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1 Introduction

1.1 Conformal anomalies

The hallmark of conformal invariance in local quantum field theory is the existence of

a traceless stress tensor Tµν . However, when a conformal field theory (CFT) in even

spacetime dimension d is coupled to background fields, such as a gauge field sourcing a

conserved current Jµ, or a metric sourcing Tµν , quantum anomalies can lead to a non-

vanishing trace. In this case, the one-point function 〈Tµµ 〉 is a quantity of scaling dimension

d constructed from the background field strengths. The structure of these expressions in

the background fields is universal and can be fixed using symmetries, while the coefficients

of the allowed terms are theory-dependent conformal anomalies.

Standard conformal anomalies can also be interpreted directly in terms of the under-

lying CFT, without background fields. Then Tµµ vanishes as an operator, and hence has

trivial correlation functions at separated points, but it has non-vanishing contact terms
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dictated by the anomalies. Such contact terms are ultimately related to stress-tensor cor-

relators at separated points, and hence they provide meaningful and useful information

about the CFT.

In this paper we focus on conformal anomalies of CFTs in d = 6 dimensions. Coupling

such a theory to a curved background metric leads to four possible anomalies, whose

coefficients are conventionally called a and c1, c2, c3 [1–4],

〈Tµµ 〉 ⊃ aE + c1I1 + c2I2 + c3I3 . (1.1)

Here E is the Euler density in six dimensions, which is given in terms of the Riemann

curvature two-form Rab as

E ∼ εa1a2a3a4a5a6R
a1a2Ra3a4Ra5a6 , (1.2)

while the Ii are expressions constructed out of the Weyl curvature tensor (for precise

expressions see e.g. [4]),

I1 ∼W ρσ
µ ν W

χψ
ρ σ W

µν
χ ψ , I2 ∼WµνρσW

ρσχψW µν
χψ , I3 ∼Wµνρσ∇2Wµνρσ + · · · .

(1.3)

In terms of correlation functions at separated points, the coefficient c3 determines the two-

point function of Tµν , while c1, c2, c3 fix the three-point function of Tµν . The anomaly

coefficient a first arises in a four-point function of stress tensors. We fix a convenient

convention for SCFTs in d = 6 such that a single, free N = (2, 0) tensor multiplet has

a = c1 = c2 = c3 = 1. Table 1 lists the conformal anomalies of some six-dimensional CFTs

in these conventions.

In CFTs with continuous flavor symmetries, there are additional conformal anomalies.

To lighten notation, we focus on a single factor GF of the full flavor symmetry; here GF
could be either U(1) or simple. In the presence of background gauge fields (with field

strength Fµν) that source the associated conserved flavor current JFµ , these flavor conformal

anomalies take the following form,

〈Tµµ 〉 ⊃ −
τF1
3

Tr(DµFµλDνFνλ)− τ
F
2

4
Wµνρλ Tr(FµνF ρλ)+

ρF

3
Tr(FµνFµλF

λ
ν)+ · · · . (1.4)

Here we omitted several additional terms that are fixed by conformal symmetry; we also

dropped total derivative terms. We conclude that every U(1) or simple factor GF of the

flavor symmetry gives rise to three conformal anomaly coefficients: τF1 , τ
F
2 , and ρF . Note

that the anomaly controlled by ρF , which is cubic in the field strength Fµν , is proportional

to the structure constants fabc of GF and hence vanishes for abelian flavor symmetries.

As we will review below, these conformal anomalies encode basic data about correlation

functions of conserved currents in the CFT at separated points and in the absence of

background fields. Specifically, τF1 determines the two-point function 〈JFJF 〉, while τF1 ,

τF2 determine the three-point function 〈TJFJF 〉, and τF1 , ρF determine the three-point

function 〈JFJFJF 〉. We see that conformal anomalies completely determine all two- and

three-point functions of flavor currents and the stress tensor.
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Theory a c1 c2 c3

Scalar 1
441

1
180 − 1

252
1
70

Weyl Fermion 191
4410

4
45

4
105

1
7

Chiral Two-Form 221
245

143
180

1189
1260

9
14

(1,0) Hypermultiplet 11
210

1
9

1
45

1
5

(1,0) Tensor multiplet 199
210

8
9

44
45

4
5

(2, 0) Theory with algebra g 16
7 h
∨
g dg + rg 4h∨g dg + rg 4h∨g dg + rg 4h∨g dg + rg

Table 1. Conformal anomalies of some d = 6 CFTs. The first three lines are the minimal free field

theories in six dimensions. The two subsequent lines are the free N = (1, 0) SCFTs. The final line

summarizes the interacting N = (2, 0) SCFTs. These are labelled by an ADE Lie algebra g, and

their conformal anomalies are determined in terms of the rank rg, the dimension dg, and the dual

coxeter number h∨g of g. The large-N behavior of these conformal anomalies was established in [5].

The exact formula for a was computed in [6]. The exact formula for the c-anomalies of N = (2, 0)

theories was conjectured in [7] and derived in [8].

1.2 Supersymmetry constraints on conformal anomalies

In general, non-supersymmetric CFTs, the three ci anomalies are independent. Below

we will prove that N = (1, 0) SCFTs only have two independent ci anomalies. In such

theories, the three ci coefficients are related by a universal, linear relation dictated by

supersymmetry,

c1 =
1

2
(c2 + c3) . (1.5)

As we will see, one consequence of this relation is that the two distinct unitary N = (1, 0)

free field theories, i.e. the free hypermultiplet and the free tensor multiplet, span the space

of stress-tensor supermultiplet three-point functions.

The relation (1.5) was conjectured in [9], where it was noted that it is satisfied by all

free-field and holographic examples, and that it is analogous to a known relation obeyed

by four-dimensional SCFTs in the context of conformal collider physics [10] (see below). A

linear relation between the ci anomalies is also suggested by the more recent observation [11]

that minimal conformal supergravity in d = 6 appears to only admit two independent

candidate invariants that can supersymmetrize the Ii invariants in (1.1) and (1.3).
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In section 3 we establish (1.5) via a superspace analysis. We show that the superspace

three-point function of stress-tensor supermultiplets T (xi, θi) takes the general form

〈T (x1, θ1)T (x2, θ2)T (x3, θ3)〉 ∼ HT T T (Z) = CT T T1

1

X4
+CT T T2

(XΘ)2

X8
+CT T T3

Θ8

X8
, (1.6)

which depends on three real constants CT T T1,2,3 that are linearly related to the ci anomalies.

(Here Z = (X,Θ) is a superspace variable that is constructed using the three superspace

coordinates (xi, θi).) We then argue that the conservation equation obeyed by the stress-

tensor multiplet imposes one linear constraint on the coefficients CT T T1,2,3 , which in turn leads

to the relation (1.5) among the ci.

We also use superspace to analyze those supermultiplet three-point functions that

can be obtained from (1.6) by replacing one, two, or all three stress-tensor multiplets by

conserved flavor-current multiplets. In every case supersymmetry imposes one additional

linear relation on the coefficients of the corresponding non-supersymmetric correlators. It

follows that some of the conformal anomalies related to flavor symmetries, which were

defined in (1.4), vanish in all N = (1, 0) SCFTs,1

τF2 = ρF = 0 . (1.7)

To streamline the notation, we will often write

τF1 ≡ τF (1.8)

for the unique non-vanishing conformal anomaly coefficient associated with the flavor sym-

metry GF . The relations above imply that τF governs both the 〈JFJF 〉 two-point function,

as well as the 〈TJFJF 〉 and 〈JFJFJF 〉 three-point functions.

In terms of conformal collider observables [10], the fact that τF2 = 0 implies that the

energy flux 〈E(n̂)〉 in a state created by the flavor current is independent of its polarization.

Similarly, the fact that ρF = 0 implies that the charge flux 〈Q(n̂)〉 in such a state is also

independent of the polarization. These properties of flavor currents in six-dimensional

SCFTs are direct analogues of relations that hold for SCFTs in four dimensions [10].

EveryN = (1, 0) SCFT has an SU(2)R symmetry. The associated conserved current JRµ
resides in the stress-tensor supermultiplet, and consequently the conformal anomaly coef-

ficients τR1,2 and ρR it gives rise to need not satisfy the relations (1.7) that hold for flavor

currents. Adapting the arguments outlined above to this case, we find that the conformal

anomaly coefficients associated with the SU(2)R symmetry can be expressed using two

linearly independent ci anomaly coefficients (with the third one given by (1.5)),

τR1 = c3 , τR2 =
1

2
(c3 − c1) , ρR =

3

2
(c1 − c3) . (1.9)

Let us consider the special case of N = (2, 0) theories, which have an Sp(4)R sym-

metry. When viewed as N = (1, 0) theories, it is natural to focus on the maximal sub-

group SU(2)R×SU(2)F ⊂ Sp(4)R. Here SU(2)R and SU(2)F are R- and flavor symmetries

1The fact that ρF = 0 in SCFTs agrees with observations in [12] based on free-field reasoning and the

AdS7 supergravity duals of N = (2, 0) theories.
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that are distinguished by the choice of N = (1, 0) subalgebra, but they are exchanged

by a Weyl reflection inside the full Sp(4)R symmetry. It follows that the vanishing con-

ditions (1.7) that hold for the SU(2)F symmetry must also apply to SU(2)R ⊂ Sp(4)R,

i.e. τR2 = ρR = 0.2 Comparing with (1.9) (and using (1.5)), we conclude that the ci anoma-

lies of all N = (2, 0) theories necessarily coincide, in agreement with the explicit formulas

in table 1.

