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1 Introduction

In this paper, we will study positivity conditions obeyed by the leading Regge trajectory

in d > 2, Lorentzian conformal field theories (CFTs). The leading Regge trajectory is

defined to be the set of operators with the smallest scaling dimension, ∆, for each even-

spin s ≥ 2 [1–3]. A universal operator which appears on this trajectory is the stress-energy

tensor, Tµν , which has spin s = 2 and saturates the unitarity bound, ∆T = d. In all QFTs

the light-ray integral of the stress-tensor also obeys a positivity condition: the averaged

null energy condition (ANEC). The ANEC states that the following operator is positive:

E =

∞∫
−∞

dx−T−−(x−, 0), (1.1)

where the integral is over a complete, null line.
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This positivity condition was first studied extensively for CFTs in [4] to derive univer-

sal bounds on three-point functions involving Tµν . The ANEC has since been proven via

two different methods, through causality and OPE arguments in [5] and through mono-

tonicity of relative entropy in [6]. Here, we will be interested in exploring the results of [5],

where the proof of the ANEC also revealed an infinite set of new, higher spin positivity

conditions.1 Higher spin ANEC, or HS ANEC, says the positivity of
∫

dx−T−− generalizes

straightforwardly to the entire Tµν Regge trajectory. More precisely, the following operator

is positive:

E(s) =

∞∫
−∞

dx−J
(s)
−−...−(x−, 0), s ≥ 2 & s even, (1.2)

where J
(s)
µ1...µs is the lightest spin-s operator in a reflection positive OPE. When s = 2 this

reduces to the ANEC operator.

Why might we be interested in studying the positivity properties of higher spin oper-

ators? The first, most basic, motivation is we want to use the fundamental principles of

causality, unitarity and locality to map out the space of consistent quantum field theories.

HS ANEC follows from the axioms of conformal field theory [5] and gives new bounds on

CFT data which have not been fully explored. Specifically, it singles out the operators

with low twist, τ = ∆ − s, which govern the lightcone OPE [9, 10]. Understanding posi-

tivity conditions on the set of CFT data underlies the success of the conformal bootstrap

program [11, 12], so it is natural to expect that this infinite set of positive operators will

give a new analytic window into the space of CFTs.

As an illustrative case, by studying HS ANEC we can derive new bounds on how two

scalar operators couple to the leading Regge trajectory. The corresponding ANEC bound

is trivial by CFT Ward identities, while the HS ANEC bound is non-trivial for general

CFTs. Therefore, while the first four-point function which is related to the ANEC in a

non-trivial way involves spinning operators [13–15], HS ANEC can be related to a simpler

four-point function consisting solely of scalars. These constraints, which have not been

used thus far, can be straightforwardly applied to the study of mixed correlator systems.

In free CFTs, operators on the leading Regge trajectory also play an enhanced role as

the generators of a higher spin symmetry. The presence of a single, conserved, higher spin

current is enough to prove the existence of an infinite-dimensional, higher spin symmetry,

which in turn completely fixes the OPE of the higher spin currents [16–18]. In addition,

theories like Chern-Simons vector models [19–21] are also tightly constrained by a slightly

broken, higher spin symmetry.2 For weakly coupled CFTs, the HS ANEC operators are

then natural objects to study as they are both manifestly positive and sensitive to the

emergence of an infinite-dimensional symmetry.

Finally, the Lorentzian inversion formula [3, 24] also guarantees CFT data organizes

nicely into analytic families parameterized by the scaling dimension and spin. Analyticity

in spin follows from the fact that individual conformal blocks with spin ` > 1 diverge in the

1See [7, 8] for previous work on higher spin sum rules.
2See also [22, 23] for a bootstrap approach to these theories.
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Regge limit, while four-point functions in a unitary CFT are bounded in this regime [25, 26].

Therefore, we cannot independently vary the OPE data for a single, high-spin operator

without spoiling boundedness in the Regge limit. Moreover, in [27] it was shown that the

analytic continuation in spin can also be done at the level of the light-ray transformed

operators themselves. These results imply that three-point functions of operators on the

leading Regge trajectory cannot be completely independent. As an example of this phe-

nomena, we will use HS ANEC to put bounds on 〈TJ (4)T 〉, 〈J (4)TJ (4)〉, and 〈J (4)J (4)J (4)〉
in terms of 〈TTT 〉. Using the AdS/CFT dictionary [28–30], this corresponds to bounds on

cubic interactions for AdS theories with many light, higher spin particles [31–35].3

1.1 Summary

This work is organized as follows. In section 2, we review the lightcone OPE for CFTs

in d > 2, the proof of HS ANEC, the symmetry properties of light-ray operators, and the

behavior of the leading trajectory in CFTs. We will also establish notation and introduce

the states used to derive the optimal bounds.

In section 3, we will present new constraints for two- and three- point functions from

HS ANEC. To start, in section 3.1 we prove the twist of a charged, spin-s operator

which appears in a reflection positive OPE is bounded below by the twist of the lightest,

uncharged, spin-s operator that appears in the same OPE if s ≥ 2 and even. In other

words, for generic CFTs, the leading Regge trajectory is necessarily composed of uncharged

operators. In section 3.2, we consider simple examples of HS ANEC, with an emphasis on

matrix elements involving a scalar operator. Here HS ANEC strongly constrains three-

point functions in theories whose spectrum is close to a generalized free field spectrum.

In section 4, we study HS ANEC in states created by the stress-tensor and the lightest

spin-4 operator. In section 4.1, we prove that if the ANEC bounds for 〈TTT 〉 are satu-

rated, then the CFT has a higher spin symmetry. We also show how saturation of ANEC

implies saturation of HS ANEC. For practical applications, in section 4.2 we focus on 3d

CFTs with an Ising-like spectrum and derive bounds on three-point functions involving

the spin-4 operator.

In section 5, we discuss the relation between HS ANEC and the analytic bootstrap.

