
J
H
E
P
0
7
(
2
0
2
0
)
0
5
2

Published for SISSA by Springer

Received: May 25, 2020

Accepted: June 18, 2020

Published: July 8, 2020

Phase transitions in a holographic multi-Weyl

semimetal
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1 Introduction

The paradigm of topological states of matter is by now well established, where in contrast

to the usual Landau’s symmetry classification, the characterization of a phase is provided

in terms of the topological invariants [1, 2]. The prime examples of fermionic gapped

topological phases are the integer quantum Hall states [3], with the time-reversal symmetry

broken, for instance, by a magnetic field. As such, they are characterized in terms of the

Chern number of the occupied electronic bands [4], directly related to the quantized Hall

conductance in these systems. As a consequence of the nontrivial electronic topology, these

topological states feature topologically protected gapless chiral edge modes, providing an

example of the generic property of a topological state of matter: the (condensed-matter)

bulk-boundary correspondence.

The notion of topological phases is also operative when time-reversal symmetry is

preserved, both in two [5] and three spatial dimensions [6–8]. These systems behave as

ordinary insulators with a band gap in the bulk, but, in addition, host (time-reversal sym-

metry) protected gapless conducting states on their edge or surface [1, 2]. Topological

insulators were theoretically proposed [9] and experimentally realized in two-dimensional

HgTe/CdTe heterostructures [10]. Subsequently, they have also been experimentally dis-

covered in different three-dimensional compounds, such as Bi1−xSbx [11], Bi2Se3, Bi2 Te3,

and Sb2Te [12–14]. Finally, free (noninteracting) gapped fermionic topological states can

be systematically classified in the so-called tenfold periodic table through the fundamental

anti-unitary time-reversal and particle-hole symmetries [15–17], the latter accounting for

the topological superconducting states featuring Majorana modes at the boundary.
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Gapless systems can also be topological with the Weyl semimetals (WSMs) as the cel-

ebrated representatives [18, 19]. Due to the broken time-reversal or spatial inversion sym-

metry, in a WSM the conduction and valence bands touch at pairs of points, the so-called

Weyl points, in momentum space. Nontrivial electronic properties of these systems arise

due to the pseudo-relativistic linear dispersion close to the nodal points, which constitute

topological point-like defects in momentum space, monopoles and antimonopoles, with the

charge n = ±1, representing the source and the sink of the abelian Berry curvature associ-

ated with the electronic wavefunctions. As a consequence, the topological protected Fermi

arcs surface states emerge as the hallmark feature of the nontrivial electronic topology in

these systems. WSMs have been experimentally observed in several compounds, including

TaAs [20–22], TaP [23] and NbAs [24]; see also a review [25]. Furthermore, WSMs realize

the chiral anomaly, originally proposed in the context of high energy physics [26, 27], giving

rise to the exotic magneto-transport phenomena [28–30].

Topological phases of matter, mostly due to their universal aspects, have also at-

tracted a rather notable attention in high-energy physics, particularly in the community

dealing with AdS/CFT correspondence [31–33], and its applications to strongly coupled

condensed matter systems [34, 35]. As far as the gapless topological systems are concerned,

a holographic realization of (strongly coupled) WSMs has been proposed in ref. [36]. Their

topological invariants were computed in ref. [37], while the generalization of WSMs fea-

turing the line-like topological defect in momentum space, the nodal line semimetal, was

studied by holographic methods in ref. [38]. The notion of the usual WSMs can also be gen-

eralized to multi-Weyl semimetals (mWSMs) with the monopole charge |n| > 1, although

constrained to be at most |n| = 3 due to the crystalline symmetries [39–41]. Such a higher

than unity monopole charge arises as a consequence of the low-energy dispersion which is

linear in only one direction [42–49], while in the remaining two directions it scales as k
|n|
⊥ .