1.3 Anomaly multiplets

So far we have discussed conformal anomalies (i.e. ’t Hooft anomalies for conformal symme-

try), which arose from various conserved currents such as the stress tensor or a flavor cur-

rent. These currents may themselves have more conventional ’t Hooft anomalies, which lead

to violations of current conservation in the presence of background fields. Such anomalies

are conveniently summarized by an anomaly 8-form, from which the anomalous transfor-

mation of the effective action follows via the standard descent procedure (see e.g. [14] for a

detailed recent discussion with references). For instance, ’t Hooft anomalies for the SU(2)R
symmetry or diffeomorphisms are characterized by the following anomaly polynomial,3

I8 ⊃
1

4!

(
αc2(R)2 + βc2(R)p1(T ) + γp1(T )2 + δp2(T )

)
. (1.10)

The corresponding ’t Hooft anomaly coefficients α, β, γ, δ are universal and independent

observables in any six-dimensional N = (1, 0) SCFT. They are often exactly calculable,

e.g. via string constructions and anomaly inflow arguments [15, 16] or by analyzing RG

flows [17–20]. We enumerate these anomaly coefficients for several N = (1, 0) theories in

table 2.

It is an important and general fact that supersymmetry relates conformal anomalies

and ’t Hooft anomalies. This means that the typically challenging and delicate conformal

anomalies can be analyzed using the more accessible and robust ’t Hooft anomalies. In the

case of d = 4 SCFTs, such relations where established in [23] by analyzing the anomalous

stress-tensor supermultiplet of the SCFT in the presence of background supergravity fields

— an object often referred to as the anomaly multiplet. In [24] we derived an anomaly mul-

tiplet relation between the conformal anomaly a and ’t Hooft anomaly coefficients in (1.10),

a =
16

7
(α− β + γ) +

6

7
δ . (1.11)

Rather than analyzing the anomalous stress-tensor supermultiplet in d = 6 SCFTs, this

relation was derived by studying the dilaton effective action on the tensor branch of the

SCFT — a technique we will also utilize in this paper.4 A consequence of this derivation

2This agrees with a conjecture of [13] that was motivated by free-field and holographic reasoning.
3Here ci(R) denotes the Chern class of degree 2i for the SU(2)R background gauge bundle, while pi(T )

denotes the Pontryagin class of degree 4i for the tangent bundle.
4A direct analysis of anomalous stress-tensor multiplets is more challenging in d = 6 than in d = 4.

For instance, non-conformal stress-tensor multiplets (of which the anomaly multiplet is a special case)

and the associated supergravity theories have been thoroughly analyzed in d = 4 (see e.g. [25, 26] and

references therein), while their d = 6 counterparts are not nearly as well studied. Moreover, a direct
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Theory α β γ δ

Hypermultiplet 0 0 7
240 − 1

60

(1,0) Tensor multiplet 1 1
2

23
240 −29

60

(1,0) Vector multiplet −1 −1
2 − 7

240
1
60

(2, 0) Theory with algebra g h∨g dg + rg
1
2rg

1
8rg −1

2rg

Table 2. SU(2)R and diffeomorphism ’t Hooft anomaly coefficients of some N = (1, 0) theories.

Note that the free vector multiplet is not conformal, but nevertheless enjoys an SU(2)R symmetry.

The N = (2, 0) anomalies for g = su(N) were first computed in [15]. The general formulas for any

ADE Lie algebra g were conjectured in [21] and verified in [6, 17, 22].

was a proof of the a-theorem for RG flows from the SCFT onto its tensor branch.5 The

behavior of a under Higgs branch RG flows was subsquently explored in [30], and the

anomaly multiplet relation (1.11) has been verified holographically in [31].

In this paper, we likewise establish anomaly multiplet relations for the ci conformal

anomalies in (1.1), by expressing them in terms of the ’t Hooft anomaly coefficients α, β, γ, δ

in (1.10) via the following formulas,

c1 = 4α− 14

3
β+

16

3
γ+

8

3
δ , c2 = 4α− 10

3
β+

8

3
γ+

10

3
δ , c3 = 4α−6β+8γ+2δ . (1.12)

Note that these formulas are compatible with the universal linear relation c1 = 1
2 (c2 + c3)

in (1.5), even though α, β, γ, δ are independent.

In theories with flavor symmetries, there are additional ’t Hooft anomaly coefficients

that are visible in the presence of background flavor gauge fields. As above, we consider a

single abelian or simple factor GF of the full flavor symmetry, and we focus on the mixed

anomalies of GF with the SU(2)R symmetry or diffeomorphisms,

I8 ⊃
1

4!
(αF 2R2 c2(F )c2(R) + αF 2T 2 c2(F )p1(T )) . (1.13)

We will argue that the ’t Hooft anomaly coefficients αF 2R2 and αF 2T 2 determine the con-

formal anomaly coefficient τF in (1.8) as follows,

τF = 2αF 2T 2 − 2αF 2R2 . (1.14)

investigation of d = 6 anomaly multiplets via anomalous supercurrents requires detailed knowledge of

certain R3 supergravity invariants, which is technically rather ominous. Some recent progress in this

direction appears in [11].
5It was shown in [27–29] that the only supersymmetric RG flows in six dimensions that start at a SCFT

fixed point are flows onto the moduli space of vacua of that SCFT.
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The formulas (1.12) have already appeared in the recent literature [32, 33]. There linear

relations between the ci conformal anomalies and the ’t Hooft anomaly coefficients α, β, γ, δ

were postulated, and the unknown coefficients in these relations were fixed by considering

examples. This is complicated by the fact that each anomaly multiplet relation is specified

by four coefficients, while there are only three independent classes of unitary SCFTs for

which all pertinent anomalies are reliably known (the free hyper- and tensor multiplets, and

the N = (2, 0) theories). To circumvent this problem, the authors of [32, 33] considered

a non-unitary but superconformal free field theory constructed from an abelian vector

multiplet with a higher-derivative kinetic term as a fourth data point. This theory had

previously been shown to satisfy the anomaly multiplet relation (1.11) for the a conformal

anomaly [34].

In section 4, we will instead follow [24] and argue for the anomaly multiplet rela-

tions (1.12) and (1.14) by studying conformal and ’t Hooft anomaly matching along RG

flows from an SCFT onto its tensor branch. As in [24], our main tool will be the super-

symmetric dilaton effective action on the tensor branch.

1.4 Application to the small E8 instanton SCFTs

The anomaly multiplet relations (1.12) and (1.14) have a wide variety of applications.

Many N = (1, 0) SCFTs in six dimensions have been constructed in string theory, starting

with [35, 36] and generalizations in [37–41], recently culminating in a systematic analysis

using F-theory [42–44]. Such theories have also been explored using holography [45–47].

None of these N = (1, 0) SCFTs possess a known Lagrangian description. They are

essentially isolated (because they do not admit any supersymmetry-preserving relevant or

marginal deformations [27–29]) and strongly coupled (see for instance [48]).

Nevertheless, as we illustrate in section 5, the conformal anomalies of these strongly-

coupled SCFTs can often be determined using anomaly multiplet relations. For instance,

in the N = (1, 0) SCFT described by N small E8 instantons in string theory [37] we can

use (1.14) to compute the two-point function coefficient τE8 of the E8 flavor currents,

τE8 = 24N2 + 36N . (1.15)

This formula has already appeared in [49], where it was found to agree with bootstrap

results.

2 Current and stress-tensor two- and three-point functions

In this section we review results from [50, 51] about two- and three-point functions of

conserved flavor currents Jaµ associated with a global flavor symmetry GF , and the stress-

tensor Tµν . We explain how these correlation functions are related to conformal anomaly

coefficients, completing various discussions in the existing literature. In this section we

consider general CFTs, without assuming supersymmetry. For each two- and three-point

current correlator, we first present results for a general spacetime dimension d before spe-

cializing to d = 6. As above, we assume that the flavor symmetry GF is abelian or simple.

Flavor Lie algebra indices will be denoted by a, b, c, . . . .

– 7 –



J
H
E
P
0
7
(
2
0
2
0
)
0
6
5

Two-point functions are completely determined by conformal symmetry, up to an

overall coefficient. For flavor currents and the stress tensor we have

〈Jaµ(x)Jbν(0)〉 =
CF δ

ab

x2(d−1)
Iµν(x), 〈Tµν(x)Tρσ(0)〉 =

CT
x2d

Iµν,ρσ(x) , (2.1)

where

Iµν(x) = δµν − 2
xµxν
x2

, Iµν,ρσ =
1

2
(IµσIνρ + IµρIνσ)− 1

d
δµνδρσ . (2.2)

In d = 6 dimensions, the two-point function coefficient CT is proportional to the con-

formal anomaly coefficient c3 in (1.1). To determine the proportionality constant, it suffices

to compare them for free-field CFTs. For a theory with nφ free real scalar fields and nψ
free fermion fields (with dim(ψ) complex spinor components), it was shown in [50] that

CT = nφ
d

d− 1

1

S2
d

+ nψ
d

2
dim(ψ)

1

S2
d

−→ 6

5π6
(nφ + 10nψ) . (2.3)

Here Sd = 2π
d
2 /Γ(d2); in the last expression we have set d = 6 and taken nψ to be the

number of chiral fermions, with dim(ψ) = 4 complex components. We can now compare

with our normalization for c3 in table 1 to conclude that

c3 ≡
π6

84
CT . (2.4)

Similarly, the flavor-current two-point function coefficient CF is proportional to the

conformal anomaly coefficient τF1 in (1.4). We will chose a convention for the proportion-

ality factor that is convenient for six-dimensional SCFTs. It was shown in [50] that in

free scalar theories, with flavor current Jaµ = φtaφ∂µφ (here taφ is real and antisymmetric),

and in free fermion theories, with flavor current Jaµ = ψtaψγµψ (here taψ is complex and

antihermitian) the coefficient CF is given by

CF =
Tφ
2

1

(d− 2)S2
d

+
Tψ
2

dim(ψ)
1

S2
d

−→ 1

8π6
(Tφ + 16Tψ) . (2.5)

The first expression is valid for general d, while we have set d = 6 in the second expression.

