scaling limit

is known as stringy Newton-Cartan geometry [9]. An alternative route to non-relativistic

stringy geometries is providing by carrying out a T-duality transformation on a null isom-

etry direction of a relativistic background (for fixed null momentum). This leads to what

is called torsional Newton-Cartan geometry [18, 19]. Similarly, starting with the stringy

Newton-Cartan geometry constructed in [9], one can T-dualise on a longitudinal isometry

to arrive at a relativistic geometry with a null isometry [20] (and in this case one can

directly relate torsional Newton-Cartan to the string Newton-Cartan [21]).

In order to treat these geometries on the same footing as conventional relativistic ge-

ometries, and to relate them via null T-duality transformations, we will use ideas that were

developed in [22, 23] and then systematically in [24] in the context of the “doubled” (or,

loosely speaking, T-duality covariant) formulation of string theory. For the purposes of

this paper, the main idea can be found in the Hamiltonian formulation of the string, where

the metric and B-field appear together in an O(D,D)-valued matrix which we call the

generalised metric. We first discuss this in section 1.3. Whereas under the conventional

radial inversion duality transformations, the metric and B-field transform non-linearly, the

generalised metric transforms merely via a permutation of its entries. Therefore working

with this object evades the singularities that would otherwise arise in null dualities, and

via [24] can be reparametrised in non-relativistic backgrounds in a geometrically transpar-

ent manner. We discuss this in section 2.1.

Using this language, we will be able to complete the circle of ideas, first relating non-

relativistic scaling limits to T T̄ deformations at the level of the Nambu-Goto action, and

then understanding this geometrically in string theory as an O(D,D) transformation that

makes the non-relativistic target space into a relativistic one.

In the remainder of section 2 we will obtain some more general statements of our results

from this first section, and discuss some particular examples of deformations relating non-

relativistic and relativistic geometries. In section 3 we discuss how all this does, and does

not, generalise to M-theory. Finally, rather than conclude in the conventional style with a

conclusion, in this paper we will pause at the end of each section to provide a summation

of the main ideas that have appeared so far.
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1.2 Limits of the Nambu-Goto action

Take a background which is just flat space with a constant B-field:

ds2 = ω2(−(dX0)2 + (dX1)2) + δijdX
idXj ,

B01 = ω2 ,
(1.1)

where we have rescaled two of the coordinates by a (dimensionless) constant ω2, and here

i, j = 2, . . . , D with D = 10 or 26 the critical dimension.

Our first goal is to take the ω2 →∞ limit in the Nambu-Goto action in static gauge.

This is the non-relativistic limit of [6, 7], although we are expressing it slightly differently.

In appendix D we are a little more precise about the identification (specifically with the

conventions of [6]). In particular, one can think of this limit as being a zero slope limit

with a critical B-field, identifying ω2 =
α′eff
α′ and sending α′ → 0. The actions that appear

below should then be multiplied by an effective tension Teff = 1
2πα′eff

, which we however

pre-emptively set to unity.

The worldsheet coordinates are σα = (τ, σ) and derivatives with respect to these

coordinates will be denoted by Ẋµ ≡ ∂τXµ, X ′µ ≡ ∂σXµ. We also use the two-dimensional

alternating symbol εαβ = −εβα with ε01 = −1. The Nambu-Goto action coupled to a

general metric gµν and B-field Bµν is:

SNG = −
∫
d2σ
√
− det gαβ −

∫
d2σ

1

2
εαβBαβ , (1.2)

where the pullbacks of the metric and B-field are gαβ ≡ ∂αX
µ∂βX

νgµν and Bαβ ≡
∂αX

µ∂βX
νBµν .

We take X0 = τ and X1 = σ to fix static gauge. The worldsheet action (1.2) in the

background (1.1) then becomes:

SNG

∣∣∣
static gauge

=

∫
d2σ ω2

(
1−

√
1− 1

ω2
(ẊiẊj −X ′iX ′j)δij −

1

ω4
det(∂αXi∂βXjδij)

)
.

(1.3)

Take ω2 →∞. We can expand

SNG

∣∣∣
static gauge, ω2→∞

= S0 +
1

ω2
S1 +O

(
1

ω4

)
, (1.4)

where the term that survives in the strict ω2 → ∞ limit is just the action for D − 2 free

bosons:

S0 =

∫
d2σ

1

2
(ẊiẊj −X ′iX ′j)δij , (1.5)

and the first correction for finite ω involves the determinant of the energy-momentum

tensor of S0:

S1 =

∫
d2σ

1

2

(
det(∂αX

i∂βX
jδij) +

1

4

((
ẊiẊj −X ′iX ′j

)
δij

)2
)

=
1

2

∫
d2σ det(Tαβ) ,

(1.6)
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with

Tαβ = ∂αX
i∂βX

jδij −
1

2
ηαβη

γδ∂γX
i∂δX

jδij , (1.7)

where ηαβ = diag(−1, 1) is the two-dimensional Minkowski metric. Thus we can think

of turning on a finite ω2 as deforming the theory with action S0 by the determinant of

the energy-momentum tensor. It is convenient to define our deformation parameter as the

inverse of ω2, namely

λ =
1

ω2
, (1.8)

such that the undeformed theory corresponds to λ = 0. The dependence on λ of the

classical action of the deformed theory follows from an equation of the form [1–4]:

∂S(λ)

∂λ
=

1

2

∫
d2σ det(Tαβ(λ)) . (1.9)

We offer a nice demonstration of this in appendix A. Not only can we deform the classical

action — and obtain closed form results for the resulting theory — but we can study

features such as the spectrum and S-matrix, and track how they change with respect

to λ (although we will not really consider quantum aspects in this paper). Given the

identifications of appendix D, we realise that we can really identify in our conventions

λ = α′

α′eff
(or reinstating the effective tension, we actually have the dimensionful quantity

λ/Teff ∼ α′, see appendix D). The limit λ → 0 is then a field theory limit (or derivative

expansion) of the string as pointed out regarding the non-relativistic limit in [10] and in

line with the observations made even earlier in [25], as well as with the reverse intuition

that T T̄ deformations lead to non-local theories.

The example above shows that the effect of such a deformation can be encoded in

a string theory geometry, a crucial feature being the interplay between the metric and

the B-field. The geometry of string theory is of course a very useful tool for encoding

interesting physics in a variety of ways. Indeed, the link between T T̄ deformations and

string theory extends beyond the simple example above, which connected a free field theory

to string theory in flat space with a divergent B-field in static gauge. For more complicated

field theories, described by other geometries, a precise link has been elucidated in [12–16]

by describing the T T̄ deformation in terms of the well-known TsT transformations which

involve T-duality, a geometric shift (either of the coordinates or of the B-field) and then

a second T-duality. We will describe this in more detail later on. (Note that from the

point of view of this general approach, one can avoid introducing divergent B-fields — and

view the appearance of such in the initial example as an artefact of flat space — while the

deformation is most clearly expressed not in static gauge but in uniform light cone gauge.)

To connect with this more general picture for our example geometry (1.1), we will

change perspective. We want to be able to chase the limit ω2 → ∞, or λ → 0, directly

at the level of the geometry. In terms of the metric and B-field in (1.1), this is inherently

problematic. For an alternative viewpoint on the geometry, we turn to the Hamiltonian

formulation of the string.

– 5 –
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1.3 Limits of the Hamiltonian action

Before directly discussing the background (1.1) in Hamiltonian language, we will first set-up

some general notation which is key to understanding the main arguments of this paper.

The Hamiltonian form of the worldsheet action. By the Hamiltonian form of the

worldsheet action, we mean the formulation in which our independent fields are the coor-

dinates Xµ and their conjugate momenta Pµ. The action in this form is:

S =

∫
dτdσ

(
ẊµPµ − uHu − eHe

)
. (1.10)

In (1.10) we also have two Lagrange multipliers, e and u, imposing constraints given by:

Hu = X ′µPµ ,

He =
1

2

(
X ′µ Pµ

)(gµν −BµρgρσBσν Bµρgρν
−gµρBρν gµν

)(
X ′ν

Pν

)
.

(1.11)

On integrating out the momenta, we recover the Polyakov action after identifying e and

u with the independent components of the worldsheet metric. Further integrating out e

and u leads to the Nambu-Goto action. The presence of the two constraints corresponds

then to the equations of motion of the worldsheet metric, that is to the vanishing of the

energy-momentum tensor of the string (i.e. the Virasoro constraints). These are first-class

constraints and generate worldsheet diffeomorphisms as their gauge transformations.

The generalised metric. The structure of these constraints warrants further attention.

Firstly, note we can rewrite Hu as

Hu =
1

2

(
X ′µ Pµ

)( 0 δµ
ν

δµν 0

)(
X ′ν

Pν

)
. (1.12)

Then in both Hu and He we see the appearance of a 2D × 2D matrix. That in Hu we

will call

ηMN =

(
0 δµ

ν

δµν 0

)
, (1.13)

defining a split signature bilinear form preserved by the group O(D,D) (which is not a

priori a symmetry of the worldsheet action at all). We denote its inverse by ηMN . Here

we have introduced an index M which is 2D-dimensional, and splits into upper and lower

D-dimensional indices. For instance, we define ZM ≡ (X ′µ, Pµ), with Hu = 1
2ηMNZMZN .

We similarly treat He by writing it as He = 1
2HMNZMZN , where by definition i)

HMN = HNM , ii) HMNη
NKHKL = ηML, i.e. HMN is itself valued in the group O(D,D).

The matrix HMN will be referred to as the generalised metric.

