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1 Introduction

Scattering amplitudes and cross sections simplify in infrared kinematic limits enabling in-

sight into their all orders perturbative structure. One of the most powerful approaches

to studying the all orders structure is the use of renormalization group (RG) techniques.

Depending on the particular nature of the kinematic limit considered, these RG equations

often describe evolution not just in the standard virtuality scale, µ, but also in other ad-

ditional physical scales. A common example in gauge theories are rapidity evolution equa-

tions, which allow for the resummation of infrared logarithms associated with hierarchical

scales in rapidity. Classic examples include the Sudakov form factor [1], the Collins-Soper

equation [2–4] describing the pT spectrum for color singlet boson production in hadron

colliders, the BFKL evolution equations describing the Regge limit [5–7], and the rapidity

renormalization group [8, 9] describing more general event shape observables.

There has recently been significant effort towards understanding subleading power

corrections to infrared limits [10–58] with the ultimate goal of achieving a systematic

expansion, much like for problems where their exists a local operator product expansion

(OPE). Using Soft Collinear Effective Theory (SCET) [59–62] subleading power infrared

logarithms were resummed to all orders using RG techniques for a particular class of event

shape observables where only virtuality evolution is required. This was achieved both in

pure Yang-Mills theory [44], and including quarks in N = 1 QCD [57], and a conjecture
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for the result including quarks in QCD was presented in [57]. Subleading power infrared

logarithms have also been resummed for color singlet production at kinematic threshold,

when only soft real radiation is present [42, 51, 55].

In this paper we build on the recent advances in understanding the structure of sub-

leading power renormalization group equations in SCET, and consider for the first time the

resummation of subleading power rapidity logarithms. Using renormalization group consis-

tency arguments, we derive a class of subleading power rapidity evolution equations. These

equations involve mixing into new class of operators, which play a crucial role in the renor-

malization group equations. We call these operators “rapidity identity operators”, and we

derive their renormalization group properties, and solve the associated RG equations.

We apply our evolution equations to derive the all orders structure of the power sup-

pressed leading logarithms for the energy-energy correlator (EEC) event shape in N = 4

super-Yang-Mills (SYM) theory in the back-to-back (double light cone) limit. Denoting

these power suppressed contributions by EEC(2), we find the remarkably simple formula

EEC(2) = −
√

2as D

[√
Γcusp

2
log(1− z)

]
, (1.1)

where D(x) = 1/2
√
πe−x

2
erfi(x) is Dawson’s integral, as = αs/(4π)CA, and Γcusp is the

cusp anomalous dimension [63]. This result provides insight into new all orders structures

appearing in subleading power infrared limits. Since this extends the classic Sudakov ex-

ponential [64], we will refer to this functional form as “Dawson’s Sudakov”. The particular

example of the EEC observable was chosen in this paper, since its exact structure for

generic angles is known to O(α3
s) due to the remarkable calculation of [65], and we find

perfect agreement with the expansion of their results in the back-to-back limit to this order,

providing a strong check of our techniques. While we focus on the EEC in N = 4, this

observable has an identical resummation structure to pT resummation, and therefore the

techniques we have developed apply more generally, both to the EEC in QCD, and to the

pT distribution of color singlet bosons at hadron colliders.

An outline of this paper is as follows. In section 2 we review the known structure of

the EEC observable in the back-to-back limit, and relate it to the case of the pT spectrum

of color singlet bosons, which is perhaps more familiar to the resummation community. In

section 3 we perform a fixed order calculation of the EEC at subleading power in SCET,

which allows us to understand the structure of the subleading power rapidity divergences,

and provides the boundary data for our RG approach. In section 4 we study the structure

of subleading power rapidity evolution equations, introduce the rapidity identity opera-

tors, and analytically solve their associated evolution equations. In section 5 we apply

these evolution equations to the particular case of the EEC in N = 4 SYM to derive the

subleading power leading logarithmic series, and we comment on some of the interesting

features of the result. We also compare our result with the fixed order calculation of [65]

expanded in the back-to-back limit, finding perfect agreement. We conclude in section 6,

and discuss many directions for improving our understanding of the infrared properties of

gauge theories at subleading powers.
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2 The energy-energy correlator in the back-to-back limit

In this section we introduce the EEC observable, and review its structure in the back-to-

back limit at leading power. We then discuss the resummation of the associated infrared

logarithms using the rapidity renormalization group approach. This will allow us to intro-

duce our notation, before proceeding to subleading power.

An additional goal of this section is to make clear the relation between the EEC in the

back-to-back limit and more standard pT resummation, which may be more familiar to the

resummation community. This should also make clear that the techniques we develop are

directly applicable to the case of pT resummation, although we leave a complete treatment

of pT resummation to a future publication due to complexities related to the treatment of

the initial state hadrons. Some other recent work towards understanding subleading power

factorization for pT can be found in [34, 37].

For a color singlet source, the EEC is defined as [66]

EEC(χ) =
∑

a,b

∫
dσV→a+b+X

2EaEb
Q2σtot

δ(cos(θab)− cos(χ)) , (2.1)

where the sum is over all pairs of final state particles, Ea are the energies of the particles,

and θab are the angles between pairs of particles. Energy correlators are a theoretically

nice class of event shape observable, since they can be directly expressed in terms of energy

flow operators [67–70]

E(~n) =

∞∫

0

dt lim
r→∞

r2niT0i(t, r~n) . (2.2)

In particular, the EEC is given by the four-point Wightman correlator

1

σtot

dσ

dz
=
〈OE(~n1)E(~n2)O†〉

〈OO†〉 , (2.3)

where we have introduced the convenient variable

z =
1− cosχ

2
, (2.4)

and O is a source operator that creates the excitation.

There has been significant recent progress in understanding the EEC, both in QCD, as

well as in conformal field theories. In QCD, the EEC has been computed for arbitrary angles

at next-to-leading order (NLO) analytically [71, 72] and at NNLO numerically [73, 74]. In

N = 4 it has been computed for arbitrary angles to NNLO [65, 70]. There has also

been significant progress in understanding the limits of the EEC, namely the collinear

(z → 0) limit [75–79], and the back-to-back (z → 1) limit [79–82]. Here we will focus

on the EEC in the back-to-back limit, where it exhibits Sudakov double logarithms. As

we will explain shortly, these double logarithms are directly related to those appearing

for transverse momentum resummation. In this section we follow closely the factorization
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π−θij
2 ≈ 1

Q

∣∣∣∣
~kh⊥,i

xi
+

~kh⊥,j

xj
− ~k h⊥,s

∣∣∣∣

Figure 1. The kinematics of the EEC in the back-to-back limit. Wide angle soft radiation recoils

the two jets in a manner identical to the case of pT for color singlet boson production in hadronic

collisions. This provides a precise relation between the factorization formulas in the two cases.

(Figure from [81].)

derived in [81] using the rapidity renormalization group [8, 9]. An alternative approach to

studying this limit directly from the four point correlator was given in [79].

The back-to-back limit corresponds to the region of phase space where there are two

collimated jets accompanied by low energy soft radiation, which recoils the directions of the

jets so that they are not exactly back-to-back. This configuration is illustrated in figure 1.

A simple exercise shows that the angle between two partons correlated by the EEC is

related to the transverse momentum of these particles within the jets and the transverse

momentum of the soft radiation that recoils these jets, by

1− z =
1

Q2

∣∣∣∣∣
~kh⊥,i
xi

+
~kh⊥,j
xj
− ~kh⊥,s

∣∣∣∣∣

2

+O(1− z) . (2.5)

Here xi = 2Ei/Q, where Q is the center of mass energy. This relation makes clear the

connection between the EEC in the back-to-back limit and transverse momentum resum-

mation, which we will shortly extend to subleading powers.

To describe the EEC in this limit, we use an effective field theory description of the

soft and collinear dynamics, where the relevant modes have the scalings

ps ∼ Q(λ, λ, λ) , pc ∼ Q(λ2, 1, λ) , pc̄ ∼ Q(1, λ2, λ) . (2.6)

Here λ is a power counting parameter and is defined as

λ ∼
√

1− z . (2.7)
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This scaling defines what is referred to as an SCETII theory [83]. Crucially, unlike in

SCETI, the soft and collinear modes in SCETII have the same virtualities, but different

rapidities. This factorization into soft and collinear modes therefore introduces divergences

as k+/k− →∞ or k+/k− → 0 [9, 84–87], which are referred to as rapidity divergences. To

regulate these divergences, one must introduce a regulator that breaks boost invariance,

allowing the soft and collinear modes to be distinguished. Once such a regulator is intro-

duced, renormalization group evolution equations can be derived to resum the associated

rapidity logarithms [8, 9].

Using the effective field theory, one can systematically expand the cross section for

either transverse momentum, or for the EEC in powers of the observable. For the EEC,

we write

dσ

dz
=

dσ(0)

dz
+

dσ(2)

dz
+

dσ(4)

dz
+ · · ·

= EEC(0) + EEC(2) + EEC(4) , (2.8)

where we will occasionally use the second notation, since it is more compact. Here

dσ(0)

dz
∼ δ(1− z) +

[O(1)

1− z

]

+

, (2.9)

is referred to as the leading power cross section, and describes all terms scaling like O((1−
z)−1) modulo logarithms. All the other terms in the expansion of the cross section are

suppressed by explicit powers of (1 − z)

dσ(2k)

dz
∼ O((1− z)k−1) . (2.10)

The focus of this paper will be on deriving the structure of the leading logarithms in

dσ(2)/dz, which is also referred to as the next-to-leading power (NLP) cross section.