The coefficients depend on the quadratic indices for the representations of the bosons or

fermions, tr(taφ,ψt
b
φ,ψ) = −1

2Tφ,ψδ
ab. We choose our normalization convention for τF1 such

that the Sp(4)R symmetry that acts on a free N = (2, 0) tensor multiplet has τ
Sp(4)R
1 = 1.

This is equivalent to the statement that the SU(2)F flavor symmetry that acts on a single,

free N = (1, 0) hypermultiplet has τF1 = 1. Thinking of such a free hypermultiplet as a half-

hyper that transforms as an SU(2)F doublet, we conclude that it has Tφ = 2, Tψ = 1
2 , so that

τF1 ≡
4π6

5
CF . (2.6)

For generic d, it was shown in [50, 51] that the flavor-current three-point function

〈Jaµ(x)Jbν(y)Jcλ(z)〉 is fully determined by conformal symmetry and conservation laws, up

– 8 –
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to two coefficients AFFF and BFFF ,6

〈Jaµ(x)Jbν(y)Jcλ(z)〉 = fabc
Iνσ(x− y)Iλρ(x− z)Iσβ(X)

(x− y)d−2(x− z)d−2(y − z)d
tµβρ(X) , (2.7)

where fabc are the structure constants and

Xµ =
(x− y)µ
(x− y)2

− (x− z)µ
(x− z)2

, tµνλ(X) = AFFF
XµXνXλ

X2
+BFFF (Xµδνλ+Xνδµλ−Xλδµν) .

(2.8)

A Ward identity implies that [50, 51]

CF = Sd

(
1

d
AFFF + BFFF

)
−→ π3

(
AFFF

6
+ BFFF

)
. (2.9)

Thus the 〈JJJ〉 three-point function introduces one additional, theory-dependent constant

beyond the 〈JJ〉 two-point function coefficient CF .

The free-field values of the coefficients AFFF and BFFF were computed in [50],

AFFF =
d Tφ

4(d− 2)S3
d

−→ 3

8π9
Tφ ,

BFFF =
Tφ

4(d− 2)S3
d

+
Tψ dim(ψ)

2S3
d

−→ 1

π9

(
Tφ
16

+ 2Tψ

)
.

(2.10)

Instead of using AFFF ,BFFF to parameterize the 〈JJJ〉 three-point function, we can also

express it in terms of free scalar or fermion correlators,

〈Jaµ(x)Jbν(y)Jcλ(z)〉 = nFFFφ 〈Jaµ(x)Jbν(y)Jcλ(z)〉φ + nFFFψ 〈Jaµ(x)Jbν(y)Jcλ(z)〉ψ . (2.11)

The two coefficients nFFFφ and nFFFψ are linearly related to AFFF and BFFF . The exact

relation can be extracted from the free-field results summarized above.

The stress-tensor three-point function 〈Tµν(x)Tρσ(y)Tκλ(z)〉 is also determined by con-

formal symmetry and conservation laws up to three coefficients [50, 51]. A Ward identity

relates one linear combination of these three coefficients to the two-point function coeffi-

cient CT . In d = 6 dimensions, the three stress-tensor three-point function coefficients are

linearly related to the three conformal anomalies c1, c2, c3 in (1.1). We can span the three

structures using the stress-tensor three-point functions of free fields: a free scalar φ, a free

Weyl fermion ψ, and a free, chiral two-form B (with self-dual three-form field strength H),

see [52] for details,

〈TTT 〉 = nTTTφ 〈TTT 〉φ + nTTTψ 〈TTT 〉ψ + nTTTB 〈TTT 〉B . (2.12)

In a free theory, the coefficients nTTTφ,ψ,B coincide with the number nφ, nψ, nB of free scalars,

Weyl fermions, or chiral two-forms, but in an interacting CFT they are defined by (2.12).

In general, these coefficients are constrained by unitarity and conformal collider inequalities

6In d = 4 there is also a parity-odd structure proportional to dabc, whose coefficient determines the cubic

’t Hooft anomaly of the flavor symmetry.
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(see section 3.4). Comparing to the known free-field conformal anomalies (see [52, 53] and

table 1) we conclude that

c1 =
nTTTφ + 16nTTTψ + 143nTTTB

180
,

c2 =
−5nTTTφ + 48nTTTψ + 1189nTTTB

1260
,

c3 =
nTTTφ + 10nTTTψ + 45nTTTB

70
.

(2.13)

We now consider the three-point function 〈TJJ〉 of one stress tensor and two flavor

currents, which was also analyzed in [50, 51] and shown to be determined by two coefficients.

One linear combination of these coefficients is proportional to the 〈JJ〉 two-point function

coefficient CF (or equivalently to τF1 , see (2.6)) thanks to a Ward identity, while the

remaining independent structure constant can be thought of as the OPE coefficient of the

stress tensor in the fusion of two flavor currents.

In the notation of [50, 51] (see for instance the discussion around equation (3.14)

of [50]), the two coefficients that determine the 〈TJJ〉 three-point function are called cTFF
and eTFF . Their free-field values can be found in equation (5.10) of [50]; setting d → 6

and dim (ψ) = 4 in these formulas, we find that

π9cTFF =
3

5
Tφ + 12Tψ, π9eTFF =

3

20
Tφ . (2.14)

It follows that the two independent structures in the 〈TJJ〉 three-point function are

spanned by free field theories in which the flavor current only arises from charged scalars

or fermions,

〈TJJ〉 = nTFFφ 〈TJJ〉φ + nTFFψ 〈TJJ〉ψ . (2.15)

As reviewed in section 1.1, a U(1) or simple flavor symmetry GF gives rise to the

conformal anomalies (1.4) in the presence of suitable background flavor and gravity fields,

〈Tµµ 〉 ⊃ −
τF1
3

Tr(DµFµλDνFνλ)− τ
F
2

4
Wµνρλ Tr(FµνF ρλ)+

ρF

3
Tr(FµνFµλF

λ
ν)+· · · . (2.16)

The anomaly coefficients τF1,2 and ρF are theory dependent. In the absence of background

fields, each conformal anomaly in (2.16) represents a contact term associated with a partic-

ular three-point function at separated points. To derive these relations, one can for instance

follow [50, 54] and work in position space using the method of differential regularization;

alternatively, one can work in momentum space.

It follows that the conformal anomalies τF1 and τF2 in (2.16) must be related in a

universal, linear way to the three-point function coefficients cTFF and eTFF in (2.14),

or equivalently to the coefficients nTFFφ,ψ in (2.15). Similarly, the conformal anomalies τF1
and ρF must have a universal, linear relation to the three-point function coefficients AFFF
and BFFF in (2.8). We can determine these universal linear relations by comparing with

various free-field examples that have been worked out in the literature, see for instance [13,
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53, 55, 56]. Converting to our conventions, we find that free field theories satisfy

τF2 =
1

45
(Tφ − 4Tψ) , ρF = − 1

30
(Tφ − 4Tψ) . (2.17)

By comparing this to the free-field formulas (2.10) and (2.14) above, we conclude that

τF2 =
π9

45

(
8eTFF −

1

3
cTFF

)
, ρF =

π9

15

(
BFFF −

3

2
AFFF

)
. (2.18)

Together with (2.6), this completes the relations between two- and three-point function

coefficients of currents and stress tensors, and the conformal anomalies associated with

flavor symmetries in (2.16). We summarize these relations here,

τF1 =
4π6

5
CF , τF2 =

π9

45

(
8eTFF −

1

3
cTFF

)
, ρF =

π9

15

(
BFFF −

3

2
AFFF

)
. (2.19)

3 Current and stress-tensor supercorrelators in six-dimensional SCFTs

In this section we examine the constraints of supersymmetry on two- and three-point

functions of flavor currents and stress tensors in six-dimensional SCFTs. We will show that

the conformal anomalies of all N = (1, 0) SCFTs satisfy the following universal relations,

c1 =
1

2
(c2 + c3) , τF2 = ρF = 0 . (3.1)

Here GF can be any U(1) or simple flavor symmetry. We also show that the conformal

anomalies associated with the SU(2)R symmetry can be expressed in terms of the ci con-

formal anomalies as follows,

τR1 = c3, τR2 =
1

2
(c3 − c1) , ρR =

3

2
(c1 − c3) . (3.2)

Finally we briefly discuss conformal collider bounds on these anomaly coefficients.

