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1 Introduction

There has been a renewed interest in non-relativistic (NR) theories due to their utilities to

approach strongly coupled condensed matter systems [1–8] as well as NR effective field the-

ories [9–12]. At the gravity level, the study of NR gravitational theories has been discussed

by diverse authors in [13–28]. A NR theory can be obtained by a suitable limiting process

from a relativistic theory. In particular, through this work, the NR limit corresponds to

the limit in which the speed of light c tends to infinity. It is well known that in such NR

limit, the AdS spacetime becomes the Newton-Hooke symmetry which in the flat limit

corresponds to the Galilei symmetry [29–36].

On the other hand, three-dimensional gravity models are interesting and simple toy

models as they can be formulated as a Chern-Simons (CS) gauge theory [37–39]. In par-

ticular, CS approach allows us to construct diverse relativistic and non-relativistic (su-

per)gravity actions. Nevertheless, the construction of a NR CS action might lead to in-

finities and degeneracy. Such difficulties can be overcome by enlarging the field content

of the relativistic theory [24, 25, 40, 41]. In the case of the relativistic Poincaré CS grav-

ity theory the NR limit requires to introduce two central extension in order to admit a

non-degenerate bilinear form. Such extension leads to the exotic Bargmann algebra which

allows us to define a proper finite NR CS action [25, 26].

Recently, the NR limit of a three-dimensional CS gravity theory based on a particular

deformation and enlargement of the Poincaré symmetry was presented in [42]. Such symme-

try, known as the Maxwell algebra, has been introduced in [43–45] to describe the presence
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of a constant electromagnetic field background in a Minkowski space. Interestingly, the

infinities and degeneracy are avoided by considering the NR contraction of a [Maxwell]

⊕u (1)⊕u (1)⊕u (1) algebra leading to the Maxwellian Exotic Bargmann (MEB) algebra.

In this work, we explore the NR limit of a three-dimensional CS gravity theory based

on the AdS-Lorentz algebra. Such symmetry is a semi-simple enlargement of the Poincaré

one and has been initially introduced in [46, 47]. The AdS-Lorentz algebra and its general-

izations have been particularly useful to recover (pure) Lovelock gravity theories from CS

and Born-Infeld theories [48–50]. At the supersymmetric level, the supersymmetric exten-

sion of the AdS-Lorentz algebra has been used to introduce alternatively a cosmological

constant term in four-dimensional supergravity [51–54]. More recently, a BMS-like ansatz

for a three-dimensional CS theory based on the AdS-Lorentz algebra has been presented

in [55]. In particular, the asymptotic symmetry at null infinity turns out to be a semi-

simple enlargement of the bms3 algebra. An interesting feature of the AdS-Lorentz algebra

is that it reproduces the Maxwell algebra through a flat limit ℓ → ∞.

Here we present a NR CS gravity based on a particular enlargement of the extended

Bargmann (EEB) algebra by considering the NR contraction of the [AdS-Lorentz] ⊕u (1)⊕

u (1) ⊕ u (1) algebra. Such U (1) enlargement not only allows us to construct a finite

NR CS action but also to obtain the MEB gravity in the flat limit. We also present

an alternative procedure to obtain the EEB and MEB algebras through the semigroup

expansion mechanism (S-expansion) [56–58]. Such procedure note only provides us with

the commutators of the NR algebras but also gives the non-vanishing components of the

invariant tensor which are crucial to the proper construction of a CS action.

The paper is organized as follows: in section 2, we give a brief review of the three-

dimensional relativistic AdS-Lorentz CS gravity theory. The section 3 is devoted to the

NR contraction process of the AdS-Lorentz gravity theory. In section 4, we present an al-

ternative mechanism to obtain the EEB and MEB algebras by considering the S-expansion

method. Section 5 is devoted to discussion and possible developments.

Note added: while this manuscript was in the process of typesetting, it came to our

knowledge the ref. [59], which possesses some overlap with particular cases of our results.

2 Three-dimensional AdS-Lorentz Chern-Simons gravity, U(1) enlarge-

ments and flat limit

2.1 AdS-Lorentz Chern-Simons gravity and flat limit

In this section, we review the construction of a three-dimensional CS gravity based on a

semi-simple enlargement of the Poincaré group. The mentioned group is known as the AdS-

Lorentz group [46, 60, 61] and the corresponding algebra is a deformation and enlargement

of the AdS algebra. The commutators of the AdS-Lorentz algebra read

[JA, JB] = ǫABCJ
C , [PA, PB] = ǫABCZ

C ,

[JA, ZB] = ǫABCZ
C , [ZA, ZB] =

1

ℓ2
ǫABCZ

C , (2.1)

[JA, PB] = ǫABCP
C , [ZA, PB] =

1

ℓ2
ǫABCP

C ,
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where JA are the spacetime rotations, PA are the spacetime translations and ZA are non-

Abelian generators. Note that A,B,C = 0, 1, 2 are the Lorentz indices which are lowered

and raised with the Minkowski metric ηAB = (−1, 1, 1) and ǫABC is the Levi Civita tensor

which is normalized as ǫ012 = −ǫ012 = 1. Let us note that the name “AdS-Lorentz” is due

to the fact that the algebra (2.1) can be written as the direct sum so (2, 2)⊕ so (2, 1) by a

suitable redefinition of the generators,

JA = ℓ2ẐA ,

PA = P̂A , (2.2)

ZA = ĴA − ℓ2ẐA .