We will say that a (classical) string Hamiltonian is defined by the above action and con-

straints, withHMN defined as above. In a well-defined relativistic (or [pseudo-]Riemannian)

spacetime background we parametrise this matrix HMN as in (1.11):

Riemannian background: HMN =

(
gµν −BµρgρσBσν Bµρgρν

−gµρBρν gµν

)
. (1.14)

– 6 –
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This is a parametrisation of the coset O(D,D)/O(1, D−1)×O(1, D−1), but not the only

useful one.

Hamiltonian description of the geometry (1.1). Our initial geometry (1.1) pro-

duces a Hamiltonian with interesting properties as we vary the parameter λ = 1
ω2 . Let’s

compactify our notation by writing the coordinates as Xµ = (Xa, X i), where a = 0, 1 and

i = 2, . . . , D as before. Define

ηab =

(
−1 0

0 1

)
, εab =

(
0 −1

1 0

)
, εa

b ≡ ηacεcb =

(
0 1

1 0

)
. (1.15)

The background (1.1) is then encoded by the following generalised metric

HMN =


0 0 εa

b 0

0 δij 0 0

εb
a 0 ληab 0

0 0 0 δij

 , (1.16)

and the Hamiltonian form of the action is thus

S =

∫
d2σ
(
ẊaPa + ẊiPi − u

(
X ′aPa +X ′iPi

)
− e

2

(
δijPiPj + δijX

′iX ′j + 2εb
aPaX

′b + ληabPaPb

))
.

(1.17)

For λ → 0, the metric and B-field of (1.1) are singular. The generalised metric (1.16)

and the action (1.17) suffer no divergences. Instead, the singularity manifests itself in

the bottom right block of the matrix (1.16) becoming degenerate — this was the block

corresponding to the inverse spacetime metric — and accordingly the action (1.17) becomes

linear rather than quadratic in the momenta Pa. The “undeformed” Hamiltonian action

is then

S
∣∣∣
λ=0

=

∫
d2σ
(
ẊiPi − uX ′iPi −

e

2

(
δijPiPj + δijX

′iX ′j
)

+ Pa(Ẋ
a − uX ′a − eεbaX ′b)

)
.

(1.18)

After integrating out the momenta Pi, for the coordinates Xi alone we obtain the standard

Polyakov action. In addition, we have the second term in (1.18) which is linear in the Pa.

The equations of motion of Pa enforce that X0 ± X1 are chiral/antichiral. To see this,

introduce a two-dimensional basis of vectors and covectors:

xa =
1√
2

(
1

1

)
, x̄a =

1√
2

(
1

−1

)
, ya =

1√
2

(
1

1

)
, ȳa =

1√
2

(
1

−1

)
(1.19)

such that xay
a = 1, xaȳ

a = 0, x̄ay
a = 0 and x̄aȳ

a = 1, and we have the relations

xay
b + x̄aȳ

b = δba , xay
b − x̄aȳb = εa

b . (1.20)

– 7 –
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Define

β ≡ yaPa , β̄ ≡ ȳaPa , γ ≡ xaXa , γ̄ ≡ x̄aXa . (1.21)

In Lagrangian form, we then obtain the action

S =

∫
d2σ − 1

2

√
−hhαβ∂αXi∂αXjδij + βD−γ + β̄D+γ̄ , (1.22)

where the inverse worldsheet metric has components hττ = −1/e2, hτσ = −u/e2, hσσ =

1 − u2/e2,
√
−h = e, and D± ≡ ∂τ − u∂σ ± e∂σ. Conformal gauge corresponds to e = 1,

u = 0.

From (1.22), we see that the (Xa, Pa) subsector now appears as a sum of chiral and

antichiral βγ systems. This is precisely the form of the non-relativistic string action of [6].

The geometry from which this subsector derives is in fact that of stringy Newton-Cartan [9,

18, 19, 21], in which the vectors (1.19) play the role of singling out the preferred longitudinal

time and space directions of the non-relativistic background probed by the string. In

section 2.1 below, we will review the interpretation of these vectors in terms of more

general parametrisations of the generalised metric, describing non-Riemannian geometries

including non-relativistic ones [22–24].

Now we describe how to view turning on λ 6= 0 as a deformation of the action (1.18),

first concentrating on how λ appears in the generalised metric and then in the action itself.

The deformation as a TsT transformation of the generalised metric. The λ

dependence of the generalised metric (1.16) can be factorised out as follows:

HMN = UM
K(λ)UN

L(λ)HKL(λ = 0) , (1.23)

where

UM
N (λ) =


δba 0 0 0

0 δji 0 0

βab(λ) 0 δab 0

0 0 0 δij

 , βab =
λ

2
εab , (1.24)

and

HMN (λ = 0) =


0 0 εa

b 0

0 δij 0 0

εb
a 0 0 0

0 0 0 δij

 . (1.25)

The matrix UM
N (λ) in (1.24) is an element of O(2, 2;R) ⊂ O(D,D;R) (i.e. it obeys

UM
K(λ)UN

L(λ)ηKL = ηMN ). This sort of O(D,D) transformation we will call a bivector

transformation, referring to the antisymmetric quantity βab = −βba appearing in (1.24).

The matrix HMN (λ = 0) in (1.25) is a non-Riemannian or non-relativistic generalised

metric. It can not correspond to the standard parametrisation of (1.14), as the bottom

right block, which should correspond to gµν , is not invertible. This matrix (1.25) describes

the non-relativistic geometry encoding the undeformed theory.

In general, bivector transformations can be factorised themselves as a T-duality on all

directions for which the components βµν are non-zero (here just the longitudinal ones, so a

– 8 –
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T-duality on those two directions), followed by a constant shift of the B-field, followed by

repetition of the same T-duality duality; alternatively they factor as a T-duality on a single

direction, a shift of the coordinates, and a T-duality back on the same direction as before.

They are therefore one realisation of TsT transformations. This TsT transformation of the

non-relativistic background described by (1.25) then amounts to a T T̄ deformation. This

is the viewpoint arising from [12–16], so the relevance of O(D,D) or TsT is of course not

a new observation — what we want to focus on is the link to non-relativistic theories.

What is not clear from (1.25) is how to make sense geometrically of the degeneracy of

the bottom right block of the generalised metric. The general answer to this is provided

by the classification of non-Riemannian parametrisations of the generalised metric in [24],

which we will review in section 2.1.

The deformation as a current-current deformation of the action. Now let’s dis-

cuss how the action (1.18) is itself deformed when λ 6= 0. The λ dependence is really quite

simple. We can write the action (1.17) with λ 6= 0 as:

S = S
∣∣
λ=0
− λ

∫
d2σ

e

2
ηabPaPb = S

∣∣
λ=0

+ λ

∫
d2σeββ̄ . (1.26)

There is a nice description of the deformation in terms of a coupling to worldsheet currents

(compare with the discussion in for instance [13, 26–28] in particular regarding Wakimoto

variables). The action (1.17) is invariant under translations Xa → Xa + εa, implying a

pair of (on-shell) conserved Noether currents

Jαa =

(
Pa

−uPa − eεabPb

)
, ∂αJ

α
a = 0 . (1.27)

Then we have
∂S

∂λ
=

∫
d2σ

1

4
εαβε

abJαa J
β
b . (1.28)

Equivalently, we could write these in terms of the chiral and antichiral currents associated

to shifts in γ and γ̄. In any case, the effect of the deformation is to recouple the (β, γ) and

(β̄, γ) subsectors via the introduction of a term involving ββ̄. One can then integrate out

β and β̄ to obtain the relativistic background with finite λ.

It is interesting to note that this sort of deformation has appeared in the calculation

of the beta functionals of more general non-relativistic string actions [29–31], arising at

one-loop on the worldsheet. In that case, if one is interested in really restricting to non-

relativistic target space geometries, one must ensure that the coefficient of the ββ̄ term

vanishes identically in the non-relativistic background, as otherwise the background will

again become relativistic. A related discussion in the context of the equations of motions of

double field theory i.e. the equations of motion of a theory in which the generalised metric

is treated as the fundamental variable, can be found in [32]. The question there con-

cerns whether one should restrict to variations of HMN which preserve the non-relativistic

parametrisation.

– 9 –
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Upshot. The above discussion demonstrates how to view the λ = 0 worldsheet action as

that of a string in a non-relativistic background. The deformation with λ 6= 0 corresponds

to deforming this action in a particular manner that corresponds to a certain TsT or

bivector transformation of the geometry.

1.4 The relativistic and non-relativistic spectrum

We will now present one further match between the non-relativistic and T T̄ limits, namely

the behaviour of the spectrum. Let’s slightly generalise the background (1.1), follow-

ing [23], to:

Gomis-Ooguri: ds2 = ω2(−(dX0)2 + (dX1)2) + δijdX
idXj ,

B01 = ω2 − µ .
(1.29)

We have introduced a (finite) constant shift of the B-field, which can be incorporated

easily into our previously analysis (for instance, in the Hamiltonian we just have Pµ →
P̃µ = Pµ −BµνX ′ν).

We now explicitly assume the direction X1 is compact, with radius R, and that the

string winds w times around this direction. In fact, we should restrict to positive winding

number: then physically what will happen is that the string states charged (positively)

under the divergent B-field in (1.29) will survive in the ω2 →∞ limit, with the divergent

“rest mass” cancelling against the divergent contribution from the charge, and all other

string states will decouple.