For the leading power cross section, dσ(0)/dz, one can derive a factorization formula

describing in a factorized manner the contributions of the soft and collinear modes to the

EEC in the z → 1 limit [81]

dσ(0)

dz
=

1

2

∫
d2~k⊥

∫
d2~b⊥
(2π)2

e−i
~b⊥·~k⊥H(Q,µ)JqEEC(~b⊥,µ,ν)J q̄EEC(~b⊥,µ,ν)SEEC(~b⊥,µ,ν)δ

(
1−z−

~k2
⊥
Q2

)
,

(2.11)

in terms of a hard function, H, jet functions, J , and a soft function, S. This factorization

is nearly equivalent to the factorization for the pT for color singlet boson production (This

factorization formula was originally derived in [2–4], and was derived in terms of the rapidity

renormalization group used here in [8, 9]),

1

σ

d3σ(0)

d2~pTdY dQ2
= H(Q,µ)

∫
d2~b⊥
(2π)2

ei
~b⊥·~pT [B ×B] (~b⊥, µ, ν)S⊥(~b⊥, µ, ν) , (2.12)

up to the fact that the jet functions are moved to the initial state, where they are referred

to as beam functions [88]. Apart from our intrinsic interest in understanding the kinematic
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limits of the EEC, this relation between the EEC and pT is one of our primary motiva-

tions for studying the EEC. Lessons derived from the EEC can be directly applied to

understanding the structure of subleading power logarithms for pT , which is a phenomeno-

logically important observable at the LHC, for example, for precision studies of the Higgs

boson. Here we briefly discuss the objects appearing in the factorization formula, both

to emphasize the close connections between the EEC and pT , as well as to introduce the

general structure of the µ and ν rapidity evolution equations.

The hard functions, H(Q,µ), appearing in the factorization formulas for the EEC

and pT are identical. They describe hard virtual corrections, and satisfy a multiplicative

renormalization group equation (RGE) in µ

µ
d

dµ
H(Q,µ) = 2

[
Γcusp(αs) ln

Q2

µ2
+ γH(αs)

]
H(Q,µ) . (2.13)

They are independent of rapidity. The soft functions appearing in both pT and the EEC

can be proven to be identical [81]. They are matrix elements of Wilson lines, which for

quarks and gluons are defined as

Sq(~pT ) =
1

Nc

〈
0
∣∣Tr
{

T
[
S†n̄Sn

]
δ(2)(~pT − P⊥)T

[
S†nSn̄

]{∣∣0
〉
,

S(~pT ) =
1

N2
c − 1

〈
0
∣∣Tr
{

T
[
S†n̄Sn

]
δ(2)(~pT − P⊥)T

[
S†nSn̄

]}∣∣0
〉
. (2.14)

Here T and T denote time and anti-time ordering, and Sn and Sn denote Wilson lines in

the fundamental and adjoint representations, respectively. Explicitly,

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·A(x+ sn)

]
, (2.15)

and similarly for the adjoint Wilson lines. These soft functions satisfy the µ and ν RGEs

ν
d

dν
S(~pT ) =

∫
d~qTγ

S
ν (pT − qT )S(~qT ) ,

µ
d

dµ
S(~pT ) = γSµS(~pT ) , (2.16)

with the anomalous dimensions

γSµ = 4Γcusp(αs) log
(µ
ν

)
,

γSν = 2Γcusp(αs)L0 (~pT , µ) . (2.17)

Here the color representation is implicit in the cusp anomalous dimension, and L0 is a

standard plus function (see e.g. [89] for a detailed discussion of two-dimensional plus dis-

tributions, and for a definition of the conventions that are used here). Since we will

ultimately be interested in N = 4 where all particles are in the same representation, we

will drop the quark and gluon labels on the soft functions.

The only difference between pT and the EEC lies in the collinear sector, namely whether

one uses beam functions or jet functions. The jet functions for the EEC were recently

– 6 –



J
H
E
P
0
7
(
2
0
2
0
)
0
0
5

computed to NNLO [90, 91]. Since in this paper we will be focused on resummation at LL,

we can always choose to run all functions to the jet scale, and thereby avoid a discussion

of the collinear sector for simplicity. The structure of the power corrections to the beam

(jet) functions, and their matching to the parton distributions (fragmentation functions)

is interesting, and will be presented in future work, since it is important for a complete

understanding of pT at subleading powers.

These renormalization group evolution equations in both µ and ν allow for a derivation

of the all orders structure of logarithms in the z → 1 limit, at leading order in the (1 − z)

expansion. Performing the renormalization group evolution, one finds for a non-conformal

field theory [81] (i.e. allowing for a running coupling)

dσ(0)

dz
=

1

4

∞∫

0

dbbJ0(bQ
√

1−z)H(Q,µh)jqEEC(b,b0/b,Q)j q̄EEC(b,b0/b,Q)SEEC(b,µs,νs)

·
(
Q2

ν2
s

)γrEEC(αs(b0/b))

exp



µ2h∫

µ2s

dµ̄2

µ̄2
Γcusp(αs(µ̄)) ln

b2µ̄2

b20

+

b20/b
2∫

µ2h

dµ̄2

µ̄2

(
Γcusp(αs(µ̄)) ln

b2Q2

b20
+γH(αs(µ̄))

)
−

b20/b
2∫

µ2s

dµ̄2

µ̄2
γsEEC(αs(µ̄))


 . (2.18)

For the particular case of a conformal theory, this expression simplifies considerably, both

due to the fact that the coupling doesn’t run, and also since in a conformal field theory

there is an equivalence between the rapidity anomalous dimension and the soft anomalous

dimension [87, 92]. Combining this equivalence with the relations for the soft anomalous

dimension derived in [93] (see also [94] for recent work on relations between different soft

functions), we have

γr = −G0 + 2B , (2.19)

where B is the virtual anomalous dimension (the coefficient of δ(1 − x) in the DGLAP

kernel), and G0 is the collinear anomalous dimension. We then find

dσ(0)

dz
=

1

4

∞∫

0

db bJ0(bQ
√

1− z)H(Q,µh)jqEEC(b, b0/b,Q)j q̄EEC(b, b0/b,Q)SEEC(b, µs, νs)

exp

[
Γcusp log2

(
b2Q2

b20

)
+ 2B log

(
b2Q2

b20

)]
. (2.20)

Both the cusp anomalous dimension, as well as the B anomalous dimension are known

from integrability [95–99]. It is interesting that only the two anomalous dimensions that

are known from integrability appear in the final result. The collinear anomalous dimen-

sion, which drops out of the final result in a conformal theory, is known to four loops in

N = 4 [100].

This formula describes the leading power asymptotics of the EEC in the z → 1 limit to

all orders in the coupling (Indeed, in N = 4, it should also apply at finite coupling). The

– 7 –
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goal of this paper will be to start to understand the all orders structure of the subleading

power corrections to this formula in (1−z). While we do not have a complete factorization

formula or all orders understanding, we will be able to deduce much of the structure from

general consistency and symmetry arguments. Ultimately, we would like to be able to

classify the operators that appear in the description of the subleading powers in this limit,

and understand their renormalization group evolution. This paper represents a first step

in this direction.

We conclude this section by noting that the result of eq. (2.20) can also be derived in a

conformal field theory by directly considering the structure of the four point correlator in

the double light cone limit [79] (see also [101]), and using the duality between the correlator

and a Wilson loop [102], as well as known results for the structure constants [103]. It would

be interesting to understand systematically the OPE of the correlator in this limit and the

operators that appear from this perspective. There has been some study of the double

light cone limit in [104]. It would be interesting to understand it in more detail and

develop a systematic OPE, much like exists in the collinear limit [105–113]. It would also

be interesting if the recently introduced light ray OPE [76–78] can provide insight into this

limit. However, we leave these directions to future work.

3 Fixed order calculation of the EEC at subleading power

Having discussed the structure of the EEC in the back-to-back limit, as well as the fac-

torization theorem describing its leading power asymptotics, in this section we begin our

study of the subleading corrections in powers of (1 − z) by performing a fixed order cal-

culation. This is important both for understanding the structure of the subleading power

rapidity divergences for the EEC, and for providing the boundary conditions for the renor-

malization group studied later in the paper. We will perform this calculation both in QCD,

as well as in N = 4. We follow closely the calculation for the power corrections for pT
presented in [46]. In section 3.2 we summarize some of the intuition derived from this

calculation, which provides significant insight into the structure of the subleading power

renormalization group evolution, which we will then study in more detail in section 4.

3.1 Leading order calculation in N = 4 SYM and QCD

In this section, we perform the leading order (LO) calculation of the EEC at NLP in both

QCD and N = 4. This section is rather technical, and assumes some familiarity with fixed

order calculations at subleading power in SCET (see e.g. [31, 35, 45, 46] for more detailed

discussions).