Let us construct now the relativistic CS action for the AdS-Lorentz symmetry. The

three-dimensional CS action is given by

I [A] =

∫

〈AdA+
2

3
A3〉 , (2.3)

where A is the one-form gauge connection and 〈· · · 〉 denotes the invariant trace. In partic-

ular, the one-form A taking values in the AdS-Lorentz algebra (2.1) reads

A = WAJA + EAPA +KAZA , (2.4)

where WA is the one-form spin connection, EA is the vielbein and KA is the gauge field

along the non-Abelian generator ZA . The associated curvature two-form is

F = RA(W )JA +RA(E)PA +RA(K)ZA ,

where

RA(W ) := dWA −
1

2
ǫABCWBWC ,

RA(E) := DWEA −
1

ℓ2
ǫABCKBEC , (2.5)

RA(K) := DWKA −
1

2ℓ2
ǫABCKBKC −

1

2
ǫABCEBEC .

In particular, the Lorentz covariant derivative is defined as DWΘA := dΘA − ǫABCWBΘC .

The non-vanishing components of an invariant tensor of rank 2 for the AdS-Lorentz algebra

are given by [55, 60, 62]

〈JAJB〉 = µ0ηAB , 〈PAPB〉 =
µ2

ℓ2
ηAB ,

〈JAPB〉 =
µ1

ℓ
ηAB , 〈ZAZB〉 =

µ2

ℓ4
ηAB , (2.6)

〈JAZB〉 =
µ2

ℓ2
ηAB , 〈ZAPB〉 =

µ1

ℓ3
ηAB ,

where the arbitrary constants µ0, µ1 and µ2 can be redefined as

µ0 → α0 , µ1 → α1ℓ , µ2 → α2ℓ
2 . (2.7)
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In this way the flat limit ℓ → ∞ is well defined and (2.6) with the redefinition (2.7) leads

to the invariant tensor of the Maxwell group in three-dimensions. Note that applying this

limit in (2.1) leads us to the commutation relations of the Maxwell algebra. As we will see

in the next sections, this behaviour also arises at the level of the non-relativistic gravities.

Considering the AdS-Lorentz connection one-form (2.4) and the invariant tensor (2.6)

with the redefinition (2.7) in the general form (2.3), we find that the explicit form of the

relativistic CS gravity action invariant under the AdS-Lorentz symmetry reads

IR =

∫
[

α0

(

WAdWA+
1

3
ǫABCWAWBWC

)

+ α1

(

2EAR
A(W )+

2

ℓ2
EAF

A(K)+
1

3ℓ2
ǫABCEAEBEC

)

(2.8)

+ α2

(

TAEA+
1

ℓ2
ǫABCEAKBEC+2KAR

A(W )+
2

ℓ2
KADWKA+

1

3ℓ4
ǫABCKAKBKC

)]

,

where we have defined the torsion two-form TA := DWEA, and the curvature FA(K) :=

DWKA − 1
2ℓ2

ǫABCKBKC . From (2.8) we see that the action is split into three different

sectors proportional to the α′s constants. The gravitational CS term is related to the α0

constant, while the EH term plus a cosmological constant term appear along the α1 constant

together with a term depending on the gauge field KA. The last term proportional to α2

contain a torsional term plus couplings of the gravitational gauge fields with the KA field.

It is important to point out that each of the three sectors is invariant under the AdS-Lorentz

symmetry. In particular, the infinitesimal gauge transformations δΛA = dΛ + [A,Λ], with

gauge parameter Λ = ρAJA + εAPA + γAZA, are given by

δΛW
A = DWρA ,

δΛE
A = DW εA − ǫABCρBEC −

1

ℓ2
ǫABC (KBεC − γBEC) , (2.9)

δΛK
A = DWγA − ǫABC (EBεC − ρBKC)−

1

ℓ2
ǫABCKBγC .

The CS action (2.8) is invariant, modulo boundary terms, under these gauge transforma-

tions.

Note that the flat limit ℓ → ∞ applied to (2.8) leads to the relativistic CS action for

the Maxwell symmetry in three-dimensions [42, 63, 64]. In the same way, this limit leads

to the gauge transformations for the Maxwell symmetry when is considered in (2.9).

The field equations coming from (2.8) are given by

δWA : 0 = α0RA(W ) + α1

(

TA −
1

ℓ2
ǫABCK

BEC

)

+ α2

(

FA(K)−
1

2
ǫABCE

BEC

)

,

δEA : 0 = α1

(

RA(W ) +
1

ℓ2
FA(K)−

1

2ℓ2
ǫABCE

BEC

)

+ α2

(

TA −
1

ℓ2
ǫABCK

BEC

)

,

δKA : 0 =
α1

ℓ2

(

TA −
1

ℓ2
ǫABCK

BEC

)

+ α2

(

RA(W ) +
1

ℓ2
FA(K)−

1

2ℓ2
ǫABCE

BEC

)

,
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which can be written as

RA(W ) = 0 ,

TA −
1

ℓ2
ǫABCK

BEC = 0 , (2.10)

FA(K)−
1

2
ǫABCE

BEC = 0 .

As is expected, when ℓ → ∞ in (2.10) the equations lead to the Maxwell field equations.

Let us now study the NR limit of the presented theory. Here we are interested in the

limit where the speed of light is taken to infinity. It is very well-known that taking the

limit c → ∞ in the relativistic Lagrangian, might lead to infinities. In order to cancel the

divergences, one can include extra fields in the relativistic theory. As we are also interested

in finding the NR Maxwell CS gravity [42] in the limit ℓ → ∞, we will consider the [AdS-

Lorentz] ⊕u(1)⊕u(1)⊕u(1) theory as our initial relativistic theory, i.e, we add three new

extra fields to the field content. In this way, the NR contraction should lead to a finite

Lagrangian and to a NR algebra with a non-degenerate bilinear form.

