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1 Introduction

Recall the setting of “textbook” quantum field theory (QFT) on Minkowski spacetime. The

first goal therein is to calculate scattering amplitudes. These are obtained from correlation

functions through the LSZ reduction formula [2]

(i/
√
Z)n

∫ n∏
i=1

dxi
[

exp(ixi · pi)(�xi +m2)〈φ(x1)φ(x2) · · ·φ(xn)〉conn.

]
(1.1)

stated here for a connected S-matrix element (see [3] section 5-1-5) involving n ≥ 3 outgoing

spin-0 particles of the same species, mass m2 > 0 and on-shell momenta p1, p2, . . . pn
respectively. (φ(x) is the field operator with nonzero amplitude Z to create a 1-particle

state while acting on the vacuum |0〉, 〈φ(x1)φ(x2) · · ·φ(xn)〉conn. is its connected n-point

time-ordered vacuum correlation function, and (�xi + m2) is the Klein-Gordon operator,

acting on the correlator only.) One is then concerned with the calculation of correlators

from first principles.

In this paper we make the following observations.

Firstly, that implicit in Zinn-Justin’s 1974 proof of perturbative renormalisability of

gauge theories [4] is an L∞-algebra (a generalisation of a Lie algebra involving brackets of

any arity), whose structure constants are the one-particle-irreducible (1PI) correlators. We

shall see that the L∞ Jacobi identities are equivalent to the Zinn-Justin equation, i.e. the

classical Batalin-Vilkovisky (BV) [5–9] master equation for the 1PI generating functional

Γ[Φ,
?

Φ] (including sources
?

Φ for BRST transformations), which is in turn equivalent to

the absence of anomalous terms in Slavnov-Taylor identities. We call this the L∞-algebra

of correlators.
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Secondly, and less trivially, that the LSZ reduction formula endows the asymptotic

1-particle states with the structure of a minimal L∞-algebra (one without unary bracket),

whose structure constants are the connected S-matrix elements. The L∞-algebraic inter-

pretation is that this L∞-algebra of the S-matrix is a minimal model (no relation to the

CFT notion) for the aforementioned L∞-algebra of 1PI correlators, and that the LSZ for-

mula defines the corresponding quasi-isomorphism. We will explicitly show this for scalar

theories with a mass gap only, but the argument directly generalises to any gapped theory.

The definition of L∞-algebras [10, 11] is now overdue. They generalise Lie algebras,

so besides the structure constants Cabc defining a binary bracket, one has Cab , C
a
b1b2b3

, . . .

Cab1...bn , . . . defining a unary, ternary, . . . n-ary. . . bracket respectively, obeying symme-

try identities and Jacobi identities (see (2.1)). Their first explicit appearance1 was in

Zwiebach’s work on closed bosonic string field theory [10] (CSFT): the genus-zero closed

string correlators are the structure constants of an L∞-algebra, whose Jacobi identities im-

ply gauge invariance of the string field lagrangian. Since then the concept has been picked

up by mathematicians, who have articulated a general philosophy [17]: deformations of a

structure (e.g. the complex structure of a complex manifold) are solutions of the Maurer-

Cartan equation (2.12) (resp. the Kodaira-Spencer equation) of the associated L∞-algebra.

For CSFT this is the string field equation of motion, whose solutions were argued to deter-

mine the conformal manifold of the worldsheet CFT [18]. For our L∞-algebra of correlators,

this lore boils down to the best-known application of the 1PI functional Γ in its guise as

the Coleman-Weinberg effective potential [19]: extrema of Γ determine vacuum states.

Minimal L∞-algebras have Cab = 0. The relation between minimal L∞-algebras and

S-matrices has been anticipated, originally in the context of 2D string theory by Witten

and Zwiebach [20] and Verlinde [21], later for more general string (field) theories by authors

including Kajiura [22], Münster and Sachs [23], and Konopka [24], and most recently for

tree-level gravity and Yang-Mills by Nützi and Reiterer [25]. The novelty in our work is the

generalisation beyond both string theory and perturbative expansions. To this end we write

a proof of the minimal model theorem (that takes an L∞-algebra and gives the canonically

associated minimal one), following a suggestion in [22], that mirrors the derivation by

Jevicki and Lee [26] of the S-matrix generating functional from the 1PI functional Γ.

The recent resurgence of physics interest in L∞-algebras (e.g. [27–38]) mostly centres

on gauge symmetries of classical theories. (Most relevant here is [28], which articulates the

lore that classical BV master actions have canonical associated L∞-algebras [16, 39–50]).

Our observations suggest that L∞-algebraic approaches might be even more natural for

quantum field theories: in a sense, L∞-algebras have been underlying QFT all along, as

corroborated by (what we will argue is) the natural algebraic connection between vacuum

correlators and Minkowski space S-matrix elements. We will suggest generalisations to

other backgrounds and QFTs in the Discussion.

1They have appeared implicitly earlier in the D’Auria-Fré formulation of supergravity [12–14] and recog-

nised as such in [15]; later they also appeared again implicitly in the work of [16] on higher-spin particles.

(Both of these appearances predate the CSFT observation and I am grateful to Jim Stasheff for pointing

this out.)
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Note added. The first version of this paper originally appeared on the arXiv at the same

time as [1] which makes the same points (for tree-level theories) and in addition proves

the relation between recursive amplitude formulae and the minimal model theorem. In

particular, that is where the quasi-isomorphism appearing in the proof of the minimal model

theorem for the L∞-algebra of correlators was originally given a physical interpretation

as the collection of Berends-Giele “off-shell currents” [51] appearing in their namesake

recursion relations.

2 L∞-algebras

An L∞-algebra structure lives on a Z-graded vector space V. Denoting the L∞-algebra

generators by Ta, each assumed to have some definite “L∞-degree” deg Ta ∈ Z, the symme-

try and Jacobi identities are together encoded in the BRST-charge-like operator Q (where

∂/∂za = ∂a is a left derivative; our notation for symplectic supermanifolds is as in [38]

appendix A)

Q =
∞∑
n=1

1

n!
Cab1...bnz

b1 · · · zbn ∂

∂za
= Qa∂a , Q2 = 0 , degQ = +1 . (2.1)

Q acts on the space C(V) of formal power series in variables za, with multiplication

zazb = (−1)(deg za)(deg zb)zbza = (−1)abzbza , (2.2)

so za is bosonic or fermionic according to deg za ∈ Z. The structure constants Cab1...bn
(real or complex numbers) are defined so Q increases this degree by 1. The collection

{za} is the dual basis to the generators Ta and the za inherit their degrees from the Ta:

deg za = − deg Ta. A Lie algebra is the special case where all deg za = 1; Q2 = 0 then

reduces to the familiar Jacobi identity. The L∞ brackets are defined by

[Tb1 , Tb2 , . . . Tbn ] = Cab1...bnTa , deg[Tb1 , Tb2 , . . . Tbn ] = 1 +
∑

deg Tbi (2.3)

(This L∞ degree convention agrees with the “target space ghost number” of [10] and the

“b-picture” of [27] after deg Ta → − deg Ta.)