The EEC observable can be written as

dσEEC

dy
=
∑

a,b

∫
dΦV→a+b+X |MV→a+b+X |2

EaEb
q2
V

δ

(
y − cos2 θab

2

)
, (3.1)

– 8 –
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where we have used y ≡ 1 − z, so that y → 0 in the back-to-back limit. To perform the

calculation it is convenient to write the observable definition in a boost invariant manner

dσEEC

dy
=

1

2(1−y)q2
V

∑

a,b

∫
dΦV→a+b+X |MV→a+b+X |2 pa ·pb δ

[
y−
(

1− q2
V pa ·pb

2pa ·qV pb ·qV

)]
,

(3.2)

where qµV is the momentum of the vector boson. This definition is convenient since if we

are correlating a particular pair of particles {a, b}, we can boost the system such that the

particles being correlated are back-to-back and the vector boson (or source) recoils against

the unmeasured radiation in the perpendicular direction.

Given this setup, we begin by considering a single perturbative emission, which is

sufficient for the LO calculation. We will denote by pµa and pµb the momenta of the particles

we are correlating, and kµ the momentum of the unmeasured radiation. This translates to

the following choice of kinematics1

pµa = (q−V − k−)
nµ

2
, kµ = k−

nµ

2
+ k+ n̄

µ

2
+ kµ⊥ ,

pµb = (q+
V − k+)

n̄µ

2
, qµV = q−V

nµ

2
+ q+

V

n̄µ

2
+ kµ⊥ . (3.3)

The measurement of the EEC observable then takes the form of the following constraint

y = 1− (q−V − k−)(q+
V − k+)q2

V

q+
V (q−V − k−)q−V (q+

V − k+)
=
q+
V q
−
V − q2

V

q+
V q
−
V

=
~k 2
⊥

q2
V − ~k 2

⊥
, (3.4)

which we can rewrite as a constraint on ~k 2
⊥

δ

(
y −

~k 2
⊥

q2
V − ~k 2

⊥

)
= δ

(
~k 2
⊥ − q2

V

y

1− y

)
q2
V

(1− y)2
. (3.5)

This extends the relation between the EEC and pT to subleading powers.

Master formula. Using this result for the measurement function, the cross section for

the EEC with one emission reads

dσEEC

dy
=

1

2(1− y)3

∑

a,b

∫
dΦ|MV→qq̄g|2 pa · pb δ

(
~k 2
⊥ − q2

V

y

1− y

)
.

For our particular choice of frame where pµa has no ⊥ component, we have [114]
∫

dd−2pa⊥
(2π)d−2

=
∑

n

d2p⊥,n

∫
dd−2pa⊥
(2π)d−2

δ(d−2)(pµa⊥) =
|~pa|d−2

(2π)d−2

∫
dΩd−2 . (3.6)

Using
∫

d−
d
paδ+(p2

a) =
1

2

∫
dp−a
(2π)

dp+
a

(2π)
(2π)θ(p+

a + p−a )δ(p+
a p
−
a )|~pa|2

∫
dΩd−2

(2π)d−2

=
1

2(2π)d−1

∫
dp−a
p−a

θ(p−a )|p−a /2|2
∫

dΩd−2 = C ×
∫

dp−a p
−
a , (3.7)

1Note that here pµa,b and kµ are outgoing while qµV is incoming.
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we can write the cross section with a single emission as

dσEEC

dy
∼ 1

2(1− y)3

∑

a,b

∫
d−
d
kδ+(k2)|MV→qq̄g|2 (pa · pb)2 δ

(
~k 2
⊥ − q2

V

y

1− y

)

∼ 1

2(1− y)3

∑

a,b

∫ q−

0

dk−

k−

∫
d~k 2
⊥
µ2ε

~k 2ε
⊥
|MV→qq̄g|2 (pa · pb)2 δ

(
~k 2
⊥ − q2

V

y

1− y

)

∼ 1

2(1− y)3

(
µ2

q2
V

1− y
y

)ε∑

a,b

∫ q−

0

dk−

k−
|MV→qq̄g|2(k−, y) (pa · pb)2(k−, y) , (3.8)

where everything is a function of k−, y and q2
V . Up to this point, we have not expanded

anything, but we have enforced the measurement, momentum conservation and the choice

of frame. We can now express k− as a dimensionless fraction x via

x =
k−

q−
, (3.9)

and we can write all Mandelstam invariants in terms of x and y

k− = xq− , ~k 2
⊥ = q2

V

y

1− y , k+ =
~k 2
⊥
k−

=
q2
V

q−
y

1− y
1

x
,

q2
V ≡ q+q− − ~k 2

⊥ = q+
V q
−
V − q2

V

y

1− y =⇒ q2
V = q+

V q
−
V (1− y) ,

sab(x, y) = 2pa · pb = (q−V − k−)(q+
V − k+) = q+

V q
−
V (1− x)

(
1− y

x

)

= q2
V

(1− x)

(1− y)

(
1− y

x

)
,

sak(x, y) = 2pa · k = (q−V − k−)k+ = q2
V

y

(1− y)

(1− x)

x
,

sbk(x, y) = 2pb · k = (q+
V − k+)k− = q2

V

x

(1− y)

(
1− y

x

)
. (3.10)

With these expressions one can easily check that

sab + sak + skb = q2
V , (3.11)

with no power corrections. We can now use the expressions for sab to arrive at

dσEEC

dy
=

1

(1− y)5

(
µ2

q2
V

1− y
y

)ε∑

a,b

∫ 1

0

dx

x
(1− x)2

(
1− y

x

)2
|MV→qq̄g|2(x, y) . (3.12)

Expanding in the collinear limit is now the same as expanding in y, and we find up to NLP

dσEEC

dy
=

(
µ2

q2
V y

)ε∑

a,b

∫ 1

0

dx

x
(1−x)2

[
A(0)(x)+A(2)(x)+yA(0)(x)

(
5− 2

x
−ε
)]

. (3.13)

Here A(0)(x) and A(2)(x) are the expansion of the squared matrix elements in the collinear

limits,

|MV→qq̄g|2(x, y) = A(0)(x) +A(2)(x) + yA(0)(x) + · · · . (3.14)
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Rapidity regulator. The expression for the EEC in eq. (3.13) is divergent as x →
0. This is a rapidity divergence and must be regulated with a rapidity regulator. Here

we present the result using pure rapidity regularization [46], which greatly simplifies the

calculation, particularly for the constant (the non-logarithmically enhanced term). We

have also computed the logarithm using the more standard η-regulator [8, 9], and find an

identical result.

We take as a regulator the rapidity in the n-collinear sector, normalized by the rapidity

of the color singlet2

e−YV eYn =
q+
V

q−V

p−1 + k−

p+
1 + k+

=
q+
V

k+
=
q+
V q
−
V x

~k 2
⊥

=
q+
V q
−
V x(1− y)

q2
V y

=
x

y
. (3.15)

The rapidity regulated result is then given by

dσEEC

dy
=

(
µ2

q2
V y

)ε
yη

υη

∑

a,b

∫ 1

0

dx

x1+η
(1− x)2

[
A(2)(x) + yA(0)(x)

(
5− 2

x
− ε
)]

, (3.16)

which can be straightforwardly integrated.

Results. Plugging in the expression for A(0) and A(2) in QCD and N = 4 gives the result

for the EEC up to NLP

1

σ0

dσQCD
EEC

dy
= −1

y

(
log y +

3

4

)
− 5 log y − 9

4
+O(y) ,

1

σ0

dσN=4
EEC

dy
= − log y

y
− 2 log y +O(y) . (3.17)

This agrees with the expansion of the full angle result for N = 4 in [68–70], as well as

the classic QCD result [66] for both the logarithm and the constant. This agreement

(in particular for the constant) illustrates that we have the correct effective field theory

setup, and that we understand the regularization of rapidity divergences at subleading

power. This is further supported by our calculation of the subleading power corrections

for the case of pT in [46], which was performed using the same formalism. While this

expansion is an inefficient way to compute these subleading terms, which can much more

easily be obtained by performing the full calculation and expanding the result, the ability

to systematically compute the terms at each order in the power expansion will allow us to

perform an all orders resummation by deriving renormalization group evolution equations

in rapidity.

3.2 Physical intuition for subleading power rapidity divergences

In this section we wish to summarize some of the general lessons learned from the above

fixed order calculation (as well as from the calculation of the fixed order subleading ra-

pidity logarithms for pT in [46]), which provides significant clues into the structure of the

2In the rest frame of the decaying boson this would be 1. Here we use a slightly boosted frame, so adding

this factor is necessary to guarantee that the result is independent of the frame.
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subleading power rapidity renormalization group. Since we have shown above that the

description of the EEC in the back-to-back limit is ultimately formulated in the EFT in

terms of transverse momentum, here we will phrase all the functions in terms of transverse

momentum, however, these can straightforwardly be converted back to derive results for

the EEC. We will also phrase this discussion in terms of the η regulator [8, 9], due to the

fact that it is more familiar for most readers.