3.1 Free SCFTs

We begin by considering a theory of nH free hypermultiplets and nT free tensor multiplets.

As we will see below, some relations uncovered in this simple free-field context continue to

hold for general N = (1, 0) SCFTs. In fact, the input from free field theories will be used

in the general proof of these relations below.

Using (2.13) with nTTTφ = 4nH + nT , nTTTψ = nT + nH , and nTTTB = nT , we find that

c1 =
nH + 8nT

9
, c2 =

nH + 44nT
45

, c3 =
nH + 4nT

5
. (3.3)

Note that these formulas are consistent with (3.1), and that a free N = (2, 0) tensor

multiplet with nH = nT = 1 indeed satisfies c1 = c2 = c3 = 1.

In supersymmetric theories we distinguish between flavor symmetries, which commute

with the supercharges, and R-symmetries, which do not:

– 11 –



J
H
E
P
0
7
(
2
0
2
0
)
0
6
5

• Flavor Symmetries: only hypermultiplets can carry flavor charge, with TFφ = 4TFψ =

4TFH , where TFH is the quadratic index of the hypermultiplet flavor representation.

Thus, the free-field expression for the flavor-current two-point function coefficients is

τF1 = 2TFH . (3.4)

Note that a single free hypermultiplet has an SU(2)F flavor symmetry with TFH = 1
2

and hence τF1 = 1. This is easy to see by reformulating the theory as a half-hyper in

the doublet representation of SU(2)F .

The free-field expression for the 〈JFJFJF 〉 flavor-current three-point function is ob-

tained from (2.10) by setting TFφ = 4TFH and TFψ = TFH , so that

AFFF =
3

2π9
TFH , BFFF =

3

2
AFFF =

9

4π9
TFH . (3.5)

For the 〈TJFJF 〉 three-point function, it follows from (2.14) that

cTFF =
72

5π9
TFH , eTFF =

1

24
cTFF =

3

5π9
TFH . (3.6)

Substituting into the expressions (2.19) for the flavor conformal anomalies gives

τF2 = ρF = 0 . (3.7)

• SU(2)R Symmetry: the scalars in each hypermultiplet transform as a complex SU(2)R
doublet, so that TRφ = 2nH . By contrast, the fermions in every tensor multiplet

transform as half-doublets of SU(2)R, so TRψ = 1
2nT . It follows that the free-field

expression for the SU(2)R current two-point function coefficient is given by

τR1 =
1

5
(nH + 4nT ) = c3 . (3.8)

The free-field expressions for the 〈JRJRJR〉 and 〈TJRJR〉 three-point function coef-

ficitents take the following form,

ARRR =
3

4π9
nH , BRRR =

1

8π9
(nH + 8nT ) ,

cTRR =
6

5π9
(nH + 5nT ) , eTRR =

3

10π9
nH .

(3.9)

Substituting into (2.19) and comparing with (3.3), we find that

τR2 =
2

45
(nH − nT ) =

1

2
(c3 − c1) , ρR =

1

15
(nT − nH) =

1

4
(c1 − c3) . (3.10)

3.2 Supercorrelators for conserved supermultiplets: overview

We will apply the superspace formalism of [57] to the two- and three-point functions of

operators in conserved flavor-current and stess-tensor supermultiplets. Analogous consid-

erations for four-dimensional SCFTs can be found in [58–60]. Here we will give a brief

survey of the results that will follow from this analysis (see section 3.3 below for details):
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• The two-point functions of all operators in the stress-tensor supermultiplet, includ-

ing Tµν itself and the SU(2)R current JRµ , are determined by the two-point functions

of the bottom component (i.e. the superconformal primary); all of them can be ex-

pressed in terms of the conformal anomaly c3. Likewise, the two-point functions of

all operators in a flavor-current supermultiplet are determined by the two-point func-

tions of its bottom component; all of them can be expressed in terms of the conformal

anomaly τF1 . The two-point function of the flavor-current supermultiplet with the

stress-tensor supermultiplet vanishes. The fact that two-point functions of supermul-

tiplets are determined by those of their bottom components reflects the absence of

nilpotent invariants for two-point functions. Such invariants first appear at the level

of three-point functions [57–60].

• All non-zero three-point functions of operators in the supermultiplet of a flavor-

current Jaµ are entirely determined by the Lie algebra structure constants fabc and

the two-point function coefficient τF1 . This differs from the non-supersymmetric case,

where BFFF /AFFF , or equivalently the conformal anomaly ρF in (1.4), are indepen-

dent quantities that appear in three-point functions. Superconformal symmetry thus

fixes these quantities, and to determine their values it suffices to compare to the

free-field formulas (3.5) and (3.7). This implies that any N = (1, 0) SCFT in six

dimensions satisfies
BFFF
AFFF

∣∣∣∣
SCFT

=
3

2
, ρF

∣∣
SCFT

= 0 . (3.11)

• All three-point functions involving one stress-tensor supermultiplet operator and two

flavor-current supermultiplet operators, such as 〈TJFJF 〉 itself, are completely de-

termined by τF1 . This implies that the ratio eTFF /cTFF , and thus the conformal

anomaly coefficient τF2 , are determined by supersymmetry. Again, their values can

then be computed from the free-field case, so that all six-dimensional N = (1, 0)

SCFTs satisfy
eTFF
cTFF

∣∣∣∣
SCFT

=
1

24
hence τF2

∣∣
SCFT

= 0 . (3.12)

• All non-zero three-point functions of operators in the stress-tensor supermultiplet

are completely determined by two coefficients, one of which is related to the two-

point function coefficient c3 by a Ward identity. In particular, this proves that the

three conformal anomalies c1, c2, c3 necessarily satisfy a linear relation in any six-

dimensional SCFT, as originally conjectured in [9]. As before, the coefficients in this

linear relation are fixed by the free-field formulas (3.3),

c2 =
1

2
(c1 + c3) . (3.13)

Since the SU(2)R current JR also resides in the stress-tensor supermultiplet, it follows

that its three-point functions are also linear combinations of c1 and c3; the coefficients

are determined by the free-field formulas (3.9) and (3.10). It follows that all N =
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(1, 0) SCFTs satisfy

π9ARRR =
3

4
(10c3 − 9c1) , π9BRRR =

9

8
c1 , τR2 =

1

2
(c3 − c1) . (3.14)

This is compatible with the Ward identity relating the SU(2)R current three- and

two-point functions: π3(1
6ARRR + BRRR) = CR = 5c3/4π

6, which fits (2.6) with

τR1 = c3.

Likewise, the coefficients eTRR and cTRR that determine the three-point functions of

one stress tensor and two SU(2)R currents are universal linear combinations of c1 and

c3 that can be fixed by free-field reasoning (see again (3.9) and (3.10)),

π9cTRR =
27

10
c1 +

9

2
c3 , π9eTRR = 3c3 −

27

10
c1 , ρR =

1

4
(c1 − c3) . (3.15)

The main goal of the superspace analysis below is to cut down the number of inde-

pendent structures in the two- and three-point functions of flavor-current and stress-tensor

supermultiplets by imposing the constraints of superconformal symmetry. Once the num-

ber of these structures is sufficiently small, their coefficients can be determined by free-field

reasoning.

The constraints of conformal symmetry on two- and three-point functions are stan-

dard: two-point functions are always determined by one overall coefficient. By contrast,

three-point functions are described by finitely many tensor structures, whose exact number

can depend on the Lorentz representations of the operators participating in the three-point

functions. Both of these results follow from the fact that the bosonic conformal generators

can be used to bring the spacetime coordinates of the operators appearing in these correla-

tors to standard form (see for instance [61] and references therein for a recent discussion).

In superspace, the Q and S supercharges can be used to set the Grassmann coordinates

of two operators to prescribed values. Thus all two-point functions of operators residing in a

supermultiplet can be expressed in terms of the two-point function of its bottom component.

However, at the level of three-point functions, superconformal symmetry alone does not

simplify the dependence of the supercorrelator on the third Grassmann coordinate.

The upshot is that superspace three-point functions generally depend on a non-trivial

Grassman variable Θ that can be constructed from the superspace coordinates of the

three supermultiplets inside the correlator. The coefficient functions that appear in a Θ-

expansion of such a supercorrelator represent the three-point functions of the individual

component operators. In the absence of additional constraints, these functions are all

independent, and hence the three-point functions of Q-descendant operators inside a su-

perconformal multiplet are not in general determined by the three-point function of the

superconformal primary.

Additional constraints do arise if some of the supermultiplets in the correlator are short.

The shortening condition implies that all correlators involving null states of the multiplet

must vanish. In some cases, such constraints are sufficient to determine the three-point

functions of all Q-descendants in terms of the three-point function of the superconformal

primaries (see e.g. [60, 62, 63] for a related discussion in four dimensions).
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As we will discuss below, the superspace three-point function 〈T (z1)T (z2)T (z3)〉 of the

stress-tensor multiplet can be expressed in terms of a homogeneous function HT T T (X,Θ)

(here the bosonic variable X is the superpartner of Θ), which is completely determined up

to three independent coefficients CT T T1,2,3 . We then impose the shortening condition on T ,

which amounts to setting a level-three null state and its descendants to zero. As we will see,

this imposes one linear relation on the coefficients CT T T1,2,3 , so that the 〈T (z1)T (z2)T (z3)〉
supermultiplet three-point function is in fact completely determined by two independent

constants. Once this has been established, free-field reasoning is sufficient to deduce all facts

about the stress-tensor supermultiplet three-point function that were summarized above.