In CFTs, the higher spin positivity conditions bound OPE coefficients which are also

computable using large spin expansions. We find that the exchange of isolated operators

and towers of double-twist operators in one channel always yield results consistent with

HS ANEC in the dual channel, at finite and asymptotically large spin respectively. In

the context of large N CFTs, this implies AdS theories with only cubic interactions are

consistent with HS ANEC at tree and one-loop level, with the corresponding restrictions

on spin. We also consider examples where HS ANEC can näıvely be violated at finite spin

if we do not include non-perturbative effects in the large spin expansion. Of independent

interest, we also present new results for large spin OPE coefficients to all orders in 1/N for

holographic CFTs. In the dual AdS theory, these OPE coefficients can be found through

conformal block decompositions of ladder diagrams.

3The leading Regge trajectory we discuss here is the exact trajectory of the CFT and does not always

correspond to the leading single-trace trajectory in large N CFTs [1, 2].
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In section 6, we give a brief conclusion and discuss future directions. The appendices

contain various technical details used throughout the paper. Appendix A describes the

basis of conformally invariant three-point structures and the integrals used to calculate

HS ANEC matrix elements. Appendix B includes solutions to the conservation conditions

and integrated Ward identities. In appendix C, we give examples of relevant (HS) ANEC

matrix elements. In appendix D we give an example, relevant to section 5, where sums

over double-twist operators can yield negative corrections to large spin OPE coefficients.

2 Review of the lightcone OPE and HS ANEC

In this section, we will give a brief overview of the lightcone OPE and how it leads to HS

ANEC [5].4 We will also review the behavior of the leading Regge trajectory in general

CFTs and the properties of light-ray operators.

For a CFT in flat space, we can always write down the OPE of identical scalars, ψ, as:

ψ(x)ψ(−x) =
∑
O
cψψOx

−2∆ψ+∆O−sOxµ1 . . . xµsO
µ1...µs
∆,s , (2.1)

where O∆,s is a symmetric, traceless tensor of spin-s and we have not used conformal

symmetry to relate primaries and descendents.

As realized in [9, 10], if we work in Lorentzian signature and take the limit x+ → 0, the

dominant operator is the one with the minimal twist, τ = ∆−s. For a spin-s operator, O∆,s,

the leading contribution comes specifically from O∆,s,−...− plus all descendents generated

by acting with ∂−. At the level of the four-point function, 〈ψψψψ〉, the conformal blocks

g∆,`(z, z̄) reduce to a sum of SL(2,R) blocks. Here SL(2,R) is the group which leaves the

light-ray connecting the two, null-separated operators invariant.

At the level of the OPE, we can write the contribution of the primary and all its

minimal twist descendents as an integral over a null line. It was shown in [5] that when

|x+| � 1
|x−| � 1, such that x+x− < 0, the OPE becomes:

ψ(x)ψ(−x)
∣∣
J(s) = (−x+)

τs
2 (x−)

τs
2

+s−1〈ψ(x)ψ(−x)〉
2τs+scψψsΓ

(
τs+2s+1

2

)
√
πC

(s)
J Γ

(
τs+2s

2

) ∫
dy−J

(s)
−−...−(y,0),

(2.2)

where we have isolated the contribution of a given operator, J (s), to the OPE and kept

its normalization, C
(s)
J , arbitrary. In this form, we also see how the operators with the

minimal twist dominate the lightcone OPE. This is not the entire contribution of the J (s)

multiplet to the OPE, but if we insert ψ(x)ψ(−x) between two states, this integral captures

the leading behavior in the above lightcone limit. For the remainder of this work, J (s) will

always denote the operator with the smallest twist for a given spin-s. For OPE coefficients,

we also use the label “s” as a shorthand for J (s).

In order to prove ANEC and its higher spin generalization, [5] used the positivity

properties of Rindler symmetric correlation functions in Minkowski space. The Rindler

4See [27] for a generalization to continuous spin.
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reflection for scalars is defined by:

x̄ = (−t∗,−y∗, ~x), O(x) = O†(x̄), (2.3)

and maps operators in one wedge to the other. Rindler positivity5 states the following

correlation function is positive:

〈O1O2O1O2〉 ≥ 0, (2.4)

where the unbarred operators are inserted in the right Rindler wedge and Rindler reflection

does not reverse the order of operators. To make a connection with ANEC, we consider

the states:

A = Oψ(−x), B = ψ(−x)O, (2.5)

where A and B are defined on the right Rindler wedge and ψ is real. Using Rindler

positivity to define an inner product, the Cauchy-Schwarz inequality implies:

|〈AB〉| = |〈Oψ(x)ψ(−x)O〉| ≤
(
〈AA〉〈BB〉

) 1
2 (2.6)

Using this inequality and analyticity properties of the four-point function, [5] derived a

sum rule for the normalized correlator:

G =
〈Oψ(x)ψ(−x)O〉
〈OO〉〈ψψ〉

, (2.7)

which is most clearly stated if we introduce the variables η = −x+x− and σ = 1/x−. The

sum rule is then:

Re

∮
dσσs−2 (1−G(η, σ)) = 0. (2.8)

The integral runs over a semi-circle of radius R in the lower σ plane, just below the origin.

They also take η � R � 1, such that the correlator on the arc is well approximated by

the lightcone OPE. When we perform the OPE on the arc, the fact η � 1 means we

are projecting onto the minimal-twist operators, while the factor of σs−2 projects onto the

spin-s operators. The final result is:

(−1)
s
2 cψψs〈OE(s)O〉 ∝ lim

R→0
lim
η→0

η−τs/2Re

∫ R

−R
dσσs−2(1−G(η, σ)) ≥ 0, (2.9)

E(s) =

∫
dx−J

(s)
−−...−(x−, 0), (2.10)

where the right hand side of (2.9) is positive because the positive ordered correlation

functions on the right hand side of (2.6) factorize at small σ [5, 26]. In sum, they derived

the positivity condition:

(−1)
s
2 cψψsE(s) ≥ 0. (2.11)

5See also [25, 36] for a derivation of Rindler positivity.
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When s = 2, this gives the averaged null energy condition (ANEC) since the stress-

tensor is always the lightest spin-two operator in any positive OPE.6 In the language

of [27], E(s) is the light-ray transform of a local operator on the leading Regge trajectory.

In sections 3 and 4 we will assume the probe operator, ψ, is chosen such that (−1)
s
2 cψψs > 0,

while in section 5 it is more natural to keep the product of OPE coefficients explicit.