The first important observation from the fixed order calculation is that at NLP there

are no purely virtual corrections at lowest order in αs (such a correction would appear as

yδ(y) = 0). The lowest order result for the EEC in N = 4, which we use as an example

due to its simpler structure, is given by

1

σ0

dσN=4
EEC

d(1− z)
= −2 log(1− z) +O(1− z) . (3.18)

Here the single logarithm comes from real soft or collinear emissions. Since the soft and

collinear sectors lie at the same virtuality, this guarantees that at subleading power the

lowest order logarithm must be a rapidity logarithm. This can be made explicit by writing

down a general ansatz for the one-loop result. This approach was first introduced in the

SCETI case in [31]. Here we will phrase it in terms of the underlying pT dependence,

since this is perhaps more familiar to the resummation community. The general form of

the one-loop result for the NLP corrections to pT can be written as

dσ(2)

dp2
T

=

(
µ2

p2
T

)ε(
ν

pT

)η [sε
ε

+
sη
η

]
+

(
µ2

p2
T

)ε(
ν

Q

)η [cε
ε

+
cη
η

]
. (3.19)

Expanding this, we find

dσ(2)

dp2
T

=

(
cε + sε
ε

)
+

(
cη + sη
η

)
+ 2(cε + sε) log

µ

pT
+ sη log

ν

pT
+ cη log

ν

Q
. (3.20)

Demanding that there are no 1/ε or 1/η poles in the final answer imposes the conditions

cε = −sε , cη = −sη , (3.21)

and shows that the lowest order logarithm appearing in the cross section is a rapidity

logarithm.

This simple observation provides considerable insight into the structure of the sublead-

ing power renormalization group evolution equations. In [44] it was shown that the way

that a single logarithm at the first non-vanishing order can be generated is through renor-

malization group mixing. In the particular case studied in [44] there was only a virtuality

renormalization group, and therefore the single logarithm was generated by the µ-RGE.

However, here we see that for observables that have both a µ and ν RGE, this mixing will

always occur in the ν RGE, since the lowest order logarithm is always a rapidity logarithm.

Our fixed order calculation also provides insight into the structure of the cancellation of

rapidity divergences at subleading power. Although we have not written down a complete

set of SCETII operators, we briefly comment on the physical intuition for the cancellation
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of rapidity anomalous dimensions, which will then determine how renormalization group

consistency appears in the effective theory. We can consider the case of the NLP correction

from a soft quark, since this will provide the clearest picture of the differences between

rapidity divergences and virtuality divergences. At lowest order, the soft function for the

emission of a soft quark is given by

S(2)
q =

∝ µ2ενη
∫
d̄dk|k+ − k−|−ηδ+(k2)

(p2
⊥)−ε

Γ(1− ε)πε δ
d−2(p⊥ − P̂⊥) (3.22)

=
1

η
+ log

ν

p⊥
+ · · · . (3.23)

This soft function is ε finite, but exhibits the expected η divergence. This divergence

cannot be absorbed into the renormalization of this soft function, since it starts at αs, and

therefore we must find the class of operators that this soft function mixes into. We will

derive the structure of these operators in section 4.

While the fact that this operator must mix into a new operator is familiar from other

studies at NLP, what is different is that the integrand for the soft function is “1”. This

implies that an equal part of the divergence comes from when the quark goes to infinite

rapidity in either direction. This has an interesting interpretation, which can guide the

physical intuition for how the cancellation of rapidity divergences occurs. As the soft

quark goes collinear in the direction of the collinear quark, the rapidity divergence must be

cancelled by a collinear rapidity divergence from a subleading power jet function describing

two collinear quarks. One the other hand, as the soft quark goes collinear with the gluon,

it must be cancelled by a subleading power jet function involving a collinear quark and

gluon field. In pictures, the two limits are shown as

η→−∞←−−−− η→∞−−−→ . (3.24)

This is of course exactly what happens at leading power, however, at leading power the jet

functions are identical in all limits, giving a much simpler structure. The structure for the

cancellation of the rapidity divergences at subleading power implies that renormalization

group consistent subsets of operators will appear in triplets, as opposed to doublets, as was

observed in [44] for the µ-RGE. The factorization formula for a single pair of triplets will

take the (extremely) schematic form

dσ(2)

dz
= H1J

(2)
n̄ J (0)

n S(0) +H2J
(0)
n̄ J (2)

n S(0) +H3J
(0)
n̄ J (0)

n S(2) , (3.25)
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where the jet and soft functions with superscript (2) denote power suppressed functions.

In terms of pictures, we have

dσ(2)

dz
=

∣∣∣∣∣∣

∣∣∣∣∣∣

2

·
∫
dr+

2 dr
+
3 ⊗ ⊗

︸ ︷︷ ︸
Soft Quark Correction

+

∫
dω1dω2

∣∣∣∣∣∣

∣∣∣∣∣∣

2

⊗ ⊗ ⊗

︸ ︷︷ ︸
Collinear Quark Correction 1

+

∫
dω1dω2

∣∣∣∣∣∣

∣∣∣∣∣∣

2

⊗ ⊗ ⊗

︸ ︷︷ ︸
Collinear Quark Correction 2

,

(3.26)

which perhaps makes more clear schematically how the cancellation between ν anomalous

dimension occurs between the soft and collinear sectors of the theory. A similar triplet exists

from the corrections associated with soft gluon emission. Each of the power suppressed

functions in eq. (3.26) will mix in rapidity, as was illustrated for the soft function in

eq. (3.22). To perform the renormalizaton, we must therefore identify which operators are

being mixed into in each case.

It is interesting to compare this to the structure of the subleading power factoriza-

tion for SCETI event shapes, which is described in [44, 57]. There subleading power jet

functions involving two quark fields, and those involving a quark and gluon field are in sep-

arately renormalization group consistent pairings. Therefore, we find that the SCETII case

gives rise to a much tighter structure in the EFT, since it links multiple hard scattering

operators. Note that this also suggests that the issue of endpoint divergences is harder to

avoid, although this is a topic that we leave for future study.

In conclusion, we have learned a number of general lessons about the subleading power

ν-RG from our perturbative calculation. In particular, we have seen that subleading power

corrections to the EEC (and more generally any observable that involves both rapidity and

virtuality renormalization group flows) involve a mixing in rapidity at the first non-trivial

order into a new class of operators. In section 4 we will derive the structure of these new

operators by studying the consistency of the structure of the renormalization group.
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4 Rapidity renormalization group at subleading power

In the previous section we have shown that for the EEC, and more generally for subleading

corrections to observables with both rapidity and virtuality scales, the subleading power

rapidity RGE will always involve mixing into additional operators. The goal of this section

will be to derive the structure of the operators that arise from this mixing, as well as their

renormalization group properties. As in our study of thrust at subleading powers [44], our

approach to gain a handle on the structure of the RG equations at subleading power will be

to use an illustrative example of subleading power jet and soft functions whose renormal-

ization group structure can be obtained from the known leading power RG equations. Once

the particular form of the operators is derived, they can then be applied in other situations.

We will find that for the case of rapidity divergences considered here, the use of an

illustrative example is more subtle than for the µ RGE due to the appearance of additional

divergences that appear. We will also find that due to this, there are multiple (two distinct)

operators that can be mixed into. Therefore, our analysis in section 4.1 should be viewed

as providing motivation for the type of operators that appear, although in the initial form

that they arise, they will involve unregularized integrals. With this motivation for their

structure, we are then able to use the commutativity of the µ and ν RGEs in section 4.2

to fix the RG properties of these operators and provide regularized definitions. We then

solve the associated evolution equations for the newly introduced operators in section 4.3.

4.1 An illustrative example

We will begin by considering the LP soft function for pT , defined as

S(~pT ) =
1

N2
c − 1

〈
0
∣∣Tr
{

T
[
S†n̄Sn

]
δ(2)(~pT − P⊥)T

[
S†nSn̄

]}∣∣0
〉
. (4.1)

This soft function satisfies the µ and ν RGEs

ν
d

dν
S(~pT ) =

∫
d~qTγ

S
ν (pT − qT )S(~qT ) ,

µ
d

dµ
S(~pT ) = γSµS(~pT ) , (4.2)

with the anomalous dimensions

γSµ = 4Γcusp(αs) log
(µ
ν

)
,

γSν = 2Γcusp(αs)L0 (~pT , µ) . (4.3)

Crucially, the µ anomalous dimension is multiplicative, while the ν anomalous dimension is

a convolution in pT space. It is this fact that will ultimately lead to the subleading power

rapidity renormalization group having a more interesting structure.

A simple trick to understand the structure of subleading power RG equations that was

first used in [44] is to consider jet and soft functions obtained by multiplying the leading
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power jet and soft functions by a kinematic invariant. In the present case, we can consider

the subleading power soft function defined by

S
(2)

p2T
(~pT ) = ~p2

TS(~pT ) . (4.4)

The superscript (2) indicates that this function is power suppressed due to the explicit

factor of p2
T , and the subscript p2

T is meant to identify the nature of this power suppression.

The structure of this function is known to all orders, since it is inherited from the known

structure of the leading power soft function. However, understanding how this structure

is manifested in the renormalization group structure of S
(2)

p2T
is non-trivial, and will reveal

new operators.