We exclusively use this geometric definition (called the “DGA-picture” in [28]) where

Q is interpreted as a vector field on a formal superspace [39, 52] with coordinates za, whose

ring of “functions” is C(V) by definition. A homomorphism f of L∞-algebras f : V → V ′

(henceforth morphism) is a degree 0 map of superspaces of the form (where each f a′
na1a2...an

is a constant)

f?(z′)a
′ ≡ f a′

1 a z
a +

1

2
f a′

2 a1a2
za1za2 + · · · ≡

∞∑
n=1

1

n!
f a′
na1a2...anz

a1za2 · · · zan (2.4)

which relates the vector fields by

Q ◦ f? = f? ◦Q′ . (2.5)

– 3 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
5

More precisely it is an L∞-degree-preserving linear map of the spaces of polynomials f? :

C(V ′) → C(V) which respects multiplication (f?(ab) = f?(a)f?(b)) and has zero constant

part. It is an isomorphism if f1 is invertible as a map V → V ′.
An L∞-algebra with invariant inner product κ is called cyclic.2 This is defined as a

degree −1 symplectic form κ = κabdz
adzb/2 with constant coefficients κab, annihilated by

the Lie derivative LQ. The last condition is equivalent to

Cb1...bn+1 ≡ κab1Cab2...bn+1
= (−1)b1b2κab2C

a
b1...bn+1

. (2.6)

This notion agrees with the inner product on the space of string states of Zwiebach’s [10]

(cf. the “multilinear string functions” therein). κab has the symmetry

κab = κba , (2.7)

so the inverse κab is also symmetric. (The sign factor (−1)(a+1)(b+1) evaluates to +1.)

Cyclic L∞-algebras are related to the BV formalism: the formal power series Θ

Θ(z) ≡
∞∑
n=2

1

n!
Cb1...bnz

b1 · · · zbn , deg Θ = 0 (2.8)

defines a cyclic L∞-algebra with

Q ≡ (Θ,−) = ∂bΘκ
ba∂a (2.9)

when (Θ,Θ) = 0 (where Q is the hamiltonian vector field of Θ, and (−,−) is the Poisson

bracket of κ), and vice versa. By introducing “antifields”
?
za we can replace an arbitrary

L∞-algebra V with a cyclic one Vcyclic (whose Θ is (2.1) with ∂a →
?
za), yielding a surjective

morphism Vcyclic → V. (This is the “odd double” of [53].)

For completeness we mention the Maurer-Cartan equation for a cyclic L∞-algebra.

Let Ψ = ΨaTa be a degree-zero element of the vector space V of a cyclic L∞-algebra (with

coordinates Ψa). Consider the translation za → za + Ψa generated by the vector field

vΨ ≡ Ψa∂a. Since the symplectic form κ has constant coefficients,

0 = exp(LvΨ)
(
Θ(z),Θ(z)

)
=
(
Θ(z + Ψ),Θ(z + Ψ)

)
, (2.10)

where Θ(z+ Ψ) ≡ exp(LvΨ)Θ(z). Therefore, Θ(z+ Ψ) is a formal power series in za which

will define a cyclic L∞-algebra iff the term linear in z below vanishes:

Θ(z + Ψ) = Θ(Ψ) + za
(

∂

∂za
Θ

)
z=Ψ

+O(z2) . (2.11)

2The name is in reference to the A∞ generalisation: an A∞-algebra is defined exactly as above with

the exception that the product zazb is only associative instead of graded commutative. Then a degree

−1 symplectic form κ is annihilated by the corresponding Q iff the index-down structure constants have a

cyclic symmetry under permutations. In terms of the relation between open string field theory and A∞-

algebras, this corresponds to the fact that open string vertex operators are inserted on the S1 boundary of

the worldsheet.
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By degree-counting, this is true iff Ψ solves the Maurer-Cartan equation

∂Θ(Ψ)

∂Ψa
= 0 . (2.12)

Note that there are convergence issues here because the Ψa are reals (if the L∞-algebra is

real) so Θ(Ψ) is an honest power series as opposed to a formal one.

Now consider the Jacobi identities Q2 = 0 of an arbitrary L∞-algebra. These are

organised by polynomial degree in za: split Q = Q0 +Q1 +Q2 + . . . so each Qn increases

polynomial degree by n, to obtain infinitely many identities

Q2
0 = 0 , Q0Q1 +Q1Q0 = 0 , Q2

1 +Q2Q0 +Q0Q2 = 0 , . . . (2.13)

The first gives CabC
b
c = 0; i.e. the L∞-algebra unary bracket K (defined so K(Ta) = CbaTb)

has K2 = 0. Since K raises L∞-degree by 1, K is a cohomology operator on the graded

vector space V.

For a minimal L∞-algebra (i.e. K = 0; in particular, Lie algebras are minimal as L∞
ones), the underlying vector space V is the cohomology of K. More generally, for any

L∞-algebra one can put an L∞-algebra structure on the cohomology of K. This is called a

minimal model for the original algebra, and all minimal models thusly obtained are isomor-

phic. For most purposes the study of an L∞-algebra can be reduced to that of its minimal

model; for this reason, morphisms of L∞-algebras which correspond to isomorphisms of

minimal models are particularly important and are known as quasi-isomorphisms. They

are equivalently characterised as morphisms f such that f1 : V → V ′ is an isomorphism on

the cohomologies of K,K ′ respectively.

2.1 The minimal model theorem for cyclic L∞-algebras

The minimal model theorem [54] claims a minimal L∞-algebra Vmin and an injective quasi-

isomorphism Vmin → V . We here provide a short construction of a minimal model for a

cyclic L∞-algebra (V,Θ(z), κ) following a suggestion of Kajiura [22]: roughly, one extrem-

ises the hamiltonian Θ, then backsubstitutes to find a hamiltonian for a minimal model.

We will see later how this is exactly like the Jevicki-Lee prescription for the S-matrix [26].

Proof. (valid when (V?)? ∼= V, e.g. in finite dimensions.)

We invoke a “cyclic Hodge-Kodaira decomposition” (see [22, 28, 55] and appendix A)

V = P ⊕ P⊥ (2.14)

where P is a subspace ofK-cohomology representatives, P⊥ is its κ-orthogonal complement,

and κ restricted to either is non-degenerate. We can find a partial inverse G of K on P⊥

(a degree −1 map we will call the propagator), so GKG = G, KGK = K, G2 = 0 and

Gac ≡ κabGbc = −(−1)acGca. In particular P⊥ = im(KG)⊕ im(GK) where each summand

is κ-null. Abusing notation by calling P both the subspace of K-cohomology representatives

and a projector P : V → V , we therefore have

κ =

(
κ|P 0

0 κ|P⊥

)
, κ|im (KG) = κ|im (GK) = 0 , κ|P = PκP non-degenerate. (2.15)

– 5 –
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Now to construct a quasi-isomorphism f : Vmin ≡ P → V. Let ζa be a basis of P ? ⊂ V?.
Extend it to a basis za of V? to write a direct sum

za = ζa +GabC
b
cz
c + CabG

b
cz
c , P ab ζ

b = ζa . (2.16)

Here P ab is the matrix of the projector P , and Cab is the matrix of K. Specifying the last

two terms as formal power series in ζa specifies the quasi-isomorphism (assuming both

are O(ζ2)).