Next, we consider the behavior of the leading Regge trajectory in generic CFTs. From

the work of [9, 10], we know that for CFTs in d > 2, the large spin sector has the structure

of a generalized free field theory. They showed that for any two operators, O1 and O2,

with twists τi, there always exists an infinite tower of double-twist operators, [O1O2]n,`,

such that as `→∞ the twists τn,` → τ1 + τ2 + 2n. In a generalized free field theory, these

operators are given by [37]:

[O1O2]n,` = O1∂µ1 . . . ∂µ`∂
2nO2 − (traces) (2.12)

Furthermore, it was shown in [7, 10, 38] that the leading Regge trajectory in a reflection

positive OPE, O†O, is a monotonically increasing, convex function of the spin. Since every

local CFT contains the stress-energy tensor, which has twist τT = d − 2, we find the

following bound for the twists, τs, of the leading trajectory:

d− 2 ≤ τs ≤ 2(d− 2). (2.13)

If there exists a light scalar, φ, with ∆φ < d− 2, then we can replace the upper bound

with 2∆φ. We will generally assume the lower bound is not saturated for ` > 2 so the

theory is not free [16–18]. For generic CFTs, we expect that the leading Regge trajectory

is composed of double-twist operators, as is seen for example in the Ising CFT [39]. There

are counterexamples, e.g. weakly coupled CFTs with a gauge theory description have low

spin operators with twist τs ≈ d − 2 + γs and γs � 1 without having a low dimension

scalar in the spectrum. To apply HS ANEC we do not need to make any assumptions on

which scenario is realized, while when applying the analytic bootstrap we will assume the

trajectory consists of double-twist operators.

In deriving HS ANEC, it is important that the operator J (s) is the lightest, spin-s

operator in a given positive OPE. It is not a priori clear that the same Regge trajectory

gives the leading contribution in every positive OPE. In section 3.1, we will rule out a wide

class of possible counterexamples by showing the leading trajectory must be in the singlet

representation of any internal global symmetry.

Finally, we will review the structure of three-point functions involving light-ray oper-

ators. To derive the optimal bounds from the positivity of E(s), our states will always be

momentum eigenstates:

|O(q, λ)〉 = N
∫
ddxe−iq·xλ · O(x)|0〉. (2.14)

6We will always assume our CFT does not have multiple decoupled sectors and the stress-tensor is the

unique, conserved, spin-two operator.
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We will set N = 1 and use the mostly plus convention for the metric. It is also convenient

to define a covariant version of the (HS) ANEC operators as [40]:

E(s)(n) =

∫ ∞
−∞

d(x · n) lim
x·n̄→∞

(x · n̄)τsJ (s)
µ1...µs(x · n, x · n̄, 0)n̄µ1 . . . n̄µs ,

n = (1, ~n), n̄ = (−1, ~n). (2.15)

We will always choose n and q such that n · q = q2 = −1.

We then want to calculate 〈O(q, λ)|E (s)(n)|O(q, λ)〉 and impose positivity for all λ. To

organize the bounds, we classify how λ transforms under the residual SO(d− 2) symmetry

which leaves n and q fixed. If O∆,` is a symmetric, traceless operator of spin `, then λ can

transform in the spin 0, 1, . . . , ` representations of SO(d− 2).

In practice, it is convenient to construct the polarization tensors from the set of vectors

{q, n, ei}, where ei · ej = δij and ei · n = ei · q = 0. For the spin-j bound we fix a set

{e1, . . . , ej} and consider all polarization tensors of the form:

λ
(`,j),µ1...µ`
k = e

(µ1

1 . . . e
µj
j q

µj+1 . . . qµj+knµj+k+1 . . . nµ`) − (traces). (2.16)

Then the general matrix 〈O∆,`(q, λ)|E (s)(n)|O∆,`(q, λ)〉 becomes a block diagonal ma-

trix, where for each j we obtain a (`− j + 1)× (`− j + 1) positive matrix:

〈O∆,`|E (s)(n)|O∆,`〉 =


E(s,0)
OO 0 0 0

0 E(s,1)
OO 0 0

0 0 . . . 0

0 0 0 E(s,`)
OO

 � 0, (2.17)

E(s,j)
OO,ab = 〈O∆,`

(
q, λ(`,j)

a

)
|E (s)(n)|O∆,`

(
q, λ

(`,j)
b

)
〉. (2.18)

For low spacetime dimensions or high external spin, some of these polarization choices

are not possible, e.g. if ` > d − 2 we can not find d vectors, ei, orthogonal to {q, n} such

that ei · ej = δij . Finally, if the external operators are conserved we can always eliminate

q, and we instead have ` + 1 linear bounds from E(s,j)
OO,00 ≥ 0. When it is clear from the

context, we will drop the indices for the matrix E(s,j)
OO .

If we set O = T , then there are three linear bounds for d ≥ 4 and two linear bounds

in d = 3. We can always write 〈TTT 〉 in terms of the tensor structures which appear in a

free field theory:

〈TTT 〉 = nB〈TTT 〉B + nF 〈TTT 〉F + nT 〈TTT 〉T . (2.19)

Here B, F , and T refer to a free theory of scalars, fermions, and tensors,7 respectively.

Then the ANEC yields:

E(2,0)
TT ≥ 0 =⇒ nB ≥ 0, (2.20)

E(2,1)
TT ≥ 0 =⇒ nF ≥ 0, (2.21)

E(2,2)
TT ≥ 0 =⇒ nT ≥ 0. (2.22)

7In even dimensions there exist free field theories of d−2
2

forms. For d > 3 and odd, such free field

theories do not exist, but the corresponding tensor structure still does.
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These are also known as the Hofman-Maldacena bounds [4]. In d = 3 we only have the

first two bounds.

Generically, conservation of the stress-tensor implies the ANEC bounds will be stronger

than the corresponding HS ANEC bounds. For the three-point function 〈O1TO2〉, con-

servation of the stress-tensor at non-coincident points implies relations between the OPE

coefficients, while the integrated CFT Ward identities relate this three-point function to

the two-point function 〈OiOj〉 ∝ δij [41]. For interacting field theories, similar identities

do not hold if we replace T by a higher spin operator.

