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1 Introduction

Mckay and Thompson’s remarkable observation between the monster group M and the
modular objects, especially, the j-invariant, motivated the study of the so-called ‘Monstrous
Moonshine’ in [1]. Each Fourier coefficient of the modular invariant j(7) — 744 (q = €2™7),
which can describe the partition function of ¢ = 24 chiral CFT,

1
j(r) — 744 = - + 196884q + 21493760¢> + - - - , (1.1)
q

can be decomposed into the dimension of the irreducible representation of the monster
group M. Frenkel, Lepowsky and Meurman [2] provided a (heuristic) derviation of the
Monstrous moonshine from an explicit construction of the chiral CFT based on the Leech
lattice followed by a Zo orbifold. Many examples of the generalizations of moonshine
phenomena with different sporadic groups have been uncovered in the last decades [3—-11].

In this article, we utilize a holomorphic bilinear relation [12] to further explore a new
class of moonshine phenomena. It has been observed recently that characters f;(7) of a
certain rational CFT with central charge ¢ obey an intriguing bilinear relation giving a
modular invariant j(7),

n—1
R filr) = () — 744, (1.2)
=0



where ﬁ(T) can be interpreted as characters of a ‘dual’ rational CFT with central charge
47

(24 — ¢). For instance, the critical Ising model with ¢ = % and a rational CFT with ¢ = 5
satisfies the bilinear relation. Another example is a pair of rational CFTs of ¢ = 8 and
¢ = 16 having no Kac-Moody symmetry but finite group symmetry [13]. Further examples
can be found in [14].

The rational CFT with ¢ = % dual to the critical Ising model exhibits Moonshine
for the baby Monster group, second largest sporadic group. It is challenging to search
for a dual rational CFT showing Moonshine for the sporadic groups other than the baby
Monster group. The search first requires an explicit g-expansion of each character in two
rational CFTs of dual pair. To do so, we make use of a modular-invariant differential

equation (MDE) of the form below [15]

n—1

,D:'L + Z ¢2(n—k) (T)D‘lk': f(T) =0, (13)

k=0

where D, denotes the Serre derivative acting on a modular form of weight r,
1.
D, =0, — E’LFT‘EQ(T), (1.4)

and ¢ (7) are modular forms of weight k. The MDE can be used to explore the space of
rational CFTs. This is because solutions to an MDE, which furnish a finite-dimensional rep-
resentation of SL(2,Z), can play a role as candidate characters f;(7) (i =0,1,2,...,n—1)
in a rational CFT. One can show from (1.3) that the conformal weights h; of primaries
and the central charge ¢ of a candidate RCF'T have to satisfy the relation below

=0

where [ is a non-negative integer other than 1. (1.5) implies that a rational CFT can be
characterized by conformal weights h; and a number n of primaries, the central charge
c and an integer I. When ({h;},n,¢,1) of a rational CFT are related to ({h;},n,¢,1) of
another rational CF'T as follows

ho = ho = 0, hi+h; =2 for i+#0, (1.6)
and
c+é=24, I+1=(n—-3)(n—4), (1.7)

the characters of two rational CFTs can obey the bilinear relation (1.2). Namely, one
rational CFT is dual to the other.

We analyze rational CFTs dual to the three-state Potts model and to the product
of two Ising models. Interestingly enough, our results can propose that the dual rational
CFTs show novel connections to the triple covering of the largest Fischer group, 3-Fij, and
the multiple-covering of the second largest Conway group, 2 -2!722.Cos, respectively. Note
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Figure 1. Partial flows of maximal subgroups from the monster group M [16]. Each arrow from A
to B implies that B is a maximal subgroup of A.

that 3 - Fib, is a maximal subgroup of M described in figure 1. We also observe that the
self-dual theory of ¢ = 12 has the largest Conway group Cog as an automorphism group.
In fact, we can show that the self-dual theory can be identified as the GSO projection of
the well-known A = 1 superconformal extremal CFT of ¢ = 12 [2, 17]. Our observations
suggest that the subgroup decomposition along the red and the blue arrows in figure 1 can
be realized by the holomorphic bilinear relation. The moonshines for 2 -B in baby Monster
CFT and 3 - Fib, in ¢ = % CFT are further supported by generalized bilinear relations
involving Mckay-Thompson series. The details will be shown in section 2 and section 3.

2 Dual of the Ising model and the Baby Monster

The simplest unitary minimal model M (4,3) describes the critical point of the second-
order phase transition of the Ising model. The critical Ising model has the identity 1,

the energy density € and the spin ¢ whose scaling dimensions are A =0, 1, % respectively.