The candidate quasi-isomorphism f : Vmin → V will be defined by the recursive formula

(where Θ̄ is Θ without its quadratic part)

f?(za) = ζa −Gabf?
(
∂bΘ̄

)
= ζa −Gabf?(Qb −Qb0) (Gab ≡ Gacκbc) (2.17)

Since ∂Θ̄ is O(z2), the right-hand side is defined as a formal power series in ζ (cf. (2.4)),

and f is an isomorphism in K-cohomology.

The sign in (2.17) is fixed by demanding (2.19) (important in the sequel):

CabG
b
cQ

c = CabG
b
cC

c
dz
d + CabG

bc∂cΘ̄ = Cab z
b + CabG

bc∂cΘ̄ (2.18)

=⇒ f?
(
CabG

b
cQ

c
)

= 0 . (2.19)

The last equality can be rewritten

f?
(
Gab∂aΘ

)
= 0 (2.20)

so we are in a sense “solving the equations of motion” derived from Θ(z). Then

Θmin(ζ) ≡ f?Θ(z) , (κmin)ab ≡ P caκcdP db , Qamin ≡ κab
∂Θmin

∂ζb
(2.21)

defines a minimal cyclic L∞-algebra if the master equation
(
Θmin,Θmin

)
min

= 0 is satisfied.

A short calculation using ∂Θmin/∂ζ
a = P baf

?(∂Θ/∂zb) confirms(
Θmin,Θmin

)
min

= κabP caP
d
b f

?(∂cΘ∂dΘ) = f?
(
Θ,Θ

)
= 0 (2.22)

where we used (2.20) and (2.15) in deriving the penultimate equality.

We have yet to show that f is a morphism of L∞-algebras Vmin → V. (This is not

especially illuminating.) This is condition (2.5) which equivalently reads(
f?Θ, f?za

)
min

= f?
(
Θ, za

)
. (2.23)

Since f is not invertible, it does not automatically give a morphism of (graded) Poisson

brackets despite f?κ = κmin. We now loosely follow Kajiura [22] and first replace f with

an invertible morphism F : V → V , again recursively defined,

F ?za = ẑa −Gab (F ?Q̄b) , (F−1)?ẑa = za +Gab Q̄
b , (Q̄a = Qa −Qa0) (2.24)

where ẑa is za, renamed for clarity. F preserves the symplectic form due to κ|im (GK) = 0:

F ?κ = (κabdẑ
adẑb)/2. It is therefore a symplectomorphism, which is a morphism of Poisson

algebras, and thus both F and F−1 are L∞-isomorphisms.

– 6 –
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The transformed L∞-algebra structure is given by Q̂ = F ? ◦Q ◦ (F−1)?. The point of

this redefinition is that the new vector field, Q̂, is tangent to the subspace P of cohomology

representatives except for its “non-minimal piece”:

Q̂ = Qa(F ?z)
∂(F−1)?ẑb

∂za
∂

∂ẑb
(2.25)

= F ?(Qb +GbcQ
a∂aQ̄

c)
∂

∂ẑb
(2.26)

= F ?(Cbcz
c + Q̄b +GbcQ

a∂aQ̄
c)

∂

∂ẑb
(2.27)

= (Cbc ẑ
c)

∂

∂ẑb
+ F ?(−CbcGcdQ̄d + Q̄b +GbcQ

a∂aQ̄
c)

∂

∂ẑb
(2.28)

= (Cbc ẑ
c)

∂

∂ẑb
+ F ?Q̄cP bc

∂

∂ẑb
. (2.29)

(The Jacobi identities in the form Qa∂aQ
b = 0 were used for the last step.)

With this setup, we see that f̂ : Vmin → V given by a straightforward projection to the

cohomology, f̂?ẑa = P ab ẑ
b ≡ ζa, is an L∞-algebra morphism yielding a minimal model for

Q̂. Since f̂? ◦ F ? = f?, f? is an L∞-algebra morphism. This completes the proof.

The recursion (2.17) clearly terminates for the purposes of determining f : a little

counting shows that the n-th coefficient f a
n b1b2...bn

(2.4) only depends on Cab1...bm for m ≤ n
and f a

mb1b2...bn
for m ≤ (n − 1). It replaces the usual sum over trees in the proof of the

minimal model theorem (e.g. Theorem 10.3.9 in [56]). This is highly suggestive of the

combinatorics of the QFT 1PI generating functional, cf. also [22].

3 The L∞-algebra of correlators

Now consider a D-dimensional quantum field theory on a spacetime with coordinates xµ,

with generating functional Z[J ] of correlation functions

δnZ/δJ(x1) . . . δJ(xn)|J=0 = 〈φ(x1)φ(x2) . . . φ(xn)〉 . (3.1)

Actually, for a gauge theory we consider the related functional Z[J,
?

Φ] where
?

Φ is a source

for BRST transformations: differentiating Z[J,
?

Φ] with respect to
?

Φ leads to Ward identities

for BRST symmetry. If a classical action is available, Z[J,
?

Φ] has a path integral expression

Z[J,
?

Φ] =

∫
Dφ exp

(
i

~
S[φ,

?

Φ + δΨ/δφ] +

∫
dx J(x)φ(x)

)
(3.2)

where S[φ,
?

φ] is the BV master action with bare fields φ (including ghosts) and antifields
?

φ and Ψ is a gauge-fixing fermion. S = Scl +O(~) satisfies the quantum master equation,

− 2i~∆S + (S, S) = 0 , ∆S = (−1)φ
δ2S

δφ(x)δ
?

φ(x)
(3.3)

and its lowest order in ~ part Scl solves the classical master equation. (The antibracket

(−,−) here is the usual expression
(
φ(x),

?

φ(y)
)

= δ(x−y). The above is the usual setup of

– 7 –
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the BV formalism for arbitrary gauge theories, as reviewed comprehensively in e.g. [28, 57]

and succinctly in e.g. [58]. We omitted Lorentz or other indices on φ.)

As an example of the above (from [59]) we briefly mention the Maxwell theory of a

gauge potential aµ(x) with field strength fµν ≡ 2∂[µaν] on 4-dimensional Minkowski space.

Fields φ are aµ, a ghost c of degree +1, and in the non-minimal sector (only needed for

gauge fixing) the Nakanishi-Lautrup field b of degree 0 and an “antighost” c̄ of degree

−1. Their antifields
?

φ are respectively
?
aµ,

?
c,

?
c̄,

?

b of degrees −1,−2, 0,−1 respectively. The

gauge-fixing fermion enforcing e.g. Lorenz gauge (∂µaµ = 0) is Ψ =
∫
ic̄∂µaµ. Then

S[φ,
?

φ] =

∫
d4x − 1

4
fµνf

µν +
?
aµ∂µc+ i

?
c̄b (3.4)

solves (3.3). Z[J,
?

Φ] is a path integral with measure
∫
DaDcDbDc̄ and we find in the

integrand

S[φ,
?

Φ + δΨ/δφ] =

∫
d4x − 1

4
fµνf

µν + (
?

Aµ − i∂µc̄)∂µc+ (i
?

C̄ − ∂µaµ)b . (3.5)

We thus see that
?

Aµ,
?

C̄ are classical sources for the corresponding gauge fixed BRST

transformations. (The other components of
?