Standard string quantisation leads to the following spectrum of energies E:2

1

ω2

(
E +

wRB01

α′eff

)2

= k2 + ω2

(
wR

α′eff

)2

+
1

ω2

( n
R

)2
+

2

α′eff

(NL +NR − 2) , (1.30)

where k2 denotes the norm of the transverse spatial momenta. Taking the square root

gives [6, 7]

E−µwR
α′eff

=
wR

α′eff

ω2

√1+
1

ω2

(
α′eff

wR

)2(
k2+

2

α′eff

(N+Ñ−2)

)
+

1

ω4

(
α′eff

wR

)2( n
R

)2
−1

 ,

(1.31)

having chosen the sign such that the ω2 →∞ limit is well-defined. This limit is:

E(ω2 →∞) =
µwR

α′eff

+
α′effk

2

2wR
+
NL +NR − 2

wR
, (1.32)

which can be interpreted as a non-relativistic dispersion relation (energy equals momentum

squared), assuming that w > 0 so that the energy is positive.

To match with the T T̄ literature, define:

λ ≡ 1

ω2
, r ≡ 2wR

α′eff

, E(r, λ) ≡ E(r, λ)− 1

2
µr , E(r, 0) ≡ 1

r

(
k2 +

2

α′eff

(N + Ñ − 2)

)
,

(1.33)

2Here we restore the effective string length squared, see appendix D.
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so that

E(r, λ) =
r

2λ

(√
1 +

4λ

r
E(r, 0) +

4λ2

r2

n2

r2
− 1

)
. (1.34)

This is the known expression for the T T̄ deformed spectrum obeying the inviscid Burger’s

equation [1–4].

∂λE(r, λ) =
1

2
∂rE(r, λ)2 +

1

r

n2

r2
. (1.35)

1.5 Lessons and morals

We started with the background (1.1) and compared two different ways of thinking about

the limit in which λ = 1
ω2 → 0. One was as a non-relativistic limit [6], leading to the

non-relativistic spectrum discussed in section 1.4, and (via the Hamiltonian formulation)

the worldsheet action (1.22).

The second point of view on this limit is that it coincides with a T T̄ deformation “in

reverse”: we began with the parameter λ 6= 0 and then worked our way backwards to the

point λ = 0. Then it is clear to see that the theory with λ 6= 0 has the same form as the

T T̄ deformation of the λ = 0 theory.

From the T T̄ point of view, what one is interested in is the deformation of the two-

dimensional theory obtained from the static gauge fixed Nambu-Goto action. From a string

theory perspective, we are interested in the corresponding deformation of the background

geometry that contains much of the information about the deformation. It has already been

argued that the T T̄ deformation corresponds to a TsT transformation. Here we see that

we can even apply such transformations to non-relativistic geometries. We will continue

the discussion of this sequence of transformations below.

We are suggesting therefore to view the non-relativistic limit as a “reverse T T̄ defor-

mation”. Conversely, starting with the non-relativistic string, the T T̄ deformation should

make it relativistic. Effectively, one should think of the deformation parameter as turning

on a finite speed of light.

The non-relativistic limit of [6, 7] was partially inspired by work on the

non-commutative open string limit [33, 34]. It might therefore be interesting to hunt

for further links between these sort of string theory limits and T T̄ , in the context of open

strings and D-branes. (Deformations linking Maxwell theory and DBI-style theories have

been investigated in the T T̄ literature in for example [35–37].)

2 Non-relativistic duality and TsT

We will now elaborate on the ideas that we have introduced by discussing in some more

detail the more general setting. We will introduce a set of general parametrisations of

generalised metrics that allow the Hamiltonian formulation to describe more general non-

relativistic backgrounds, and then connect our approach to a known recipe for T T̄ as TsT.

2.1 Non-Riemannian parametrisations

The systematic approach of [24] (building on the examples found in [22, 23]) yields an

elegant framework for dealing with generalised metrics for which a conventional spacetime
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interpretation is unavailable owing to the degeneracy of the D × D block which should

correspond to the inverse spacetime metric. A general classification has been provided

based on the number of zero eigenvectors of this block and on the trace ηMNHMN of the

generalised metric, in terms of a pair of non-negative integers (n, n̄) such that the number of

zero eigenvectors is n+ n̄ and the trace is 2(n− n̄). The conventional case where we do have

a spacetime metric and a B-field corresponds to (0, 0) while the generalised metric (1.25)

is an example of (1, 1). In general, (1, 1) appears to be relevant for stringy or torsional

Newton-Cartan geometries.3

The (1, 1) parametrisation introduces two degenerate D ×D matrices, Hµν and Kµν ,

and is expressed in terms of a (particular) basis of zero vectors of these matrices, denoted

xµ, x̄µ and yµ, ȳµ with

Hµνxν = 0 = Hµν x̄ν , Kµνy
ν = 0 = Kµν ȳ

ν , xµy
µ = 1 = x̄µȳ

µ , xµȳ
µ = 0 = x̄µy

µ ,

(2.1)

plus a completeness relation

HµρHρν + xνy
µ + x̄ν ȳ

µ = δµν . (2.2)

In addition we can have a B-field, Bµν , and the generalised metric factorises as:

HMN

∣∣∣
(1,1) background

=

(
δµ
ρ Bµρ

0 δρµ

)(
Kρσ xρy

σ − x̄ρȳσ

yρxσ − ȳρx̄σ Hρσ

)(
δσν 0

−Bσν δνσ

)
. (2.3)

(Observe that the B-field factorisation is upper triangular whereas that of the bivector

as in (1.24) is lower triangular.) It is worth mentioning that the choice of the particular

ingredients (K,H, x, x̄, y, ȳ, B) is not unique, and in fact can be changed via a version of

Galilean transformations [24].

The significance of the otherwise somewhat strange separation of the zero vectors

into unbarred and barred becomes clear when we study the worldsheet action in such a

background. One way to do this is to simply use this generalised metric in the Hamiltonian

constraint:

He =
1

2

(
X ′µ P̃µ

)( Kµν xµy
ν − x̄µȳν

yµxν − ȳµx̄ν Hµν

)(
X ′ν

P̃ν

)
=

1

2
KµνX

′µX ′ν +X ′µ(xµy
ν − x̄µȳν)P̃ν +HµνP̃µP̃ν .

(2.4)

Here P̃µ = Pµ −BµνX ′ν . Ordinarily, the term quadratic in the momenta here would allow

us to completely integrate them out of the action, and so return to the standard Polyakov

Lagrangian (or to the Nambu-Goto Lagrangian after further integration out of e and u).

However, now Hµν is degenerate, and to fully solve the equation of motion for Pµ we

would need to invert this matrix. We can decompose Pµ (or P̃µ) using the completeness

3Generic (n, n̄) parametrisations in fact correspond to changing the underlying coset to O(D,D)/O(t+

n, s+ n)×O(t+ n̄, s+ n̄), where t+ s+ n+ n̄ = D. Here we focus only on the case n = n̄ = 1 as this can

be related to the standard description via O(D,D) transformations.
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relation (2.2): Pµ = KµρH
ρνPν + xµy

νPν + x̄µȳ
νPν . The components proportional to xµ

and x̄µ, i.e. yµPµ and ȳµPµ, appear linearly in the action and remain as independent fields,

whose equations of motion turn out to enforce chirality or antichirality constraints. A

straightforward calculation gives the action after integration out of KµρH
ρνPν . In confor-

mal gauge (e = 1, u = 0) it is:

S =

∫
d2σ

(
−1

2
Kµν∂αX

µ∂αXν − 1

2
εαβBµν∂αX

µ∂βX
ν + β xµ∂−X

µ + β̄ x̄µ∂+X
µ ,

)
(2.5)

where we let β ≡ yµP̃µ, β̄ ≡ ȳµP̃µ and ∂± = ∂τ±∂σ. We see that our previous action (1.22)

for the non-relativistic string obtained by the scaling limit is indeed of this form.

2.2 TsT of non-relativistic geometry and worldsheet currents

We now want to understand what happens to such a non-relativistic parametrisation, and

to the action (2.5), if we do a TsT transformation. How can we see the same sort of

deformation that we encountered in our original example? Let’s first discuss this in terms

of a deformation by worldsheet currents. In general, invariance under Xµ → Xµ + εµ in

the Hamiltonian form of the string action gives the conserved current

Jαµ =

(
Pµ

−uPµ − eHµνPν − eHµνX ′ν

)
. (2.6)

Suppose we have a background factorising as:

HMN = UM
K(λ)UN

L(λ)HKL(λ = 0) , UM
N (λ) =

(
δνµ 0

λβµν δµν

)
, (2.7)

where HMN (λ = 0) is a non-relativistic (1, 1) parametrisation. Furthermore, assume that

εµ = yµε and εµ = ȳµε̄ both correspond to symmetries, i.e. both zero vector directions are

(commuting) isometries and we have chosen coordinates such that the yµ and ȳµ are con-

stant. This will remain a symmetry of the bivector transformed action (as the background

remains independent of the coordinates corresponding to the yµ and ȳµ directions). We

have two conserved currents: Jα ≡ yµJαµ and J̄α ≡ ȳµJαµ , for which

εαβJ
αJ̄α = 2ey[µȳν]

(
PµHνρPρ −X ′νHρµPν

)
. (2.8)

Now, the off-diagonal block Hνρ can be seen to take the form Hνρ = xνy
ρ − x̄νyρ+ terms

involving the B-field of the non-relativistic parametrisation and involving the bivector. We

therefore have that:

2y[µȳν]PµHνρPρ = −2yµȳµPµPν + . . . . (2.9)

Hence this product of currents contains a term yµȳµPµPν = ββ̄ + . . . which is quadratic

in the momenta, and recouples the formerly independent chiral and antichiral sectors.