First, we note that the µ RGE for this subleading power soft function is identical

to the RGE of the leading power soft function, since the µ RGE is multiplicative. We

therefore have

µ
d

dµ
S

(2)

p2T
(~pT ) = γµSS

(2)

p2T
(~pT ) . (4.5)

However, we find a more interesting behavior for the ν RGE, due to the fact that it is a

convolution in pT . Multiplying both sides of the LP RGE by ~p2
T , and using the identity

~p2
T = (~pT − ~qT )2 + ~q2

T + 2(~pT − ~qT ) · ~qT , (4.6)

we arrive at the equation

ν
d

dν
S

(2)

p2T
(~pT ) =

∫
d~qT (~pT−~qT )2γS(pT−qT )S(qT ) (4.7)

+

∫
d~qTγS(pT−qT ) [2(~pT−~qT )·~qTS(qT )]+

∫
d~qTγS(pT−qT )

[
~q2
TS(~qT )

]
.

Note that we must arrange eq. (4.6) in this form, so that it is a kernel in ~pT−~qT multiplying

a function of qT . Simplifying this result, we find that we can write it as

ν
d

dν
S

(2)

p2T
(~pT ) = 2ΓcuspIS (4.8)

+

∫
d~qTγS(pT − qT )2(~pT − ~qT ) · ~S(1)(qT ) +

∫
d~qTγS(pT − qT )S

(2)

p2T
(~qT ) .

Here we see a renormalization group mixing with two power suppressed functions. The

first is

IS ∝
∫
d2~qT S(~qT ) , (4.9)

which we will refer to as the “rapidity identity operator”, and will play a crucial role in our

subsequent analysis. As written, the integral over qT goes to infinity, and therefore this

expression is ill-defined, and will require regularization. For this reason we have also been

glib about what this operator depends on. In the next section we will present a way of

deriving its renormalization group properties, as well as a regularized definition. The goal
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of this section is merely to illustrate that the subleading power soft function mixes into a

new operator which is loosely related to a moment of the leading power soft function. The

second operator arising in the mixing is

~S(1)(~pT ) = ~pTS
(0)(~pT ) , (4.10)

which is a vector soft function which scales like O(λ). This function can only appear in a

factorization formula if it is dotted into a vector jet function, or some other vector quantity.

While we believe that it would be extremely interesting to study in more detail the

complete structure of this illustrative example, and we will return to this in future work,

here we focus only on the elements of these equations that are required at leading logarith-

mic accuracy. We note that

IS = 1 +O(αs) , S(1)(~pT ) = 0 +O(αs) . (4.11)

Therefore, in the leading logarithmic series, S
(2)

p2T
mixes into IS , and we can ignore S(1). We

can therefore simplify our equation to

ν
d

dν
S

(2)

p2T
(~pT , µ, ν) = 2ΓcuspIS +

∫
d~qTγS(pT − qT )S

(2)

p2T
(~qT , µ, ν) . (4.12)

We see that what is occurring is that the power suppressed soft function is mixing with the

rapidity identity operator. This provides a renormalization group derivation of the pertur-

bative calculations in section 3, where one generates a rapidity divergence and associated

logarithm at the lowest non-trivial order. This is simply a perturbative description of the

mixing into IS . Now, with this general structure in mind, we would like to understand the

properties of this rapidity identity operator.

We emphasize again that we have performed only a cursory study of this illustrative

example so as to be able to illustrate the renormalization group mixing in rapidity, and to

identify the structure of the rapidity identity operator. It would be particularly interesting

to study the complete structure of this illustrative example to all logarithmic orders, and

in particular to better understand the structure of the convolutions in pT . However, since

the focus of this paper is on deriving the leading logarithmic series for the EEC, we will

leave this to future work.

4.2 Rapidity identity operators

In the previous section, we found that the subleading power rapidity renormalization group

involves a mixing into the rapidity identity operator, which is loosely related to the first

moment of the leading power soft function

IS ∝
∫
d2~qT S(~qT ) . (4.13)

The goal of this section will be to understand how to make sense of this operator, since it

is ill-defined as currently written. This is a crucial difference as compared with the case of

thrust considered in [44]. There a similar first moment operator appears, defined as [44]

S
(2)
g,θ (k, µ) =

1

(N2
c − 1)

tr〈0|YTn̄ (0)Yn(0)θ(k − T̂ )YTn (0)Yn̄(0)|0〉 . (4.14)
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However, there the first moment is a finite integral, and does not introduce new divergences,

allowing all the properties of this operator to be immediately deduced from those of the

leading power operator. For the case of pT considered here, additional arguments must be

used to fully fix the structure of the rapidity identity operator.

The µ2 dependence of the rapidity identity operator can be derived using the commu-

tativity of the RG [8, 9], namely that

[
d

dµ
,
d

dν

]
= 0 , (4.15)

which ensures the path independence of the µ and ν rapidity evolution. Here we consider

a general subleading power soft operator S(2) (not necessarily S
(2)

p2T
). If we assume that this

operator mixes into a single identity type operator, then we obtain

µ
d

dµ

[
ν
d

dν
S(2)

]
= µ

d

dµ

[
γδIIS + γνS

(2)
]
,

ν
d

dν

[
µ
d

dµ
S(2)

]
= ν

d

dν

[
γSµS

(2)
]
. (4.16)

Here, we have used γδI to denote the mixing anomalous dimension. Performing the next

differentiation, we then obtain the equality

γδIµ
d

dµ
IS +

[
µ
d

dµ
γν

]
S(2) + γνγ

S
µS

(2) = γSµγδIIS +

[
ν
d

dν

]
S(2) + γνγ

S
µS

(2) . (4.17)

Using the fact that commutativity is satisfied for the leading power anomalous dimensions,

we arrive at

µ
d

dµ
IS = γSµ IS . (4.18)

This fixes the µ anomalous dimension of the rapidity identity operator.

To fix the ν anomalous dimension, we now apply commutativity to IS itself, and use

the fact that we know the µ anomalous dimension. We then have

[
d

dµ
,
d

dν

]
IS = 0 , (4.19)

which gives the equation (at lowest order in αs, which is sufficient for LL)

µ
d

dµ

(
ν
d

dν

)
IS = −4Γcusp , (4.20)

which can then be solved for

ν
d

dν
IS = −4Γcusp log

(
µ2

Λ2

)
, (4.21)

where Λ2 is an as yet to be determined scale. The only available scales at leading logarith-

mic accuracy are Λ2 = p2
T , µ

2, ν2. The cases Λ2 = p2
T , ν

2 both give the same behavior for
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the ν RGE on the hyperbola µ = pT , and therefore we will not treat them separately. It

would be interesting to explore in more detail the differences between these RGEs.

We therefore find two distinct identity operators with two different rapidity anomalous

dimensions

ν
d

dν
IνS(µ, ν) = −γSµ IνS(µ, ν) ,

ν
d

dν
Ip

2
T
S (p2

T , µ, ν) = 2Γcusp log

(
p2
T

µ2

)
Ip

2
T
S (p2

T , µ, ν) . (4.22)

Here we have again used the superscript p2
T to indicate the identity function that the S

(2)

p2T
function mixes into, as we will argue shortly, and the superscript ν to indicate the identity

function that has a non-trivial ν RGE on the µ = pT hyperbola.

While this argument allows us to derive the renormalization group properties of these

operators, which is sufficient for the purposes of this paper, it is also interesting to give

explicit example of functions that realize this behavior. This is easy to do by defining

regularizations of the integral in eq. (4.13). Functions which give the behavior of the

different identity operators at LL are

IνS(µ, ν) =

∫ ν2

0
d2~qT S(~qT ) , (4.23)

Ip
2
T
S (p2

T , µ, ν) =

∫ p2T

0
d2~qT S(~qT ) . (4.24)

The first function is a function of only µ2/ν2, while the second also depends on p2
T . These

two functions have different properties under boosts, and therefore do not themselves mix.

This provides leading logarithmic definitions of the rapidity identity operators. It would

be extremely interesting to understand how to extend these definitions beyond leading

logarithm, however, we leave this to future work.

For the particular soft function considered in our illustrative example, S
(2)

p2T
= p2

TS
(0),

one can use the knowledge of the two loop soft function to show that it is the operator

Ip
2
T
S (p2

T , µ, ν) that is being mixed into. This can also be argued directly by symmetry

grounds: at the scale µ = pT , the leading power soft function does not flow in ν at leading

logarithmic accuracy. This is due to its boost invariance. This property is not broken by

multiplying by p2
T , and therefore must also be a property of the counterterm operator that

is being mixed with. This identifies the operator Ip
2
T
S (p2

T , µ, ν). We can therefore make

more precise the equation earlier for the RG of this function

ν
d

dν
S

(2)

p2T
(~pT , µ, ν) = 2ΓcuspIp

2
T
S (~pT , µ, ν) +

∫
d~qTγS(pT − qT )S

(2)

p2T
(~qT , µ, ν) . (4.25)

For subleading power soft functions with explicit fields inserted, this argument no longer

holds, and one can mix into the other operator.