Before studying the non-relativistic limit of the AdS-Lorentz gravity theory, let us first

introduce the extra U(1) gauge fields in the one-form gauge connection (2.4).

2.2 U(1) enlargements

Motivated by the discussion of the previous section, we now include three extra U(1) one-

forms gauge fields, M, S and T in (2.4) as

A = WAJA + EAPA +KAZA +MY1 + SY2 + TY3 . (2.11)

The new Abelian generators satisfy the following non-zero invariant tensors

〈Y1Y1〉 = α2 , 〈Y2Y3〉 = α2 ,

〈Y2Y2〉 = α0 , 〈Y3Y3〉 =
α2

ℓ2
, (2.12)

〈Y1Y2〉 = α1 , 〈Y1Y3〉 =
α1

ℓ2
.

Then, the non-vanishing components of the invariant tensor for the new [AdS-Lorentz]

⊕u(1) ⊕ u(1) ⊕ u(1) algebra are given by (2.6) along with (2.12). Considering the new

enlarged one-form gauge connection (2.11) and invariant tensor, the relativistic CS action

is written as

IR =

∫
[

α0

(

WAdWA +
1

3
ǫABCWAWBWC + SdS

)

+ α1

(

2EAR
A(W ) +

2

ℓ2
EAF

A(K) +
1

3ℓ2
ǫABCEAEBEC + 2MdS +

2

ℓ2
MdT

)

+ α2

(

TAEA +
1

ℓ2
ǫABCEAKBEC + 2KAR

A(W ) +
2

ℓ2
KADWKA

+
1

3ℓ4
ǫABCKAKBKC +MdM + 2SdT +

1

ℓ2
TdT

)]

. (2.13)
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In the following we will show that the inclusion of these three extra U(1) gauge fields

allows to cancel the divergences that appear in the limiting process. Let us remark that

in this work we are interested in the contraction of the [AdS-Lorentz] ⊕u(1)⊕ u(1)⊕ u(1)

algebra since, as we will show in the next section, the resulting NR algebra admits on one

hand a non-degenerate invariant tensor, and on the other hand, leads to the MEB algebra

introduced in [42] in the ℓ → ∞ limit.

3 Non-relativistic Chern-Simons AdS-Lorentz gravity

3.1 Contraction process and enlarged extended Bargmann algebra

In the previous section we have constructed an extended relativistic AdS-Lorentz algebra.

Now, considering the Inönü-Wigner contraction of this algebra we will obtain a NR version

of the AdS-Lorentz algebra. To this purpose, we will consider a dimensionless parameter

ξ, and we will express the relativistic generators as a linear combination of new generators

involving the ξ parameter.

We define the contraction process through the identification of the relativistic gen-

erators defining the [AdS-Lorentz] ⊕u(1) ⊕ u(1) ⊕ u(1) algebra, with the NR generators

(denoted with a tilde) as

J0 =
J̃

2
+ ξ2S̃ , Ja = ξG̃a , Y2 =

J̃

2
− ξ2S̃ ,

P0 =
H̃

2ξ
+ ξM̃ , Pa = P̃a , Y1 =

H̃

2ξ
− ξM̃ , (3.1)

Z0 =
Z̃

2ξ2
+ T̃ , Za =

Z̃a

ξ
, Y3 =

Z̃

2ξ2
− T̃ .

along with the following scaling

ℓ → ξ ℓ . (3.2)

This redefinition is required in order to have a well-defined limit ξ → ∞. A particular

enlargement of the extended Bargamm algebra, which we have denoted as EEB algebra,

comes from the contraction of (2.1):

[

G̃a, P̃b

]

= −ǫabM̃ ,
[

G̃a, Z̃b

]

= −ǫabT̃ ,
[

H̃, Z̃a

]

=
1

ℓ2
ǫabP̃b ,

[

H̃, G̃a

]

= ǫabP̃b ,
[

J̃ , Z̃a

]

= ǫabZ̃b ,
[

Z̃a, Z̃b

]

= −
1

ℓ2
ǫabT̃ ,

[

J̃ , P̃a

]

= ǫabP̃b ,
[

H̃, P̃a

]

= ǫabZ̃b ,
[

P̃a, Z̃b

]

= −
1

ℓ2
ǫabM̃ , (3.3)

[

J̃ , G̃a

]

= ǫabG̃b ,
[

P̃a, P̃b

]

= −ǫabT̃ ,
[

Z̃, P̃a

]

=
1

ℓ2
ǫabP̃b ,

[

G̃a, G̃b

]

= −ǫabS̃ ,
[

Z̃, G̃a

]

= ǫabZ̃b ,
[

Z̃, Z̃a

]

=
1

ℓ2
ǫabZ̃b .

Here a = 1, 2, ǫab ≡ ǫ0ab, ǫ
ab ≡ ǫ0ab. Such NR algebra contains three central extensions

given by M̃ , S̃ and T̃ which are related to the three extra U (1) generators. Note that
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when we set Z̃ = Z̃a = T̃ = 0 the extended Bargmann algebra is recovered. On the other

hand, in the ℓ → ∞ limit the EEB algebra leads to the MEB algebra [42].