Next, we can use the factorisation (2.7) and the general expression for the action in

Hamiltonian form (1.10) to compute the dependence of the action on λ. This is:

∂S

∂λ
=

∫
d2σeβµν

(
PµHνρPρ −X ′νHρµPν

)
. (2.10)
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If we construct our bivector using the zero vectors yµ and ȳµ, namely,

βµν = 2y[µȳν] , (2.11)

then the deformation of the action takes the current-current form that we saw previously

(equation (1.28)) specialised to:

∂S

∂λ
=

∫
d2σεαβJ

αJ̄β . (2.12)

We therefore have a recipe to deform the non-relativistic geometry with longitudinal isome-

tries via the λ-dependent bivector βµν(λ) = 2λy[µȳν]. This recovers and generalises the

scaling limit deformation we discussed in the previous section.

There are multiple ways we could factorise this bivector transformation. One would

be to view it as resulting from T-duality in the yµ direction, followed by a shift of the

resulting dual direction by the ȳµ coordinate, Xµ → Y µ = Xµ − λxν ȳµXν , followed by

T-duality back on the yµ direction. This gives the factorisation:(
δµν 0

2λy[µȳν] δνµ

)
=

(
δρµ−xµyρ xµxρ
yµyρ δµρ−yµxρ

)(
δσρ +λxρȳ

σ 0

0 δρσ−λȳρxσ

)(
δνσ−xσyν xσxν
yσyν δσν−yσxν

)
.

(2.13)

It would be also natural to consider dualising along the directions picked out by yµ ± ȳµ

instead: this is what we will in fact describe next.

2.3 The pp-wave example

From Gomis-Ooguri to the pp-wave. We have mentioned in the introduction the

direct link between duality on null isometries and non-relativistic strings [18–21]. This

seems initially to have nothing to do with the λ → 0 limit we have been using. Let’s

see what we can say about this, by rewriting the TsT transformation between the Gomis-

Ooguri background (1.29) and its non-relativistic limit in terms of an explicit sequence of

duality and shifts, similar to (2.13). First recall that the background (1.29) was:

Gomis-Ooguri: ds2 =
1

λ
(−(dX0)2 + (dX1)2) + δijdX

idXj ,

B01 =
1

λ
− µ .

(2.14)

T-duality on the X1 direction gives a background without a B-field:

T of Gomis-Ooguri: ds2 = 2dX0(dX̃1 − µdX0) + λ(dX̃1 − µdX0)2 + δijdX
idXj .

(2.15)

In fact, the λ → 0 limit of this background is well-defined. In this limit the (compact)

direction X̃1 becomes null. As pointed out in [6], this is the discrete lightcone quantisation

(DLCQ) limit of string theory. The winding around the original direction X1 becomes the

null momentum. Rather than take this limit though, we instead define shifted coordinates:

Y 0 = X0 +
1

2
λ(X̃1 − µX0) , Ỹ 1 = X̃1 − µX0 , (2.16)
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Non-relativistic (2.18)

(Y 0, Y 1)

pp-wave (2.17)

(Y 0, Ỹ 1)

shifted pp-wave (2.15)

(X0, X̃1)

GO (relativistic) (2.14)

(X0, X1)

T: Y 1 ↔ Ỹ 1 (null)

s: (Y 0, Ỹ 1)↔ (X0, X̃1)

TsT

T: X̃1 ↔ X1

Figure 1. Duality between our example non-relativistic and relativistic backgrounds.

in terms of which we get the background

Ts of Gomis-Ooguri: ds2 = 2dY 0dỸ 1 + δijdX
idXj . (2.17)

which directly manifests a null isometry in the Ỹ 1 direction. We can realise a null duality

on this direction by acting directly on the generalised metric (see appendix C). This leads

to the background we obtained as the λ = 0 limit of the original Gomis-Ooguri solution,

i.e. we get the generalised metric HMN (λ = 0) of equation (1.25). In terms of the non-

Riemannian (1, 1) parametrisation this is

Kµν =

0 0 0

0 0 0

0 0 δij

 , yµ =
1√
2

1

1

0

 , ȳµ =
1√
2

 1

−1

0

 ,

Hµν =

0 0 0

0 0 0

0 0 δij

 , xµ =
1√
2

1

1

0

 , x̄µ =
1√
2

 1

−1

0

 .

(2.18)

Suppose we had started with the background (2.17), or more generally any background

with a null isometry, generated by a null Killing vector which let us denote by ∂
∂U . Instead

of appealing to unfamiliar generalised metrics, how could we take a duality in the null

direction? If there is a second (commuting) isometry present, generated by ∂
∂X , one solution

would be to define a duality along the isometry generated by a linear combination of the

two Killing vectors, specifically by ∂
∂U + λ

2
∂
∂X (assuming this is non-null), and then take

the limit λ→ 0 at the end. This is the same as defining shifted coordinates X̃ = X − λ
2U ,

Ũ = U , and dualising along the Ũ isometry, ∂
∂Ũ

= ∂
∂U + λ

2
∂
∂X . Applying this procedure

to (2.17) generates the background (2.15), and then (1.29), in which the initial difficulty

in considering a null duality shows up again as the singular behaviour as λ→ 0.

This chain of transformations is illustrated in figure 1.

A general recipe for T T̄ as TsT. This picture can be compared with the general

procedure advocated in [12, 14–16], see figure 2. Let’s outline (a somewhat simplified
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Undeformed geometry
(Y 0, Y 1)

Dual undeformed geometry
(Y 0, Ỹ 1)

Deformed dual geometry
(X0, X̃1)

Deformed geometry
(X0, X1)

T: Y 1 ↔ Ỹ 1

s: (Y 0, Ỹ 1) ↔ (X0, X̃1)

TsT

T: X̃1 ↔ X1

Static gauge
⇒ T T̄ deformed theory

Static gauge
⇒ undeformed theory

ULCG
⇒ T T̄ deformed theory

ULCG
⇒ undeformed theory

Figure 2. A recipe for T T̄ as TsT following [12, 14–16].

version of) the procedure of [16]. The idea is to work within the arena of string sigma

models in backgrounds with two isometries (one timelike). The two isometric directions,

which we again call longitudinal, are to be viewed as the “extra” two coordinates which

appear fixed to static gauge in the T T̄ deformation of some two-dimensional theory. The

question is then how to realise such a deformation directly in stringy language. This is

achieved by the recipe depicted diagrammatically in figure 2.

One starts with the undeformed geometry in the bottom left and T-dualises on the

Y 1 coordinate. Then one performs a shift in the dual “undeformed” geometry, of the

form Y 0 = X0 + 1
2λX̃

1, Ỹ 1 = X̃1 (where Ỹ 1 is dual to Y 1). After shifting, and thereby

introducing the parameter λ, one T-dualises on X̃1 to reach the deformed geometry in the

bottom right hand corner of figure 2.

After arriving at the deformed geometry in the bottom right hand corner of figure 2,

fixing static gauge (in the Hamiltonian form of the action, say) allows one to recover

the T T̄ deformed theory which for λ = 0 would be encoded by the original undeformed

geometry.4 Alternatively, instead of going to static gauge, one could consider just the dual

deformed geometry with coordinates X0 and X̃1. In uniform light cone gauge (ULCG)

this reproduces the same underlying T T̄ deformed theory (this gauge is X0 ∼ τ and p1 ∼
constant; the momenta p1 is dual to the winding of X1. This uniform light cone gauge

approach is the principal focus of [14, 15]).

4This sequence gives solely a T T̄ deformation. One can generalise to include other shifts which lead

to different deformations, inlcuding in the situation where there is a third isometry present allowing for

JT -type deformations [15], which we do not discuss here. What is important is that although the shift looks

locally like a diffeomorphism, globally it is generates a different geometry and hence can be interpreted as

a deformation rather than a gauge transformation.
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One example of this sort considered in detail in [16] is that of a pp-wave. Using our

own conventions for the names of the coordinates,5 we choose to write the metric as follows:

pp-wave: ds2 = 2dY 0dỸ 1 − 2V (Xi)dY 0dY 0 + dX idXjδij , (2.19)

(where we chose the numerical factors for later convenience; they are related to those of [16]

by a rescaling of the coordinates). The function V (Xi) is either constant or quadratic. A

priori, it appears that this cannot be dualised on Ỹ 1, as this is a null isometry. Nevertheless,

one can shift the coordinates as X0 = Y 0 − 1
2λỸ

1, X̃1 = Ỹ 1, before T-dualising on X̃1 to

arrive at the background:6

Deformed pp-wave: ds2 =
2

λ(2− λV )

(
−dX0dX0 + dX1dX1

)
+ dX idXjδij ,

B01 =
2

λ

1− λV
2− λV

.

(2.20)

This geometry is then an “sT” transformation of the pp-wave (2.19). Naively, we cannot

view it as the “TsT” transformation of the geometry which would be T-dual to the pp-wave

along the null isometry direction Ỹ 1. As explained in [16], this manifests itself in the fact

that the background (2.20) is singular for λ→ 0. However, the Hamiltonian is well-behaved

in this limit, which means one can still gauge fix and find a resulting Hamiltonian model

for the coordinates Xi and their momenta, which can be interpreted as a T T̄ deformation

of the pp-wave Hamiltonian, H = 1
2PiPjδ

ij + 1
2X
′iX ′jδij + V (Xi).