In the present work, motivated by these developments, we show that a holographic

model, recently proposed for the description of multi-Weyl semimetals [50], possesses a rich

landscape of phases, which were not studied before. In particular, it includes a nematic

condensate, a special case of which is the mWSM phase, with the U(1) rotational symmetry

restored. More importantly, we find an extra phase, which we dub xy nematic condensate,

which, is stable at strong coupling, as we explicitly show by the free energy and the quasi-

normal mode (QNM) analyses. Furthermore, we provide its characterization through the

anomalous transport coefficients. We hope that our findings will motivate future works,

where, for instance, the effects of the backreaction will be included to further elucidate the

nature of the xy nematic condensate.

This paper is organized as follows. To set the stage, we review the basic features of the

mWSMs and the holographic model, introduced in ref. [50], in sections 2 and 3, respectively.

In section 4, we study the instability of this model towards new strongly coupled phases,

including a nematic phase and an xy nematic condensate phase. Section 5 is dedicated to

the analysis of the linear stability of the low-lying QNMs in the corresponding phases. In

section 6 we study the effect of the phase transition on the anomalous transport. Finally,

in section 7, we summarize our results and outline possible future directions.
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2 Multi Weyl semimetals

The minimal low-energy Hamiltonian of a mWSM with broken time-reversal symmetry is

given by [51]

H
(n)
± (k) = αnk

n
⊥ [τx cos(nφk) + τy sin(nφk)]± vzkzτz (2.1)

where k2
⊥ = k2

x + k2
y, φk = arctan (ky/kx), ±n is the monopole charge of the two (±) Weyl

nodes, and τ are the Pauli matrices. This effective Hamiltonian can be obtained in the

low-energy limit of a model with n coupled simple Weyl fermion flavors [50]

H(n)
coup = [v⊥(kxτx + kyτy) + vzkzτz]⊗ 1n×n + ∆

(
τx ⊗ snx + τy ⊗ sny

)
(2.2)

where 1n×n, snx and sny act on the flavor index, and the τ ’s act on the pseudospin index.

Here, ∆ term describes the coupling among the single Weyl fermions, while sn’s are the

generators of the n-dimensional [the spin (n− 1)/2] representation of the SU(2) group.

The Lagrangian associated with the above Hamiltonian is given by

LL = iψ†Lτ
µ
[
∂µ − i∆

(
δxµsx + δyµsy

)]
ψL, (2.3)

where τµ = (1, τ ). Let us notice that the above Lagrangian can be conveniently rewritten

in terms of a static non-Abelian gauge field as

LL = iψ†Lτ
µ
[
∂µ − iAaµsa

]
ψL, (2.4)

where sa = (s0, si), with i = x, y, z, are the generators of U(1)L × SU(2)L and

Aaµ = ∆(δxµ δ
a
x + δyµ δay). The above Lagrangian represents a model for mWSMs with a

non-Abelian U(2)L flavor symmetry, in the presence of a (non-Abelian) background gauge

field Aaµsa, with the form that reduces the initial SO(3, 1) × SU(2)L symmetry group of

n decoupled copies of simple Weyl fermions to the diagonal SO(1, 1) × U(1)3L symmetry

corresponding to the mWSM. One can then apply the standard field-theoretical tech-

niques [52, 53] to compute the non-Abelian anomalies, further supported by a correspond-

ing holographic model [50].

Before we move on to consider possible phases in this holographic model, notice that

the Lagrangian (2.3) is invariant under a spatial rotation in the x − y plane by an an-

gle θ accompanied by an internal rotation e−iτ3θ. In particular, the fermion bilinear

ψ†Lτ
µ
(
δxµsx + δyµsy

)
ψL, realizing the mWSM phase in the dual field theory of the holo-

graphic model, is a scalar under this symmetry. Other fermion bilinears related to the

phases obtained in the holographic model break rotational symmetry. One of these corre-

sponds to 〈ψ†LτµδxµsxψL〉 6= 〈ψ
†
Lτ

µδyµsyψL〉, which we call nematic phase. As we will show

explicitly in the next section, the holographic model features yet another phase

〈ψ†Lτ
µ
(
δxµsy + δyµsx

)
ψL〉 6= 0, (2.5)

which explicitly breaks the full rotational symmetry but preserves a combination of the C4

rotation and the mirror My operation, C4My. This combined operation is equivalent to the

exchange of the x and y coordinates and we therefore call this phase xy nematic condensate.