One related benefit of studying the ANEC operator is it makes solving the Ward

identities simpler. From its definition we have the following property [4]:∫
Sd−2

d~n〈O(q, λ)|E(n)|O(q, λ)〉 = 2dq0〈O(q, λ)|O(q, λ)〉, (2.23)

where we integrate ~n over the sphere at infinity.8 We will use this equation to solve the

Ward identity constraints on 〈J (4)TJ (4)〉.

3 Bounds on higher spin couplings

3.1 Bounds for charged operators

By studying CFT four-point functions and HS ANEC, we will prove a lower bound on

the dimensions of spinning, charged operators in terms of the uncharged operators. More

precisely, we show that if an operator O satisfies the following properties:

• O has spin-s with s ≥ 2 and even,

• O appears in a reflection positive OPE, e.g. ψ†ψ,

• O transforms in a non-trivial representation, R, of some internal, global symmetry

group,

then τO ≥ τ Is,min where τ Is,min is the twist of the lightest, uncharged operator with spin-s.

This implies that for generic CFTs, the leading Regge trajectory in any positive OPE must

be composed of uncharged operators.9 For s = 2, this is trivially satisfied since we assume

there is a unique, conserved, spin-two operator. However, for all s ≥ 4 this statement is

non-trivial and gives lower bounds on the dimensions of spinning, charged operators.

A simple way to motivate this bound is to consider a four-point function of scalar

operators in the fundamental representation of SU(N). To make contact with [5], we will

also insert them symmetrically with respect to the Rindler wedges. The t-channel, or

1× 4→ 3× 2, conformal block decomposition now has the form:

G(x1,x2, ε) = ε∗,i2 ī1〈O†
ī1

(x1)ψi2(x2)ψ†
ī3

(x2)Oi4(x1)〉εī3i4

=Tr(ε∗ ·ε)It(x1,x2,x2,x1)+

(
Tr(ε)Tr(ε∗)− 1

N
Tr(ε∗ ·ε)

)
Adjt(x1,x2,x2,x1),

8The extra factor of 2d is due to our unconventional normalization of E(2).
9For free CFTs with a global symmetry, we can have multiple, degenerate Regge trajectories with

different global symmetry properties.
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where {I, Adj} denotes the global symmetry representations of the exchanged operators.

The points x1 and x2 will lie in the right Rindler wedge.

When we take the pair of operators ψ(x̄2)ψ†(x2) to be light-like separated, light-

ray operators will contribute to both It and Adjt. Within the spin-s sector, the leading

contribution to the lightcone OPE can come from either It or Adjt, depending on the twists

of the exchanged operators. In either case, the HS ANEC sum rule gives a sign constraint

on the corresponding OPE coefficients.

If we assume the minimal twist, light-ray operators are uncharged and appear in It,

the proof of HS ANEC is unchanged as the dependence on the SU(N) polarizations is

trivial. On the other hand, if we assume for some spin-s the lightest operator is in the

adjoint representation, we see an immediate problem: the prefactor in front of Adjt is not

sign-definite. The sum rule (2.9) now becomes:(
Tr(ε)Tr(ε∗)− 1

N
Tr(ε∗ ·ε)

)
(−1)

s
2 cψψ†s〈OE

(s)
AdjO〉∝ lim

R→0
lim
η→0

η−τs/2Re

∫ R

−R
dσσs−2(1−G(η,σ,ε))≥ 0,

(3.1)

where the right hand side is still positive by the Cauchy-Schwarz inequality and

factorization.

By choosing different SU(N) polarizations, the left hand side can take either sign and

the HS ANEC sum rule implies cψψ†scO†Os = 0. This is a contradiction since we assumed

the lightest spin-s operator in the ψψ† and O†O OPEs was charged. Therefore, either

the leading spin-s operator is in the singlet representation or we have two spin-s operators

with degenerate twist, J
(s)
I and J

(s)
Adj , and the OPE coefficients for the charged operator

are bounded in terms of the uncharged one. We can always derive the HS ANEC bound

on the singlet operators alone by choosing the probe operator, ψ, to be uncharged.

To prove this in general, we can use some simple properties of the Clebsch-Gordon

coefficients, or equivalently the 6j-symbol. We will consider a general four-point function

of scalars:

G = ε∗,j̄ī〈φ̄1,̄iφ
†
2,j̄

(x2)φ2,k(x2)φ1,r〉εkr, (3.2)

where we take φi to transform in the representation Ri of the global symmetry. The

operator φ1 can be smeared or inserted at a single point.

We will also assume a single operator, O(R3)
s,p , where p is the representation index,

dominates the spin-s sector of the lightcone OPE, φ†
2,j̄

(x2)φ2,k(x2). When we isolate its

contribution in this OPE and then calculate the three-point function 〈φ̄1,̄iO
(R3)
s,p φ1,r〉, we

produce a product of Clebsch-Gordon coefficients:

φ†
2,j̄

(x2)φ2,k(x2) ⊃
∑
p

c2̄23̄C
(2̄23̄)

j̄kp̄
O(R3)
s,p , (3.3)

〈φ̄1,̄iO(R3)
s,p φ1,r〉 ∝ c1̄13C

(1̄13)

īrp
, (3.4)

where we have dropped the overall spacetime dependence.

Next, we choose the polarization tensors to project onto a given representation

R4 ∈ R1 ⊗R2, that is we choose ε
(R4)

k̄r̄q
= C

(2̄1̄4)

k̄r̄q
. This produces another product of Clebsch-

Gordon coefficients, and we are left with the following group theory factors multiplying the
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OPE coefficients:

G ≈
∑

i,j,k,r,p

C
(124̄)
ijq̄ C

(2̄1̄4)

k̄r̄q
C

(2̄23̄)

j̄kp̄
C

(1̄13)

īrp
c1̄13c2̄23̄(. . .), (3.5)

where for brevity we suppressed various kinematical factors which are independent of the

group representations. Here the “≈” is because we are studying the lightcone limit of the

full four-point function, but the leading lightcone contribution is all we need for HS ANEC.