It is interesting to note that the algebra (3.3) can be rewritten as three copies of the

so-called Nappi-Witten algebra [65, 66],

[

J̃±, G̃±
a

]

= ǫabG̃
±

b ,
[

G̃±
a , G̃

±

b

]

= −ǫabS̃
± ,

[

ˆ̃
J,

ˆ̃
Ga

]

= ǫab
ˆ̃
Gb ,

[

ˆ̃
Ga,

ˆ̃
Gb

]

= −ǫab
ˆ̃
S . (3.4)

Such algebra can be viewed as a central extension of the homogeneous part of the Galilei

algebra. Let us note that the three copies of the Nappi-Witten algebra reproduces the EEB

algebra (3.3) by considering the following redefinitions

G̃a = ˆ̃
Ga + G̃+

a + G̃−
a , P̃a =

1

ℓ

(

G̃+
a − G̃−

a

)

, Z̃a =
1

ℓ2

(

G̃+
a + G̃−

a

)

,

S̃ = ˆ̃
S + S̃+ + S̃− , M̃ =

1

ℓ

(

S̃+ − S̃−

)

, T̃ =
1

ℓ2

(

S̃+ + S̃−

)

, (3.5)

J̃ = ˆ̃
J + J̃+ + J̃− , H̃ =

1

ℓ

(

J̃+ − J̃−

)

, Z̃ =
1

ℓ2

(

J̃+ + J̃−

)

.

A different redefinition of the generators allows us to rewrite the algebra (3.3) as the direct

sum of the extended Newton-Hooke
{

¯̃
Ga,

¯̃
Pa,

¯̃
S,

¯̃
M,

¯̃
J,

¯̃
H
}

and the Nappi-Witten algebra
{

¯̃
Za,

¯̃
T,

¯̃
Z
}

. In fact, one could define

G̃a = ¯̃
Ga +

¯̃
Za , P̃a = ¯̃

Pa , Z̃a =
¯̃
Ga

ℓ2
,

S̃ = ¯̃
S + ¯̃

T , M̃ = ¯̃
M , T̃ =

¯̃
S

ℓ2
, (3.6)

J̃ = ¯̃
J + ¯̃

Z , H̃ = ¯̃
H , Z̃ =

¯̃
J

ℓ2
,

such that the direct sum of the extended Newton-hooke and the Nappi-Witten algebra

appears,
[

¯̃
Ga,

¯̃
Gb

]

= −ǫab
¯̃
S ,

[

¯̃
J,

¯̃
Ga

]

= ǫab
¯̃
Gb ,

[

¯̃
Ga,

¯̃
Pb

]

= −ǫab
¯̃
M ,

[

¯̃
J,

¯̃
Pa

]

= ǫab
¯̃
Pb ,

[

¯̃
Pa,

¯̃
Pb

]

= −
1

ℓ2
ǫab

¯̃
S ,

[

¯̃
H,

¯̃
Ga

]

= ǫab
¯̃
Pb , (3.7)

[

¯̃
H,

¯̃
Pa

]

=
1

ℓ2
ǫab

¯̃
Gb ,

[

¯̃
Za,

¯̃
Zb

]

= −ǫab
¯̃
T ,

[

¯̃
Z,

¯̃
Za

]

= ǫab
¯̃
Zb . (3.8)

This is similar to the relativistic AdS-Lorentz algebra which can be written as the direct

sum so (2, 2) ⊕ so (2, 1). In particular, the Nappi-Witten algebra is characterized by the

presence of a central extension, denoted by ¯̃
Z. On the other hand, the Newton-Hooke

symmetries have been recently studied in three-dimensional spacetime in [32, 33, 36]. The
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extended Newton-Hooke algebra (3.7), also known as exotic Newton-Hooke algebra [36] has

two central extensions given by the generators ¯̃
S and ¯̃

M . Such algebra is the NR version

of the AdS algebra and appears as a NR contraction of a particular enlargement of the

relativistic AdS algebra.

It is important to remark that, even though the NR algebra (3.7)–(3.8) looks simpler

than (3.3), it is the basis
{

J̃ , G̃a, H̃, P̃a, Z̃, Z̃a, S̃, M̃ , T̃
}

which allows us to make contact

with the Maxwellian Exotic Bargmann gravity through a proper flat limit. In addition, the

relativistic AdS-Lorentz CS gravity theory has been studied previously in the literature [55,

62, 67] in the basis {JA, PA, ZA} which satisfy (2.1). It is then natural to construct the CS

action related to the EEB algebra in the form (3.3).

3.2 Non-relativistic Chern-Simons action

Let us consider the explicit construction of a NR CS action based on the EEB algebra

obtained in the previous section.

The non-vanishing components of a non degenerate invariant tensor are obtained from

the contraction (3.1) of the relativistic invariant tensor (2.6) with the redefinition (2.7)

〈

J̃ S̃
〉

= −α̃0 ,
〈

G̃aG̃b

〉

= α̃0δab ,
〈

G̃aP̃b

〉

= α̃1δab , (3.9)
〈

H̃S̃
〉

=
〈

M̃J̃
〉

= −α̃1 ,
〈

P̃aP̃b

〉

=
〈

G̃aZ̃b

〉

= α̃2δab ,
〈

J̃ T̃
〉

=
〈

H̃M̃
〉

=
〈

S̃Z̃
〉

= −α̃2 ,

〈

Z̃aZ̃b

〉

=
α̃2

ℓ2
δab ,

〈

Z̃aP̃b

〉

=
α̃1

ℓ2
δab , (3.10)

〈

Z̃M̃
〉

=
〈

T̃ H̃
〉

= −
α̃1

ℓ2
δab ,

〈

Z̃T̃
〉

= −
α̃2

ℓ2
δab ,

where the relativistic parameters α’s were rescaled as

α0 = α̃0ξ
2 , α1 = α̃1ξ , α2 = α̃2 , (3.11)

in order to have a finite CS action. As is expected, the flat limit ℓ → ∞ applied to (3.9)–

(3.10) leads to the NR invariant tensors for the MEB algebra [42].