Φ drop out in this simple example.)

The Legendre transform in the sense of formal power series [60] with respect to J(x)

of the connected generating functional W = logZ is the 1PI generating functional Γ[Φ,
?

Φ]:

define Φ(x) as a functional of J and
?

Φ by

Φ(x) =
δW [J,

?

Φ]

δJ(x)
, (3.6)

and invert it so J is expressed using Φ,
?

Φ. Then

Γ[Φ,
?

Φ] = −i~
(
W −

∫
J(x)Φ(x)dx

)
, (3.7)

and δΓ/δΦ(x) = i~(−1)JJ(x). Using this and integration by parts in the path integral,

(Γ,Γ) =
〈
~−2 (−2i~∆S + (S, S))

〉
J [Φ]
≡
∫
Dφ 1

~2Z[J,
?

Φ]
e
∫
Jφ (−2i~∆S + (S, S)) , (3.8)

where J = J [Φ], 〈· · · 〉J is an expectation value in the presence of the source J (see appendix

B) and we defined an antibracket
(
Φ(x),

?

Φ(y)
)

= δ(x − y). Therefore, if S solves the

quantum master equation (3.3), Γ solves the classical master equation, and vice versa

inside correlators, since J is an arbitrary source (cf. the Schwinger-Dyson equations).

In this context the classical master equation (Γ,Γ) = 0 for the 1PI functional is known

as the Zinn-Justin equation [4]. It was originally found in the context of Yang-Mills, but

can in fact be used to remove the divergences of fairly arbitrary field theories, as was done

in [61] (see also the review [62]). Obstructions to the Zinn-Justin equation can be shown

to correspond to local gauge anomalies; its validity implies Slavnov-Taylor identities. If

the 1PI functional Γ arises from a path integral involving a BV quantum master action S
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as above, this is immediate from (3.8). (We refer to the review [57] sections 8.4 and 8.5

for more on this point and for a proof of (3.8).) We prefer however to think of Γ as the

fundamental object, not necessarily expressed as an ~-expansion or path integral.

We take Γ along with the antibracket pairing between Φ and
?

Φ to define the cyclic

L∞-algebra of correlators. Assuming (Γ,Γ) = 0 we need only check that3

δΓ

δΦ
=
δΓ

δ
?

Φ
= 0 at Φ =

?

Φ = 0 (3.9)

to match the form of (2.8); the structure constants of the L∞-algebra of correlators are

then obtained by expanding Q = (Γ,−) in (Φ,
?

Φ) around Φ =
?

Φ = 0. These conditions

have physical interpretations. δΓ/δΦ = 0 at Φ = 0 (which we need anyway for the Legendre

transform) says that φ(x) has vanishing vacuum expectation value. This is usually violated

in the context of spontaneous symmetry breaking, but can be remedied by a constant field

shift for QFTs with Poincaré-invariant vacuum on Minkowski space. The other condition,

δΓ/δ
?

Φ = 0, expresses the absence of BRST anomalies.

This setup applies of course to the closed bosonic string field theory of Zwiebach [10].

The “quantum string action” therein (S in our notation) is written as a genus expansion

— equivalently, an ~-expansion — and satisfies the quantum master equation (3.3) as a

consequence of the identities satisfied by the string products; in other words, as a conse-

quence of the “loop L∞-algebra” [63] Jacobi identities (which at tree-level reduce to the

well-known Jacobi identities of the ordinary L∞-algebra of closed string field theory). We

have here translated these identities into the Zinn-Justin equation for the string field theory

1PI effective action Γ. The upshot is that the ordinary L∞-algebra structure defined by Γ

encodes both the well-known L∞-algebra of tree-level closed string field theory as well as

the higher-genus contributions that deform it into a loop L∞-algebra; the price to be paid

is that the L∞-algebra of Γ is not defined over C, but rather over C[~] (complex formal

power series in ~).

Before moving on we acknowledge that we have not actually specified the underlying

vector space V on which the L∞ brackets act, so the construction in this section is so far

formal. Fixing V at this level of generality is difficult. For the more concrete case of a

scalar QFT on Minkowski space, we define V in the next section; it is simply a direct sum

of on-shell wavefunctions (i.e. states appearing in the S-matrix) and Schwartz functions

(i.e. functions of rapid decrease). One expects a similar picture for more general theories.

4 The L∞-algebra of the S-matrix

Our claim here is that the LSZ reduction formula can be interpreted as the quasi-

isomorphism appearing in the above proof of the minimal model theorem for cyclic L∞-

algebras. To this end we recall and clarify the observation originally due to Jevicki and

3When this fails, but (Γ,Γ) = 0 holds, one gets what should be called a “cyclic curved L∞-algebra”. This

is discussed already in [10] (albeit without this name, which appeared later) in the context of closed bosonic

string field theory, where this failure is related to the failure of the string background to be conformal. As it

is not clear whether one can say anything interesting without shifting the background back to a conformal

one, we choose not to elaborate in this case.

– 9 –



J
H
E
P
0
7
(
2
0
1
9
)
1
1
5

Lee [26] (see also [64, 65] and the textbooks [66, 67]) that the S-matrix functional [68] is

obtained from the 1PI functional Γ[Φ,
?

Φ] by extremising it.

We assume here the same setup as in the scalar LSZ formula (1.1). Our QFT only has

one real scalar field operator φ(x) with 2-point function (propagator)

G(x− y) ≡ 〈φ(x)φ(y)〉 =

∫ ∞
0

d(µ2) ρ(µ2)GF (x− y;µ2) (4.1)

where GF (x;µ2) is the usual Feynman propagator for the mass µ2 Klein-Gordon equation,

satisfying (� + µ2)GF (x;µ2) = −i~δ(x). This is the Källén-Lehmann spectral representa-

tion [69, 70]. The spectral function ρ(µ2) takes the form

ρ(µ2) = Zδ(m2 − µ2) + σ(µ2) , 0 < Z < 1 (4.2)

appropriate for a scalar QFT whose asymptotic free particle states have mass m2, so the

smooth function σ(µ2) is only non-zero above a threshold m2
thresh > m2 for production of

multiparticle states. We assume furthermore that there are no asymptotic states besides

the ones created by φ(x), and suggest a remedy in the Discussion.

These assumptions are fairly restrictive, but our arguments should apply mutatis mu-

tandis to any theory where states entering the S-matrix are all massive. A considerable

technical simplification for scalar theories is that we need not introduce gauge symmetry,

so we can without loss of generality let Γ and W be independent of
?

Φ. Therefore, the

Zinn-Justin equation (Γ,Γ) = 0 is trivially satisfied.

The LSZ formula (1.1) relates the connected S-matrix generating functional A[ϕ] to

W [J ] by evaluation of the latter on the source Jϕ, defined by∫
dx Jϕ(x)f(x) =

i√
Z

∫
dx ϕ(x)(�x +m2)f(x) (4.3)

for functions f such that the right-hand side makes sense. Here ϕ(x) is the wavefunction

of an asymptotic 1-particle state, i.e. an S-matrix state:

(�x +m2)ϕ(x) ≡ (∂2
t −∇2 +m2)ϕ(x) = 0 , (4.4)

so the integrand above is in fact a total derivative, and Jϕ is a somewhat bizarre distribution

supported at infinity (more on this later). A subtlety here is that A[ϕ] has a non-zero

universal quadratic part associated to trivial 1 → 1 scattering, while the quadratic in ϕ

part of W [Jϕ] vanishes for our gapped scalar QFT using (4.1) and (4.2) (see [3] section 5-

1-5). Thus, W [Jϕ] is the generating functional of non-trivial connected S-matrix elements,

and we will write A[ϕ] = W [Jϕ], implicitly discarding the quadratic part.