What we can now is interpret λ → 0 limit as corresponding to a non-relativistic

geometry. Indeed, if V = 0 the background is exactly (2.14) with µ = 0, i.e. our initial

background (1.1).

Non-Riemannian parametrisation describing the deformed pp-wave. We again

denote the two (longitudinal) coordinates of the background (2.20) (those that we have

been acting on with T-dualities and shifts) as Xa = (X0, X1), such that altogether Xµ =

(X0, X1, X i). The background (2.20) is then described by the following generalised metric

Deformed pp-wave: HMN =


2V ηab 0 (1− λV )εa

b 0

0 δij 0 0

(1− λV )εb
a 0 λ

2 (2− λV )ηab 0

0 0 0 δij

 . (2.21)

5My priorities are backwards to those of [16] (if not also in general), in that I have been interested in

starting with deformed geometries and working my way back to undeformed geometries: as a result, the

coordinates I call X are those [16] call Y and vice versa. I will also use indices 0, 1 instead of +,−, but these

are just labels and should not be construed as necessarily attaching any meaning regarding the “lightcone”

nature of coordinates, as will be clear from the explicit metrics.
6The renaming and rescaling of the coordinates relative to [16] isX0

here = 1√
2
Y +

there andX1
here ≡ 1

2
√

2
Ỹ −there.
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This is non-Riemannian for λ → 0, and factorises as in (1.23) terms of the very same

bivector transformation (1.24) as before, except now

HMN (λ = 0) =


2V ηab 0 εa

b 0

0 δij 0 0

εb
a 0 0 0

0 0 0 δij

 . (2.22)

A convenient decomposition for this generalised metric (2.22) is provided by the same

parametrisation (2.18) we used for the original non-relativistic background with in addition

the potential V (Xi) encoded in the B-field:

Bµν =

 0 −V 0

V 0 0

0 0 0

 . (2.23)

With this information, the worldsheet action (2.5) describes the λ = 0 non-relativistic

geometry of the deformed background (2.20). Turning on the deformation (λ 6= 0) imme-

diately returns us to a relativistic description.

Let us mention that aficionados of torsional Newton-Cartan should identify the co-

ordinate here called X1 (or previously Y 1 in the λ → 0 limit) with the extra worldsheet

coordinate which is dual to a null isometry direction of a relativistic background — this

is the coordinate called η in [21]. Then if XI = (X0, X i) label the coordinates of the

Newton-Cartan geometry, the Newton-Cartan clock form is τI = δ0
I , its dual vector is

vI = −δI0 , and the U(1) gauge field is mI = V δ0
I , while the degenerate matrix hIJ has

non-zero components hij = δij , similarly hIJ has non-zero components hij = δij .

Gauge fixing. For completeness, let’s exhibit how the gauge fixing procedure of [16]

works, in order to relate back to the actual T T̄ deformation picture. We are supposed to

fix static gauge and interpret the resulting theory as a T T̄ deformation. We define static

gauge by X0 = τ and X1 = σ. The gauge fixed action after solving the constraints takes

the form:

S =

∫
d2σẊiPi −H , H ≡ −P0 . (2.24)

We solve the first constraint, Hu = 0, for the momentum P1:

P1 = −X ′iPi , (2.25)

and the second constraint, He = 0, for the momentum P0:

−P0 =
2

λ(2− λV )

(√
1 + λH⊥ + λ2

(
P 2

1 −
1

2
V H⊥

)
− λ3V P 2

1 +
λ4

4
V 2P 2

1 − 1 + λV

)
,

(2.26)

identifying

H⊥ ≡ δijPiPj + δijX
′iX ′j . (2.27)
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This agrees with the expression in [16] up to the rescalings of the coordinates (and a possible

minus sign typo). We chose the sign before the square root in order that the non-relativistic

λ→ 0 limit is finite. In this limit we have

− P0 =
1

2
(δijPiPj + δijX

′iX ′j) + V +O(λ) . (2.28)

2.4 The “negative string” example

We are now going to write down an example of an apparently singular SUGRA solution

where the “flow” from non-relativistic to relativistic is realised geometrically as we move

in the background. This is a background for which the author has a certain problematic

fondness [38] and is realised by performing dualities on the fundamental string solution

along its isometries in both the spatial worldvolume direction and the time direction. This

example has provided a useful inspiration for the study of non-Riemannian backgrounds

in string theory [22, 23, 39] and can also be viewed as a negative tension brane [40].

The metric and B-field of this solution are:

Negative F1: ds2 =
1

f−(r)
(−(dX0)2 + (dX1)2) + δijdX

idXj ,

B01 =
1

f−(r)
− 1 ,

(2.29)

where we define harmonic functions

f±(r) = 1±
(r0

r

)6
, r ≡

√
δijXiXj . (2.30)

The standard fundamental string solution would have the form of (2.29) but with f+ in

place of f−. We see that there is an unpleasant singularity at r = r0 (matching the

SUGRA solution with a fundamental string source for the normal string solution gives

r0 ≡ 2π
√
α′/(6Vol(S7))1/6). At this singularity, f− → 0. The form of the metric and

B-field is similar to the Gomis-Ooguri background (2.14), or our initial spacetime (1.1),

which is unsurprising as the form of the latter backgrounds evidently mirrors that of the

fundamental string solution. In place of the parameter λ that we tuned “manually” we

now have the function f−(r) which depends on our position in the tranverse space to the

string. In static gauge, the Nambu-Goto action for the string in the background (2.29) is

SNG =

∫
d2σ

1

f−(r)

(
1−f−(r)−

√
1−f−(r)δij(ẊiẊj−X ′iX ′j)−f−(r)2 det(∂αXi∂βXjδij)

)
(2.31)

and, seeing as we now know very well how this behaves for f−(r) → 0, is non-singular at

r = r0. This is similar to the analysis of [40] that showed that apparently singular negative

brane solutions can be safely probed by other (mutually BPS) branes.

The generalised metric for this background factorises as

HMN (r) = (Uβ)M
K(r)(UB)K

L(r)(Uβ)N
P (r)(UB)P

Q(r)HLQ(r0) , (2.32)
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where at r = r0 we have a non-Riemannian parametrisation (writing only the part of the

generalised metric involving the longitudinal directions Xa = (X0, X1)):

HMN (r0) =

(
2ηab εa

b

εb
a 0

)
(2.33)

and we have factorised out both a B-field contribution:

(UB)M
N (r) =

(
δba

1
2f−(r)εab

0 δab

)
, (2.34)

and a bivector contribution:

(Uβ)M
N (r) =

(
δba 0

f−(r)
f+(r)ε

ab δab

)
. (2.35)

(Here ε01 = −ε01 = −1.) Both (2.34) and (2.35) vanish at r = r0. The bivector factorisation

shows that we can interpret the deformation away from the non-relativistic locus at r = r0

as a sort of TsT transformation, albeit now an r-dependent one. This example can be

related back to the pp-wave solution which is T-dual to the fundamental string. In the

pp-wave, the Killing vector associated to the isometry in the time direction is timelike for

r > r0 and null at r = r0, leading to the degeneracy at that point in the dual solution.

Starting at r =∞ and moving towards the apparent singularity at r = r0 corresponds

to moving from f−(r) = 1 to f−(r) = 0. We can continue to probe values of r < r0

(from [40] we can view this as a “bubble” surrounding the position of the brane, in which

spacetime signature flips and physics should be described by an exotic variant of string

theory), which corresponds to a region where f−(r) is negative, with the position of the

string itself corresponding to f−(r)→ −∞. This may correspond to a “wrong sign” of the

T T̄ parameter, and may be worth further attention. (Meanwhile we should not forget the

dilaton, which is eφ = |f−(r)|−1/2, blowing up at r = r0 and goes to zero at r = 0. One

could make sense of the strong coupling behaviour either using S-duality or by uplifting to

a smooth configuration in 11 dimensions [40].)

2.5 From non-relativistic to ultra-relativistic

We interpreted the undeformed backgrounds with λ = 0 as corresponding to non-relativistic

geometries. For finite λ, we recovered standard relativistic backgrounds. If we follow our

intuition that λ is related to the inverse speed of light squared, then λ → ∞ should send

the speed of light to zero. This is an ultra-relativistic limit, and is whimsically known as

the Carrollian limit [41].

Some physical intuition for this limit can be obtained by considering the slopes of

lightcones, thinking of the basic equation t = ±1
cx). For c → ∞, the lightcones at any

point expands to fill the whole future region as the speed of signal propagation becomes

infinite. For c→ 0 on the other hand the slope of the lightcones becomes steeper (moving

towards the time axis), so that eventually the lightcones shrink and coincide with the past
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and future time axes. This means that free particles cannot in fact move spatially (as they

still cannot travel outside their lightcone), and so are frozen in place (see for instance [42]).

In [24] the behaviour of both particles and strings in non-Riemannian geometries were

studied, encompassing both Newton-Cartan or Gomis-Ooguri non-relativistic limits and

Carollian ultra-relativistic limits. For each zero vector of the degenerate block Hµν in

the generalised metric, we find a momentum that we cannot integrate out, leading to

an equation of motion for the corresponding target space coordinate which implies for a

particle that the coordinates in the directions picked out by the zero vectors are constant,

xµẊ
µ = 0, while for a string the coordinates (as we have seen) become chiral or antichiral,

xµ(Ẋµ −X ′µ) = 0, x̄µ(Ẋµ +X ′µ) = 0.

What can we say about this limit? First, consider the expression for the spectrum

obtained in 1.4. The limit as λ→∞ of (1.31) is

E(λ→∞) =
∣∣∣ n
R

∣∣∣ . (2.36)

In this limit, the energy of the string is given by its momentum in the longitudinal direction.