We would like to emphasize that, as shown in the next section, the xy nematic con-

densate, as well as the nematic and the WSM phases, emerge as particular solutions within

a rather general ansatz in the holographic model.
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3 The holographic model

We start by considering the mWSM holographic model [50]. We will work in the probe limit

with a finite temperature background geometry which we choose to be the Schwarzschild-

AdS black hole

ds2 =
1

r2

(
−f(r)dt2 +

1

f(r)
dr2 + dx2 + dy2 + dz2

)
, (3.1)

with the horizon at rh = 1, and the blackening factor f(r) = 1 − r4. In these units the

Hawking temperature is given by T = π−1.

The action of the holographic model reads

S = −
∫

Tr

[
1

2n
F ∧ ?F +

1

2c(n)
G ∧ ?G+ λ

(
A ∧ (dA)2 +

3

2
A3 ∧ dA+

3

5
A5

)]
, (3.2)

where the gauge fields are defined as

A = A0s0 , A = Aisi , A = A+ A. (3.3)

For the sake of simplicity, we will exclusively work with n = 2, which implies c(n) = 1/2.

The corresponding field strength associated to the gauge fields are

F = dA , G = dA− iA2 , F = F +G . (3.4)

The Maxwell-Yang-Mills-Chern-Simons equations on the curved background read

∇µFµν − 6λενραβγTr (FραFβγ) = 0, (3.5)

DµGa,µν −
3

2
λενραβγTr (saFραFβγ) = 0 . (3.6)

By evaluating the action on-shell and recognizing the Bardeen counterterm, we find λ to

be of the form1

λ =
1

24π2
. (3.7)

To describe mWSM we break SO(3, 1)×SU(2)L×U(1)L symmetry down to SO(1, 1)×
U(1)3L × U(1)L with a background gauge field and turn on a magnetic potential in the z

direction. This translates into the boundary condition

A(rb) = ∆ (sxdx+ sydy) + xBs0dy . (3.8)

The magnetic field breaks rotational SO(3) → SO(2). The specific value of B is not

relevant for the features of our model, and for the numerical calculations we fix its value

to be B = 1. To be precise, for the phase structure of the model (section 4) it decouples

from the background equations of motion. It appears in the QNM analysis (section 5) but

since the mode structure turns out to be qualitatively independent of B, as we explicitly

1We refer the reader to ref. [50] where a careful derivation on both the field theoretical and holographic

side was presented.
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checked, we only take the value B = 1. Finally, as expected, the anomalous transport

strongly depends on B, but in section 6 we define the coefficients so that this dependence

does not explicitly appear. On the other hand, the ∆ term breaks the remaining SO(2)

rotation symmetry in the x − y plane as well as the U(1) gauge symmetry generated by

s3, but it preserves a combination of the two [54], yielding what we will call rotational

symmetry in the following.

We now consider a more general ansatz allowing us to turn on the desired sources at

the boundary

A(r) =
(
Qx(1)(r)sx +Qx(2)(r)sy

)
dx+

(
Qy(2)(r)sy +Qy(1)(r)sx

)
dy + xB s0 dy . (3.9)

Besides obeying the corresponding equations of motion, these fields are further subject to

the constraint

Qx(1)Q
′
x(2) −Qx(2)Q

′
x(1) +Qy(1)Q

′
y(2) −Qy(2)Q

′
y(1) = 0. (3.10)

There are three simple solutions to this constraint:

• The mWSM (normal) phase: this is probably the simplest ansatz and corresponds

to Qx(2) = Qy(1) = 0 and Qx(1) = Qy(2) = Q [50].

• The nematic phase: Qx(2) = Qy(1) = 0 and Qx(1) 6= Qy(2). This phase breaks the

rotational invariance.

• The xy nematic condensate: Qx(1) = Qy(2) = Q1 and Qx(2) = Qy(1) = Q2. This phase

does not preserve the rotational invariance and we associate it with the condensation

of an operator as given by (2.5) in the dual field theory.