It is crucial that HS ANEC should hold for any choice of (R4, q), since these correspond

to different Rindler symmetric ways of creating our state and light-ray operator, or different

choices of A and B in (2.6). Our strategy will then be to sum over (R4, q) and use

orthogonality properties of the Clebsch-Gordon coefficients to show charged operators never

give a sign-definite contribution in the lightcone OPE.

The orthogonality properties we need are:∑
R4,m4

C
(124̄)
m1m2m̄4

C
(1̄2̄4)
m̄1m̄2m4

= δm1m̄1δm2m̄2 , (3.6)

∑
m2,m3

C(123)
m1m2m3

C
(2̄3̄4̄)
m̄2m̄3m̄4

= δm1m̄4δ14̄. (3.7)

If we sum (3.5) over (R4, q) we find:∑
R4,m4

G ≈
∑
R4,m4

∑
i,j,k,r,p

C
(124̄)
ijq̄ C

(2̄1̄4)

k̄r̄q
C

(2̄23̄)

j̄kp̄
C

(1̄13)

īrp
c1̄13c22̄3̄(. . .)

=
∑
r,k,p

C
(2̄23̄)

k̄kp̄
C

(1̄13)
r̄rp c1̄13c22̄3̄(. . .) = 0 unless R3 = I, (3.8)

where in the last step the sums project onto the singlet representation. Put another way,

by summing over (R4, q) we are averaging over all polarizations, so only operators in the

singlet representation can appear in the t-channel.

Therefore if R3 6= I, the HS ANEC sum rule will fix the OPE coefficients to have either

a positive or negative sign depending on how we choose the polarizations. This fixes the

OPE coefficients to be zero, unless there is also an operator with the same or smaller twist

in the singlet representation. This completes the proof that the twist of a charged operator

in a positive OPE is bounded below by the twist of the lightest, uncharged operator with

the same spin-s in the same OPE, for all s ≥ 2 and even. We have focused on the four-

point function of scalar primaries, but the generalization to spinning operators or systems

of four-point functions is straightforward.

It is also clear this bound cannot be improved for general CFTs. From the lightcone

bootstrap, we know that if a CFT contains a light, charged scalar, φ, with ∆φ < d − 2,

then the bound is saturated at infinite spin [42]. By solving crossing for 〈φ†φφ†φ〉 we can

show there exists double-twist operators for all global symmetry representations which can

appear in the φ†φ OPE and they all approach the same twist as `→∞. We also can use

the results of [42] to check this bound holds at asymptotically large spin.

In addition, if we assume the leading trajectory is composed of double-twist operators

[φ†φ]0,s, it is not hard to argue that the same leading trajectory appears in every posi-

tive OPE, for sufficiently large spin. Using the lightcone bootstrap [9, 10], the coupling
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〈OO†[φ†φ]0,s〉 at large s is non-zero in interacting CFTs and determined by the operators

of minimal twist in the Oφ and Oφ† OPEs. Given the results of [3], which proved the

OPE data organizes into analytic families for s > 1, we also expect the entire trajectory

to appear in the O†O OPE. However, we cannot rule out the OPE coefficients having

accidental zeros at finite spin.

3.2 HS ANEC examples

We will now consider bounds from HS ANEC itself. The simplest bound is 〈φ|E (s)|φ〉 ≥ 0,

for scalar φ, where we get a single positivity constraint on the OPE coefficient cφφs:

E(s,0)
φφ = cφφs

π
d
2

+2e−
1
2
iπs2d−2∆φ−s+3Γ(2s+ τs − 1)

Γ
(
∆φ − τs

2

)
Γ
(
s+ τs

2

)2
Γ
(
−d

2 + ∆φ + s+ τs
2

) . (3.9)

Unitarity implies ∆φ ≥ 1
2(d − 2) and convexity of the leading trajectory in combination

with the lightcone bootstrap imply τs ≤ 2∆φ, so we have:

cφφse
− 1

2
iπs ≥ 0 (3.10)

One interesting case to study is when φ is the lightest scalar in the theory and ∆φ ≤
d− 2. Then the leading Regge trajectory is J (s) = [φφ]0,s and we can write τs = 2∆φ + γs.

If γs is small, this matrix element is also small due to the factor of Γ−1
(
∆φ − τs

2

)
. This

yields strong bounds on the off-diagonal, HS ANEC matrix elements when we consider a

more general state. As an example, we can consider,

|Φ〉 = c1|φ〉+ c2|χ〉, (3.11)

where φ and χ are both scalars. Positivity of HS ANEC for this state gives the matrix

condition:

〈Φ|E (s)(n)|Φ〉 =

(
E(s,0)
φφ E(s,0)

φχ

E(s,0)
χφ E(s,0)

χχ

)
� 0. (3.12)

Keeping the twist, τs, generic we find:

c2
φχs

cφφscχχs
≤

Γ
(

1
2(∆φ + ∆χ − τs)

)2
Γ
(

1
2(∆φχ + 2s+ τs)

)2
Γ
(
∆φ − τs

2

)
Γ
(
∆χ − τs

2

)
Γ
(
s+ τs

2

)4
×

Γ
(

1
2(∆χφ + 2s+ τs)

)2
Γ
(

1
2(−d+ ∆φ + ∆χ + 2s+ τs)

)2
Γ
(
−d

2 + ∆φ + s+ τs
2

)
Γ
(
−d

2 + ∆χ + s+ τs
2

) ,

(3.13)

where ∆ij = ∆i − ∆j . If τs = 2∆φ + γs and γs is small, the ratio of OPE coefficients

scales like:

c2
φχs

cφφscχχs
. |γs|, (3.14)

and this bound becomes stronger as we increase s [9, 10]. This inequality already gives

strong constraints for the Ising CFT where γ4 ≈ −0.0136 [43] or in the N = 1 Ising model
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where γ4 ≈ −.018 [44, 45]. Here it is important that the anomalous dimension, γs, is

with respect to the generalized free field value, τGFFs = 2∆φ, and not the unitarity bound,

τ free
s = d− 2.