It is also interesting to arrive at these conclusions for the structure of the renormal-

ization group by manipulation of the renormalization group equations. This approach is
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ultimately ill-defined due to the lack of convergence of the integrals, but it gives the same

results as derived from the commutativity of the RG, and provides additional insight into

the origin of this behavior. Recall that the leading power renormalization group evolution

equations are

ν
d

dν
S(~pT ) =

∫
d~qTγ

S
ν (pT − qT )S(qT ) ,

µ
d

dµ
S(~pT ) = γSµS(~pT ) , (4.26)

with the anomalous dimensions

γSµ = 4Γcusp(αs) log
(µ
ν

)
,

γSν = 2Γcusp(αs)L0 (~pT , µ) . (4.27)

Since the µ anomalous dimension is multiplicative, this should not be changed if we inte-

grate over qT . In other words, we have
∫
d2pT

[
µ
d

dµ
S(~pT ) = γµSS(~pT )

]
=⇒ µ

d

dµ
IS = γµSIS , (4.28)

which immediately leads to the fact that IS is multiplicatively renormalized in µ with the

same anomalous dimension as the leading power soft function. For the ν renormalization

group equation, we have

ν
d

dν
IS =

∫
d2~qT ν

d

dν
S(~qT )

=

∫
d2~qT

[∫
d2~pTγS(~qT − ~pT )S(~pT )

]
. (4.29)

Now, performing the shift ~qT → ~qT + ~pT , we obtain

ν
d

dν
IS =

[∫
d2~qTγS(~qT )

]
IS , (4.30)

which is again multiplicative. The expression in square brackets is not well defined, and

must be fixed by some regularization, as was shown above. In this case, this shift argument

may no longer be valid. However, this exercise is merely meant to illustrate another

perspective on why the rapidity identity operator should satisfy a multiplicative ν RGE,

and the argument presented earlier in this section should be taken as primary.

Therefore, in summary, we have shown that there are non-trivial rapidity identity

operators that arise at subleading power, and we have identified the renormalization group

properties of these operators at leading logarithmic accuracy. The first rapidity identity

operator does not depend on the observable, and its anomalous dimensions are given by

µ
d

dµ
IνS
(
µ2

ν2

)
= −2Γcusp log

(
ν2

µ2

)
IνS
(
µ2

ν2

)
,

ν
d

dν
IνS
(
µ2

ν2

)
= 2Γcusp log

(
ν2

µ2

)
IνS
(
µ2

ν2

)
. (4.31)
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The second rapidity identity operator depends on the observable, and its anomalous di-

mensions are given by

µ
d

dµ
Ip

2
T
S

(
p2
T , µ, ν

)
= −2Γcusp log

(
ν2

µ2

)
Ip

2
T
S

(
p2
T , µ, ν

)
,

ν
d

dν
Ip

2
T
S

(
p2
T , µ, ν

)
= 2Γcusp log

(
p2
T

µ2

)
Ip

2
T
S

(
p2
T , µ, ν

)
. (4.32)

Here we have written the anomalous dimension in terms of the cusp anomalous dimen-

sion [63], which is given by Γcusp = 4(αs/4π)CA + O(α2
s). We expect these functions to

appear ubiquitously in subleading power rapidity renormalization, and we therefore believe

their identification is an important first step towards an understanding of the structure of

subleading power rapidity logarithms.

One also has rapidity identity operators in the jet/beam sectors, that are defined

analogously to the soft operators. Their anomalous dimensions are fixed to be identical to

the soft rapidity identity operators (up to a sign) by RG consistency. For the particular

case of the EEC, we can avoid them by always running to the jet scale. They are interesting

for the case of pT resummation where one must consider their matching onto the parton

distribution functions (PDFs). We will present a more detail discussion of these structures

in future work.

It is also interesting to note that the subleading power Regge limit for massive scat-

tering amplitudes has recently been studied in N = 4 SYM in [115]. Their solution also

involves an interesting operator mixing. Since there are connections between the Regge

limit and the EEC at leading power due to conformal transformations, it would be inter-

esting to understand if these persist at subleading power.

4.3 Analytic solution of renormalization group evolution equations

In this section we provide an analytic solution to the renormalization group evolution

equations of the subleading power soft functions when mixing with either type of identity

operator. Here we will consider only the case of fixed coupling, since our current application

will be to N = 4 (which is conformal), and the reader who is interested in extending these

results to running coupling can consult [44]. We will also only study the renormalization

group flow in ν at the scale µ = pT to simplify the analysis. This will be sufficient for our

applications, since we can always run the hard function down to the scale µ = pT . We will

consider separately the two different types of identity operators, since we know that due

to their different properties under boosts, they themselves cannot mix to generate a more

complicated RG structure.

Identity operator Ip
2
T
S

(
p2T , µ, ν

)
. We first consider the case of mixing with the operator

IS
(
p2
T , µ, ν

)
, which gives rise to a simple ν RGE at the scale µ = pT . In this case, we get

the RGE

ν
d

dν

(
S(2)

Ip
2
T
S

)
=

(
0 γδI
0 0

)(
S(2)

Ip
2
T
S

)
, (4.33)
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with the boundary conditions

Ip
2
T
S (µ = pT , ν = pT ) = 1 , S(2)(µ = pT , ν = pT ) = 0 . (4.34)

Note that the specific choice of µ = pT is important for achieving this simple form of the

RG since it eliminates the need to consider the diagonal terms in the mixing matrix. More

generally, these would be required, but for LL resummation as considered in this paper,

the particular path considered here suffices, as explained in more detail in section 5.1.

This RGE is trivial to solve, and generates a single logarithm from the mixing

S(2)(µ = pT , ν = Q) = γδI log(pT /Q)Ip
2
T
S (µ = pT , ν = pT ) . (4.35)

No additional logarithms are generated. Since this is the case that applies to the soft

function S
(2)

p2T
= p2

TS
(0), one can easily check using the known form of the two-loop soft

function that there is indeed only a single logarithm at any ν scale for µ = pT .

In an actual factorization formula, this single rapidity logarithm is then dressed by a

Sudakov coming from running the hard function to the scale µ = pT , giving rise to a result

of the form

γδI log(pT /Q) exp

[
−2as log2

(
p2
T

Q2

)]
H(Q)Ip

2
T
S (µ = pT , ν = pT ) . (4.36)

This provides quite an interesting structure, namely a single logarithm arising from ν

evolution, which is then dressed by double logarithms from µ evolution. The ν and µ

RGEs therefore completely factorize at leading logarithmic order. An identical structure

was observed for the case of thrust in [44], however, there both the single logarithm and

the tower of double logarithms arise from the µ RGE.

Identity operator IνS (µ, ν). Mixing with the rapidity identity operator IνS (µ, ν) gives

rise to a more non-trivial rapidity flow at the scale µ = pT . In this case, we get the RGE

ν
d

dν

(
S(2)

IνS

)
=

(
0 γδI
0 γµS

)(
S(2)

IνS

)
, (4.37)

with the boundary conditions

IνS(µ = pT , ν = pT ) = 1 , S(2)(µ = pT , ν = pT ) = 0 . (4.38)

This RGE is a specific case of the general RGE solved in [44]. However, here we can solve

it in two steps by first solving for the identity operator, and then plugging it in to the

solution for the soft function. This will provide some insight into the structure of the

final solution.

The solution of

ν
d

dν
IνS = γµSI

ν
S ≡ γ̃ log

(
ν2

p2
T

)
IνS , (4.39)
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is easily found to be

IνS = exp

(
γ̃

4
log2

(
ν2

p2
T

))
IνS(µ = pT , ν = pT ) . (4.40)

The original soft function then satisfies the inhomogeneous equation

ν
d

dν
S(2) = γδI exp

(
γ̃

4
log2

(
ν2

p2
T

))
IνS(µ = pT , ν = pT ) . (4.41)

We can integrate this equation up to the scale ν = Q to find

S(2)(µ = pT , ν = Q) = −
√
πγδI√
γ̃

erfi
[√

γ̃ log(pT /Q)
]
IνS(µ = pT , ν = pT ) , (4.42)

where erfi is the imaginary error function, defined as

erfi(z) = −ierf(iz) . (4.43)

The fact that the solution is not simply a Sudakov is quite interesting, and shows that

the subleading power logarithms have a more interesting structure than at leading power.

We expect that this structure will be quite common in the study of subleading power

corrections to observables with rapidity evolution. The erfi function satisfies the identify

d

dz
erfi(z) =

2√
π
ez

2
. (4.44)

It is perhaps quite intuitive that an integral of a Sudakov appears, since the rapidity identity

operator is the integral of the leading power soft function. However, this is a new structure

that has not previously appeared in subleading power calculations. It is amusing to note

that a similar structure also appears in the calculation of Sudakov safe observables [116]

due to the integration over a resummed result.

5 The energy-energy correlator in N = 4 SYM

In this section we use our subleading power rapidity renormalization group to derive the

leading logarithmic series at NLP for a physical observable, namely the EEC in N = 4

SYM. We then compare our predictions with the recent calculation of [65] to O(α3
s) finding

perfect agreement.