4 The phase transitions

Now that we have recognized, besides the mWSM, other two candidates for instabilities,

we study the existence of the corresponding solutions with the appropriate boundary con-

ditions (3.8). We find that indeed both instabilities can occur for large enough ∆ but the

xy nematic condensate is energetically more favorable.

We notice that by virtue of this simple ansatz λ disappears from the background

equations of motion, implying that such an instability is universal to any Yang-Mills theory

living in an AdS universe when turning on this ∆ source. This instability is a close relative

of the holographic p-wave superconductor [55, 56]. More generally, it may be considered as

a new member of the family of the Einstein-Yang-Mills instabilities in AdS spacetime [57].

4.1 The nematic phase

Plugging the ansatz (3.9) into the equations of motion we find(
Q′xf

r

)′
−
Q2
y

r
Qx = 0 ,(

Q′yf

r

)′
− Q2

x

r
Qy = 0. (4.1)

– 5 –
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We now proceed to integrate numerically eq. (4.1) starting from the near horizon towards

the boundary

Qx ≈ Qxh +
1

4
Q2
y hQxh(1− r) + . . .

Qy ≈ Qy h +
1

4
Q2
xhQy h(1− r) + . . . (4.2)

and we use the free horizon parameters to match the desired boundary conditions (3.8).

These boundary conditions can be satisfied by setting Qxh = Qy h. Then the equations of

motion imply Qx = Qy for all r.

Slightly more challenging is to find solutions where Qxh 6= Qy h but still satisfy the

boundary condition given by eq. (3.8). We find nonetheless that such solutions do exist

for large enough ∆ and that they are energetically favorable with respect to the mWSM

phase. This family of solutions is characterized by the UV expansion for the Qi in the form

Qx ≈ ∆ + J (1)
x r2 + . . .

Qy ≈ ∆ + J (2)
y r2 + . . . (4.3)

The spontaneous breaking of rotational symmetry can then be characterized by the differ-

ence between the expectation values associated with Qi, 〈O〉 = J
(1)
x − J (2)

y , which we plot

in figure 1 after re-scaling by ∆3 (based on dimensional grounds). There we can identify

the critical value of ∆c ≈ 7.92 for the nematic instability to set in.

4.2 The xy nematic condensate

We now turn to the analysis of the xy nematic condensate phase. The equations of motion

read (
Q′1f

r

)′
+
(
Q2

2 −Q2
1

) Q1

r
= 0 ,(

Q′2f

r

)′
+
(
Q2

1 −Q2
2

) Q2

r
= 0 , (4.4)

which we integrate from the near horizon

Q1 ≈ Q1h +
1

4

(
Q2

1h −Q2h

)
Q1h(1− r) + . . .

Q2 ≈ Q2h +
1

4

(
Q2

2h −Q1h

)
Q2h(1− r) + . . . (4.5)

to match the desired boundary conditions

Q1 ≈ ∆ + J1r
2 + . . .

Q2 ≈ J2r
2 + . . . (4.6)

Again we find that the xy nematic condensate exists for large enough ∆ with the exact

same critical value ∆c ≈ 7.92 as for the nematic phase. The order parameter corresponding

– 6 –
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Figure 1. Left: order parameter 〈O〉/∆3 as a function of ∆ for the nematic (solid blue) and xy

nematic condensate (dotted red) phases. Right: difference of free energies between the xy nematic

condensate phase and the normal phase.

to the new phase is 〈O〉 = J2. We plot this order parameter together with the one for the

nematic phase in figure 1.