The bound disappears when ∆χ = ∆φ+2s+τ+2n for n integer, which is consistent with

the structure of generalized free field theories. In such theories we can always construct

the operator χ = J
(s)
µ1...µs∂

µ1 . . . ∂µs∂2nφ and the relevant coupling is not suppressed as

τs → 2∆φ. Finally, at large ∆χ the bound becomes:

c2
φχs

cφφscχχs
≤
π32d−2∆φ−2∆χ−6s−2τs+5∆

− d
2

+2∆φ+5s+2τs−3
χ csc2

(
1
2π(∆φ −∆χ + 2s+ τs)

)
Γ
(
∆φ − τs

2

)
Γ
(
s+ τs

2

)4
Γ
(
−d

2 + ∆φ + s+ τs
2

) ,

(3.15)

which decays exponentially for large ∆χ. This is consistent with results from OPE con-

vergence [46] and is similar to what was found using the ANEC [47] for other mixed

systems. For this system, the ANEC bound is trivial since the stress-tensor Ward identity

implies 〈φiTφj〉 ∝ δij for scalar φi. We will find similar bounds if we replace χ by a more

general operator.

The next simplest case to consider is an external, conserved current V µ. A similar

calculation was also presented for d = 4 and non-conserved vectors in [5]. Based on

symmetries, we find:

〈e1 · V |E (s)(n)|e2 · V 〉 = a
(s)
0 e1 · e2

(
1 + a

(s)
2

(
e1 · n e2 · n
e1 · e2

− 1

d− 1

))
, (3.16)

which implies:

a
(s)
0 ≥ 0, −d− 1

d− 2
≤ a(s)

2 ≤ d− 1. (3.17)

The HS ANEC bound is identical in form to the ANEC bound [4]. One difference

however is a
(s=2)
0 is related to 〈V V 〉 ∝ CV by the Ward identity (2.23), but there is no

such relation for s > 2. In general, when s = 2 conservation can give additional relations

between the a
(2)
i coefficients, but here conservation for the external conserved currents is

constraining enough that conservation of the stress-tensor does not yield any additional

relations [48].

To find bounds on the underlying OPE coefficients, we will parametrize the three point

function using the basis introduced in [48]:

〈O∆1,`1O∆2,`2O∆3,`3〉

=
∑

n12,n13,n23

c(123)
n23,n13,n12

V `1−n12−n13
1 V `2−n23−n12

2 V `3−n13−n23
3 Hn12

12 Hn13
13 Hn23

23

x∆1+∆2−∆3+`1+`2−`3
12 x∆1−∆2+∆3+`1−`2+`3

13 x−∆1+∆2+∆3−`1+`2+`3
23

nij + nik ≤ `i.
(3.18)

The definitions of Vi and Hij can be found in appendix A.
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For 〈V J (s)V 〉, permutation symmetry and conservation imply there are two indepen-

dent OPE coefficients, which we will take to be c
(V sV )
000 and c

(V sV )
001 . The bounds then become:

e−
1
2
iπs(2c

(V sV )
001 − c(V sV )

000 ) ≥ 0, (3.19)

e−
1
2
iπs(c

(V sV )
001 (2d− τs − 4) + c

(V sV )
000 (−d+ s+ τs + 2)) ≥ 0, (3.20)

which agrees with results found in [5].

Unlike the case of scalar states, the HS ANEC matrix elements do not vanish in the

limit τs → 2τV . However, we now have the free parameter a
(s)
2 which can be tuned such

that (HS) ANEC is saturated. It has been demonstrated in [40, 47, 49] that saturation

of the ANEC bounds yields strong constraints on the CFT data, and it was conjectured

in [40] that if ANEC is saturated in a state created by the stress-energy tensor, then the

theory is free. In section 4.1 we will give a proof of this statement.

By requiring positivity for spin-s HS ANEC in the state |Θ〉 = |e · V 〉 + cφ|φ〉, for

scalar φ, we can also bound the three-point function 〈φJ (s)V 〉 and find similar results

as for a system of scalars. Assuming the external current is conserved, the three-point

function 〈V J (s)φ〉 depends on a single OPE coefficient, c
(V sφ)
000 , and the off-diagonal HS

ANEC matrix element is:

E(s,0)
V φ =

iπ
d
2

+2e
iπs
2 2−∆φ−s+4Γ(2s+τs−1)c

(V sφ)
000

Γ
(

1
2(d+∆φ−τs)

)
Γ
(

1
2(∆φ+2s+τs−2)

)
Γ
(

1
2(d−∆φ+2s+τs−2)

)
Γ
(

1
2(−d+∆φ+2s+τs+2)

) .
(3.21)

The HS ANEC bound then implies:(
c

(V sφ)
000

)2
cφφs

(
2c

(V sV )
001 − c(V sV )

000

) ≤ Γ
(

1
2(d+ ∆φ − τs)

)2
Γ
(

1
2(∆φ + 2s+ τs − 2)

)2
Γ
(
d− τs

2 − 1
)

Γ
(
∆φ − τs

2

)
Γ
(
s+ τs

2

)3
Γ
(
s+ τs

2 + 1
)

×
Γ
(

1
2(d−∆φ + 2s+ τs − 2)

)2
Γ
(

1
2(−d+ ∆φ + 2s+ τs + 2)

)2
Γ
(

1
2(d+ 2s+ τs − 4)

)
Γ
(
−d

2 + ∆φ + s+ τs
2

) .

As before, if ∆φ is the lightest operator in the theory, then τs ≈ 2∆φ + γs and this bound

becomes stronger as γs → 0.

Finally, we will present bounds for systems involving the stress-tensor in d = 3. Con-

servation, plus extra degeneracy conditions in d = 3, implies 〈TJ (s)T 〉 is a function of two

OPE coefficients, c
(TsT )
002 and c

(TsT )
101 . We will only need the spin-0 matrix element E(s,0)

TT :

0≤E (s,0)
TT =

π3e
iπs
2 2s+τs−1

(
2c

(TsT )
002

(
s2+s(4τs−13)+4(τs−3)(τs−2)

)
+c

(TsT )
101 (s(s+3)−(τs−9)τs−12)

)
(s−1)s(19s2+8(4s−5)τs−59s+12τ2

s +36)Γ
(
3− τs

2

)
Γ
(
s+ τs

2

) .