5.1 Leading logarithmic resummation at subleading power

In performing the resummation of subleading power logarithms for the EEC, we must

clearly state several assumptions that are made, which we hope can be better understood

in future work. Nevertheless, we believe that the fact that our result agrees with the cal-

culation of [65] provides strong support for these assumptions. The goal of this paper has

been to understand how far one can get in understanding the subleading power rapidity

renormalization group using only symmetries and consistency arguments. Using this ap-

proach, we found that at leading logarithmic order, there are two distinct identity operators
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with different renormalization group properties. To derive the structure of the resummed

result for the EEC in the back-to-back limit, our approach will therefore be to match a

linear combination of these two solutions to the know expansion of the EEC. To fix both

coefficients requires two inputs, which we take to be the αs and α2
s leading logarithms.

This then completely fixes our result, which can then be used to predict the coefficient of

the α3
s leading logarithm, for which we will find agreement with the calculation of [65].

This approach should simple be viewed as a shortcut to a complete operator based anal-

ysis, which enables us to explore the general structure of the rapidity evolution equations

at NLP, and show that they predict non-trivial behavior of the NLP series for a physical

observable. A more complete operator based analysis will be presented in a future paper.

Secondly, we must also assume that there exists a consistent factorization at subleading

powers that does not have endpoint divergences. The presence of endpoint divergences in

the factorization formula would violate our derivations based on the consistency of the RG.

At this stage, both for the standard µ renormalization group at subleading power, and for

the subleading power rapidity renormalization group considered here, this is still ultimately

an assumption. In general, endpoint divergences are known to appear generically at next-

to-leading logarithm, but have also been shown to appear even at LL in certain cases when

fields with different color representations are involved (e.g. both quarks and gluons) [57].

However, since in N = 4 all fields are in the same representation, we work under the

assumption that there are no endpoint divergences at leading logarithmic accuracy. We

will see that this assumption is strongly supported by the fact that we are able to exactly

reproduce to O(α3
s) the highly non-trivial series that arises from the exact calculation

of [65]. However, we acknowledge that before our techniques can be more widely applied,

it will be important to understand when endpoint divergences do occur in the rapidity

renormalization group, and how they can be resolved.

Therefore, working under the assumption of convergent convolutions for the subleading

power factorization, all anomalous dimensions are fixed by symmetries, as described above,

and the resummation of the subleading power logarithms is now a simple application of the

renormalization group evolution equations derived in section 4. To perform the resumma-

tion, one must resum logarithms in both µ and ν. We choose to perform this resummation

using the following evolution path

• Run the hard functions from µ = Q to µ = pT .

• Run the soft functions in rapidity from ν = pT to ν = Q.

This path is the most convenient, since it avoids the need to perform any resummation of

the rapidity anomalous dimensions [8, 9]. To run the hard function from µ = Q down to

the soft scale, we use the evolution equations

µ
d

dµ
H = γHH , γH = −8as log

(
µ2

Q2

)
. (5.1)

Here and throughout this section, we will use as = αs/(4π)CA to simplify the notation.

The renormalization group equation for the hard function has the simple solution

H(pT ) = H(Q) exp

[
−2as log2

(
p2
T

Q2

)]
. (5.2)
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For the soft function evolution, we use the results derived in section 4 for the evolution of

the two different types of rapidity identity operators. Since these rapidity identity functions

cannot themselves mix due to different boost properties, the result at LL order is necessarily

a linear combination of the two. For the first type of mixing, we have

S
(2)
1 (µ = pT , ν = Q) = γδI,1 log(pT /Q)Ip

2
T
S (µ = pT , ν = pT ) , (5.3)

where γδI,1 is the anomalous dimension for mixing into the Ip
2
T
S soft function, and for the

second type, we have

S
(2)
2 (µ = pT , ν = Q) = −

√
πγδI,2√
γ̃

erfi
[√

γ̃ log(pT /Q)
]
IS(µ = pT , ν = pT ) , (5.4)

with γ̃ = 8as, and where γδI,2 is the anomalous dimension for mixing into the IνS soft

function. Our general prediction is then a linear combination of these two

EEC(2) = γδI,1 log(pT /Q) exp

[
−2as log2

(
p2
T

Q2

)]
−
√
πγδI,2√
γ̃

erfi
[√

γ̃ log(pT /Q)
]
. (5.5)

Matching to the as and a2
s coefficients from expanding the result of [68–70](these coefficients

are given in section 5.2), we find that γδI,1 = 0. We therefore find the simple result for the

NLP leading logarithmic series to all orders in as in N = 4 SYM theory

EEC(2) = −
√
πas√
2as

erfi
[√

2as log(1− z)
]

exp
[
−2as log(1− z)2

]
. (5.6)

Interestingly, for the particular case of N = 4, we find that the result only involves the

operator IνS (µ, ν). This result takes an interesting form, going beyond the simple Sudakov

exponential [64] for the leading logarithms at leading power. We believe that this structure

will appear somewhat generically in subleading power rapidity resummation. It is interest-

ing to note that up to the prefactor this particular structure is in fact a well known special

function, called Dawson’s integral, which is defined as

D(x) =
1

2

√
πe−x

2
erfi(x) . (5.7)

We can therefore write our answer for the NLP leading logarithmic series in the simple form

EEC(2) = −
√

2as D
[√

2as log(1− z)
]
. (5.8)

Since the anomalous dimension is fixed by renormalization group consistency to be the

cusp anomalous dimension (see eq. (4.31)), we can rewrite this as

EEC(2) = −
√

2as D

[√
Γcusp

2
log(1− z)

]
. (5.9)

This expression is a primary result of this paper. We will refer to this functional form as

“Dawson’s Sudakov”. We find it pleasing that despite the somewhat non-trivial functional

structure, the double logarithmic asymptotics of the EEC in the back-to-back limit are still
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Figure 2. A comparison of the standard Sudakov exponential which describes the all orders

exponentiation of the leading power logarithms for the EEC with the subleading power Sudakov

involving the imaginary error function (erfi) derived in this section, which we refer to as Dawson’s

Sudakov. Dawson’s Sudakov exhibits a more peaked structure as z → 1. A value of αs = 0.12 was

chosen to plot the numerical results.

driven by the cusp anomalous dimension [63] much like at leading power (see eq. (2.20)),

and as is expected physically. It would be extremely interesting to understand if the sub-

leading power logarithms at next-to-leading power are driven by the collinear anomalous

dimension, as is the case at leading power. We note that from eq. (3.18) there is no con-

stant term at NLP (it can easily be checked that this is true at any power), and therefore

it is plausible that there is a simple generalization of this formula that also incorporates

the next-to-leading logarithms.

In figure 2, we compare the standard Sudakov with Dawson’s Sudakov. Note that

while erfi
[√

2as log(1− z)
]

diverges as z → 1, this is overcome by the suppression from the

Sudakov exponential. However, the behavior of the erfi leads to a more enhanced behavior

of the distribution as z → 1, as compared to a standard Sudakov.

It is also interesting to consider the Taylor expansion of our result in as. We find that

it can be written as a remarkably simple series in terms of the double factorial

EEC(2) =

∞∑

n=0

(−1)n+1

(2n+ 1)!!
an+1
s log((1− z)2)2n+1 , (5.10)

(here we have chosen to move factors of 2 into the definition of the logarithm, but they can

equally well be moved into the definition of as) where we recall that the double factorial is

defined as

n!! = n(n− 2)(n− 4) · · · . (5.11)
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Explicitly, the first few terms in the expansion are

EEC(2) =−2as log(1−z)+
8

3
a2
s log3(1−z)− 32

15
a3
s log5(1−z)+

128

105
a4
s log7(1−z)

− 512

945
a5
s log9(1−z)+

2048

10395
a6
s log11(1−z)− 8192

135135
a7
s log13(1−z)+· · · . (5.12)

The presence of the double factorial as compared with the single factorial at leading power

generates a more interesting series of rational coefficients. In [75] the logarithms in the

collinear limit of the EEC at each logarithmic order were written as simple infinite sums

of factorials multiplied by polynomials in logarithms. It would be very interesting to

understand if the subleading logarithms at NLP in the back-to-back limit can also be

written as generalized double factorial sums.

It will be important to understand if this structure persists in QCD. The results in

QCD are only known to a2
s [71, 72], therefore, without performing a more complete operator

analysis, these results can be used to fix our prediction as a linear combination of our two

RG solutions, but do not enable a non-trivial check, which is particularly important due

to the possible presence of endpoint divergences. While we will perform an operator based

analysis in a future publication, we find that it interesting to conjecture a result. Based on

our intuition from the case of the thrust observable [57], we expect that we are most likely

to avoid endpoint divergences for the case of the EEC in Higgs decays to gluons in pure

Yang-Mills. Under the assumption that there are no endpoint divergences, we can fix an

ansatz in terms of our two RG solutions to be

EEC(2)
∣∣∣
Yang-Mills

= 2as log(1−z)exp
[
−2as log2 (1−z)

]
−4
√

2as D

[√
Γcusp

2
log(1−z)

]
,

(5.13)

which takes a slightly more complicated form than its N = 4 counterpart, since it involves

both types of rapidity identity operators. Unfortunately, unlike for the case of the EEC in

N = 4, there is no a3
s result to which we are able to compare this result. It will interesting

to verify or disprove this conjecture using a complete operator analysis, which we leave to

future work. This will provide insight into the presence (or lack of) endpoint divergences

in this particular case.