As a first step to study the stability of these new solutions, we look for the on-shell

action that corresponds to the free energy in the dual field theory. Explicitly evaluating

the on shell action we find

Son-shell = −∆
(
Jx(1) + Jy(2)

)
+

∫ 1−ε

ε

dr

r

(
Qx(2)Qy(1) −Qx(1)Qy(2)

)2
. (4.7)

We regularize the above on-shell action to facilitate the stability analysis carried out by

directly evaluating the difference between the on-shell actions for the normal and condensed

phases. We find that the xy nematic phase is stable while the nematic condensate is

unstable for strong coupling ∆, as shown in the right panel of figure 1. The difference

between them is very small, though, O(10−8), as shown in the left panel of figure 2,

making the computation numerically challenging. Since the phase transition is of the second

order (continuous), we can analyze the stability by invoking the linear perturbations. The

corresponding results are discussed in section 5, and agree with the above free energy

computation.

In addition, we now study the RG flow of the relevant parameter ∆. The horizon values

for the parameters Qi corresponding to the mWSM and xy nematic phases are displayed

figure 2. In the mWSM phase, we see that Q(rh) grows linearly for small ∆ and then

saturates to a constant at large values of this parameter. However, this phase becomes

unstable for some critical value of the parameter ∆, consistent with the results from the

above free energy analysis. We also plot the would be values of Q(rh) at large ∆ as if the

instabilities did not take place in the normal phase. The horizon parameter Q1(rh) for the

xy nematic phase at the critical ∆ = ∆c departs from the behavior in the normal phase

and grows linearly with ∆, red curve in the right panel of figure 2. As we can also see from

the right panel of figure 2, Q2(rh) (green curve) behaves as (∆−∆c)
1/2 at small ∆, while

it approaches Q1(rh) at large values of the parameter ∆.

– 7 –
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Figure 2. Left: difference of free energies between the xy nematic condensate phase and the

nematic phase. Right: horizon value for the different Qi. The solid blue curve corresponds to the

mWSM or normal phase Q(rh). We also plot Q1(rh) (dotted red) and Q2(rh) (dashed green) for

the xy nematic condensate phase.

5 Linear stability

To further understand these new solutions, we study their stability under small perturba-

tions by considering the spectrum of the low lying QNMs. We perform a zero-momentum

analysis following the approach used for the p-wave superfluid [55]. This analysis is impor-

tant as a consistency check with the previous stability analysis based on the free energy.

As we will see, the Chern-Simons terms make a large set of the fields coupled to each other.

To deal with this, we employ the determinant method [58] which can give the poles of the

Green functions without the need of decoupling the equations.

We proceed by solving the linearized time-dependent equations of motion around the

different background solutions previously found. We focus on the mWSM and the xy

nematic condensate phases, since they are energetically favorable, as previously found,

and all the plots are made for the stable backgrounds. Nevertheless, we did check that

some poles of the Green function cross to the upper complex plane when one considers an

energetically unfavorable phase, signaling, as expected, a tachyonic mode. To be precise,

we will consider fluctuations on top of the xy nematic condensate solution, emerging from

the normal phase for ∆ > ∆c.

We decouple this way obtained equations in different sectors by turning on a subset of

the fields. The retarded Green function are obtained by virtue of the infalling boundary

conditions at the horizon

a ≈ (1− r)−iω/4 (ah +O(1− r)) , (5.1)

where the other coefficients of the series are fixed in terms of the ah’s. Generically there

are as many independent solutions as fields we need to turn on, fixed by the values for the

different horizon coefficients ah. The situation is different when we turn on a temporal com-

ponent of the gauge field. Then regularity at the horizon forces the corresponding ah’s to be

zero, and we can use a pure gauge solution to have a complete set of independent solutions.

In the following subsections we identify the relevant sectors and find a number of the

lowest lying poles in the corresponding Green functions.

– 8 –
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Figure 3. Real and imaginary part of the frequency of the lowest lying QNM as a function of the

parameter ∆.