Assuming three operators have no spin, one can relate them with allowed primary fields
®1.1, P21, P22 of weight h =0 1Ll M(4,3) as follows

127 16
1< ¢11
€ P21 (2.1)
o> P2

The ¢ = 3 Virasoro characters for three primary fields are
Rl = ;W roh ¢ 1:<(>)>
Fr) = ;<\/ s \/ 137<(>)> (22
olr) = Vl?\/% .




These characters transform into one another under SL(2,7Z). In particular, the modular

S-matrix is
Y A S B VO AN A 1C
fs(_l/T) = 5 1 1 _\/i fE(T) . (23)
fo(=1/7) V2 -v2 0 fo(T)

It has been shown recently in [12] that the characters of the critical Ising model obey

an intriguing bilinear relation,

() =744 = fo(7) - fo(r) + fe(r) - felm) + fo(7) - fo(T), (2.4)
where j(7) — 744 is the Monster module,

123E3(7) 1

§(T) = g g = — + T44 + 196884q + 21493760¢° + - - - . (2.5)
E(r) - E§(T)  q

Here fo, fg and fe are three independent solutions to a third order modular differential
equation

231572 2702573 -
=76 Ey(1)Dr —i———FE¢(7)| f, (2.6)

0= D7+ 6912

and can be expanded in powers of g as follow.

folr)=q 5 (14 96256'¢> + 9646891¢° + 366845011¢* +---) ,
fo(7) = g% (4371 + 1143745¢ + 64680601¢> + 1829005611¢° + - - - ) , (2.7)
fo(7) = g2t (96256 + 106024967 + 4208312324 + 9685952512¢% + - - - ) .

In fact, (2.7) can be identified as three characters of conformal weights h = 0, %, % in the
dual RCFT with ¢ = 4.

Since the j(7) is invariant under SL(2,Z), the modular S-matrix of the dual RCFT
with ¢ = %, often referred to as the baby Monster CFT, obtained from that of the critical

Ising model, namely

=10\ (1 1 V2 [f)
f(=1m) =5 L 1 V2| f(r) ] (2.8)
fo(=1/7) V2 V2 0 fo(T)

In addition, the Verlinde formulae implies that these two RCFTs also share the same
fusion rule algebra. From (2.8), the modular invariant torus partition function of the baby
Monster CF'T has to be

Zoar(1,7) = Fo(M) fo(7) + F() fe(F) + fo (1) Fo (7)) (2.9)

which agrees with numerical results in [13].
It is known that dual RCFT with ¢ = % has baby Monster group B as a finite group
symmetry [12], because (2.7) are identical to the characters of modules V]B%?O), VIB%%I) and



VIB%EQ) in [18], respectively. In this paper, we conjecture that the finite group symmetry of
c= % RCFT can be promoted to the double covering of baby Monster group 2 - B. As
a demonstration, one can show that each coefficient in (2.7) can be expressed as a sum of

dimensions of irreducible representations of 2 - B, e.g.

4371 = 4371, 96256' = 1 ® 96255, 96256 = 96256,
9646891 = 1 & 96255 © 9550635, 1143745 = 4371 © 1139374,
10602496 = 96256 @ 10506240,
366845011 =2-1 @ 2- 96255 @ 9458750 © 9550635 © 347643114,
64680601 = 2 - 4371 © 1139374 © 63532485,
420831232 = 2 - 96256 © 10506240 © 410132480.

(2.10)

Note that 1 in the second line of (2.10) can be identified as the Virasoro descendent of
the vacuum.

We apply a refined test proposed in [19, 20] to provide further supporting evidence that
c= % CFT exhibit moonshine for 2 - B. To this end, we introduce the twined character,

for) =Ty [g- ). (2.11)

where g is a group element of 2-B and the trace is taken over all states in the Hilbert space
‘H;, that consist of primary state of weight h; and its descendants. As illustrated in [19],
it is straightforward to obtain the twined characters using the character table of 2 - B in
appendix B. For instance, let us consider the twined characters for g = 2C'. Explicitly, the
first term in fg(T), 96256, is replaced by 2048. In this way, one can check that the twined
characters are given by

f2C(q) = ¢~ (1 + 2048¢2 + 3T675¢% + 470099¢* + - - ) ,
F29(q) = ¢ (275 + 9153¢ + 144025¢> + - - ) , (2.12)
72€(q) = g7 (2048 + 47104q + 565248¢> + - - - ) .
Intriguingly, we find that (2.12) satisfy a bilinear relation of the form
FAT) = fo(r) - 59 (7) + fe(r) - F2O () + fo(7) - 29 (1), (2.13)

where j24(7) is Mckay-Thompson series of class 2A,

n(q>24 21277((]2)24
@7 " e T (2.14)