When analyzing the three-point supercorrelator 〈J (i1j1)(z1)J (i2j2)(z2)J (i3j3)(z3)〉 of

three flavor current multiplets, as well as supercorrelator 〈J (i1j1)(z1)J (i2j2)(z2)T (z3)〉 of

two flavor-current multiplets and one stress-tensor multiplet, we must impose the short-

ening condition satisfied by J (ij) in addition to that of T . This completely determines

both correlators up to one overall coefficient, which in turn is related to the flavor-flavor

two-point function coefficient τF1 by a Ward identity.

3.3 Supercorrelators for conserved supermultiplets: details

N = (1, 0) superspace in d = 6 involves spacetime positions xµ ∈ [0, 1, 0]
(0)
−1,7 which we

will often write as antisymmetric bispinors x[αβ] ∼ εαβγδx[γδ] (see below), and symplectic-

Majorana Grassmann coordinates θαi ∈ [0, 0, 1]
(1)
−1/2, where α = 1, . . . , 4 is a chiral spinor

index and i = 1, 2 an SU(2)R doublet index. The latter can be raised and lowered us-

ing εij , εij . The supercharges and supercovariant derivatives act via the following differen-

tial operators,

Qiα =
∂

∂θαi
+ iθβi∂βα , Diα =

∂

∂θαi
− iθβi∂βα , (3.16)

which satisfy
{
Qiα,Q

j
β

}
= 2iεij∂αβ ,

{
Diα,D

j
β

}
= −2iεij∂αβ , and

{
Diα,Q

j
β

}
= 0 .

In the notation of [28, 29], the stress-tensor of N = (1, 0) SCFTs resides in

a B3[0, 0, 0]
(0)
4 superconformal multiplet with 40B + 40F bosonic and fermionic component

operators,

T ∈ [0, 0, 0]
(0)
4 , ψiT , α ∈ [1, 0, 0]

(1)
4.5 , JR(ij)

µ ∈ [0, 1, 0]
(2)
5 ,

CT ,(αβ) ∈ [2, 0, 0]
(0)
5 , Siµα ∈ [1, 1, 0]

(1)
5.5 , Tµν ∈ [0, 2, 0]

(0)
6 .

(3.17)

The null states of the multiplet, which must be set to zero, first occur at level three,

εαβγδQiαQ
j
βQ

k
γT = (Vδ)(ijk) ∈ [0, 0, 1]

(3)
5.5 −→ 0 . (3.18)

This enforces the conservation equations ∂µJ
R(ij)
µ = ∂µSiµα = ∂µTµν = 0 and ensures

that Siµα and Tµν are suitably traceless. In superspace, the shortening condition (3.18),

7We follow the conventions of [28, 29] and write the quantum numbers of various objects as [j1, j2, j3]
(R)
∆ .

Here [j1, j2, j3] denotes the Lorentz representation in d = 6 using SU(4) ∼ SO(6) Dynkin labels. Thus

[1, 0, 0] and [0, 0, 1] are chiral spinors, while [0, 1, 0] is the vector representation of SO(6). Meanwhile, R is

the Dynkin label characterizing the SU(2)R representation (i.e. R is always an integer and the representation

has dimension R+ 1) and ∆ is the conformal scaling dimension.
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and the resulting field content (3.17), can be expressed as follows,

εαβγδDiαD
j
βD

k
γT = 0 , T (x, θ) = T (x) + ψiT ,α(x)θαi + J

R(ij)
[αβ] (x)(θθ)

[αβ]
(ij) + · · · . (3.19)

A conserved N = (1, 0) flavor current resides in a D1[0, 0, 0]
(2)
4 multiplet [28, 29], which

contains 8B + 8F operators,

J a(ij) ∈ [0, 0, 0]
(2)
4 , Jaiα ∈ [1, 0, 0]

(1)
4.5 , Jaµ ∈ [0, 1, 0]

(0)
5 . (3.20)

Here a is an adjoint flavor index. The conservation law for the flavor current Jaµ ∼ Ja[αβ] is

encoded by the level-one null state [1, 0, 0]
(3)
4.5 → 0 and its descendants. In superspace,

D(i|
α J a|jk)(x, θ) = 0 , J a(ij)(x, θ) = J a(ij)(x) + Ja(i

α (x)θj)α + θiαθjβJa[αβ](x) + · · · .
(3.21)

Two-point functions can be written in terms of coordinates that are invariant under

superspace translations [57],

χαβ12 ≡ x
αβ
1− − x

αβ
2+ + 2iθα2iθ

iβ
1 , θα12,i ≡ θα1,i − θ

β
2,i , (3.22)

where

xαβ± ≡ xαβ ± iθαi θβi = −xβα∓ . (3.23)

If the bottom component of the supermultiplet transforms in a non-trivial SU(2)R repre-

sentation, the R-symmetry indices of the supercorrelation function are accounted for by

the quantities [57] (see also [60, 64] for a similar analysis in the context of d = 4, N = 2

SCFTs)

ui
j(z12) = δi

j − 4iθ12,iχ12θ
j
12(detχ12)−1/2 . (3.24)

The superspace two-point function of the stress-tensor supermultiplet T (z) is com-

pletely determined up to an overall coefficient cT ∼ CT , giving the superspace generaliza-

tion of (2.1),

〈T (z1)T (z2)〉 =
cT

(detχ12)2
. (3.25)

The two-point functions of all operators in the T -multiplet follow upon expanding in θ1, θ2.

In particular, the J
R(ij)
µ and Tµν two-point functions are obtained from (3.25) by extracting

the θ2
1θ

2
2 and the θ4

1θ
4
2 terms, respectively. Comparing with the general expressions (2.1)

for current and stress-tensor two-point functions, it follows that cT ∼ τR1 ∼ c3. The

proportionality constants can be fixed by comparing to a free N = (1, 0) hyper- or tensor

multiplet. For a free tensor multiplet, the bottom component is T | ∼ ϕ2, where ϕ is the

free scalar in the tensor multiplet; for the free hypermultiplet, the bottom component is

T | ∼ hi′ih
i′i, where i = 1, 2 is an SU(2)R doublet index, i′ is an SU(2)F flavor doublet

index, and the hypermultiplet scalars hi′i obey a reality condition (hi′i)
† ∼ hi′i [65].8

Similarly, the two-point functions of flavor-current supermultiplets J a(ij) are com-

pletely determined up to an overall coefficient cJ ,

〈J a(iij1)(z1)J b(i2j2)(z2)〉 = cJ δ
ab ui1

i2(z12)uj1
j2(z12) + ui1

j2(z12)uj1
i2(z12)

(detχ12)2
. (3.26)

8See [66] for a related recent discussion in the context of d = 4, N = 2 theories.
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The factors of ui
j(z12) (defined in (3.24)) account for the SU(2)R representation of J a(ij).

The actual flavor-current two-point function arises from the θ2
1θ

2
2 component of (3.26).

Finally, the two-point function of a flavor-current and a stress-tensor multiplet must vanish,

〈T (z1)J a(ij)(z2)〉 = 0 . (3.27)

For the bottom components, this follows from SU(2)R symmetry, while superconformal

symmetry ensures that the same is true for all other operators in these multiplets.

We now turn to the three-point functions involving the T and J a(ij) multiplets. As

in [50, 57], they can be expressed in terms of a superspace variable Z ≡ (Xµ,Θαi) ∈ R6|8

that is formed from the three superspace coordinates z1,2,3 as follows,

X[αβ] =
(
χ−1

13 χ12χ
−1
32

)
[αβ]

, Θi
α = i

(
χ−1

13 θ
i
13 − χ−1

23 θ
i
23

)
α
. (3.28)

The matrix χαβ12 was defined in (3.22) (the extension to other pairs of points is obvious),

while
(
χ−1

12

)
αβ

is its inverse matrix. Note that X[αβ] ∈ [0, 1, 0]
(0)
1 and Θi

α ∈ [1, 0, 0]
(1)
1/2 have

different scaling dimensions than the superspace coordinates xµ ∈ [0, 1, 0]
(0)
−1 and θαi ∈

[0, 0, 1]
(1)
−1/2 discussed above (3.16); moreover Θi

α and θαi are spinors of opposite chirality.

The three-point supercorrelator of any Lorentz- and SU(2)R singlet operators takes

the form

〈O1(z1)O2(z2)O3(z2)〉 =
H(Z3)

(detχ13)∆1/2(detχ23)∆2/2
, (3.29)

where H(λX, λ1/2Θ) = λ∆3−∆1−∆2H(X,Θ). The function H can always be written as

follows,

H(X,Θ) =
1

(X2)
1
2

(∆1+∆2−∆3)

(
CO1O2O3

1 + CO1O2O3
2

(XΘ2)2

X4
+ CO1O2O3

3

Θ8

X4

)
. (3.30)

Here (Θ2)(αβ) ≡ Θi
αΘj

βεij ∈ [2, 0, 0](0) is the only SU(2)R invariant that can be formed from

the Θi
α. It transforms in the same Lorentz representation as a self-dual three-form H [IJK],

with I, J,K = 1, . . . , 6 and ∗H = H. The only independent Lorentz scalar that can be con-

structed purely from (Θ2)(αβ) is Θ8 ≡ εαβγδεα′β′γ′δ′(Θ2)αα′(Θ2)ββ′(Θ2)γγ′(Θ
2)δδ′ . (In terms

of HIJK , viewed as a trivalent vertex, this index contraction is a tetrahedron.) All remain-

ing Lorentz and SU(2)R invariants are built using the combination (XΘ2)αβ = X [αγ](Θ2)γβ ,

which is in the adjoint representation [1, 0, 1] of the Lorentz group; it can also be written

as (XΘ2)[IJ ] = HIJKXK . The quadratic Casimir invariant of this Lorentz adjoint,

Tr(XΘ2)2 ≡ (XΘ2)2 appears as the middle term in (3.30). Note that the Lorentz adjoint

(XΘ2) does not have a cubic Casimir invariant, since Tr(XΘ2)3 = 0. Finally, the quartic

Casimir Tr(XΘ2)4 is not independent of the invariants that were already introduced above.