5.1 The Higgs sector

Let us start by considering the fluctuations of the form

δA = e−iωtq+⊥(r) (s2dx+ s1dy) + e−iωtq+‖(r) (s2dy + s1dx) , (5.2)

with the corresponding equations of motion given by(
q′+⊥f

r

)′
+

(
ω2

rf
− Q2

1 − 3Q2
2

r

)
q+⊥ +

2Q1Q2q+‖

r
= 0 ,(

q′+‖f

r

)′
+

(
ω2

rf
− Q2

2 − 3Q2
1

r

)
q+‖ +

2Q1Q2q+⊥
r

= 0. (5.3)

Focusing on the lowest lying modes, we can track them as a function of ∆, and the result

is displayed in figure 3. As we can see, the imaginary part of the quasinormal frequencies

has three spikes as a function of ∆. The middle one corresponds to the pole hitting the

real axis and bouncing back into the lower half plane. This happens exactly at the critical

∆c. If one had instead considered the mWSM solutions, these modes would have continued

their journey to the upper half plane, signaling the instability towards this new phase. The

other spikes in Im(ω) correspond to particular values of ∆ where two complex conjugate

frequencies collapse rendering the pole to be purely imaginary, which happens at ∆ ≈ 3.35

and ∆ ≈ 9.10.

The lowest lying QNM controls the behavior of the systems after a sudden quench [59].

Based on this observation, one can infer that there might be a characteristic quantum

critical region near the phase transition where the dynamical response of some operators

change from being oscillatory to purely diffusive. This sector is also stable for the nematic

solutions. However, this will not be the case for the Goldstone sector, which we turn to next.

5.2 The Goldstone sector

This sector arises from turning on the perturbations of the form

δA = e−iωt(s0at(0)(r) + s3at(3)(r))dt+ e−iωt(s0az(0)(r) + s3az(3)(r))dz+

+ e−iωtq−⊥(r) (s2dx− s1dy) + e−iωtq−‖(r) (s1dx− s2dt) . (5.4)

– 9 –
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The equations of motion read(
a′t(0)

r

)′
+12λ

(
Q2

1az(3)

)′−12λ
(
Q2

2az(3)

)′
= 0 ,(

a′z(0)f

r

)′
+12λ

((
Q2

1at(3)

)′−(Q2
2at(3)

)′)
+
ω2az(0)

rf
+24iλω

(
q−⊥Q

′
1−q−‖Q′2

)
+96λBa′t(0) = 0 ,(

q′−‖f

r

)′
− iωat(3)Q2

rf
+12iλωaz(0)Q

′
2+

(
ω2

rf
+
Q2

1−Q2
2

r

)
q−‖= 0 ,(

q′−⊥f

r

)′
+
iωat(3)Q1

rf
+12iλωaz(0)Q

′
1+

(
ω2

rf
−Q2

1−Q2
2

r

)
q−⊥= 0 ,(

a′t(3)

r

)′
+12λ

(
Q2

1−Q2
2

)
a′z(0)−

2at(3)
(
Q2

1+Q2
2

)
rf

+
2iω

(
Q1q−⊥−Q2q−‖

)
rf

+24λBa′z(3) = 0 ,(
a′z(3)f

r

)′
+12λ

(
Q2

1−Q2
2

)
a′t(0)−24λBa′t(3)+

(
ω2

rf
−2

Q2
1+Q2

2

r

)
az(3) = 0, (5.5)

which are subject to the constraints

24iλBωaz(3) + 12iλω
(
Q2

1 −Q2
2

)
+
iωa′t(3)

r
+

2f

r

(
Q2

1

(
q−⊥
Q1

)′
−Q2

2

(
q−‖

Q2

)′)
= 0 ,

a′t(0 + 12λr
(
8Baz(0) +

(
Q2

1 −Q2
2

)
az(3)

)
= 0. (5.6)

The structure of the equations of motion here is much more involved than in the Higgs

sector since more fields are mutually coupled. However, in the normal phase, it turns out

that this sector reduces to a copy of the Higgs sector with extra gauge fields that at low

frequencies yield a pole at ω = 0. At the phase transition the massive scalar modes hit the

origin giving a Goldstone mode and the diffusive modes related to the gauge fields. The

Goldstone mode remains gapless, as it should, while the diffusive modes of the mWSM

phase yield the complex modes plotted in figure 4.