There is no energy contribution coming from the transverse directions.

Next, let’s consider the action in Hamiltonian form coming from static gauge fixing,

given by (2.24) (with or without V = 0). The Hamiltonian there as λ→∞ is:

H =
√
P 2

1 =
√

(X ′iPi)2 . (2.37)

This agrees with (2.36), identifying P1 = n
R . Now, the other Hamiltonian constraint gave

us what is really the level-matching condition P1 = −X ′iPi. If n > 0, then P1 > 0 and

X ′iPi is negative. Then the Hamiltonian form of the action in the limit is:

S =

∫
d2σPi(Ẋ

i +X ′i) , (2.38)

conversely if n < 0 then P1 < 0 and X ′iPi > 0, so we get the action

S =

∫
d2σPi(Ẋ

i −X ′i) . (2.39)

These correspond to chiral or antichiral βγ systems as we would expected to obtain asso-

ciated to the coordinates in the zero vector directions in a non-relativistic parametrisation.

This is what we should expect in this situation [24] if we can really interpret this limit as

giving us a Carrollian geometry (which is a (D − 2, 0) parametrisation of the generalised

metric). A possible interpretation of this picture is the following: in this ultra-relativistic

limit the string becomes chiral in the subsector where it is moving one way around the

longitudinal spatial circle and antichiral in the subsector where it is moving the other way

around this direction.

For a single transverse scalar, the above limit was considered in [43] and used to provide

a description of a chiral boson starting with the gauge fixed Nambu-Goto action; in [44]

this was reinterpreted in the T T̄ context and the presence of chiral and antichiral sectors

also suggested.
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2.6 Lessons and morals

In this section we have discussed some of the general features of the description of non-

relativistic geometries in string theory using so-called non-Riemannian parametrisations

of the generalised metric that appears in the Hamiltonian. We made contact with results

about T T̄ as a TsT transformation and added the non-relativistic interpretation of the

bottom left node of the diagram shown in figure 2. We explained how to realise this TsT

transformation in terms of the zero vectors characterising the part of the geometry to which

the longitudinal directions of the string couple. In section 2.4 we wrote down an example

of a background where the “flow” or “deformation” was from an apparently singular non-

relativistic locus at r = r0 to a well-behaved relativistic background for r > r0. This may

be an isolated curiousity, or perhaps a guide for realising these ideas in an intrinsically

geometric fashion in other backgrounds. (This raises the more general idea of reanalysing

the string action in non-geometric T-folds patched by bivector transformations in terms of

worldsheet deformations.)

As T T̄ deformations preserve integrability, one might wonder what one can say about

non-relativistic limit of the AdS5 × S5 superstring [45] (integrability of Newton-Cartan

strings has been recently studied in [46]). For this the Green-Schwarz doubled string

of [47] could be a good place to start — this paper already considered the Gomis-Ooguri

non-relativistic string as an example (an RNS doubled string was applied to non-relativistic

backgrounds in [48]). The results of for instance [14, 49] on the T T̄ side may be of use here.

3 M2 brane deformations and non-relativistic U-duality

Non-relativistic limits can be taken not just for particles and strings, but also for general

branes [6, 10]. This suggests an experimental approach to understanding possible higher-

dimensional generalisations of the T T̄ deformation (discussed for instance in [5, 50, 51]):

start with a higher-dimensional Nambu-Goto style action and try to make sense of the non-

relativistic limit in some generalised T T̄ sense. We will therefore examine in this section

what the analogous non-relativistic limit looks like for M2 branes.

3.1 Limits of the Dirac-Nambu-Goto action

We will restrict our attention to the M2 brane in 11 dimensions. Let σA = (τ, σ1, σ1)

denote the worldvolume coordinates, and εABC the alternating symbol with ετ12 = −1.

The bosonic action is

SM2 = −
∫
d3σ

(√
− det gAB +

1

6
εABCCABC

)
, (3.1)

featuring the pullbacks of the 11-dimensional metric, gAB = ∂AX
µ∂BX

νgµν , and the three-

form, CABC = ∂AX
µ∂BX

ν∂CX
ρCµνρ. An appropriate flat space background for the limit

we want to take is:

ds2 = ω−2/3
(
ω2ηabdX

adXb + δijdX
idXj

)
,

C012 = ω2 .
(3.2)
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The overall factor of ω−2/3, and the choice of the three-form, ensures that we obtain a

finite limit from the Nambu-Goto action in the ω2 →∞ limit (recall ω2 is dimensionless).

Alternatively, we could omit this overall scaling of the metric, as in [10], in which case we

would need to also rescale the membrane tension to get a finite action in the limit. We

will continue to use the background (3.2) as in [52] and not scale the tension (which we

continue to suppress from our expressions). Observe that the powers of ω−2 match the

appearance of the harmonic function in the M2 brane SUGRA solution.

Static gauge for the membrane is: X0 = τ,X1 = σ1, X2 = σ2. Let ηAB denote the

Minkowski metric of the three-dimensional theory. The following compressed notation

is useful:

XAB ≡ ∂AXi∂BX
jδij , trX ≡ ηABXAB , tr (η−1Xη−1X) ≡ ηABXBCη

CDXDA . (3.3)

Using this, the action (3.1) becomes:

SM2

∣∣∣
static gauge

=

∫
d3σ

1

λ

(
1−
√

1+λtrX+
1

2
λ2 ((trX)2−tr (η−1Xη−1X))−λ3 detX

)
.

(3.4)

The expansion for λ→ 0 gives

SM2

∣∣∣
static gauge, λ→0

= S0 + λS1 +O(λ2) , (3.5)

where

S0 = −
∫
d3σ

1

2
trX = −

∫
d3σ

1

2
ηAB∂AX

i∂BX
jδij , (3.6)

describes 8 free bosons in three dimensions, with energy-momentum tensor

TAB = XAB −
1

2
ηABtrX . (3.7)

This energy-momentum tensor appears in the term linear in λ in the expansion:

S1 ≡
∂S

∂λ

∣∣∣
λ=0

=

∫
d3σ

(
1

4
tr (η−1Xη−1X)− 1

8
(trX)2

)
=

∫
d3σ

(
1

4
tr (η−1Tη−1T )− 1

4
(trT )2

)
=

∫
d3σ

1

4
(ηABηCD − ηACηBD)TACTBD .

(3.8)

In terms of a general three-dimensional metric hAB, this would be consistent with a flow

equation of the form

∂S

∂λ
=

∫
d3σ
√
|h|1

4
(hABhCD − hAChBD)TACTBD , (3.9)

as suggested in [5]. (In two-dimensions, (hABhCD−hAChBD) = deth−1εADεBC and hence

we can rewrite this in terms of the determinant of the energy-momentum tensor.) However,

the full action (3.4) does not obey the equation (3.9), nor any other potential expression
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(such as the suggestion of [51]) that we can identify — see appendix A. If the procedure we

are following does produce an interesting deformation encoded in the M2 Dirac-Nambu-

Goto action, more work is needed to uncover its structure. Such a pursuit is beyond the

immediate scope of this paper, so we instead turn to an analysis of this non-relativistic

limit from the Hamiltonian perspective, in order to verify that a U-duality analogue of a

TsT transformation connects the non-relativistic and relativistic geometries.

3.2 Limits of the Hamiltonian action

We first need to split up the membrane time and spatial coordinates. To this end, we write

σA = (τ, σα), with α = 1, 2. Define εαβ ≡ ε0αβ and {Xµ, Xν} ≡ ε0αβ∂αX
µ∂βX

ν . The

action in Hamiltonian form is

SM2 =

∫
d3σ

(
ẊµPµ − uα(Hu)α − eHe

)
, (3.10)

where the constraints are

(Hu)α = Pµ∂αX
µ , (3.11)

He =
1

2

(
1√
2
{Xµ, Xν} Pµ

)( 1√
2

2

(
2gµ[νgρ]σ + Cµνκg

κλCρσλ
)
− 1√

2
Cµνκg

κρ

− 1√
2
gµκCκρσ gµρ

)

×

(
1√
2
{Xρ, Xσ}
Pρ

)
.

(3.12)

The background (3.2) corresponds to

gab = λ−2/3ηab , gij = λ1/3δij , Cabc = −λ−1εabc , (3.13)

where ε012 = −1. Unlike in the string case, it is necessary to also rescale the Lagrange

multiplier e = λ1/3ẽ, otherwise there is no contribution from He in the limit λ→ 0. Then,

eHe =
1

2
ẽ
(

1√
2
{Xa, Xb} Pa

)( 0 1√
2
εabeη

ec

1√
2
εcdeη

ea ληac

)(
1√
2
{Xc, Xd}
Pc

)

+
1

2
ẽ
(

1√
2
{Xi, Xj} Pi

)(λδi[kδl]j 0

0 δij

)(
1√
2
{Xk, X l}
Pk

)
.

(3.14)

Here we see a sum of two terms, the first involving the longitudinal part of the background,

and the second involving the transverse directions.

The longitudinal part can be rewritten in terms of structures associated to the U-

duality group acting in the d = 3 dimensions, which is SL(3) × SL(2). To exhibit this

structure, we view ( 1√
2
{Xa, Xb}, Pa) as transforming in the (3,2) representation of SL(3)×

SL(2), i.e. more precisely εabc
1√
2
{Xb, Xc} and Pa each transform in the fundamental rep-

resentation of SL(3) and together form a doublet under SL(2) U-duality transformations.