1
= — +4372q + 96256¢> + 1240002¢> + 10698752¢* + - - - .
q

724

T) =

In appendix C, we present list of the generalized bilinear relations for various g € 2 - B.
Combined with the characters of the Ising model, all the twined characters we investi-
gated constitutes Mckay-Thompson series of certain class. Sometimes, combination of the
twined characters for different group elements and characters of the critical Ising model



yields Mckay-Thompson series of identical class. More precisely, even if we replace 2C
characters to 2A(or 2B) characters in the right-hand side of (2.13), the left-hand side
of (2.13) still remained as j24(7). Note that the decompositions in (2.10) are consistent to
bilinear relations.

3 Dual of the three-state Potts model and 3 - Fi’24

We now make use of the bilinear relations but with different pairs of characters to look for
new RCFTs related to the other sporadic groups. In particular, we propose in this section
that a dual CF'T of the three-state Potts model has the triple covering of the largest Fischer
group Fi}, as an automorphism group.

It is known that the three-state Potts model at the critical point can be described as
a “subset” of the minimal model M (6,5) with ¢ = % containing ten primary fields ¢, ) of

conformal weights

B — (6r —5s)? — 1

—_ 1
' 120 ’ (3.1)

where 1 < r < 5,1 < s <6 and (r,s) ~ (5 —7,6 —s). The ¢ = % Virasoro characters
labelled by two integers (r, s) are given by

1 (60n+6r—55)2 (60n+6r+55)2
@) = g DT -, 32
ne”l

Some but not all of these primary fields are present in the critical three-state Potts model.
One can indeed show that a subset of the ten primary fields are closes under the fusion
rules, which leads to a non-diagonal modular invariant partition function

7=y

r=1,

2 2
18+ 18 +2|18)] (3.3)

(3.3) is the partition function of the three-state Potts model, which implies that only ¢, s
and two copies of ¢, 3 with r = 1,2 and s = 1,5 are present in the theory. Notice also that
the three-state Potts model has Zz symmetry under which two copies of ¢, 3 for each r
transform differently. This Z3 symmetry plays a key role to have well-defined fusion rules
of the three-states Potts model [21].

It is natural from (3.3) to define the characters of the critical three-state Potts model

as follows,
fo(r) = 30 + 1),
A= 18 4+ 1O,
fi(r) = £33 ( )+(f52),5( ), (3.4)
Ja(T) = fé(T) = f1,3 (1)
(1) = f5(7) = 153(7).



The modular S-matrix of the model then becomes

fo(—=1/7) —S1 82 —81 —S1 S22 S fo(7)

fr(—=1/7) S0 S1 S 52 s1 81 fi(7)

fo(=1/7) _ i —S81 S2 —WS1 —OJ251 ws2 UJ252 fa(7) (3.5)
B/ | VIB | —s1os2 —wlst —wst w?sy wsy | | () |

f3(=1/7) sy 51 wsy  wsy wsy w?st | | f3(7)

f3(=1/7) sy s1 wlsy  wsy w?sy wsy f5(7)

where s; = sin (%’r) , 89 = sin (HT”) and w = 5.

One can show that the characters (3.4) satisfy a bilinear relation

§(m) = 744 = fo() fo(7) + A7) Fi(7) + fa(7) fa(7) + f3(7) f3(7)
+ f3(7) fa(r) + f5(7) fi(7),

where the four characters of a dual theory ﬁ(T) are the solutions to a fourth order differ-

(3.6)

ential equation,
D} + i Ex(r)D2 + 12B(7)D; + s EX(r) | fi(7) = 0. (3.7)

Here, we denote by f1(7), fa(7), f3(7) and f4(7) characters of weights h = 0, %, % and %,

respectively. We further use the g-expansion of fz(’i‘)
fitr) = ¢ (ag + arq + az2¢® + azg® + - --), (3.8)

to fix free parameters y; in (3.7). The fourth order differential equation of our interest
then becomes