If we expand the three-point function (3.30) in components, the coefficient CO1O2O3
1

determines the three-point function of the superconformal primaries. The coefficients

CO1O2O3
2,3 are associated with three-point functions of descendant operators. For long mul-

tiplets, the coefficients CO1O2O3
1,2,3 are independent, but for short multiplets they are satisfy

additional constraints that follow from the requirement that the null-state multiplet vanish

in superspace.
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Let us apply the general reasoning above to the three-point function of stress-tensor

multiplets. Setting Oi(zi) = T (zi) and ∆i = 4 in (3.30), we obtain

〈T1(z1)T2(z2)T3(z2)〉 =
HT T T (X,Θ)

(detχ13)2(detχ23)2
, (3.31)

HT T T (X,Θ) = CT T T1

1

X4
+ CT T T2

(XΘ2)2

X8
+ CT T T3

Θ8

X8
.

We must now impose the shortening condition (3.18), as well as exchange symmetry under

z1 ↔ z2 ↔ z3, since the three supermultiplets are identical. In the present context,

exchanging z1 ↔ z2 takes Z → −Z and does not constrain the coefficients in (3.31).9

However, the shortening condition (3.18) can be shown to lead to the following constraint

on the function HT T T that appears in (3.31),

εαβγδD̂αi D̂
β
j D̂

γ
kHT T T = 0 , D̂αi ≡

∂

∂Θi
α

+ iΘiβ
∂

∂Xβα
. (3.32)

To analyze this constraint, we count monomials in X [αβ] and Θi
α that share its

[1, 0, 0](3) Lorentz and R-symmetry quantum numbers and could therefore appear

as terms in (3.32). Naively, there are two such monomials: [(XΘ)3]
(ijk)
α ≡

εαα1α2α3X
α1β1Xα2β2Xα3β3Θi

β1
Θj
β2

Θk
β3

; and [Θ5]
(ijk)
α , the unique contraction of five Θ’s

with [1, 0, 0] Lorentz quantum numbers and R = 3. However, [(XΘ)3]
(ijk)
α = 0 vanishes

identically. This can be seen by noting that the Θ3 part has to be in the [0, 0, 1](3), which

can give a [1, 0, 0] Lorentz representation by tensoring with a [2, 0, 0]. However, the lat-

ter is a three-form (i.e. it is a completely antisymmetric tensor product of three [0, 1, 0]

vectors), while X3 is a completely symmetric product of three vectors. Therefore their

contraction (XΘ)3 ∼ X3Θ3 vanishes identically.

It follows that evaluating the differential operator on the left-hand side of (3.32) on

the function HT T T in (3.31) can (schematically) only give terms of the form

εαβγδD̂αi D̂
β
j D̂

γ
kHT T T (X,Θ) ∼ [Θ5]δ(ijk) . (3.33)

Since the operator D̂αi changes the number of Θ’s by ±1, the D̂3 operator on the left-hand

side can only produce the number of Θ’s on the right-hand side by acting on the terms

proportional to CT T T2 and CT T T3 in (3.31). It follows that CT T T1 is unconstrained, and

that there is one linear constraint on CT T T2 and CT T T3 . This shows that all three-point

correlators of operators in the stress-tensor supermutiplet can be expressed in terms of at

most two linearly independent coefficients. Moreover, there is a Ward identity that relates

one linear combination of these two coefficients to the two-point function coefficient cT ∼ c3.

As outlined in section 3.2, it follows that the ci conformal anomalies necessarily satisfy a

linear relation in all N = (1, 0) SCFTs. The precise form of this relation can be determined

by examining free hyper- and tensor multiplets, as discussed around (3.13).

We can also use superspace to analyze three-point correlators that involve a flavor-

current multiplet (3.21). This requires writing down general combinations of u’s, χ’s,

9By contrast, exchange symmetry does constrain analogous correlators in four-dimensional SCFTs, see

for instance [58, 64].
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X, and Θ with the correct symmetries and quantum numbers, and then imposing the

shortening conditions (D3)(ijk)αT = 0 and D(i
αJ jk) = 0. The condition on the flavor

current is particularly constraining, because the analogue of (3.33) now involves multiple

independent structures on the right-hand side. The condition that all of these vanish

separately determines the relative coefficients of all terms in the Θ-expansion.

The upshot is that all three-point functions involving a flavor-current multiplet are

fully determined up to an overall coefficient. Moreover, Ward identities relate this overall

coefficient to a two-point function coefficient cF ∼ τF1 . The results are

〈J a(iij1)(z1)T (z2)T (z3)〉 = 0 , (3.34)

and

〈J a(i1j1)(z1)J b(i2j2)(z2)J c(i3,j3)(z3)〉 = cF f
abc〈J (i1j1)(z1)J (i2j2)(z2)J (i3j3)(z3)〉canonical ,

(3.35)

and

〈J a(iij1)(z1)J b(i2j2)(z2)T (z3)〉 = cF δ
ab〈J (iij1)(z1)J (i2j2)(z2)T (z3)〉canonical . (3.36)

Here the canonical correlators on the right-hand side are specific, completely determined

functions on superspace, which are fixed by exchange symmetries and null-state conditions.

This six-dimensional analysis is closely analogous to the four-dimensional analysis in [60].

For this reason, we do not spell out all the details here. Once it has been established that the

correlators in (3.35) and (3.36) only depend on the theory under consideration via the two-

point function coefficient cF ∼ τ1
2 and the flavor Lie algebra structure constants fabc, we

can use free-field reasoning as in sections 3.1 and 3.2 to derive all other results quoted there.

3.4 Conformal collider inequalities

The average null energy condition [67, 68] places unitarity bounds on the three-point func-

tion coefficients discussed above. These bounds are conveniently derived using the confor-

mal collider setup of [9, 10, 69]. (See [70–73] for some related recent work.) As described

in [9, 55], the six-dimensional version of the collider bounds of [10] can be written as

1− 1

5
t2 −

2

35
t4 ≥ 0 ,

1− 1

5
t2 −

2

35
t4 +

1

2
t2 ≥ 0 , (3.37)

1− 1

5
t2 −

2

35
t4 +

4

5
(t2 + t4) ≥ 0 ,

where t2,4 are linear combinations of the ci conformal anomalies given in [9]. In terms of

the parameterization in (2.12), these inequalities take the simple form

nTTTφ ≥ 0 , nTTTψ ≥ 0 , nTTTB ≥ 0 . (3.38)

It was pointed out in [10] that t4 = 0 for d = 4 SCFTs. By analogy, it was conjectured

in [9] that supersymmetry should impose the linear relation t4 = 0 on the ci conformal
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anomalies of d = 6 SCFTs, and it was verified that this is indeed the case in free-field ex-

amples. In our conventions, the condition t4 = 0 precisely coincides with the relation (3.13)

derived above. The remaining inequalities in (3.37) then reduce to [9],

− 5

3
≤ t2 ≤ 5 ⇐⇒ 5

9
≤ c1

c3
≤ 31

27
. (3.39)

The lower bound is saturated by a free hypermultiplet. In fact, the upper bound in (3.39)

can be strengthened to 10
9 < 31

27 in SCFTs, and this stronger upper bound is saturated by

a free tensor multiplet. Note that unitarity of the two-point function implies c3 > 0, so

that (3.39) gives c1 > 0. Similarly, using (3.13) gives (c2/c3) = 2(c1/c3)− 1 so that (3.39)

implies
1

9
≤ c2

c3
≤ 35

27
, (3.40)

and hence c2 > 0.

To derive stronger constraints on the ci in the case of SCFTs we follow [10] and

apply the conformal collider constraints to states created by the R-current. Let us first

review the non-supersymmetric conformal collider bounds on states created by a conserved

flavor current JFµ in d dimensions. As reviewed below (2.13), the 〈TJFJF 〉 correlator

is parametrized by two coefficients, cTFF and eTFF , one linear combination of which is

fixed by the flavor-current two-point function coefficient CF via 2Sd (cTFF + eTFF ) = dCF
(see [50, 51] for details). As shown in [70, 74], the ratio cTJJ/CF satisfies the following d-

dimensional collider bounds,

(d− 2)Γ(1
2d+ 1)

2(d− 1)π
d
2

≤ cTFF
CF

≤
Γ(1

2d+ 1)

2π
d
2

, (3.41)

where the first inequality is saturated for free scalars and the second one for free fermions.