We can describe these collectively by introducing a 6-dimensional multi-index M such that
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ZM ≡ ( 1√
2
{Xa, Xb}, Pa). Then we can write the longitudinal contribution to the Hamilto-

nian constraint as ẽ
2T ZMM

MNZN in terms of a generalised metric combining the metric

and three-form as follows:

MMN = |g|−1/6

(
ga[cgd]b + 1

2Cabeg
efCcdf − 1√

2
Cabeg

ec

− 1√
2
gaeCecd gac

)
. (3.15)

For completeness, we discuss how this generalised metric factorises into separate SL(3) and

SL(2) matrices in appendix B.

For the M2 scaling limit background the generalised metric (3.2) works out as:

MMN =

(
0 1√

2
εabeη

ec

1√
2
εcdeη

ea ληac

)
(3.16)

and for λ → 0 the bottom right block corresponding to the inverse spacetime metric de-

generates, in which case we can not describe a conventional relativistic geometry anymore.

Again though, we can factorise out the λ dependence, now using a trivector transformation:

MMN = UMK(λ)UNL(λ)MKL(λ = 0) , (3.17)

where

UMN (λ) =

(
δ

[cd]
ab 0

1√
2
Ωacd(λ) δac

)
, Ωabc(λ) =

λ

2
εabc , (3.18)

is an element of SL(3)× SL(2), and

MMN (λ = 0) =

(
0 1√

2
εabeη

ec

1√
2
εcdeη

ea 0

)
(3.19)

is a non-relativistic parametrisation of an SL(3) × SL(2) generalised metric. So far this is

entirely similar to the string theory limit. As we would expect, the naive singularity of the

background (3.2) in the limit manifests itself as a degeneration of a block of the generalised

metric appearing naturally in the Hamiltonian, and in place of a bivector transformation

(which are non-geometric counterparts of shifts of the string theory two-form) we have

instead the appearance of a trivector (the non-geometric counterpart of the M-theory three-

form) [53].

What is less similar is the need to transform the worldvolume Lagrange multiplier e,

although this is not so surprising as it is expected on general grounds to not be inert under

duality transformations, reflecting a scaling of the worldvolume metric in the Polyakov

formulation [54].

Furthermore, in the second line of equation (3.14) we see that a term involving solely

the transverse coordinates Xi vanishes for λ → 0. How we could generate this term for

λ 6= 0 using a SL(3) × SL(2) transformation is a bit mysterious. This may involve the

reformulation of the full membrane Hamiltonian in a “duality covariant” form in which the

worldvolume tension is encoded in a charge vector in a representation of the U-duality group

(ideas that have been explored in [55, 56] for various branes). One needs to contract two
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copies of this charge with the generalised metric to obtain a scalar tension, which may be

what is vanishing when λ = 0 and non-vanishing when λ 6= 0 if one keeps the charge vector

fixed. This raises subtle questions about the independence of the M2 and M5 actions under

U-duality transformations (for SL(3)× SL(2) the charge vector is a doublet corresponding

in toroidal backgrounds to an unwrapped M2 and the M5 wrapped on three directions, and

these transform into each other). With an apology for ending on an unresolved issue which

is interesting (to the author) but somewhat technical and far removed from the primary

goals of this paper, we will now conclude our discussion with the intention of returning to

this particular problem in a future work.

3.3 Lessons and morals

We see from this section that though some form of the structures we are investigating

persist beyond string theory and into the eleven-dimensional realm of M-theory, there are

as expected added difficulties when going from strings to branes in general, and the overall

picture is much less clear. Nonetheless we think it is interesting to make these comparisons.

As a final comment, we must emphasise that our approach throughout this paper has

implicitly been largely driven by knowledge gained from the development of double and

exceptional field theory, which formulate the O(D,D) T- and Ed(d) U-duality symmetries

in a unified approach and in particular treat the generalised metric as an independent

field (see [57] for a short conceptual introduction). It will be interesting to see if this

unlikely confluence of topics — non-relativistic string theory, T T̄ deformations, and duality

covariant formalisms — can produce real insights into the space of physical theories.
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A Dirac-Nambu-Goto flow equation

Suppose we want to take a non-relativistic limit on a general p-brane (with a p+ 1 dimen-

sional worldvolume). Let’s write flat spacetime in the form ds2 = λ−2/(p+1)(ηabdX
adXb +

λδijdX
idXj), and take the (p+1)-form to which the brane couples to be given by Ca1...ap+1 =

−λ−1εa1...ap+1 . Let A,B = 0, . . . p be worldvolume indices, then the pullbacks of the metric

and three-form are:

gAB = λ−2/(p+1) (hAB + λXAB) , CA1...Ap+1 = −λ−1∂A1X
a1 . . . ∂Ap+1X

ap+1εa1...ap+1 ,

(A.1)

where hAB ≡ ∂AXa∂BX
bηab, XAB ≡ ∂AXi∂BX

jδij .

In principle, in string theory we may also need to consider a non-trivial dilaton as

well. Here, we are mainly interested in comparing the p = 1 case of the usual string (in
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which case the above metric is string frame) and the p = 2 case of the usual membrane in

11-dimensions (in which case the above metric is Einstein frame).

We play a trick with the (p+1)-form. We write the determinant of hAB in the following

manner:

dethAB =
1

(p+1)!
εA1...Ap+1εB1...Bp+1hA1B1 . . .hAp+1Bp+1

=
1

(p+1)!
εA1...Ap+1∂A1X

a1 . . .∂Ap+1X
ap+1εB1...Bp+1∂B1X

b1 . . .∂Bp+1X
bp+1ηa1b1 . . .ηap+1bp+1

=−
(

1

(p+1)!
εA1...Ap+1∂A1X

a1 . . .∂Ap+1X
ap+1εa1...ap+1

)2

. (A.2)

We then see that the coupling to the (p+1)-form is 1
(p+1)!ε

A1...Ap+1CA1...Ap+1 = − 1
λ

√
− deth.

The Nambu-Goto action in this background can then be succinctly written as:

S =

∫
dp+1σ

1

λ

(√
− deth−

√
− det(h+ λX)

)
. (A.3)

(This recovers a form of the action used in [43].) We see immediately that the λ→ 0 limit

of this is

S
∣∣∣
λ→0

= −
∫
dp+1σ

√
− deth

1

2
hAB∂AX

i∂BX
jδij +O(λ) . (A.4)

Let’s now compute the dependence on λ. We have:

∂S

∂λ
=

∫
dp+1σ

1

λ2

(
−
√
− deth+

√
− det(h+ λX)

(
1− 1

2
[(h+ λX)−1]ABλXAB)

))
=

∫
dp+1σ

√
− deth

λ2

(
−1 +

√
− det(h+ λX)√
− deth

(
1− p

2
+

1

2
[(h+ λX)−1]ABhAB)

))
.

(A.5)

The appearance of the factor 1− p which vanishes for the string is possibly already worth

noticing.

In order to obtain the energy-momentum tensor we vary the action with respect to hAB:

δS =

∫
d3σ

δhAB

2λ

(
−
√
− dethhAB +

√
− det(h+ λX)[(h+ λX)−1]CDhCAhDB

)
, (A.6)

and define TAB = − 2√
− deth

δS
δhAB , hence:

TAB =
1

λ

(
hAB −

√
− det(h+ λX)√
− deth

[(h+ λX)−1]CDhCAhDB

)
. (A.7)

We can compute

hABTAB =
1

λ

(
p+ 1−

√
− det(h+ λX)√
− deth

[(h+ λX)−1]ABhAB

)
, (A.8)

(hABTAB)2 =
1

λ2

(
(p+ 1)2 − 2(p+ 1)

√
− det(h+ λX)√
− deth

[(h+ λX)−1]ABhAB

+
det(h+ λX)

deth
[(h+ λX)−1]AB[(h+ λX)−1]CDhABhCD

)
,

(A.9)
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and

hABhCDTACTBD =
1

λ2

(
p+1−2

√
−det(h+λX)√
−deth

[(h+λX)−1]ABhAB

+
det(h+λX)

deth
[(h+λX)−1]AB[(h+λX)−1]CDhAChBD

)
,

(A.10)

such that

1

4

√
− deth(hABhCD − hAChBD)TACTBD (A.11)

=

√
− deth

4λ2

(
− p(p+ 1) + 2p

√
− det(h+ λX)√
− deth

[(h+ λX)−1]ABhAB

− det(h+ λX)

deth
[(h+ λX)−1]AB[(h+ λX)−1]CD(hABhCD − hAChBD)

)
.

Flow equation for strings. When p = 1, we have the identity

hABhCD − hAChBD = dethεADεBC , (A.12)

implying

[(h+ λX)−1]AB[(h+ λX)−1]CD(hABhCD − hAChBD)

= deth[(h+ λX)−1]AB[(h+ λX)−1]CDεADεBC

= 2
deth

det(h+ λX)
,

(A.13)

and hence

1

4

√
− deth(hABhCD − hAChBD)TACTBD

=

√
− deth

λ2

(
−1 +

1

2

√
− det(h+ λX)√
− deth

[(h+ λX)−1]ABhAB

)
.

(A.14)

Then indeed we have

∂S

∂λ
=

∫
d2σ

1

4

√
− deth(hABhCD − hAChBD)TACTBD (A.15)

which corresponds to the determinant of the energy-momentum tensor by using (A.12).