0= [+ 2 mnm: - 2 By, - o )| ). (39)
Now, It is easy to see that the solutions of (3.9) have the g-expansion
fo(r) =q 3 (1 + 57478¢% + 5477520¢° + 201424111¢* + - - )

fi(r) = g% (8671 + 1675504¢ + 832936264° + 2175548448¢> + - - - ) 5.10)

fo(r) = flo(r) = g% (783 + 3069364 + 19648602¢° + - - - )
fa(r) = folr) = g% (64584 + 6789393¢ + 26120253642 + - - - )

From the bilinear relation (3.6), one can read that the modular S-matrix of the dual

theory is
f:o(—]_/T) —S81 82 —S81 —S1 52 52 fO(T)
f~1(_1/7-) S9 S1 82 S9 s1 81 f~1(7')
(=Yr) | _ 2 | =518 —w’s1 —wsi w’sy wsy | | fa(7) (3.11)
fa(=1/T) V15 | —s1 82 —ws1 —w?s1 wsy w?sy 5(7) '
~3(—1/7') sy s1 wlsy  wsy wlsy ws NS(T)
fi(=1/7) sy s1 wsy  wlsy wsy wlsi) \f4(7)



We can also verify that the dual theory with 3-Fi}, symmetry has positive integer fusion
coeflicients, obtained from the above S-matrix via the Verlinde formula.

Notice that each coefficient of (3.10) can be expressed as a sum of dimensions of
representations of 3-Fi},, the triple covering of the largest Fischer group. 3-Fi}, is one of
the maximal subgroup of the Monster group, and is of order 22! -317.52.73.11.13.17-23-29.
It has 256 irreducible representations including 783, 8671 and 64584 that agree with the
first coefficient of fo(7), f1(7) and f3(7). One can also show that

57478 =1 @ 57477, 1675504 = 8671 ¢ 1666833,
306936 = 783 © 306153, 6789393 = 64584 @ 6724809, (3.12)
5477520 = 1 @ 57477 © 555611 D 4864431

where the first term of each line in (3.12) can be understood as the Virasoro descendant of
the corresponding primary field.

Now we will find the twined characters of ¢ = % CFT and examine if they form a
bilinear relation analogous to (2.13). For instance, the twined characters for g = 24 are

given by
24(q) = ¢~ (1+1158¢% +20112¢> + - -+ ) ,
q 351 4+ 11504q + -
) = QA( ) (3.13)
34(q) = /3" (a) = 7 (794 2808q + - -,
2A(q) = /§A(q) = ¢ (1352 427729 + -+ ).

Combined with the characters of three-state Potts model, it turns out that the twined
characters (3.13) merged into the Mckay-Thompson series of class 2A.

A7) = folr) - AT + A - AT + o) - BAT) + falr) - T3

+ (1) - AT + flalr) - TR () (3:14)
As another example, twined characters for ¢ = 3F read
3y =g (1 + 61602 + 7833¢% + -+ ) ,
3P (g) = 38 (—77 —1925¢ + -+,
F3E(q) = ¢ (54a + 1485aq + - -+ ),
g (q) = qé* (54a + 1485aq + ---), (3.15)
F3%(q) = ¢ (~297a — 4158aq + ),
738 (q) = ¢ (—297a — 4158aq + -+ - ),

1+z\f

relation of the form,

SA(r) = folr) - 3B () + fr(r) - FRE(1) + fa(r) - F3E(7) + f3(r) - F13 (7)
+ f3(7) - 3B () + fir) - F3E ()

where a = and @ is its complex conjugate. Then, we get a new type of bilinear

(3.16)



where j34(7) is Mckay-Thompson series of class 3A given by,

o= ( () ) / (i) - (3.17)

1
= = 4 783q + 8672¢° + 65467¢> + 371520¢* + - - - .
q

In appendix C, we listed generalized bilinear relations that various twined characters
satisfy. These suggest that the six-character rational CFT with ¢ = % dual to the critical

three-state Potts model has 3-Fi}, as an automorphism group.

4 Dual of the critical Ising? and 2 - 2'122. Co,

We now in turn consider a rational CFT dual to the tensor product of the critical Ising
model, the simplest example of the ¢ = 1 CFTs studied in [22-24]. This theory has nine
primaries of conformal weights

1 1 , 9 1

M=h =g ha=hy=10 ha=1 ha=hy= ¢ hs =g, (4.1)

90(7) = fo(r) - fo(7), g1(7) = g1(7) = fo(7) - fe(7),
92(7) = g5(7) = fo(7) - fo(7), g3(7) = fe(T) - fe(7), (4.2)
94(7) = ga(7) = fo(7) - fe(7), g5(7) = fo(7) - fo(T)