In d = 6 we can rewrite these inequalities as

0 ≤ eTFF
cTFF

≤ 1

4
, (3.42)

where the order of the inequalities has been reversed, i.e. the first one is saturated for free

fermions and the second one for free scalars.

We can now apply (3.42) to the 〈TJRJR〉 correlator in SCFTs. Substituting the free-

field formulas for cTRR, eTRR in terms of c1, c3 in (3.15) into these inequalities, we find that

5

9
≤ c1

c3
≤ 10

9
⇐⇒ 1

9
≤ c2

c3
≤ 11

9
. (3.43)

The lower bound coincides with that in (3.39), but the upper bound is stronger; it is

saturated by a free N = (1, 0) tensor multiplet. In terms of the free-field parameterization

of the ci conformal anomalies in (3.3), the inequalities (3.42) reduce to the intuitive

requirement that

nH ≥ 0 , nT ≥ 0 . (3.44)
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4 Anomaly multiplet relations on the tensor branch

In this section we explore how the anomaly multiplet relations derived above are reflected

on the tensor branch of N = (1, 0) SCFTs in six dimensions. This leads to a simple,

intuitive argument for some of these relations.

4.1 Dilaton effective action on the tensor branch

Here we closely follow the discussion in [24], but also make some new observations. On the

tensor branch, the SU(2)R symmetry is unbroken and the massless dilaton field ϕ (i.e. the

Nambu-Goldstone boson associated with spontaneous conformal symmetry breaking) re-

sides in a tensor multiplet. The constraints of conformal symmetry on the effective action

of ϕ with and without background gravity fields were analyzed in [75]. The additional

terms that arise in the presence of background flavor gauge fields were described in [55].

When all background gauge fields are set to zero and the background metric is taken to

be the flat Minkowski metric, the minimal low-energy effective action for ϕ schematically

takes the form

Ldilaton =
1

2
(∂ϕ)2 − b(∂ϕ)4

ϕ3
+ ∆a

(∂ϕ)6

ϕ6
+O(∂8) . (4.1)

Here, ∆a = aUV − aIR is the change in the conformal a-anomaly along the RG flow from

the SCFT at the origin to the low-energy effective theory on the tensor branch. A basic

fact that will play an important role below is that the coefficient b in (4.1) is subject to a

dispersion relation that implies its positivity [76],

b ≥ 0 . (4.2)

This inequality is saturated if and only if ϕ is a free field with trivial scattering S-matrix.

The constraints of N = (1, 0) supersymmetry on the dilaton effective action were

analyzed in [24]. In the absence of non-trivial background fields, the N = (1, 0) dilaton

effective action on the tensor branch is given by the supersymmetrization of (4.1), with ϕ

residing in a tensor multiplet together with its superpartners ψiα and B. Here ψiα is a

Majorana-Weyl fermion, and B is a two-form gauge field, whose field strength H = dB is

self dual (i.e. H = ∗H). The upshot of this analysis is two-fold [24]: the first conclusion is

that the supersymmetric completion of the leading 4-derivative term in (4.1) is of the form

− b(∂ϕ)4

ϕ3
−→ − b

〈ϕ〉3
Q8(δϕ)4 + · · · , (4.3)

where the ellipisis denotes higher-order terms in the expansion of ϕ = 〈ϕ〉 + δϕ in fluc-

tuations around its vev. The second conclusion is that the 6-derivative term in (4.1)

proportional to ∆a is in fact related to the term in (4.3) by supersymmetry, which implies

the following universal quadratic relation,

∆a =
98304π3

7
b2 . (4.4)

This immediately implies positivity of ∆a, and hence the a-theorem, for this class of

flows [24].
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In the presence of background fields, the dilaton effective action (4.1) gets extended in

various ways. Among these extensions there are certain additional terms that are needed

to compensate any apparent mismatch between the ’t Hooft anomalies of the SCFT at the

origin and the low-energy theory on the tensor branch. These terms are Green-Schwarz

(GS) like couplings that involve the dynamical two-form gauge field B residing in the

tensor multiplet and various background field strengths or background curvatures [17,

18], and their supersymmetric completions. Given, for instance, a background flavor field

strength Fµν , the corresponding GS term takes the form

LGS ⊃ nFB ∧ c2(F ) . (4.5)

It follows that c2(F ) (the background flavor instanton density) acts as a source for the

dynamical B-field, whose field-strength is H,

dH ⊃ nF c2(F ) . (4.6)

This in turn implies that nF is an integer. The supersymmetric completion of (4.5) contains

a dilaton couplling ∼ nfϕ tr (FµνF
µν). Together with (4.5), this Lagrangian is similar to the

interacting gauge-tensor Lagrangians used to described N = (1, 0) SCFTs in [36], except

that here the gauge fields are fixed backgrounds associated with global flavor symmetries

while only the tensor multiplet is dynamics.

In addition to the flavor background fields discussed above, the tensor multiplet con-

taining B and ϕ also couples to supergravity background fields — in particular a back-

ground metric and background gauge fields for the SU(2)R symmetry. Here we will briefly

review these terms, following [24]. The GS terms involving the dynamical B-field and

supergravity background fields are

LGS ⊃ B ∧ (xc2(R) + yp1(T )) , (4.7)

where x, y are real coefficients. These terms account for the following mismatches ∆α =

αUV − αIR etc. in the SU(2)R and diffeomorphism ’t Hooft anomaly coefficients (1.10),

∆α ∼ x2 , ∆β ∼ 2xy , ∆γ ∼ y2 , ∆δ = 0 . (4.8)

It was shown in [24] that the GS terms (4.7) are related to certain R2 supergravity

terms [77],

LR2 ∼ 〈ϕ〉√g
((

y − x

4

)
RµνρσRµνρσ +

3

2
xR µν

[µν R ρσ
ρσ]

)
. (4.9)

Specializing to a conformally flat background and using results from [75], this shows that

the leading four-dilaton interaction (4.1) is determined by the GS coefficeints x and y,

LR2 −→ −b (∂ϕ)4

ϕ3
, b ∼ y − x . (4.10)

The inequality (4.2) then shows that y ≥ x. This inequality can only be saturated if the

dilaton is a free tensor multiplet, in which case there is no RG flow to begin with. In

particular, ∆a ∼ b2 ∼ (y − x)2 vanishes in this case [24].
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4.2 The ci conformal anomalies on the tensor branch

We will now use the tensor branch to argue for the anomaly multiplet formulas (1.12) that

determine the ci conformal anomalies in terms of the ’t Hooft anomalies α, β, γ, δ. We will

not provide a complete analysis of these anomaly multiplet relations on the tensor branch,

which would require the dilaton effective action coupled to background supergravity fields

up to six-derivative order. Instead, we will make the plausible assumption that all six-

derivative terms responsible for anomaly matching in the dilaton effective action arise from

the completion of four-derivative GS terms and their superpartners. (This assumption was

explicitly demonstrated in [24] for the six-derivative terms associated with the a conformal

anomaly.) We also postulate that the ci anomalies obey linear anomaly multiplet relations

of the form

ci = piα+ qiβ + riγ + siδ (4.11)

Using (4.8), it follows that the change in these anomalies under the RG flow onto the tensor

branch is

∆ci ∼ pix2 + 2qixy + riy
2 . (4.12)

At the special locus x = y, the dilaton is free and there is no non-trivial RG flow, so

that all ∆ci must vanish. It follows that the quadratic polynomials in (4.12) must factor

as ∆ci = (y − x)(uix+ viy) (recall that this is the case for ∆a ∼ (y − x)2), so that

pi + 2qi + ri = 0 . (4.13)

We can use these linear relations to reduce the number of unknown coefficients in (4.11)

from four to three for each ci. Ideally, these coefficients should be derived by constructing

the full anomaly multiplet, but we can also determine them by comparing to the free N =

(1, 0) hyper- and tensor multiplets, as well as to the interacting N = (2, 0) theories. As

was explained in section 1.3, this set of reliable unitary examples allows us to fix three

of the four coefficients in (4.11). Together with (4.13), this allows us to fix the anomaly

multiplet relations for the ci conformal anomalies in (1.12) while avoiding the non-unitary

examples considered in [32, 33].

4.3 Flavor conformal anomalies on the tensor branch

In four dimensional SCFTs, the flavor-current two-point function coefficient τF is deter-

mined by the ’t Hooft triangle anomaly of two flavor currents and one R-current. This

follows from the d = 4 multiplet of anomalies in the presence of background supergravity

and flavor gauge fields [23]. We anticipate that a similar relation exists for six-dimensional

SCFTs, which should relate the flavor-current two-point function coefficient τF to ’t Hooft

anomalies involving background supergravity and flavor gauge fields. Since τF scales

quadratically with the charges (e.g. in free field theory), such a putative relation must

involve a mixed ’t Hooft anomaly with two flavor background gauge fields. The remaining

two background fields can either be SU(2)R or gravity backgrounds, i.e. we consider mixed

flavor-SU(2)R and flavor-diffeomorphism anomalies. We therefore postulate a linear rela-

tion between τF and the ’t Hooft anomaly coefficients αF 2R2 and αF 2T 2 in the anomaly
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Theory τF αF2R2 αF2T2

(1, 0) hypermultiplet in flavor representation r 2T2(r) 0 T2(r)

(2, 0) theory with ADE algebra g 4h∨g dg + rg −2h∨g dg
1
2rg

Table 3. Some conformal and ’t Hooft anomalies related to flavor symmetries. For the (2, 0)

theories, the flavor symmetry is SU(2)F ⊂ Sp(4)R, which is related to SU(2)R ⊂ Sp(4)R by a Weyl

reflection, whence τF = τR1 = c3 (see the discussion below (1.9)).