(3.22)

After imposing conservation, 〈TJ (s)φ〉 is a function of a single OPE coefficient, c
(Tsφ)
000 ,

and we find:(
c

(Tsφ)
000

)2
cφφsE

(s,0)
TT

≤
e−

3
2
iπs2−2∆φ−3s−2τs+6Γ

(
1
2(∆φ−τs+5)

)2
Γ
(

1
2(−∆φ+2s+τs+1)

)2
Γ(∆φ+2s+τs−2)2

π5/2Γ
(
∆φ− τs

2

)
Γ
(
s+ τs

2

)2
Γ(2s+τs−1)Γ

(
∆φ+s+ τs

2 −
3
2

) ,

(3.23)

where the extra phase factor on the right hand side is cancelled by the phase in E(s,0)
TT .

We see once again that CFTs close to a generalized free field description are strongly

constrained by HS ANEC.
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4 Spin-2/spin-4 mixed systems

We will now study the constraints of ANEC and s = 4 HS ANEC on the state

|Ψ〉 = |ε2 · T 〉+ |ε4 · J (4)〉, (4.1)

where J (4) is the lightest spin-4 operator in the TT OPE. Throughout, we will assume HS

ANEC is obeyed and that there is a unique, minimal twist, spin-4 operator in the TT OPE.

Given the size of the full (HS) ANEC matrices, for general dimensions d we will focus on

the implications of ANEC saturation and for d = 3 we will give new, non-perturbative

constraints when the spin-4 operator has a small, but finite, anomalous dimension. To

remove clutter, when writing OPE coefficients, J , without a superscript, will always refer

to the lightest, spin-4 operator. Examples of relevant matrix elements and the solution to

the Ward identity for 〈J (4)TJ (4)〉 can be found in appendices B and C.

4.1 Saturation of ANEC

In this section, we will prove that if the lightest spin-4 operator has a non-zero anoma-

lous dimension, then the ANEC bounds for 〈TTT 〉 cannot be saturated. Equivalently, if

the ANEC bounds on the stress-tensor are saturated, then the theory has a higher-spin

symmetry [16–18].

In order to show this, we will require the following matrices are positive:

〈Ψ|E (2)(n)|Ψ〉(j) =

 E(2,j)
TT E(2,j)

TJ

E(2,j)
JT E(2,j)

JJ

 � 0, (4.2)

〈Ψ|E (4)(n)|Ψ〉(j) =

 E(4,j)
TT E(4,j)

TJ

E(4,j)
JT E(4,j)

JJ

 � 0, (4.3)

where for j > 2 the matrix elements involving T vanish.

In this system of positivity conditions, the OPE coefficients for 〈TJ (4)T 〉 play a double

role: they appear in the diagonal elements E(4,j)
TT and the off-diagonal elements E(2,j)

TJ . If

we only used ANEC we would get upper bounds for 〈TJ (4)T 〉 in terms of 〈TTT 〉 and

〈J (4)TJ (4)〉, but we would miss additional positivity constraints from spin-4 HS ANEC.

The OPE coefficients in 〈J (4)TJ (4)〉 similarly appear in both diagonal and off-diagonal

matrix elements.

First, we will use conservation and permutation symmetry to reduce 〈TJ (4)T 〉 to a

function of three OPE coefficients. In terms of the structures given in (3.18), one indepen-

dent basis of OPE coefficients is c
(TJT )
002 , c

(TJT )
011 , and c

(TJT )
101 . In d = 4, we find the following
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inequalities from requiring E(4,j)
TT ≥ 0:

0≤ 2(τ4(3τ4−8)+8)c
(TJT )
002 −

(
τ2

4 +8
)
c

(TJT )
011 −(τ4−6)τ4c

(TJT )
101 , (4.4)

0≤ 2(4−τ4)
(
9τ2

4 +42τ4+8
)
c

(TJT )
002 +3(τ4−4)(τ4+4)(τ4+6)c

(TJT )
011

+(τ4−6)(3τ4(τ4+2)−32)c
(TJT )
101 , (4.5)

0≤ 2
(
τ4

(
τ4

(
9τ2

4 +6τ4−160
)
−240

)
−224

)
c

(TJT )
002 −3(τ4+10)

(
τ3

4−24τ4−16
)
c

(TJT )
011

−(τ4−6)(τ4+4)(3(τ4−2)τ4−16)c
(TJT )
101 , (4.6)

which come from the j = 0, 1, 2 polarization tensors respectively. We have also dropped

overall factors that are positive for 2 ≤ τ4 ≤ 4. Since we have the same number of OPE

coefficients as positivity conditions, it will be convenient to trade c
(TJT )
ijk for the manifestly

positive matrix elements E(4,j)
TT .

To see how the proof works, it is not necessary to calculate E(2,j)
TJ for j = 0, 1, 2 in

full detail. If E(2,j)
TT = 0 for some j, then (4.2) implies E(2,j)

TJ = 0. This yields 5 − j

equations while the underlying three-point function, 〈TJ (4)T 〉, is a function of three OPE

coefficients. Generically, if we saturate a single ANEC bound for 〈TTT 〉, we get at least

as many equations as unknowns. Keeping τ4 > d − 2, we find there is a unique solution:

〈TJ (4)T 〉 = 0. Therefore, we see that it is impossible to assume there exists a spin-4

operator in the TT OPE with a non-zero anomalous dimension and that any individual

〈TTT 〉 bound is saturated. We do not need to use HS ANEC for this argument, although

we will see that it does allow us to derive stronger conclusions.

As an example, we can consider a 4d CFT and set E(2,2)
TT = 0, or equivalently set nT = 0

in (2.19). This imposes the following constraints:

0 =

(
(τ4 − 2)

(
3τ4(τ4 + 10)(5τ4 + 42)E(4,0)

TT + 4(τ4(τ4(7τ4 + 138) + 1064) + 3312)E(4,1)
TT

)
+ 8(τ4(τ4(τ4(τ4 + 22) + 308) + 2168) + 5760)E(4,2)

TT

)
, (4.7)

0 = (τ4 − 2)
(
−9τ(τ + 8)E(4,0)

TT − 48(τ + 10)E(4,1)
TT + 12(τ(τ + 12) + 40)E(4,2)

TT

)
, (4.8)

0 = (τ4 − 2)

(
− 3

4
(τ − 6)τ(τ + 10)E(4,0)

TT + ((τ − 4)τ(τ + 10) + 144)E(4,1)
TT

+ 2τ(τ(τ + 12) + 44)E(4,2)
TT

)
. (4.9)

We can now also see how free field theories10 or theories with a slightly broken higher

spin symmetry11 can saturate ANEC and not be ruled out [4, 47, 50]. Here, if we set

τ4 = 2, we only need to set E(4,2)
TT = 0 and can leave the other matrix elements non-zero.