Now we can write the NR one-form gauge connection Ã in terms of the NR generators

as follows

Ã = τH̃ + eaP̃a + ωJ̃ + ωaG̃a + kZ̃ + kaZ̃a +mM̃ + sS̃ + tT̃ . (3.12)
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The NR curvature two-form is then

F̃ = R(τ)H̃ +Ra(eb)P̃a +R(ω)J̃ +Ra(ωb)G̃a +R(k)Z̃

+Ra(kb)Z̃a +R(m)M̃ +R(s)S̃ +R(t)T̃ , (3.13)

where

R(τ) = dτ ,

Ra(eb) = dea + ǫacωec + ǫacτωc +
1

ℓ2
ǫackec +

1

ℓ2
ǫacτkc ,

R(ω) = dω ,

Ra(ωb) = dωa + ǫacωωc ,

R(k) = dk , (3.14)

Ra(kb) = dka + ǫacωkc + ǫacτec + ǫackωc +
1

ℓ2
ǫackkc ,

R(m) = dm+ ǫaceaωc +
1

ℓ2
ǫaceakc ,

R(s) = ds+
1

2
ǫacωaωc ,

R(t) = dt+ ǫacωakc +
1

2
ǫaceaec +

1

2ℓ2
ǫackakc .

Finally, the NR CS action invariant under the EEB algebra is

INR =

∫

α̃0

[

ωaR
a(ωb)− 2sR (ω)

]

+ α̃1

[

2eaR
a(ωb)− 2mR(ω)− 2τR(s) +

2

ℓ2
eaF

a(kb)

−
2

ℓ2
τR(t)−

2

ℓ2
mR (k)

]

+ α̃2

[

eaR
a
(

eb
)

+ kaR
a
(

ωb
)

+
1

ℓ2
kaR

a
(

kb
)

(3.15)

+ωaR
a
(

kb
)

− 2sR (k)− 2mR (τ)− 2tR (ω)−
1

ℓ2
2tR (k)

]

,

where

F a(kb) := dka + ǫacωkc + ǫackωc +
1

ℓ2
ǫackkc .

The NR CS action contains three sectors proportional to different arbitrary constants α̃i.

The first term is the CS action for the NR Exotic Gravity. The second and third term

reproduce the enlarged extended Bargmann gravity with the explicit presence of the ka

gauge field. Let us note that the limit ℓ → ∞ in the term proportional to α̃1 reproduces

the CS action for the extended Bargmann algebra [25, 26]. On the other hand, the flat

limit ℓ → ∞ in the α̃2 term leads us to the CS action for the NR Maxwell algebra [42].

It is important to point out that the term proportional to α̃1 is not the exotic Newton-

Hooke gravity Lagrangian although it leads to the extended Bargmann gravity Lagrangian

in the ℓ → ∞ limit. In particular, the additional gauge fields related to the EEB algebra

appearing in the α̃1 term vanish in the flat limit.

– 9 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
5

Note that we can express the relativistic gauge fields in terms of the NR ones as follows

W 0 = ω +
s

2ξ2
, W a =

ωa

ξ
, S = ω −

s

2ξ2
,

E0 = ξτ +
m

2ξ
, Ea = ea , M = ξτ −

m

2ξ
, (3.16)

K0 = ξ2k +
t

2
, Ka = ξka , T = ξ2k −

t

2
,

such that A = Ã. It is straightforward to show that by using (3.2), (3.11) and (3.16) in

the action (2.13), after taking the limit ξ → ∞ the NR action (3.15) is obtained.

One can notice that the equations of motion from the finite NR action (3.15) reduce

to the vanishing of the curvatures (3.14). A completely different situation would occur if

the invariant tensor became degenerate during the NR contraction procedure.

4 Non-relativistic algebras and S-expansion

In this section we show that the Enlarged Extended Bargmann algebra (3.3) can be alter-

natively obtained using the S-expansion procedure [56]. We show first that the Maxwellian

Exotic Bargmann algebra can also be obtained using the S-expansion method. In simple

words, this method consists in finding a new Lie algebra G = S × g, by combining the

structure constants of a Lie algebra g with the elements of a semigroup S. Our starting

point will be the so-called Nappi-Witten algebra [65, 66] which can be interpreted as a

central extension of the homogeneous part of the Galilei algebra. Such Lie algebra can be

obtained as a Inönü-Wigner (IW) contraction of a central extension of the Lorentz algebra.

In this way, we consider the algebra generated by the Lorentz generator JA, and one extra

U(1) generator Y .

The contraction process is defined by the identification of the generators defining the

[Lorentz] ⊕u(1) algebra, with the Nappi-Witten generators as

J0 =
J̃

2
+ ξ2S̃ , Ja = ξG̃a , Y =

J̃

2
− ξ2S̃ , (4.1)

where J̃ are spatial rotations, G̃a are Galilean boosts and S̃ is a central charge. The result-

ing algebra coming from the contraction of the central extension of the Lorentz algebra is
[

J̃ , G̃a

]

= ǫabG̃b ,
[

G̃a, G̃b

]

= −ǫabS̃ . (4.2)

This algebra, which can be viewed as the Heisenberg algebra with an outher automorphism

J , will be our original algebra in the expansion process. As we will see, using different

Abelian semigroups it is possible to derive different NR algebras.