The 9 x 9 extended modular matrix S reads,

1 1 1 V2 V2 1 V2 V2 2
1 1 1 V2 —vV2 1 V2 —vV2 -2
1 1 1 —V2 V2 1 —V2 V2 =2
) V2 V2 =V2 2 0 —vV2 -2 0 0
S=7 V2-v2 V2 0 2 V2 0 -2 0|, (4.3)
1 1 1 —V2 V2 1 —V2-V2 2
V2 V2 —V2 =2 0 —v2 2 0 0
V2-vV2 V2 0 -2 —v2 0 2 0
2 -2 -2 0 0 2 0 0 0

thus the product of two critical Ising model admit diagonal modular invariants of the form

Z(1,7) = |go(1)* + lg1(T)* + 15(7)1* + 1g2(7)* + lga(7)?

4.4
+1gs(M)? + lga(T)* + lgh (D) + lgs (). o
We assumed that the characters (4.2) satisfy a bilinear relation
J(7) = T44 = go(7)Go(7) + 91(7)G1(7) + 91(7)F1(7) + 92(7)Ga(7) + ga(7)F2(7) (4.5)
+93(7)33(7) + 94(7)Ga(7) + 94(7)34(7) + 95(7)F5(7) '



where the characters of a dual CFT with weights

S 3 ., 23 - 15
g 2T 2T hy =1, h - 16 8

are the solutions of a differential equation,

0= 'D?_ + M1E4(T)'D;1_ + ,LLQEG(T)D?_ + ,U«3E2(T)Dq2_ + ua Ey(7)E6(7)D>

E? E3 Ed
4(T)D5+,U8 4(T)D3+u9 4(T)DT (7).

Eg(t) 7 Ee(r) 7 Eg(7)

However, inserting g-expansion of the characters into (4.7) does not determine all y; in (4.7),

(4.7)

+ s E3 (1) + pe ES (1) + pir

because it give us six constraints while there are nine unfixed parameters in (4.7). To
remedy it, we compared two bilinear relations (4.5) and (2.4), which eventually provide us
three additional constraints

fo(m) = fo(7)go(7) + fe(T)g1(T) + fo(T)G2(T)
Fe(r) = fo(T)G1 (1) + fe(1)33(7) + fo(T)Ga(T) (4.8)
fo(T) = fo(T)G5(T) + fo(T)F4(T) + fe(7)G5(7)

Now one can fix nine parameters p; combining three equations (4.8) with six constraints
from (4.7). In this way, we find that the nine parameters y; read,

264707 B _i34952636877438837r3 5989797
=56 B2 = 0037228850176 © M T T 2044
7791635802406848657° 63481835845775132576
= —1 _=
Hia 20165360954425344 * 1 T T13443573969616896
56413325837891809937 i
= — =TT
He 120992165726552064 M7 ’
'81049034695454973 1284686915225948007 70 (49)
frng =1 .
He 16679076283392 Ha 6721786984808448
As a result, we finally get below six different characters of dual CFT.
~ —ﬁ 2 3 4
Go(7) = g2 (1 +46851¢° + 4310154¢° + 155027130¢ + - - - )
Gi(r 7) = ¢ (2300 + 529828¢ + 28051444¢% + - - )
(4.10)

(1)
(7) = 1(
G2(7) = Gh(r) = ¢ (47104 + 4757504q + 178382848¢2 + - - )
5(7) = q21 (23 +46598q+4311948q +155017746¢° + - - )
(7) = Ga(7) = ¢i% (2048 + 565248¢ + 317009924 + - - - )
(7) = g1 (47104 + 5230592q + 2048552964 + 4630417408¢> + - - )

One can easily show that every coefficient in (4.10) can be expressed as a sum of the
dimension of the irreducible representation of 2 - 2422.Coy. 2 - 21%22.Coy is a maximal
subgroup of the baby Monster group. Its order is 2'°-35.53.7.11-23. This multi-covering
of the second largest Conway group Cos has irreducible representations that includes 23,

~10 -



2048, 2300 and 47104. These numbers are in perfect agreement with the first terms
of g3(7), ga(7), §i1(7), g2(7) and gs(7). Referring the table 1, the other numbers in the
characters can be decomposed as follow,

46851 =1 ® 275 © 46575, 529828 = 2300 © 50600 O 476928,
4757504 = 2 - 47104 ® 4663296, 46598 = 23 @ 46575,
565248 = 2048 © 563200, (4.11)
5230592 = 2048 © 47104 ® 518144 © 4663296
4310154 =1 @ 253 © 275 @ 46575 G 1024650 © 3238400,

where the first term in each decomposition can be again understood as the Virasoro de-
scendent of the corresponding primary state. Thus we conjecture that the nine-character
rational CFT of ¢ = 23, dual to the product of two critical Ising model, has 2 - 21122 . Co,
as an automorphism group.