To rewrite this in terms of the 1PI functional, we need to solve δΓ/δΦ(x) = i~J(x) for

Φ in terms of J . This is the (inverse) Legendre transform of formal power series [60]. Since

G(x) of (4.1) is the inverse of δ2Γ/δΦ2|Φ=0 up to prefactors, if Γ̄ is Γ without its quadratic

part, we find the general solution

Φ(x) =

∫
dy G(x− y)

(
J(y) +

i

~
δΓ̄

δΦ(y)

)
. (4.5)
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For J = Jϕ, definition (4.3) and (4.1), (4.2), (4.4) give∫
dy G(x− y)Jϕ(y) = ~

√
Zϕ(x) ; (4.6)

here crucially the multiparticle contribution σ(µ2) to the spectral function (4.2) drops

out, effectively replacing G(x) by the (free) propagator GF (x ;m2) up to a factor of Z.

If Jϕ is interpreted as a “source at infinity” for an incoming/outgoing on-shell state with

wavefunction ϕ(x), this calculation states that the multiparticle states fail to contribute

to the time evolution of ϕ from x0 = ±∞ to finite values. The mass gap m2
thresh > m2

of (4.2) is crucial to this calculation.

We therefore find the following recursive formula defining Φ as a formal power series

in the wavefunction ϕ (cf. (2.17))

Φϕ(x) = ~
√
Zϕ(x) +

i

~

∫
dy G(x− y)

δΓ̄

δΦ(y)
(4.7)

which leads to the following formula for the S-matrix functional

A[ϕ] = i~−1Γ[Φϕ] +

∫
Jϕ(x)Φϕ(x)dx . (4.8)

So far we have never dropped any boundary terms. We would like to now drop the

second term in A[ϕ] above, which is proportional to the total derivative∫
dx ϕ(x)(� +m2)Φϕ(x) =

∫
dx ∂µ

(
Φϕ(x)∂µϕ(x)− ϕ(x)∂µΦϕ(x)

)
(4.9)

whenever ϕ(x) solves the Klein-Gordon equation (4.4). This is anyway zero to order O(ϕ2).

Obviously we cannot in general prove this vanishes (e.g. in the sense of formal power series)

without estimates on 1PI correlators and without specifying the space of ϕ(x). For ϕ(x)

an appropriate space is the space Vrwp of regular wave packets, i.e. of smooth solutions to

the Klein-Gordon equation (4.4) with initial data of compact support in momentum space:

ϕ(x) =

∫
dD−1k√

(2π)D−12E~k

(
α(~k)ei(E~k

t+~k·~x)+ᾱ(~k)e−i(E~k
t+~k·~x)

)
, E~k =

√
|~k|2+m2 (4.10)

(where α(~k) is basically the spatial Fourier transform of the initial data ϕ|x0=t=0 for ϕ(x),

ᾱ(~k) is its complex conjugate, and both are of compact support by assumption. Regular

wave packets can approximate momentum eigenstates arbitrarily well, which is the primary

consideration here.) These always vanish at infinity (Theorem XI.17 of [71]), so assuming

that Φϕ(x) does not blow up at infinity, (4.9) should not contribute to the S-matrix. This

is also argued to be the case in [26, 65]. As a final justification, we note that with the

choice of V specified later in this section it is clear this total derivative term vanishes.

The upshot is the following formula for the S-matrix functional involving the 1PI

functional alone [26] (also [64, 65]):

A[ϕ] =
i

~
Γ[Φϕ] . (4.11)
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One interpretation is that one obtains the S-matrix by evaluating Γ[Φ] on the solution of

δΓ/δΦ(x) = 0: writing

Γ[Φ] =
1

2
(i~)

∫
dx

∫
dy K(x− y)Φ(x)Φ(y) +O(Φ3) , (4.12)

we find (the i~ right above absorbs superfluous factors below)∫
dz K(x− z)G(z − y) = δ(x− y) . (4.13)

Using this, (4.6) yields ∫
dy K(x− y)ϕ(y) = (~

√
Z)−1Jϕ(x) . (4.14)

The right-hand side vanishes when integrated against any f(x) of compact support by (4.3),

so in some sense ϕ(x), which is annihilated by the Klein-Gordon operator (4.4), is also

annihilated by the operator K derived from the 1PI effective action. (This is a check that

ϕ satisfies the Klein-Gordon equation with renormalised mass, as it anyway must if it is the

wavefunction of a scattering state.) Of course, the right-hand side of (4.14) is very much

non-zero. This apparent tension is resolved by interpreting Jϕ(x) as a change of boundary

conditions: the equation Kf(x) = Jϕ(x) + J(x) for f(x) is interpreted as K(g(x)) = J(x)

with g(x) = f(x)−~
√
Zϕ(x) lying in VSchwartz i.e. the space of functions of rapid decrease;

the point here being that K is invertible when restricted to VSchwartz.
4 Analogously, we see

that Φϕ(x) of (4.7) is the unique solution of

δΓ

δΦ(x)
= i~

∫
dy
(
K(x− y)Φ(y)

)
+

δΓ̄

δΦ(x)
= 0 (4.15)

if we assume Φ(x)− ~
√
Z ∈ VSchwartz. At tree level, this reduces to the well-known recipe

for tree-level S-matrix elements from the classical action, recently exploited in e.g. [73, 74].

The argument above is clarified by considering the free theory: in that case Z = 1, K

is proportional to (� + m2), and G is the Feynman propagator. The choice of Feynman

boundary conditions for the propagator is related to the choice of boundary conditions in

the path integral, which are in turn fixed by our decision to calculate vacuum correlators.

We now articulate the L∞-algebraic interpretation. We define the hamiltonian Θ[Φ]

and antibracket defining the L∞-algebra of correlators as

Θ[Φ] = − i
~

Γ[Φ] ,
(
Φ(x),

?

Φ(y)
)

= δ(x− y) , deg Φ(x) = 0 , deg
?

Φ(x) = −1 . (4.16)

Φ(x) and
?

Φ(x) play the role za did in the general discussion previously. In particular Φ(x),
?

Φ(x) are not the values of fixed functions at some spacetime point x, but rather they are

4This is easiest to see from the Källén-Lehmann expression for the exact propagator G (4.1) and (4.2),

which should really be interpreted in momentum space, where G is a multiplication operator. Assuming

G exists in this context as a multiplication operator on VSchwartz, doing a Wick rotation shows it has an

inverse, which is K by definition. The position space expressions used here are then obtained by Fourier

transform, which is anyway an isomorphism on VSchwartz. We refer to [72] chapter 14 for the relevant

analysis background.
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linear functionals mapping functions f : RD → R to their values at a spacetime point x

(much like za ∈ V? is a linear map V → R.)5 The various L∞-algebra brackets act on the

space V spanned by their duals. Since deg Φ = 0 , deg
?