Notice that all the previously discussed features of these modes appear in the vicinity

of the phase transition, as shown in figure 4, with the region close to the phase transition

zoomed in figure 5. At large ∆ the position of the pole slowly approaches the origin. The

equivalent of these modes for the nematic phase would cross towards the upper half plane,

signaling the instability of that phase.

6 Anomaly induced transport

We now turn to the analysis of the transport coefficients in the xy nematic condensate

phase. As a first step, we include chemical potentials for the electromagnetic and the U(1)

isospins and generalize the boundary conditions (3.8) to account for these newly introduced

sources

A(rb) = ∆ (sxdx+ sydy) + xBs0dy + (s0µ+ s3µ3) dt . (6.1)

We then also generalize our ansatz for the bulk fields so that it takes the form

A(r) =
(
Qx(1)(r)sx +Qx(2)(r)sy

)
dx+

(
Qy(2)(r)sy +Qy(1)(r)sx

)
dy + xB s0 dy

+
(
At(0)(r)s0 +At(3)(r)s3

)
dt+

(
Az(0)(r)s0 +Az(3)(r)s3

)
dz . (6.2)
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Figure 4. Real and imaginary part of the frequency of the lowest lying QNM as a function of the

parameter ∆.
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Figure 5. Real and imaginary part of the lowest lying QNM frequencies a function of ∆.

These 8 fields are coupled to each other as can be seen from the following equations of

motion(
A′t(0)
r

)′
+48nλBA′z(0)+6nλ

(
Az(0)Qx(1)Qy(2)

)′−6nλ
(
Az(0)Qy(1)Qx(2)

)′
= 0(

A′z(0)f

r

)′
+48nλBA′t(0)+6nλ

(
At(0)Qx(1)Qy(2)

)′−6nλ
(
At(0)Qy(1)Qx(2)

)′
= 0(

Q′x(1)f

r

)′
+

(
A2

t(3)

rf
−
A2

z(3)+Q
2
y(2)

r

)
Qx(1)+24λc(n)

(
Az(3)A

′
t(0)−A′z(3)At(0)

)
Qy(2)+

Qx(2)Qy(1)Qy(2)

r
= 0(

Q′y(2)f

r

)′
+

(
A2

t(3)

rf
−
A2

z(3)+Q
2
x(1)

r

)
Qy(2)+24λc(n)

(
Az(3)A

′
t(0)−A′z(3)At(0)

)
Qx(1)+

Qx(2)Qy(1)Qx(1)

r
= 0(

Q′x(2)f

r

)′
+

(
A2

t(3)

rf
−
A2

z(3)+Q
2
y(1)

r

)
Qx(2)+24λc(n)

(
Az(3)A

′
t(0)−A′z(3)At(0)

)
Qy(1)+

Qy(2)Qy(1)Qx(1)

r
= 0(

Q′y(1)f

r

)′
+

(
A2

t(3)

rf
−
A2

z(3)+Q
2
x(2)

r

)
Qy(1)+24λc(n)

(
Az(3)A

′
t(0)−A′z(3)At(0)

)
Qx(2)+

Qx(2)Qy(2)Qx(1)

r
= 0(

A′z(3)f

r

)′
+48nλBA′t(0)+24λc(n)

(
Qx(1)Qy(2)−Qx(2)Qy(1)

)
−
Az(3)|Q|2

r
= 0(

A′t(3)
r

)′
+48nλBA′z(0)+24λc(n)

(
Qx(1)Qy(2)−Qx(2)Qy(1)

)
−
At(3)|Q|2

r
= 0. (6.3)
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Figure 6. Phase diagrams at finite µ (left) and µ3 (right). The phase boundaries are represented

by the blue lines.

Here, we have defined |Q|2 = Q2
x(1)+Q

2
x(2)+Q

2
y(1)+Q

2
y(2), and these fields are also subject to

the constraint in eq. (3.10). For the sake of facilitating the numerical computation, we will

work exclusively with n = 2, although we expect a similar qualitative behavior for n = 3.