It would also be extremely interesting to understand how to derive this result directly

from the four point correlator, or from the light ray OPE [76–78]. From the point of view

of the four point correlator, the back-to-back limit corresponds to the so called double light

cone limit. This has been used to study the EEC in [79], has been studied in gauge theories

in [101, 102], and has been studied in more general conformal field theories in [104].

5.2 Comparison with direct fixed order calculation to O(α3
s)

As mentioned earlier, we have chosen to perform the resummation for the EEC in N = 4

since we can directly compare with the remarkable calculation of the EEC for arbitrary

angles using the triple discontinuity of the four point correlator [65] (The result to O(α2
s)

in N = 4 was calculated in [68–70]), and exploiting the large amount of information known
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about its structure, see e.g. [117–121]. This calculation of the EEC provides extremely

valuable data for understanding the structure of kinematic limits at subleading power,

both for the particular case considered here, and beyond.

Although we will be interested in the expansion in the z → 1 limit, it is interesting

to understand what parts of the full angle result the back-to-back limit is sensitive to at

subleading powers, so we briefly review the structure of the result of [65]. The result of [65]

is written as

F (ζ) ≡ 4ζ2(1− ζ)EEC(ζ) , (5.14)

where at NNLO,

FNNLO(ζ) = fHPL(ζ) +

∫ 1

0
dz̄

∫ z̄

0
dt

ζ − 1

t(ζ − z̄) + (1− ζ)z̄

× [R1(z, z̄)P1(z, z̄) +R2(z, z̄)P2(z, z̄)] , (5.15)

with

R1 =
zz̄

1− z − z̄ , R2 =
z2z̄

(1− z)2(1− zz̄)
. (5.16)

Here P1 and P2 are weight three HPLS in z and z̄. These two fold integrals are believed

to be elliptic, and so we will refer to them as elliptic contributions. The term fHPL(ζ)

is expressed in terms of harmonic polylogarithms. The leading power asymptotics in the

back-to-back limit are described entirely by fHPL. At NLP, we require also the elliptic

contributions, showing that subleading powers probe more of the structure of the result.

This in turn makes the agreement with our result derived from the RG more non-trivial.

The expansion of fHPL(ζ) can be performed straightforwardly, and produces only ζ

values, logn(2), and Lin(1/2). On the other hand, the expansion of the elliptic contribution

is more non-trivial, and leads to a more complicated set of constants. To compute the

result, we expanded under the integral sign, and integrated using HyperInt [122]. This

produced polylogarithms of sixth roots of unity up to weight 5. These were reduced using

results from [123] to a basis of constants. The final result involves several non-zeta valued

constants which were guessed using hints for the classes of numbers that should appear in

the answer from [124–126] and reconstructed using the PSLQ algorithm. We found that

the elliptic piece could be expressed as

EllipticNLP

2
= 2

L5

5!
+

1

2
ζ2
L3

3!
+

3

4
ζ3
L2

2!
+

(
−67

32
+

3

4
ζ2+

9

4
ζ3−

7

4
ζ4

)
L

+
85

32
− 49

16
ζ2+

87

8
ζ3+

37

4
ζ4+

3

4
ζ2ζ3+

5

2
ζ5−

611

108
ζ4

√
3π+6

√
3I2,3 . (5.17)

Here I2,3 is a higher weight Clausen function [124]

I2,3 =
∑

m>n>0

sin
(
π(m−n)

3

)

mb−an2a
. (5.18)
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While the leading power result has uniform trascendental weight when expanded in the

back-to-back region, this is no longer true at subleading power.

Collecting all the terms from both the elliptic and HPL contributions, we find (in our

normalization) the following expression for the leading power suppressed logarithms up

to O(as)
3

EEC(2) =−2as log(1−z)

+a2
s

[
8

3
log3(1−z)+3log2(1−z)+(4+16ζ2) log(1−z)+(−12−2ζ2+36ζ2 log(2)+5ζ3)

]

+a3
s

[
−32

15
log5(1−z)− 16

3
log4(1−z)−

(
8

3
+24ζ2

)
log3(1−z)+(4−36ζ2−50ζ3) log2(1−z)

−
(

131

2
+4ζ2+372ζ4+12ζ3

)
log(1−z)+const

]
, (5.19)

where

const = −3061

2
ζ5 − 96ζ2ζ3 −

4888

27
ζ4π
√

3 + 192
√

3I2,3 + 1482ζ4 log(2)− 256ζ2 log3(2)

− 64

5
log5(2) + 1536Li5

(
1

2

)
− 544ζ4 + 192ζ2 log2(2) + 16 log4(2) + 384Li4

(
1

2

)

− 288ζ2 log(2) + 158ζ3 + 55ζ2 +
533

2
. (5.20)

Extracting out the leading logarithmic series

EEC(2)
∣∣∣
LL

= −2as log(1− z) +
8

3
a2
s log3(1− z)− 32

15
a3
s log5(1− z) , (5.21)

we find that this result agrees exactly with the result derived from the subleading power

renormalization group given in eq. (5.12)! Note that due to the matching of our RG

predictions to the fixed order results, as was explained above, it is really only the a3
s

coefficient that is a prediction. However, this agreement is highly non-trivial, since it

probes both the elliptic and polylogarithmic sectors of the full result, and therefore we

believe that it provides strong support that our subleading power renormalization group

evolution equation is correct. The next-to-leading logarithms also have relatively simple

rational coefficients,

EEC(2)
∣∣∣
NLL

= 3a2
s log2(1− z)− 16

3
a3
s log4(1− z) , (5.22)

and provide data for understanding the structure of subleading power resummation beyond

the leading logarithm. It would be interesting to derive them directly from the renormal-

ization group approach.

It would be interesting to better understand the structure of the numbers appearing in

the expansion of the EEC both in the collinear and back-to-back limits, and the functions

appearing in the full angle result. This could ultimately allow the result to be bootstrapped

from an understanding of these limits, in a similar manner to the hexagon bootstrap for

N = 4 SYM amplitudes [127–131]. However, the presence of elliptic functions makes this

seem like a daunting task, unless more information is known about their structure.
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6 Conclusions

In this paper we have shown how to resum subleading power rapidity logarithms using the

rapidity renormalization group, and have taken a first step towards a systematic under-

standing of subleading power corrections to observables exhibiting hierarchies in rapidity

scales. Much like for the virtuality renormalization group at subleading power, the ra-

pidity renormalization group at subleading power involves a non-trivial mixing structure.

Using the consistency of the RG equations combined with symmetry arguments, we were

able to identify the operators that arise in the mixing, which we termed “rapidity identity

operators”, and we derived their anomalous dimensions. We believe that these operators

will play an important role in any future studies of the rapidity renormalization group at

subleading power, and are the key to understanding its structure.

To illustrate our formalism, we resummed the subleading power logarithms appearing

in the back-to-back limit of the EEC in N = 4 SYM. This particular observable was chosen

since the full analytic result is known to O(α3
s) from the remarkable calculation of [65].

We found perfect agreement between our result derived using the renormalization group,

and the expansion in the back-to-back limit of the calculation of [65], which provides an

extremely strong check on our results. The analytic form of the resummed subleading power

logarithms takes an interesting, but extremely simple form, being expressed in terms of

Dawson’s integral with argument related to the cusp anomalous dimension. We called this

structure “Dawson’s Sudakov”. We expect this structure to be generic at subleading power

for rapidity dependent observables, much like the Sudakov exponential is at leading power.

Since this represents the first resummation of subleading power rapidity logarithms,

there are many directions to extend our results, as well as to better understand the struc-

tures that we have introduced in this paper. First, although we have arrived at the structure

of the leading logarithms using symmetry and consistency arguments, it would be inter-

esting to use a complete basis of SCETII operators to derive the operator structure of all

the subleading power jet and soft functions in SCETII, and perturbatively compute their

anomalous dimensions. Second, to go beyond LL, it will be necessary to better understand

the structure of the momentum convolutions appearing in the subleading power factoriza-

tion. We expect that at subleading power this is best done in momentum space using the

formalism of [89]. Finally, we also expect that away from N = 4 SYM theory, divergent

convolutions will appear even at LL order, as occurs in SCETI, and so it will be important

to understand when these occur, and how they can be overcome.

On the more formal side, it will be interesting to understand how to extract the sub-

leading power logarithms directly from the four point correlation function, following the

approach of [79], or using the light ray OPE [76–78]. While there have been some studies

of the double light cone limit in conformal field theories [102, 104], further studies of this

limit in conformal field theories could provide insight into behavior of phenomenological

interest in QCD, and the EEC provides an example that is of both formal and phenomeno-

logical interest.

It will also be important to apply our formalism to observables of direct phenomenolog-

ical interest, such as the EEC in QCD, the color singlet pT distribution in hadron colliders,
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or to the study of power suppressed logarithms appearing in the Regge limit, which can

also be formulated in terms of the rapidity renormalization group [132, 133]. Our work

represents the first step in extending recent successes in understanding the structure of sub-

leading power infrared logarithms to subleading power rapidity logarithms, and we hope

that this will allow for a much wider set of phenomenologically important applications.
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