4.1 Maxwellian exotic Bargmann algebra

Let us first obtain the Maxwellian Exotic Bargmann algebra recently introduced in [42].

For this purpose we consider the Nappi-Witten algebra (4.2) and the Abelian semigroup

– 10 –
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S
(2)
E = {λ0, λ1, λ2, λ3}, whose multiplication law is given by

λ3 λ3 λ3 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ1 λ1 λ2 λ3 λ3

λ0 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

(4.3)

and where λ3 ≡ 0S is the zero element of the semigroup such that 0Sλα =

0S . After considering a 0s-reduction, one finds a new algebra whose generators
{

J̃ , G̃a, H̃, P̃a, Z̃, Z̃aS̃, M̃ , T̃
}

are related to the Nappi-Witten ones as

J̃ = λ0J̃ , G̃a = λ0G̃a , S̃ = λ0S̃ ,

H̃ = λ1J̃ , P̃a = λ1G̃a , M̃ = λ1S̃ , (4.4)

Z̃ = λ2J̃ , Z̃a = λ2G̃a , T̃ = λ2S̃ .

Using the multiplication law of the semigroup (4.3) and the Nappi-Witten commuta-

tors (4.2), one finds that the expanded generators satisfy the following non-vanishing com-

mutation relations

[

G̃a, P̃b

]

= −ǫabM̃ ,
[

G̃a, Z̃b

]

= −ǫabT̃ ,
[

H̃, G̃a

]

= ǫabP̃b ,
[

J̃ , Z̃a

]

= ǫabZ̃b ,
[

J̃ , P̃a

]

= ǫabP̃b ,
[

H̃, P̃a

]

= ǫabZ̃b , (4.5)
[

J̃ , G̃a

]

= ǫabG̃b ,
[

P̃a, P̃b

]

= −ǫabT̃ ,
[

G̃a, G̃b

]

= −ǫabS̃ ,
[

Z̃, G̃a

]

= ǫabZ̃b .

The algebra (4.5) correspond to the Maxwellian Exotic Bargmann algebra and can be

obtained as the NR contraction of [Maxwell] ⊕u(1)⊕ u(1)⊕ u (1) algebra. Indeed, as was

shown in [42], (4.5) can be obtained from the relativistic Maxwell algebra generated by

{J A, PA, ZA} which satisfy

[JA, JB] = ǫABCJ
C ,

[PA, PB] = ǫABCZ
C ,

[JA, ZB] = ǫABCZ
C , (4.6)

[JA, PB] = ǫABCP
C ,

and three extra U (1) generators Y1, Y2 and Y3. At the relativistic level, there has been

a growing interest in exploring (super)gravity models based on the Maxwell algebra and

its generalizations [68–87]. Interestingly a dual version of the three-dimensional Maxwell

algebra, known as Hietarinta algebra [88], can be obtained by interchanging the role of the

momentum generator PA with the Maxwell gravitational generator ZA. In this dual version,
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interesting results have been recently obtained in [28, 89] in which a three-dimensional bi-

gravity action has been presented.

The contraction is defined through the following identifications:

J0 =
J̃

2
+ ξ2S̃ , Ja = ξG̃a , Y2 =

J̃

2
− ξ2S̃ ,

P0 =
H̃

2ξ
+ ξM̃ , Pa = P̃a , Y1 =

H̃

2ξ
− ξM̃ , (4.7)

Z0 =
Z̃

2ξ2
+ T̃ , Za =

Z̃a

ξ
, Y3 =

Z̃

2ξ2
− T̃ .

which is the same identification used in the AdS-Lorentz case. The main difference appears

in the absence of the ℓ parameter in the relativistic algebra (4.6).

It is worth it to mention that the MEB algebra is obtained by expanding the Nappi-

Wittwn algebra using the same semigroup S
(2)
E used at the relativistic level [90]. As we

shall see, such particular feature will appear not only for the MEB algebra. The same

behavior appears for infinite-dimensional expanded (super)algebras in which the same ex-

pansion relation appearing for finite (super)algebras can be used for infinite-dimensional

(super)algebras [91, 92].

The following diagram summarizes the NR limit as well as the S-expansion applied at

the relativistic and NR level:

so(2, 1)⊕ u(1)

{JA, Y }

S
(2)
E−→

Maxwell⊕ u(1)3

{JA, PA, ZA, Y1, Y2, Y3}

↓ IW contraction ↓ NR limit

Nappi-Witten algebra
{

J̃ , G̃a, S̃
}

S
(2)
E−→

Maxwellian Exotic Bargmann algebra
{

J̃ , G̃a, H̃, P̃a, Z̃, Z̃a, S̃, M̃ , T̃
}

4.2 Enlargement of the extended Bargmann algebra

Let us focus now in the NR version of the AdS-Lorentz algebra which is the main topic

of the present work. As we have seen, this algebra corresponds to the contraction of the

AdS-Lorentz algebra enlarged with three extra U(1) generators, namely the NR limit of

[AdS-Lorentz] ⊕u(1)⊕u(1)⊕u(1) algebra. An alternative way of deriving this NR algebra

is through the S-expansion.