The modular S-matrix of the ¢ = 23 CFT is identical to the (4.3), because of the
bilinear relation (4.5). Therefore, the modular invariant partition function of ¢ = 23 CFT
is given by

Z(1,7) = 1go(T)P* + 1g1(r)* +15(7)1 + 1g2(7)* + |g5(7)

4.12
+133(T)? + [ga(T)* + 1g4(T)* + |35 (). 2

Also, the modular S-matrix (4.3) guarantees the positive integer fusion rule algebra
coefficients.

We also propose that the characters of the above RCFT (4.10) obey intriguing bilinear
relations with those of the critical Ising model (2.2) to give the baby Monster modules (2.7),

(1)go(T) + fe(T)g1(7) + fo(T)G2(T),
(7)91(7) + fe(7)33(7) + fo(T)Ga(T), (4.13)
(7)G2(7) + fe(7)ga(T) + fo(7)g5(T).

=
3
I
S

5 Self-dual RCFT and 2 - Co;

We discuss in this section a “self-dual” RCFT with ¢ = 12 whose torus partition function
admits a natural decomposition in terms of dimensions of representation of the Conway
group 2-Coj.

The RCFT of our interest is self-dual in a sense that its three characters, denoted by
fo(), fi(r) and fo(7), satisfy a bilinear relation giving,!

() 96 = 3(r) + £2(r) + S F3(7) (51)

1Strictly speaking, a bilinear relation (5.1) cannot be an example of Monster anatomy, because j(7) 4 96
is not the Monster module. Nonetheless, in this section, we discuss a self-dual RCFT of ¢ = 12 because
partition function of this theory also exhibit moonshine for Conway group.
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with A(7) = %) and

o 05(7)
folr) = (— %A%) + g)\2(7') - gA(T) + 2) (M)
=q 12 (1 + 2764 + 112024 + 184024¢° + - - )
falr) = A(Tif% -
_ 2048q(1 + 249 + 30062 + 2624¢° + - - - >
folr) = 1623(7) Lo

)\(T)(l - )\(7'))
= 24 + 40964 + 98304¢> + 1228800¢> + - - - .

Here fy(7) is the vacuum character while fi(7) and fo(7) are characters for primary states
of conformal weight h = % and h = % These characters are three independent solutions to
a modular differential equation below,

[afz - %EQ(T)aE + 2i4(E§(T) - 13E4(T)>8T] £(r) = 0. (5.3)

For later convenience, let us define f__(7), f_4(7) and f;_(7) as follows
f—=(7) = fo(7) + fu(7),
— g2 (1 + 2764 + 2048¢%/% + 1120242 + 49152452 + - - - )

Ji (1) = fo(r) = fa(7),
- q_1/2(1 + 2764 — 2048¢%/% + 112024 — 49152472 + .- )

fi— (1) = fa(7)
= 24 + 40964 + 98304q> + 1228800¢° + 10747904¢* + - - - .

From the modular S-matrix of the self-dual theory,

f——(1=2X) 100Y) [f——(A)
fo+@ =N =1001| | f+O) ] (5.5)
fr-(1=2X) 010/ \f+-(N)

one can show that the SL(2,Z) invariant partition function would be
1 2 2 2
2 =5 (11—=@F + [f—+ @ + | £+-(1)[) + const. (5.6)
Notice here that the character f__(7) is nothing but the Neveu-Schwarz (NS) partition

function K (7) of N =1 extremal superconformal theory [17]. In fact, one can understand
from (5.6) that the RCFT with ¢ = 12 of our interest is the GSO projection of the N' =1
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extremal SCFT where

fo(r) = [qLO c/24}
(1) = S[ )F ko= c/24i| (5.7)
(r) = [ Lofc/24}’

and the constant term corresponding to the Witten index, trR[(—1)FqL0_C/24q_Z0_C/24] =
242, Here the each trace can be performed in either the NS Hilbert space or the Ramond
Hilbert space of the AV = 1 SCFT. This SCFT was first made by Frenkel, Lepowsky and
Meurman [2], and revisited later by Duncan [3, 8].