Φ = −1, V is concentrated in degrees

0 and +1 respectively. At degree 0 we have ordinary scalar fields φ(x) while at degree 1

we have degree-shifted scalars we will write cφ(x) using a degree +1 formal constant c.

Since Q =
∫
dx
(
Θ,

?

Φ(x)
)
δ/δ

?

Φ(x), the L∞-algebra structure constants can be read off

the expansion in Φ(x) of(
Θ,

?

Φ(x)
)

=

∫
dy K(x− y)Φ(y) +O(Φ2) . (4.17)

In particular the unary bracket K reads

Kφ(x) = c

∫
dy K(x− y)φ(y) , K(cφ(x)) = 0 , (4.18)

and the 1PI n-point correlators n≥3 similarly define the (n−1)-ary bracket [φ1, φ2, . . . φn](x).

(Any bracket any of whose arguments involves c vanishes. All the Jacobi identities are

thereby satisfied.)

Therefore the vector space of the L∞-algebra of correlators is

V = V ⊕ V [+1] , V
K−→ V [+1] (4.19)

where V is the following space of scalar fields φ(x)

φ(x) = ϕ(x) + φS(x) , i.e. V = Vrwp ⊕ VSchwartz (4.20)

a direct sum of regular wave packets ϕ(x) (i.e. wavefunctions of asymptotic 1-particle states)

along with φS(x) ∈ VSchwartz lying in the Schwartz space VSchwartz of rapidly-decreasing

functions.

With this choice, the cohomology of K at degree 0 is the regular wave packets:

Kφ(x) = 0 ⇐⇒
∫
dy K(x− y)

(
ϕ(y) + φS(y)

)
= 0 ⇐⇒ φS(x) = 0 . (4.21)

(There is no tension with (4.14) here since Jϕ(x) is not an element of V; it has been

projected out. Hopefully our use of K in both places to denote slightly different operators

is not confusing.) Since φS(x) = KGφS(x) in slightly abusive notation it is clear that a

space of cohomology representatives at degree 1 is again the space of regular wave packets.

Therefore, we find the underlying vector space of the putative minimal L∞-algebra

Vmin = Vrwp ⊕ Vrwp[+1] . (4.22)

5This is apparently called the “fundamental confusion of calculus” and is elaborated on in [28] in this

context. It is perhaps clearer to explain this way: since za are a basis of V?, if v = vaTa with va ∈ R and

Ta ∈ V are a basis, the map V → R defined by v → va (for any specific choice of index a) is simply 〈za|v〉 =

〈za|Tb〉vb = δab v
b = va. The confusion is that deg va = 0 (since va ∈ R is a number) but deg za = − deg Ta

(which is anyway necessary for 〈za|Tb〉 = δab since numbers are in degree zero). With regard to determining

the brackets on V from Q acting on polynomials in za, we have e.g. Qza = Ca
b z

b + O(z2) (corresponds

to (4.17)), Kv = KTbv
b = (Ca

b v
b)Ta =⇒ va → Ca

b v
b (corresponds to (4.18)).
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We have been coy about discussing the cyclic inner product on the L∞-algebra of

correlators (or that of the S-matrix) so far. The reason is that our sins — in recklessly

taking duals of infinite-dimensional spaces — have now caught up with us. The canonical

antibracket
(
Φ(x),

?

Φ(y)
)

of (4.16) formally defines the degree -1 symplectic form κ =∫
dx δΦ(x)δ

?

Φ(x) which is a pairing V ×V [+1]→ R. A near-identical construction appears

in Costello’s treatment of φ4 theory (Example 5.1 of [75]), the difference being that he

works on a compact Euclidean spacetime, where this κ is well-defined.

We however must work on Minkowski spacetime in order to treat the on-shell external

states. The above “näıve” bilinear form κ blows up for regular wave packets ϕ(x): indeed

from (4.10) we calculate∫
dx ϕ1(x)ϕ2(x) =

∫
dt

∫
dD−1k

E~k
Re [α1(~k)ᾱ2(~k) + α1(~k)α2( ~−k)ei(2E~k

)t] . (4.23)

The first term blows up due to a factor
∫
dt 1, while the second is singular due to the

oscillatory integral
∫
dt exp(i2E~k)t ∝ δ(2E~k) which should in some sense vanish since E~k

is bounded away from zero by m > 0. This requires regularisation. We thus smear ϕ(x)

around the mass-shell in momentum space by replacing

ϕ(x) =

∫
dk0

dD−1k√
(2π)D−12E~k

δ(k0 − E~k)
(
α(~k)eikx + ᾱ(~k)e−ikx

)
(4.24)

with

ϕε(x) =

∫
dk0

dD−1k√
(2π)D−12E~k

δε(k0 − E~k)
(
α(~k)eikx + ᾱ(~k)e−ikx

)
(4.25)

where δε(k0) is an e.g. Gaussian approximation of the Dirac delta:

δε(k0) =
1

2π

∫
dt exp(ik0t− εt2) =

1√
4πε

e−(k0)2/4ε , ε > 0 . (4.26)

This can be seen as an iε-prescription. Then
∫
dx ϕ1,ε(x)ϕ2,ε(x) reads√

π

2

∫
dD−1k

E~k
Re
[
α1(~k)ᾱ2(~k)ε−1/2 + α1(~k)α2( ~−k)ε−1/2e

−E2
~k
/(2ε)

]
(4.27)

where the first term diverges like ε−1/2 as ε→ 0, but the second term vanishes.

We therefore define a regularised cyclic inner product κ in the L∞-algebra of correlators

by rescaling ϕ(x) in (4.20) by (2ε/π)1/4:

κ(φ1, cφ2) = lim
ε→0

∫
dx

((
2ε

π

)1/4

ϕ1,ε(x)+φ1,S(x)

)((
2ε

π

)1/4

ϕ2,ε(x)+φ2,S(x)

)

=

∫
dD−1k

E~k
Re[α1(~k)ᾱ2(~k)]+

∫
dxφ1,S(x)φ2,S(x) . (4.28)

(Recall V = V ⊕ V [1] where we write V [1] with the degree +1 formal constant c.) Not

only did we absorb the divergence — yielding a positive-definite inner product on Vrwp —
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but we also rendered Vrwp κ-orthogonal to the Schwartz functions φS(x). This realises a

Hodge-Kodaira decomposition

V = P ⊕ P⊥ , P = Vmin = Vrwp ⊕ Vrwp[+1] , P⊥ = VSchwartz ⊕ VSchwartz[+1] (4.29)

in the sense of the proof of the minimal model theorem in the preceding section, for which

the degree -1 map G : V → V defined by (where again G(x− y) is (4.1))

G : V [+1]→ V , G(cϕ(x)) = 0 , G(cφS(x)) =

∫
dy G(y − x)φS(y) (4.30)

and vanishing otherwise, is a “propagator” in that same sense.