We analyze the phase transition with the abelian and isospin chemical potentials,

respectively, µ and µ3, turned on. The results are displayed in figure 6. In particular, we

find that at ∆ = 0 and µ3 large enough the nematic phase is favored with respect to the xy

nematic condensate. On the other hand, the xy nematic condensate is (at µ3 = 0) favored

at large enough ∆. We therefore expect that at a certain finite ∆ there will be a first

order phase transition between the two phases. The actual computation of this critical

line is quite involved and is beyond the scope of this work. Furthermore, since we use

these sources only to compute the anomalous transport coefficients, the shape of the phase

boundary is unimportant as long as there is a finite range of the parameter space where

the two phases are stable.

Now we are ready to study the anomalous transport. We focus on the effect of the

phase transition on the isospin current defined from the UV expansion

Az(3) ≈ −Jz(3)r
2 + . . . (6.4)

In the left panel of figure 7 we show the isospin current Jz(3) computed in the presence of

the abelian chemical potential, µ. It is convenient to perform the following rescaling

Jz(3) =
µT 2

8π2
Z∆, (6.5)

rendering Z∆ approximately independent of µ, which holds at least for low enough values

of the chemical potential. We see that Z∆ ≈ ∆2 for small ∆ while it becomes constant for

large ∆. Therefore, the effect of the condensate is to deplete the isospin current.

Let us now consider µ = 0, µ3 6= 0 and define ZB as

Jz(3) = ZB(∆)
c(n)µ3

4π2
B. (6.6)
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The isospin chemical potential also leads to the depletion of isospin carriers, which is

consistent with the fact that the xy nematic condensate is charged under s3. Finally, as

the system is deeper in the condensed phase, the isospin current decreases in comparison

with the mWSM phase, see the right panel of figure 7.

7 Discussion and future directions

To summarize, in this paper we studied the phase diagram of the holographic model featur-

ing a mWSM phase [50], using a more general ansatz for the bulk fields than for the mWSM

while keeping the same boundary conditions. As the main result, we find that a novel xy

nematic condensate phase emerges at strong coupling ∆. We then characterize this phase

through the lowest lying QNMs and the anomalous transport coefficients. In the case of

the latter, we find a depletion of isospin charge carriers as compared to the mWSM phase.

These results should motivate future work in a few different directions. First of all, we

would like to point out that the analysis of the QNMs was performed at zero momentum.

We expect that analogous computations at finite momenta might be insightful as was the

case for the p-wave superfluid [60, 61]. In particular, an analysis of the sound modes in

the xy nematic phase may reveal some nontrivial features. On the other hand, magnetic

field might induce translational symmetry breaking, analogously as for the p-wave super-

fluid [62], which is an interesting problem worthwhile pursuing in the case of the xy nematic

condensate.

Comparing again with the p-wave superfluids, one might expect to obtain further

insights to this system from the entanglement entropy [63, 64]. To do so, the effects

of the back-reaction should be considered, as they encode properties of the dual stress-

energy tensor. Related to that, we may study the gravitational anomaly in this setting,

which might leave, on the other hand, a strong imprint on the viscosities, as was recently

discussed in the context of holographic WSMs [65]. Furthermore, the (shear) viscosity can

also probe the nodal topology [66].
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The phase transition into the xy nematic condensate should be further characterized

in terms of the critical exponents, as was the case for the holographic WSM [67], and their

imprint on various observables. In particular, the optical conductivity displays universal

scaling features predicted from the quantum-critical field theory [51, 68], leading to another

open problem to address within the holographic setup.

We would like to point out that in the model we studied, only one fermion species is

included, which greatly simplifies the analysis, but is rather artificial, as in general, there

are at least two coupled species. To account for this coupling, adding a second gauge field

and to study the associated anomalies is an interesting open direction. Furthermore, when

considering the interacting left and right fermions, a translational symmetry breaking phase

on the lattice corresponds to the opening of the mass gap at the Weyl points at strong

coupling, yielding a nontrivial quantum-critical behavior [51]. It would be important to

consider whether a similar phenomenology can be realized in holography. Finally, the

lattice realization of the holographic xy nematic condensate is also an interesting open

problem worthwhile pursuing in the future.
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