Flow equation for membranes. When p = 2, matters are not quite so simple. In place

of (A.12) we can use the matrix identity:

2hA[BhC]D = deth εADEεBCFh
EF . (A.16)
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From this, for instance, we can write

((h+λX)−1)ABhAB =
1

2

1

det(h+λX)
εACDεBEFhAB(h+λX)CE(h+λX)DF (A.17)

=
1

2

deth

det(h+λX)
(hCEhFD−hCFhED)(h+λX)CE(h+λX)DF

=
1

det(I+λh−1X)

(
3+2λtrh−1X+

1

2
λ2
(
(trh−1X)2−tr(h−1X)2

))
.

For three-by-three matrices, we have explicitly that (here I is the identity matrix):

det(I + λh−1X) = 1 + λtrh−1X +
1

2
λ2((trh−1X)2 − tr (h−1X)2) + λ3 deth−1X . (A.18)

We can then write down the explicit expression for the derivative of the action:

∂S

∂λ
=

∫
d3σ

√
−deth

λ2

(
−1+

√
det(I+λh−1X)

(
−1

2
+

1

2
[(h+λX)−1]ABhAB)

))
=

∫
d3σ

√
−deth

λ2

(
−1− 1

2

√
1+λtrh−1X+

1

2
λ2((trh−1X)2−tr(h−1X)2)+λ3 deth−1X

+
1

2

3+2λtrh−1X+ 1
2λ

2
(
(trh−1X)2−tr(h−1X)2

)√
1+λtrh−1X+ 1

2λ
2((trh−1X)2−tr(h−1X)2)+λ3 deth−1X

 ,

(A.19)

Meanwhile, we also have, from (A.11) and using (A.16)∫
d3σ

1

4

√
− deth(hABhCD − hAChBD)TACTBD (A.20)

=

∫
d3σ

√
− deth

4λ2

(
−6 + 4

√
− det(h+ λX)√
− deth

[(h+ λX)−1]ABhAB − 2hAB(hAB + λXAB)

)

=

∫
d3σ

√
− deth

λ2

(
−3− 1

2
λtr (h−1X) +

√
det(I + λh−1X)[(h+ λX)−1]ABhAB

)
,

hence this term is equal to∫
d3σ
√
−deth

λ2

(
−3− 1

2
λtr(h−1X)+

3+2λtrh−1X+ 1
2
λ2
(
(trh−1X)2−tr(h−1X)2

)√
1+λtrh−1X+ 1

2
λ2((trh−1X)2−tr(h−1X)2)+λ3 deth−1X

)
.

(A.21)

The result (A.19) is not equal to (A.21). Indeed expanding for λ small:

∂S

∂λ
−
∫
d3σ

1

4

√
− deth(hABhCD − hAChBD)TACTBD (A.22)

=
λ

16

(
(trh−1X)3 − 2(trh−1X)((trh−1X)2 − tr (h−1X)2) + 8 det(h−1X)

)
+O(λ2) .

Observe that they do in fact agree to zeroth order in λ, which recovers the result we found

in section 3.1 where we expanded that far and no further.
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An alternative generalisation suggested in [51] would be to instead try (hABhCD −
1
ph

AChBD)TACTBD in p + 1 dimensions. However, changing the coefficient of the sec-

ond term immediately restores a non-zero term at zeroth order in λ, with hABTAB =

−1
2trh−1X + O(λ). We sadly conclude that we have not shed any useful light on the

question of higher dimensional generalisations of T T̄ .

B Non-Riemannian generalised metrics for SL(3) × SL(2)

Here we provide some additional material with which to interpret the discussion in sec-

tion 3.2. First, we should exhibit the factorisation of the SL(3) × SL(2) generalised met-

ric (3.15) into SL(3) and SL(2) factors. Write Cabc = Cεabc and note that εabeεcdfg
ef =

2 det g−1 ga[cgd]b, ε
abeεcdfgacgbd = 2 det g−1gef . Then

|g|1/6ZMMMNZN =
(

1√
2
{Xa,Xb} Pa

)(ga[cgd]b+ 1
2Cabeg

efCcdf − 1√
2
Cabeg

ec

− 1√
2
gaeCecd gac

)

×

(
1√
2
{Xc,Xd}
Pc

)
(B.1)

=
(

1
2εacd{X

c,Xd} Pa
)(gab(−|g|+C2) −Cgab

−Cgab gab

)(
1
2εbcd{X

c,Xd}
Pc

)

and there is a factorisation MMN = MabHαβ into a three-by-three matrix transforming

under SL(3) (corresponding to geometric coordinate transformations):

Mab ≡ |g|1/3gab (B.2)

and a two-by-two matrix transforming under SL(2) (corresponding to non-trivial U-duality

transformations):

Hαβ ≡ |g|−1/2

(
−|g|+ C2 −C
−C 1

)
. (B.3)

We introduced an SL(2) fundamental index α = 1, 2 with the understanding that ZM ≡ Zaα
has components Za1 = 1√

2
εabc{Xb, Xc}, Za2 = Pa.

Perhaps somewhat unusually, gab has Lorentzian signature here; our generalised metric

parametrises a Lorentzian signature coset [58].

The paper [52] investigated some examples of non-Riemannian parametriations of the

generalised metrics that are valued in, and transform under, the U-duality groups Ed(d).

A general classification such as is available for the O(D,D) case was not provided. We

would therefore like to make the structure of the SL(3) × SL(2) case more transparent

here. Assuming that MMN and hence both Mab and Hαβ are invertible (both these

blocks are needed to formulate the supergravity dynamics [59]), and symmetric, then a

general parametrisation of these factors will not correspond to a Riemannian metric and

three-form if

Hαβ =

(
a ±1

±1 0

)
(B.4)
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which we remark necessarily has determinant −1. In any other case, we will be able to

extract a definition of |g| 6= 0 from the bottom right entry, and then use the fact that Mab

is necessarily a non-degenerate matrix to define gab.

The non-relativistic limit described by (3.19) corresponds to

Mab = ηab , Hαβ =

(
0 1

1 0

)
, (B.5)

and the trivector deformation to the SL(2) transformation

Uαβ =

(
1 0
λ
2 1

)
. (B.6)

C Buscher dualities of the generalised metric

A convenient way to describe a single radius inversion T-duality, or Buscher transforma-

tion [60, 61], along one direction in O(D,D) language is to introduce a D-dimensional

(constant) vector nµ and dual covector nµ such that nµnµ = 1. Then dualising in the

direction nµ corresponds to the following O(D,D) transformation:

(Tn)M
N =

(
δνµ − nµnν nµnν
nµnν δµν − nµnν

)
, (C.1)

which is its own inverse. If we choose coordinates such that Xµ = (Xi, Xz) with Xz

the isometry direction, then we can take nµ = δµz , nµ = δzµ. In this case, acting on the

generalised metric we have

HMN → H̃MN = (Tz)MK(Tz)NLHKL , (C.2)

and in component language this is just a permutation swapping the components with upper

z for the components with lower z, and vice versa, hence:

H̃ij = Hij , H̃iz = Hiz , H̃zz = Hzz , (C.3)

H̃ij = Hij , H̃iz = Hiz , H̃zz = Hzz , H̃zi = Hzi , (C.4)

H̃ij = Hij , H̃iz = Hiz , H̃zz = Hzz . (C.5)

Parametrised in terms of g and B this reproduces the usual Buscher rules; starting with

g̃zz = 1
gzz

. However, even if gzz = 0, i.e. we have a null isometry, we can consider safely the

transformation of the generalised metric if we interpret the resulting H̃MN as parametrising

a non-relativistic geometry.

D Effective tension of the non-relativistic limit

In [6], the non-relativistic limit is taken starting from the Polyakov action

S = − 1

4πα′

∫
d2σ

(
ηab∂αX

a∂αXb +
α′

α′eff

δij∂αX
i∂αXj + 2

(
1− α′

2α′eff

)
εαβ∂αX

0∂αX
1

)
,

(D.1)
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and sending α′ → 0. If we pull out an overall factor of α′/α′eff, this action is:

S = − 1

4πα′eff

∫
d2σ

(
α′eff

α′
ηab∂αX

a∂αXb + δij∂αX
i∂αXj + 2

(
α′eff

α′
− 1

2

)
εαβ∂αX

0∂αX
1

)
.

(D.2)

We can now identify

ω2 ≡
α′eff

α′
, (D.3)

and view this in the form of our initial background (1.1). The B-field is B01 = ω2 − µ,

with µ = 1/2 in [6].

The dilaton or string coupling of [6] was taken to be eφ = eφeff

√
α′eff
α′ . Hence, using the

metric in (D.2), the T-duality invariant dilaton d defined by e−2d = e−2φ
√
− det g = e−2φeff

is invariant in the scaling limit.

In the main text of this paper, we set the effective tension, Teff = 1
2πα′eff

to one. Had

we not, the Nambu-Goto action should have been

SNG = −Teff

∫
d2σLNG , (D.4)

where LNG is the Nambu-Goto Lagrangian (with B-field) appearing in (1.2). Then defining

the energy-momentum tensor simply by the usual metric variation, it would naturally come

with a factor of Teff, and hence the determinant with a factor of T 2
eff, whereas the derivative

of SNG with respect to λ would still only carry a single factor of Teff. The flow equation

would then be:
∂SNG

∂λ
=

1

Teff

∫
d2σ

1

2
det(Tαβ) . (D.5)

If we define a dimensionful T T̄ parameter, with units of length squared, by λ̃ = λ/Teff,

we get
∂SNG

∂λ̃
=

∫
d2σ

1

2
det(Tαβ) , (D.6)

and λ̃ = 2πα′.

Open Access. This article is distributed under the terms of the Creative Commons
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