As in the previous cases, we first consider the Nappi-Witten algebra (4.2) and a suitable

semigroup. For our purpose, we choose the Abelian semigroup S
(2)
M

= {λ0, λ1, λ2}, whose

elements satisfy

λαλβ =

{

λα+β if α+ β ≤ 2

λα+β−2 if α+ β > 2
(4.8)

The election of the semigroup is motivated by the fact that the AdS-Lorentz algebra can

be obtained as a S
(2)
M

-expansion of the Lorentz algebra in three spacetime dimensions.
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After considering the S
(2)
M

-expansion of the Nappi-Witten algebra one finds an enlarge-

ment of the extended Bargmann algebra whose generators
{

J̃ , G̃a, H̃, P̃a, Z̃, Z̃a, S̃, M̃ , T̃
}

satisfy the commutation relations:

[

G̃a, P̃b

]

= −ǫabM̃ ,
[

G̃a, Z̃b

]

= −ǫabT̃ ,
[

H̃, Z̃a

]

=
1

ℓ2
ǫabP̃b ,

[

H̃, G̃a

]

= ǫabP̃b ,
[

J̃ , Z̃a

]

= ǫabZ̃b ,
[

Z̃a, Z̃b

]

= −
1

ℓ2
ǫabT̃ ,

[

J̃ , P̃a

]

= ǫabP̃b ,
[

H̃, P̃a

]

= ǫabZ̃b ,
[

P̃a, Z̃b

]

= −
1

ℓ2
ǫabM̃ , (4.9)

[

J̃ , G̃a

]

= ǫabG̃b ,
[

P̃a, P̃b

]

= −ǫabT̃ ,
[

Z̃, P̃a

]

=
1

ℓ2
ǫabP̃b ,

[

G̃a, G̃b

]

= −ǫabS̃ ,
[

Z̃, G̃a

]

= ǫabZ̃b ,
[

Z̃, Z̃a

]

=
1

ℓ2
ǫabZ̃b .

The explicit commutators appears by considering the multiplication law (4.8) and the

Nappi-Witten algebra (4.2). In particular, the expanded generators are related to the

Nappi-Witten ones as

J̃ = λ0J̃ , G̃a = λ0G̃a , S̃ = λ0S̃ ,

ℓH̃ = λ1J̃ , ℓP̃a = λ1G̃a , ℓM̃ = λ1S̃ , (4.10)

ℓ2Z̃ = λ2J̃ , ℓ2Z̃a = λ2G̃a , ℓ2T̃ = λ2S̃ .

It is interesting to note that the Nappi-Witten algebra is the smallest Lie subalgebra of

the EEB algebra containing rotations and boosts. The following diagram summarizes the

NR limits, the S-expansion applied at the relativistic and NR level and the corresponding

flat limits:

so(2, 1)⊕ u(1)

{JA, Y }

S
(2)
M−→

[AdS-Lorentz]⊕ u(1)3

{JA, PA, ZA, Y1, Y2, Y3}
ℓ→∞

−→ [Maxwell]⊕u(1)3

↓ IW contraction ↓ NR limit ↓ NR limit

Nappi-Witten algebra
{

J̃ , G̃a, S̃
}

S
(2)
M−→

EEB algebra
{

J̃ , G̃a, H̃, P̃a, Z̃, Z̃a, S̃, M̃ , T̃
}

ℓ→∞

−→ MEB algebra

A particular advantage of the S-expansion procedure is that it allows us to obtain the

expanded invariant tensor in terms of the original one [56]. It is well known that the

invariant tensor is a crucial ingredient for the construction of a CS action. In particular, the

non-vanishing components of the invariant tensor of the Nappi-Witten algebra are given by
〈

J̃ S̃
〉

= −1 ,
〈

G̃aG̃b

〉

= δab , (4.11)

Then, considering the definitions of the Theorem VII of [56], we recover the non-vanishing

components of the EEB algebra given by (3.9)–(3.10). Let us note that the invariant

tensor of the MEB algebra can not only be derived as flat limit ℓ → ∞ of (3.9)–(3.10) but
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can also be obtained from the Nappi-Witten invariant tensor (4.11) considering S
(2)
E as

the relevant semigroup. It would be interesting to extend this methodology to approach

new supersymmetric extension of NR gravity theories.

5 Discussion

In this work we have presented the NR limit of the relativistic AdS-Lorentz gravity

theory. A particular U (1) enlargement of the AdS-Lorentz algebra is considered in order

to avoid infinity and degeneracy difficulties. In particular, an enlargement of the extended

Bargmann algebra is presented by considering the NR contraction of the [AdS-Lorentz]

⊕u (1)⊕ u (1)⊕ u (1) algebra. Such NR algebra allows to construct a proper finite NR CS

action. Interestingly, we have shown that the NR CS gravity theory presented here repro-

duces the Maxwellian Exotic Bargmann gravity [42] in the limit ℓ → ∞. Furthermore, in

such limit the NR CS gravity action contains the Extended Bargmann gravity as a subcase.

We have also studied an alternative method to obtain the EEB and MEB algebra using

the S-expansion procedure. It is interesting to note that the S-expansion method not only

provides us with consistent NR algebras but gives us the appropriate central extension of

the NR algebras in order to have well defined non-degenerate bilinear form. In particular,

at the relativistic level, the same semigroup S gives us the respective relativistic algebras

with extra Abelian generators whose presence assures a finite Lagrangian in the NR limit.

Let us note that further generalizations of the Galilean algebra have also been obtained

through the S-expansion method in [93]. On the other hand interesting works have recently

appeared in the literature where the Lie algebra expansion method using the Maurer-Cartan

equations [94], which is the first report introducing in a general procedure the Lie algebra

expansions, has been used to obtain several (super)algebras for NR (super)gravity [95, 96].

It would be worth studying the possibility to obtain the EEB algebra and the MEB one

by applying the Lie algebra expansion of [94] to the relativistic AdS-Lorentz and Maxwell

algebra, respectively.