The N = 1 extremal SCFT with ¢ = 12 is well-known to have 2-Co; =Cog as an
automorphism group. After the GSO projection, the double covering of the largest Conway
group continues to serve as an automorphism group of the self-dual theory. The Virasoro
character decomposition of the partition further gives new evidence that the automorphism
group of the RCFT with ¢ = 12 may be enhanced to a larger group 2'724. Coy, a maximal
subgroup of the Monster group. To see this, let us decompose the partition function (5.6)
in terms of the ¢ = 12 Virasoro characters,

2(7.7) = xo(@)%o0(a) + 276 (Xo(@)%1(@) + c-c. ) + T6176x1 (@)1 (a)
10925 (xa(q)>22(q—) + c.c.) + 3015300 (xl(q)>22(q) + c.c.) (5.8)

n 1081344<X%(q)>2r @)+

5 X1
2 2

(@ + c.c.) +49152x; (@)

It turns out that every coefficients in (5.8) is related to the irreducible representations of
21424, Coy. Some details of the number decomposition are presented below.

49152 =1®2-276 299 1771 © 8855 © 37674,
276 =23 © 253, 10925 =299 @ 1771 © 8855 @ 10626, (5.9)
76176 =1 ®© 276 © 299 @ 1771 O 8855 & 27300 ¢ 37674

6 Discussion

It is known that the CFT of ¢ = 1 discussed in section 4 allows a non-diagonal partition
function

Z(7,7) = |go(r) + g3(T)[* + [g1.(7) + g1 (7)]* + 2lg5(7) |, (6.1)

different from (4.4). (6.1) is the partition function of another example of ¢ = 1 CFT studied
in [23, 24]. One can show that the characters in (6.1) can obey a new bilinear relation

J(7) =720 = (go(7) + 93(7)) (90(7) + 3(7)) + (91.(7) + 91(7)) (91(7) + G1(7))

+295(7)gs(7), (62)
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from which one can read the partition function of the dual theory
Z(r,7) = 1g0(7) + ga(T)[* + 91(7) + g1 (7)* + 2/gs (1) [*. (6.3)

Notice that (6.3) can be understood as a non-diagonal partition function of the rational
CFT of ¢ = 23 discussed in section 4. It is obvious that the dual CFT also exhibit the
moonshine for 2-2'%22.Co,. This is somewhat trivial, because it shares the characters (4.10)
as building blocks. However, above example cannot be considered as a class of the Monster
anatomy, because j(7) — 720 is not the Monster module.

It has been proposed that the Hecke images of the vector-valued modular form can
construct a set of admissible characters for specific RCFT [25]. The Hecke image T}, f;(T)
is characterized by the conductor N and a natural number p that is relatively prime to .
As an example, it has been known that the conductor of the critical Ising model is given
by N = 48. Then, one can show that the Hecke images for p = 47 are exactly agree to the
characters of the baby Monster CFT, namely (2.7). In similar way, it is easy to see that
the conductor of three-state Potts model and the tensor product of the critical Ising model
are given by N = 30 and N = 24, respectively. We checked that the characters (3.10) can
be considered as the Hecke images of (3.4) with p = 29. In similar way, we found that the
vector-valued modular form (go(7) 4+ g3(7), §1(7) + §1(7), g5(7)) in (6.3) is also realized as
the Hecke images of (go(7) + g3(7), 91(7) + g1 (7), g5(7)) with p = 23. However, it turns out
that the Hecke images of (4.2) cannot generate the six characters in (4.10). More precisely,
the characters ga(7) and ga(7) in (4.10) are not able to realized as the Hecke images of the
characters in (4.2).

One can also ask if the dual CF'T of the tricritical Ising model, the next simplest unitary
minimal model M(5,4), can exhibit the moonshine phenomena. However, it is nontrivial
to obtain the characters of the candidate dual CFT with ¢ = %. This is partially because
one cannot determine all free parameters in the corresponding MDE completely from the
known CFT data [12]. We tried to find the dual characters of ¢ = % CFT using the Hecke
operator of N = 240 and p = 233, however it turns out that this Hecke operator does not
produce admissible characters.

On the other hand, it is known that the tricritical Ising model is endowed with the
N =1 supersymmetry. The NS partition function of the model can be contributed by the
NS superconformal characters of the vacuum and the primary state of h = %0' It would be
interesting to search for a rational SCFT whose NS characters obey a new bilinear relation
with those of the tricritical Ising model to give the K (7)-function [17]. This new bilinear
relation would lead to a picture of the Conway group decomposition, instead of the Monster
group decomposition. We leave them as a future project.