8-form polynomial,

I8 ⊃
1

4!
(αF 2R2c2(F )c2(R) + αF 2T 2c2(F )p1(T )) . (4.14)

Recall from the discussion above (2.6) that we normalize τF so that a free N = (2, 0)

tensor multiplet contributes has τ
Sp(4)R
2 = 1. In this normalization, the τ2 conformal

anomaly and the ’t Hooft anomalies in (4.14) for some known examples are summarized

in table 3. The examples in table 3 are sufficient to determine the proposed linear relation

between τF and αF 2R2 , αF 2T 2 ,

τF = 2αF 2T 2 − 2αF 2R2 . (4.15)

This is the relation in (1.14).

We can now subject the proposed formula (4.15) to a stringent consistency check by

considering an RG flow onto the tensor branch, under which

∆τF = 2∆αF 2T 2 − 2∆αF 2R2 . (4.16)

The anomaly mismatches ∆αF 2T 2 and ∆αF 2R2 are accounted for by the GS terms for

supergravity background fields in (4.7), in conjunction with the flavor GS term (4.5),

LGS ∼ B ∧ (xc2(R) + yp1(T ) + nF c2(F )) . (4.17)

This leads to ’t Hooft anomaly matching contributions beyond (4.8),

∆αF 2T 2 ∼ nF y , ∆αF 2R2 ∼ nFx , ∆αF 2F 2 ∼ n2
F , (4.18)

with the same overall proportionality factor as in (4.8). Substituting into (4.16), we find

that

∆τF = 2(∆αF 2T 2 −∆αF 2R2) ∼ 2nF (y − x) . (4.19)

This is indeed proportional to b ∼ y − x, and trivializes as expected when x = y.
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5 Examples

5.1 N = (2, 0) theories

These theories have an Sp(4)R symmetry. Thinking of them in N = (1, 0) language, it is

natural to focus on its SU(2)F ×SU(2)R subgroup, with SU(2)F a flavor symmetry. In our

normalization, the conformal anomalies of the interacting N = (2, 0) theory based on an

ADE lie algebra g are given by

ag =
16

7
h∨g dg + rg , cg,i = τF = τR1 = 4h∨g dg + rg . (5.1)

Consider a rank-one tensor branch of the type g theory, associated with the adjoint

breaking pattern g→ h + u(1). The apparent change in the anomaly polynomial is [21]

4!∆I8 = ∆k p2(Sp(4)R) −→ ∆k (c2(L)− c2(R))2 , ∆k ≡ k(g)− k(h) , k(g) ≡ h∨g dg .
(5.2)

This requires GS anomaly matching terms (4.17), with y = 0 and x = nF ∼ −
√

∆k/6.10

The simplest example in this class occurs for g = a1 and h trivial, so that ∆k/6 = 1. The

interacting a1 SCFT at the origin has ci = τF = τR1 = 25 and a = 103
7 . This theory was

explored using numerical bootstrap techniques in [78].

5.2 Small E8 instanton SCFTs

We can apply our general formulas to determine the conformal anomalies of the N = (1, 0)

SCFTs E [N ] that describe N small E8 instantons in string theory, or alternatively N

M5 branes probing an end-of-the-world M9 brane in M-theory. These theories have

an SU(2)F × E8 flavor symmetry. Aspects of the corresponding flavor-current correla-

tors were discussed in [49, 79]. Note that our definition of the E [N ] theory includes the

free, decoupled hypermultiplet describing overall translations of the N M5 branes in the

four transverse directions.

The anomaly polynomial of the E [N ] SCFT was found in [16],

IE[N ] =
N3

6
χ2

4 +
1

2
N2χ4I4 +N(

1

2
I2

4 − I8) . (5.3)

where χ4 ≡ c2(F )− c2(R) and

I4 ≡
1

4
(−2c2(R)− 2c2(F ) + p1(T )) + c2(E8) , (5.4)

I8 ≡
1

48

(
χ2

4 + p2(T )− 1

4
(−2c2(R)− 2c2(F )− p1(T ))2

)
. (5.5)

As mentioned in [16], the anomaly polynomial (5.3) exhibits an interesting behavior under

the combined transformation N → −N and SU(2)F ↔ SU(2)R, which takes IE[N ] →
−IE[N ]. This was interpreted as exchanging branes with anti-branes, and N = (1, 0) with

10The anomaly matching of the full Sp(4)R symmetry is more involved and requires the Hopf-Wess-

Zumino term of [21].
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N = (0, 1). We will choose N > 0, so that SU(2)R is the N = (1, 0) R-symmetry, while

SU(2)F is a flavor symmetry.

Comparing with (1.10), the anomaly polynomial (5.3) gives

α = N(4N2 + 6N + 3) , β = −N
2

(6N + 5) , γ =
7N

8
, δ = −N

2
. (5.6)

Substituting into (1.11) and (1.12) leads to the following a and ci conformal anomalies,

a =
64

7
N3 +

144

7
N2 +

99

7
N , c1 = 16N3 + 38N2 + 27N , (5.7)

c2 = 16N3 + 34N2 + 21N , c3 = 16N3 + 42N2 + 33N .

To O(N3), these anomalies agree with those obtained from a naive Z2 orbifold of the aN−1

N = (2, 0) theory, as expected from the M5 brane construction of the E [N ] theory. Note

however that the ci anomalies in (5.7) already differ at O(N2).

As was already stated above, the E [N ] SCFTs have an SU(2)F ×E8 flavor symmetry.

The associated ’t Hooft anomalies can be extracted from the anomaly polynomial (5.3), e.g.

αF 2T 2 = 3N2 − 5

2
N , αF 2R2 = −8N3 + 8N . (5.8)

Substituting into (1.14) gives the SU(2)F two-point function coefficient,

τF = 16N3 + 6N2 − 21N . (5.9)

For comparison, the SU(2)R current two-point function coefficient is given by (see (1.9))

τR1 = c3 = 16N3 + 42N2 + 22N . (5.10)

The fact that τF and τR1 coincide at leading O(N3) is again consistent with a naive Z2

orbifold of the aN−1 N = (2, 0) theory, and again the two expressions differ at O(N2).

Note that (5.9) and (5.10) are not simply related by the N → −N transformation

mentioned above. This is not a contradiction, since it need not be the case that replacing

N → −N exchanges SU(2)F and SU(2)R for all purposes.11 As a check of (5.9), note that

when N = 1 the SU(2)F flavor symmetry only acts on the free, decoupled hypermultiplet

associated with M5 brane motion in the transverse directions. Indeed substituting N = 1

in (5.9) gives τF = 1, as expected for a free hypermultiplet.

The anomaly coefficients in (5.3) that involve the E8 background gauge field are

αE2
8R

2 = −12(N2 +N) , αE2
8T

2 = 6N . (5.11)

Substituting into (1.14) then gives the E8 two-point function coefficient,

τE8 = 12(2N2 + 3N) . (5.12)

This result has already appeared in [49].

11An analogous phenomenon occurs in certain d = 4, N = 2 SCFTs [80] with similar brane realizations.
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Finally, let us consider a tensor-branch deformation corresponding to moving one M5

brane away from the M9 brane and the other N −1 M5 branes, so that E [N ]→ E [N −1] +

E [1]. The anomaly mismatch is accounted for by a GS mechanism [18],

∆I8 =
1

2
X2

4 , X4 = (N − 1)c2(F )−Nc2(R) +
1

4
p1(T ) + c2(E8) . (5.13)

Since the GS term (4.7) is proportional to B ∧ I4, we conclude that

x ∼ −N , y ∼ 1

4
. (5.14)

Using (5.9), (5.10), and (5.12), we can evaluate

∆τR1 = ∆c3 = 48

(
N+

1

2

)(
N+

1

4

)
, ∆τF = 48(N−1)

(
N+

1

4

)
, ∆τE8 = 48

(
N+

1

4

)
.

(5.15)

Since it follows from (5.14) that N+ 1
4 ∼ y−x, it is indeed true that all quantities in (5.15)

are proportional to y − x, as we argued on general grounds.

5.3 Holographic examples

Consider d = 6 SCFTs with AdS7 holographic duals; see e.g. [81] and references therein

for examples. The AdSd+1/CFTd dictionary relates the flavor-current two-point function

coefficient CF to Ld−3g−2
FF [82], where L is the AdSd+1 length scale, and g−2

FF is the coefficient

of the bulk Yang-Mills term corresponding to the flavor symmetry in the boundary CFT,

Sbulk ⊃
∫

(−1
4g
−2
FF TrFF ∧ ∗FF ). In our conventions and d = 6 we have

τF1 =
5

3
25L3g−2

FF . (5.16)

The fact that τF2 = ρF = 0 in SCFTs should follow from an analysis of AdS7 supergravity.

Moreover, the relation (1.14) implies that the g−2
FF Yang-Mills coefficient of the AdS7 su-

pergravity theory is related to the bulk Chern-Simons terms responsible for the αF 2T 2 and

αF 2R2 ’t Hooft anomalies on the boundary. See [83] for some related comments.
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