We are not quite done yet however, as there are outstanding analytic issues in the pres-

ence of interactions (i.e. non-vanishing binary and higher L∞-brackets), as was originally

pointed out in [1]. These even appear at tree level, where Γ is the classical action: in the

presence of an e.g. φ3 interaction, Γ fails to be defined because the integral
∫
dx φ3(x) blows

up when φ ∈ Vrwp. This is remedied in [1] by (effectively) inserting a position-dependent

Gaussian in the φ3 term, at the price of Lorentz invariance. In the general case, beyond

tree level, we regard these issues as part of the definition of Γ.

The upshot is that we have now realised the setting of the proof of the minimal model

theorem as given in the preceding section for cyclic L∞-algebras. Crucially, the recursive

definition of the minimal model brackets via (2.17) is identical to the recursive formula (4.7)

for Φ(x) originally derived by the usual Legendre transform of formal power series (relating

the 1PI functional Γ to the generating functional W of connected correlators), as applied

to the asymptotic source Jϕ(x) sourcing incoming/outgoing 1-particle states. The cyclic

L∞-algebra of the S-matrix this procedure yields is defined by the hamitonian Θ[ϕ] which

is the S-matrix generating functional A[ϕ] (4.11) up to a sign, with cyclic inner product

the restriction of (4.28) to the space of asymptotic 1-particle states.

5 Discussion

We argued that the most basic objects one usually cares about in quantum field theory

— the S-matrix, and vacuum correlators — have a not-widely-appreciated L∞-algebraic

structure. Moreover, we claim this structure is natural :

• the L∞ Jacobi identities are the non-anomalous Slavnov-Taylor identities;

• the L∞-algebra of the S-matrix is obtained from the L∞-algebra of correlators by a

canonical construction, that is the minimal model theorem ;

• Maurer-Cartan elements (2.12) are the extrema of the 1PI functional Γ, corresponding

to the moduli space of vacua à la Coleman-Weinberg [19].

The facts involving the L∞-algebra of correlators alone follow by trivial observations from

Zinn-Justin’s 1974 work [4]; we have only given a dictionary that translates from his “an-

tifield” or BV language to L∞ language. However, the relation to the S-matrix (outside

of string field theory [20, 21, 23, 24, 55] and the more recent independently-derived results

of [25] for tree-level gravity and Yang-Mills) is new.
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An orthogonal but not incompatible interpretation of our results is that L∞-algebraic

structures do not characterise closed string field theory (where they were originally dis-

covered [10]), but are instead immanent to quantum field theory with a choice of vacuum.

Supporting this is the last claim above: in the context of the philosophy which associates

an L∞-algebra to a deformation problem [17], we see from the Coleman-Weinberg [19]

calculation that the Maurer-Cartan moduli space (2.12) of the L∞-algebra of correlators

corresponds to the vacuum moduli space.

The validity of our results hinges largely on

1. having a well-defined 1PI effective action Γ, known either exactly, or to some order

in ~, satisfying the Zinn-Justin equation
(
Γ,Γ

)
= 0;

2. (for the Minkowski space S-matrix:) having a mass gap, so the LSZ formula and

Källén-Lehmann spectral representation [69, 70] are valid;

3. (also for the S-matrix:) there being no bound states.

Requirement 3. could conceivably be relaxed in general: if a bound state appearing

in the S-matrix is created by a composite operator O[φ](x) (where x here is some sort

of collective coordinate), one could source it using a current JO(x) in the path integral

to arrive at a generating functional Z[J, JO,
?

Φ], then take a logarithm and do a Legendre

transform on both J and JO to try to derive a Zinn-Justin equation for a new kind of 1PI

functional. This direction has been pursued in [76], including a Zinn-Justin equation for

what is called a “master functional” therein.

With regard to requirement 1. we emphasise that it is not necessary that Γ be known

exactly; our arguments work if for instance we have an expansion

Γ = Γ0 + ~Γ1 + · · ·+ ~nΓn +O(~n+1) (5.1)

and we do not care to calculate the higher corrections. Here we only need to replace the

field R or C of scalars of the L∞ algebra with the ring R[~]/{~n+1} (where we quotiented

formal power series in ~ by the ideal generated by ~n+1 = 0). This produces a large class

of examples, the most accessible of which are tree-level theories, where Γ reduces to the

classical action by the usual stationary-phase argument.

Relatedly, we have not considered questions of renormalisation. We simply assume

Γ has been defined at some mass scale µ2 so condition 1. is satisfied. This does lead to

a priori inequivalent L∞-algebras for each µ2. We prefer to resolve this in the future.

One might expect to make contact with the recent treatment of renormalisation in the

BV formalism [77] which is however based on the quantum master action S, not the 1PI

functional Γ (linked by (3.2), (3.7), and (3.8)).

As a mathematical aside we mention that the above relation between S and Γ appears

to associate to any loop L∞-algebra [63] (say over R) an ordinary L∞-algebra over R[~]

through a “perturbative path integral” expression. The Jacobi identities on either side

are then related by the obvious generalisation of (3.8). The calculations showing the

correspondence between the respective cohomologies (see e.g. [57] sections 8.4, 8.5) should
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be rigorous given that perturbative path integrals can be formalised, as in e.g. [78]. This

appears to lead to a compact reformulation of the notion of loop L∞-algebra.

Requirement 2. — relevant for the S-matrix on Minkowski space — is the hardest

to satisfy. The LSZ formula and the Källén-Lehmann spectral representation fail in the

more interesting context of gauge theories: the former because gauge theories usually have

massless degrees of freedom (i.e. no mass gap) which contradicts the assumption of free

asymptotic 1-particle states, and the latter because the space of states is not a Hilbert

space when ghosts are present (they have negative norm). Of these, the failure of the LSZ

formula is the more serious one. Another way to phrase it is that infrared divergences

obstruct the construction of an S-matrix. Of course, at tree-level there are no divergences

and the S-matrix can indeed be obtained according to (4.11).

We now suggest applications and generalisations. One immediate application is to

tree-level theories, which already generalises the aforementioned known results. In the

paper [1] (which appeared at the same time as version 1 of this paper) this is pursued with

the remarkable result that the minimal model theorem leads to practical recursion relations

for scattering amplitudes for any tree-level theory. In our language this can be understood

as follows: from (2.21) we see that an n-point amplitude is built off the quantities f a
n b1b2...bn

calculated from (2.17). These depend only on the m ≤ (n− 1)-point amplitudes as well as

the n-ary and lower structure constants of the L∞-algebra of correlators; at tree level, the

latter are essentially the structure constants of the original lagrangian and are therefore

known. In fact the f a
n b1b2...bn

are almost the same as the Berends-Giele currents [51] as

might be guessed from the fact they have the same index structure, involving n on-shell legs

and a single off-shell leg. The recursion (2.17) is then effectively identical to Berends-Giele

recursion. While the recursion (2.17) also exists at loop level, it is less practical because

the L∞-structure constants Cab1...bn it involves are then the correlators of the theory and

are not known a priori.

Consider furthermore the problem of S-matrix equivalence i.e. of finding which field

redefinitions lead to equivalent S-matrices [79–81]. Clearly the necessary and sufficient

condition is that a field redefinition induces a quasi-isomorphism of the corresponding L∞-

algebras of 1PI correlators. Checking this is not entirely straightforward, but probably

easier than recalculating the S-matrix. For linear field redefinitions this is easy, however:

consider e.g. acting with a Poincaré transformation on φ(x) of the last section. Since the

result is linear in φ(x) we find Φ(x) transforms the same way (given that the vacuum is

Poincaré invariant). This is trivially an L∞-isomorphism of cyclic L∞-algebras, showing

Poincaré invariance of the S-matrix.