The bigger challenge is to find all the two-dimensional dual CF'T pairs for the rest of the
sporadic groups and understand the origin of bilinear relations. In particular, it would be
extremely interesting to see if a CFT dual to ‘(three-state Potts model) x (a certain CFT)’
can show moonshine for the multiple-covering of the largest Mathieu group, 2'2-May. This
is analogous to the idea used to find the dual CFT with 2 - 2!%22 . Coy and correspond to
the green arrow in figure 1.
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A Dimension of the irreducible representations

Here we give a partial list of the dimension of the irreducible representations for various
sporadic groups.

Dimension of the irreducible representations

{1,4371,96255, 96256, 1139374, 9458750, 9550635, 10506240,
2-B 63532485, 347643114, 356054375, 410132480, 1407126890,
3214743741, 4221380670, 4275362520, 4622913750, - - -}

{1,783,8671,57477, 64584, 249458, 306153, 555611, 1603525,
3.Fi}, | 1666833,4864431,6724809,19034730,25356672, 32715683,
35873145, 40536925, 43779879, 48893768, 74837400, - - - |}

{1,24, 276,299, 1771, 2024, 2576, 4576, 8855, 17250, 27300, 37674,
40480, 44275, 80730, 94875, 95680, 170016, 299000, 313950, 315744,
345345, 351624, 376740, 388080, 483000, 644644, 673750, 789360,
822250, 871884, 1434510, 1450449, 1771000, 1821600, 1841840, - - -}

2'001

{1,276,299, 1771, 8855, 17250, 27300, 37674, 44275, 80730, 94875,
98280, 98304, 313950, 345345, 376740, 483000, 644644, 673750,
822250, 871884, 1434510, 1450449, 1771000, 1821600, 2055625,
2260440, 2417415, 2464749, 2464749, 2816856, 2877875, - -}

91424 . (o,

{1,23,253,275, 1771, 2024, 2048, 2277, 2300, 4025, 7084, 9625,
10395, 12650, 23000, 31625, 31878, 37422, 44275, 46575, 47104,
50600, 63250, 91125, 113850, 129536, 177100, 184437, 212520,
221375, 226688, 239085, 245916, 253000, 284625, 312984, 368874,
398475, 430353, 442750, 462000, 467775, 476928, 518144, 531300,
558900, 563200, 579600, - - -}

91422 . (3,

Table 1. Dimension of the irreducible representation in various sporadic groups. The list of the
representation read from GAP package [26].
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g | 9m g | 9m g9 gm
2A | 2A | 3B | 3B | 6A | 6A
2B | 2A | 4A | 4B | 6B | 6D
2C | 2A | 4B | 4A | 8A | 8C
2D | 2B | 4D | 4C | 5A | 5A
3A | 3A | 4C | 4A | 10A | 10A

Table 4. Generalized bilinear relation for 2 - B.

g M g i g gm
3A,3B | 34 | 6C,6D | 6C 3G 3A
2A 2A 3C 3A 3H,31 3B
6A,6B | 6A 3D 3B 4A 4A
2B 2B | 3E,3F | 3A | 12A,12B | 12A

Table 5. Generalized bilinear relation for 3 - Fij,.

C Generalized bilinear relations

Cl 2-B

We find the twined characters of baby Monster CFT for various g € 2 - B which are
combined with the characters of Ising models and form the Mckay-Thompson series for
various gy € M. More preciesly, general expression of generalized bilinear relation have a
form of

FM(r) = fo(r) - JE(T) + felr) - () + folr) - JE(T), (C.1)

where f9(7) is twined character for g € 2-B and j%(7) denotes Mckay-Thompson series
for class gy € M. Table 4 present which twined character forming Mckay-Thompson
series of type gn. For instance, once we have twined characters of baby Monster CF'T for
g = 2C, they merge with the characters of Ising model to produce Mckay-Thompson series
of class 2A.

C.2 3.Fij,

It turns out that the twined characters of ¢ = % putative CFT for various g € 3 - Fij,

also constitute the Mckay-Thompson series of certain class gy € M with the characters of
three-states Potts model. We find that the explicit form of the generalized bilinear relation
is given by

JPT) = fo(r) - J(T) + Fu(7) - FL(T) + falr) - J3() + fo(r) - () (C.2)
+ f3(7) - F(7) + fa(r) - fh(7), '

where f9(7) is twined character for g € 3-Fi), and j9(7) denotes Mckay-Thompson series

for class gng € M as before. Table 5 exhibit which twined character yields Mckay-Thompson
series of certain class, like table 4 describes.
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