It would be interesting to extend the results obtained here at the supersymmetric level.

In particular, the Maxwell and AdS-Lorentz supergravity in the CS formalism have been ex-

plored recently in [81, 86]. It would be worth it to explore the extra bosonic field required at

the relativistic level to formulate a proper finite NR supergravity action [work in progress].

Another aspect that deserves further investigation is the ultrarelativistic limit of the

AdS-Lorentz theory [work in progress]. One could obtain the complete cube, analogously

to the ones presented in [29, 97], describing the ultrarelativistic, non-relativistic and flat

limits for the AdS-Lorentz symmetry. In particular, one could expect to find an Carroll

version of the AdS-Lorentz algebra.
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[54] D.M. Peñafiel and L. Ravera, Generalized cosmological term in D = 4 supergravity from a

new AdS-Lorentz superalgebra, Eur. Phys. J. C 78 (2018) 945 [arXiv:1807.07673]

[INSPIRE].

– 17 –

https://doi.org/10.1016/j.aop.2007.03.002
https://arxiv.org/abs/hep-th/0702014
https://inspirehep.net/search?p=find+EPRINT+hep-th/0702014
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B311,46%22
https://doi.org/10.1016/0370-2693(86)90140-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B180,89%22
https://arxiv.org/abs/hep-th/0502193
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502193
https://doi.org/10.1063/1.1372697
https://arxiv.org/abs/hep-th/0009181
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009181
https://doi.org/10.1007/JHEP01(2018)002
https://arxiv.org/abs/1710.10970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.10970
https://doi.org/10.1007/JHEP05(2018)047
https://arxiv.org/abs/1802.08453
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08453
https://doi.org/10.1007/BF02725178
https://inspirehep.net/search?p=find+J+%22NuovoCim.,A67,267%22
https://doi.org/10.1002/prop.19720201202
https://inspirehep.net/search?p=find+J+%22Fortsch.Phys.,20,701%22
https://doi.org/10.1007/JHEP07(2017)085
https://arxiv.org/abs/1705.05854
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05854
https://doi.org/10.1155/2009/234147
https://arxiv.org/abs/hep-th/0605251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605251
https://doi.org/10.1088/1126-6708/2009/08/039
https://arxiv.org/abs/0906.4464
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4464
https://doi.org/10.1103/PhysRevD.94.024055
https://arxiv.org/abs/1603.09424
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09424
https://doi.org/10.1016/j.physletb.2016.09.008
https://arxiv.org/abs/1606.07083
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07083
https://doi.org/10.1016/j.physletb.2017.10.019
https://arxiv.org/abs/1708.08827
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.08827
https://doi.org/10.1007/JHEP08(2015)009
https://arxiv.org/abs/1504.01898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.01898
https://doi.org/10.1007/JHEP09(2016)007
https://arxiv.org/abs/1607.00373
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00373
https://doi.org/10.1140/epjp/i2018-12335-0
https://arxiv.org/abs/1803.08738
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08738
https://doi.org/10.1140/epjc/s10052-018-6421-9
https://arxiv.org/abs/1807.07673
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.07673


J
H
E
P
0
7
(
2
0
1
9
)
0
8
5
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[59] D.M. Peñafiel and P. Salgado-Rebolledó, Non-relativistic symmetries in three space-time

dimensions and the Nappi-Witten algebra, arXiv:1906.02161 [INSPIRE].

[60] J. Diaz et al., A generalized action for (2 + 1)-dimensional Chern-Simons gravity,

J. Phys. A 45 (2012) 255207 [arXiv:1311.2215] [INSPIRE].

[61] P. Salgado and S. Salgado, so(D − 1, 1)⊗ so(D − 1, 2) algebras and gravity,

Phys. Lett. B 728 (2014) 5 [INSPIRE].

[62] S. Hoseinzadeh and A. Rezaei-Aghdam, (2 + 1)-dimensional gravity from Maxwell and

semisimple extension of the Poincaré gauge symmetric models,
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Asymptotic symmetries of three-dimensional Chern-Simons gravity for the Maxwell algebra,

JHEP 10 (2018) 079 [arXiv:1805.08834] [INSPIRE].

[65] C.R. Nappi and E. Witten, A WZW model based on a nonsemisimple group,

Phys. Rev. Lett. 71 (1993) 3751 [hep-th/9310112] [INSPIRE].

[66] J.M. Figueroa-O’Farrill and S. Stanciu, More D-branes in the Nappi-Witten background,

JHEP 01 (2000) 024 [hep-th/9909164] [INSPIRE].

[67] O. Fierro, F. Izaurieta, P. Salgado and O. Valdivia, Minimal AdS-Lorentz supergravity in

three-dimensions, Phys. Lett. B 788 (2019) 198 [arXiv:1401.3697] [INSPIRE].

[68] J.A. de Azcarraga, K. Kamimura and J. Lukierski, Generalized cosmological term from

Maxwell symmetries, Phys. Rev. D 83 (2011) 124036 [arXiv:1012.4402] [INSPIRE].

[69] R. Durka, J. Kowalski-Glikman and M. Szczachor, Gauged AdS-Maxwell algebra and gravity,

Mod. Phys. Lett. A 26 (2011) 2689 [arXiv:1107.4728] [INSPIRE].

[70] J.A. de Azcarraga, K. Kamimura and J. Lukierski, Maxwell symmetries and some

applications, Int. J. Mod. Phys. Conf. Ser. 23 (2013) 01160 [arXiv:1201.2850] [INSPIRE].
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