The L∞-algebraic perspective is well-suited to problems involving determining defor-

mations of QFTs (or, rather, their correlation functions). Given our results, we see that the

deformation problem is controlled in general by cyclic L∞-algebra cohomology [82], which

can be reduced to the cohomology of the cyclic minimal model (as is obvious from (2.29)),

i.e. the S-matrix. In fact applications vaguely along those lines have already appeared in the

form of [83, 84] wherein non-commutative deformations of Chern-Simons and Yang-Mills

were determined through an “L∞-bootstrap”.
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Finally, consider the problem of extending our results to conformal field theories. As

explained above, the construction in this paper does not directly apply6 so it is unclear

what a “minimal model” of a CFT in the sense of the minimal model theorem should

correspond to (again, this is a different notion than that of a minimal model CFT). A

related curiocity is that all 2-point functions of any CFT are fixed by conformal symmetry.

Something similar happens to the S-matrix functional: 1 → 1 scattering is trivial, so the

quadratic term in any S-matrix functional is universal, as we already pointed out in the

previous section. This suggests we could discard the 2-point functions in a CFT (since there

is effectively no information therein) and see if n-point CFT correlators for n ≥ 3 are the

minimal model of a different theory. In fact, this seems to be realised by AdS/CFT, at least

in the following simple example: taking scalar field correlators for simplicity, the dictionary

of [85, 86] states that CFT correlators (given by a generating functional ZCFT[φ0]) at a

large N limit are well-approximated by the (renormalised) on-shell bulk Euclidean AdS

action IAdS[φ] where φ0 is the boundary value of the on-shell bulk scalar field φ:

ZCFT[φ0] = exp(−IAdS[φ]) , φ solves
δIAdS[φ]

δφ
= 0 , φ|∂AdS = φ0 . (5.2)

The analogy to the Jevicki-Lee S-matrix prescription is obvious, modulo the need to discard

the 2-point contribution on either side.
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A Cyclic Hodge-Kodaira decompositions

We prove (2.14) and the claims around it, for finite dim V. Identity (2.6) for a cyclic inner

product κab implies in particular for the unary bracket K(Ta) = CbaTb

κacC
c
b = (−1)abκbcC

c
a =⇒ κ(v1,Kv2) = (−1)(deg v1)(deg v2)κ(v2,Kv1) (A.1)

whence

(imK)⊥ = kerK =⇒ (kerK)⊥ = imK (A.2)

(we need finite dimensionality for the last implication). Therefore κ descends to a non-

degenerate bilinear form on the cohomology kerK/imK of K.

6As there is no mass gap or obvious notion of free asymptotic states to scatter.
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Now select a subspace P of cohomology representatives in kerK so that

kerK = P ⊕ imK . (A.3)

We see that κ|P×P is non-degenerate, implying

V = P ⊕ P⊥ (A.4)

where we stress P ∩ P⊥ = {0} and κ is non-degenerate on both P and P⊥.

Since im K ⊂ P⊥ and im K ⊂ (im K)⊥ it follows that κ restricts to zero on im K

in P⊥. For any complementary subspace L so P⊥ = im K ⊕ L is a direct sum, K can

be restricted to a map K|L : L → im K where it is invertible, and L ∼= im K as vector

spaces. Call the inverse G : imK → L (which is necessarily a degree −1 linear map given

degK = +1) and extend it to a map V → L by setting G(v) = 0 ∀v ∈ P ⊕ L ⊂ V . This

in particular implies

G2 = 0 (A.5)

and we get the identities

(KG)2 = KG , (GK)2 = GK =⇒ GKG = G , KGK = K . (A.6)

Since L and im K are both κ-perpendicular to P , if P denotes the projector onto P we

also get KP = PK = KG = GK = 0.

KG and GK are projectors onto im K and L respectively, but not κ-orthogonal ones

since im K and L can never be chosen to be orthogonal. However, we can select L such

that κ|L×L = 0 i.e. im (GK) is κ-null (easy to construct in finite dimensions). When this

is the case, we obtain the identity

κacG
c
b = −(−1)abκbcG

c
a . (A.7)

To summarise: a “propagator” G : V → V of degree −1 compatible with κ (A.7)

exists and depends on a choice of cohomology representatives P and a choice of “co-exact”

elements L ⊂ P⊥. This is true in finite dimensions. For a Hilbert space if we assume that

(im K) and (kerK) are both closed the argument goes through except for the point that

we can always find an L such that κ|L×L = 0.

B Path integral derivation of the Zinn-Justin equation from the

quantum master equation

Using the definitions in the main text, since we only ever use left derivatives,

(
Γ,Γ

)
= 2

∫
dx (−1)Φ δΓ

δΦ(x)

δΓ

δ
?

Φ(x)
= 2

∫
dx J(x)

δΓ

δ
?

Φ(x)
. (B.1)
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We need to calculate δΓ/δ
?

Φ(x) in terms of Z[J,
?

Φ]. This is in fact proportional to

−i~δ logZ[J,
?

Φ]/δ
?

Φ(x)|
J=J [Φ,

?
Φ]

by the following short calculation: from the Legendre trans-

form (3.7),

δΓ

δ
?

Φ(x)
= −i~

(
δ

δ
?

Φ(x)
logZ

[
J [Φ,

?

Φ],
?

Φ
]
−
∫
dy

δJ(y)

δ
?

Φ(x)
Φ(y)

)
(B.2)

= −i~

(
δ logZ

δ
?

Φ(x)

∣∣∣
J=J [Φ,

?
Φ]

+

∫
dy

δJ(y)

δ
?

Φ(x)

δ logZ

δJ(y)
− δJ(y)

δ
?

Φ(x)
Φ(y)

)
(B.3)

so the last two terms cancel by (3.6). We used the chain rule for left derivatives

df = dwa(∂zb/∂wa)(∂f/∂zb) (the order is important when fermion variables are involved).

Therefore (
Γ,Γ

)
= 2

∫
dx

1

Z[J,
?

Φ]

∫
Dφ J(x)e

∫
Jφ δ

δ
?

Φ(x)
eiS/~ (B.4)

where J = J [Φ,
?

Φ] and S = S[φ,
?

Φ + δΨ/δφ] as in section 3. Using the trick

J(x) exp(
∫
Jφ) = (−1)φδ exp(

∫
Jφ)/δφ(x), we can integrate by parts inside the path in-

tegral to move δ/δφ(x) to exp(iS/~) (at the expense of a total derivative term, which we

discard). The end result is

(
Γ,Γ

)
= −2

∫
dx

1

Z[J,
?

Φ]

∫
Dφ e

∫
Jφ∆eiS/~ (B.5)

(where the x integral smears ∆ = (−1)φδ2/δφ(x)δ
?

φ(x) in x) which leads to the result in

the main text.
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[12] R. D’Auria and P. Fré, Geometric Supergravity in d = 11 and Its Hidden Supergroup, Nucl.

Phys. B 201 (1982) 101 [Erratum ibid. B 206 (1982) 496] [INSPIRE].
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