10The derivation of HS ANEC given in [5] only holds for interacting field theories, but they also showed

that it holds in a theory of free scalars.
11We have focused on parity even three-point functions, although there should be a similar story if we

include parity odd structures.
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In general dimensions we find:

E(2,j)
TT = 0 =⇒ E(2,j)

TJ = 0 =⇒ E(4,j)
TT = 0 & τ4 = d− 2, . (4.10)

That is, saturation of ANEC implies saturation of HS ANEC and the presence of a higher

spin conserved current.

If we assume HS ANEC is true, we actually only need to use (4.7) to prove that ANEC

saturation implies the theory is free. Each matrix element, E(4,j)
TT , in (4.7) is non-negative

and multiplies a non-negative coefficient, so either τ4 = 2 or all the OPE coefficients vanish.

Since this off-diagonal element is strictly positive in interacting CFTs, it also gives a strong

lower bound on E(2,2)
TT E

(2,2)
JJ,00. There are analogous results for j = 0, 1 and also for general d

which are given in appendix C.1.

At the level of the full correlators, 〈Ψ|E (2)(n)|Ψ〉 and 〈Ψ|E (4)(n)|Ψ〉, when τ4 = d − 2

the spin-4 operator is conserved and its longitudinal modes decouple. This decoupling

means that instead of obtaining 5 − j equations from saturation of the spin-j bound, we

have a single constraint for each one. This reduction in constraints is what prevents free

field theories from being ruled out and explains the factors of τ4 − 2 in (4.7)–(4.9).

We can extend the result (4.10) by using the spin-4 HS ANEC condition (4.3). In

particular, if E(4,j)
TT = 0 then we also have E(4,j)

TJ = 0. We can solve the latter constraint in

terms of the underlying three-point function, 〈J (4)TJ (4)〉, which also determines E(2,i)
JJ . We

find that requiring E(4,j)
TJ = 0 and the diagonal elements of E(2,i)

JJ are non-negative implies

ANEC is saturated in a state created by J (4). We give an example of this phenomenon in

appendix C.3 for d = 4.

In total we find the following chain of implications:

E(2,j)
TT = 0 =⇒ E(2,j)

TJ = 0 =⇒ E(4,j)
TT = 0 & τ4 = d− 2 =⇒ E(4,j)

TJ = 0 =⇒ E(2,q)
JJ = 0

for q = j, 3, 4.

In deriving the last implication, we used τ4 = d − 2 and the constraints of (HS) ANEC,

but did not use the existence of a higher spin symmetry.

The fact E(2,3)
JJ = E(2,4)

JJ = 0 when we saturate an ANEC bound for the stress-tensor is

consistent with the structure of free field theories. For d ≥ 4 and even, we have three field

theories and they only generate the j = 0, 1, 2 structures for E(2,j)
JJ .

We can also ask if the reverse situation is possible, that is can we have E(2,j)
JJ 6= 0 only

for j = 3 or 4? To see that this is impossible, we can study the following spin-0 matrix

element:12

E(2,0)
JJ,44 = C

(4)
J

2d−2τ4−7(d− 1)(d+ 1)π
d
2

+1(τ4 − d+ 5)(τ4 − d+ 4)(τ4 − d+ 3)(τ4 − d+ 2)

(d+ 2)(d+ 4)Γ(τ4 + 8)Γ
(
−d

2 + τ4 + 5
) .

(4.11)

If τ4 > d − 2 then this matrix element is necessarily non-zero. If τ4 = d − 2 this matrix

element does vanish, but in that case the theory has a higher-spin symmetry and the

12The polarization tensor used to calculate this matrix element, λ
(4,0)
4 , is independent of n, so the Ward

identity (2.23) implies it is proportional to C
(4)
J . We thank David Simmons-Duffin, Petr Kravchuk, and

Eric Perlmutter for discussions on this point.
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correlation functions of the leading trajectory are fixed to coincide with a free field theory

of scalars, fermions, or tensors [17, 18].

Furthermore, if E(2,j)
TT = E(4,j)

TT = E(2,q)
JJ = 0, then there are also an infinite number

of constraints for operators not on the leading Regge trajectory. Using the interference

arguments found in [47, 49, 51], saturation of these bounds implies:

E(2,j)
TO = E(4,j)

TO = E(2,q)
JO = 0, for q = j, 3, 4, (4.12)

where O is any operator in our CFT.

When the ANEC bounds are close to being saturated, e.g. E(2,2)
TT � 1, we find the

following scalings: (
E(4,0)
TT γ4

)2
. E(2,2)

TT E
(2,2)
JJ,00, (4.13)(

E(4,1)
TT γ4

)2
. E(2,2)

TT E
(2,2)
JJ,00, (4.14)(

E(4,2)
TT

)2
. E(2,2)

TT E
(2,2)
JJ,00. (4.15)

A natural assumption is if E(2,2)
TT �1, then E(2,2)

JJ,00�1, but this is not imposed by (HS) ANEC.

One question that remains is the general behavior of E(4,r)
JJ , or its underlying three-point

function 〈J (4)J (4)J (4)〉. From (4.3) we have the positivity condition:(
E(4,r)
TJ,0a

)2
≤ E (4,r)

TT,00E
(4,r)
JJ,aa, a = 0, 1, . . . 5− r (4.16)

so E(4,r)
TT,00E

(4,r)
JJ,aa is bounded from below by E(4,r)

TJ,0a. The underlying three-point function for

the latter matrix element is 〈J (4)TJ (4)〉, which depends on 12 OPE coefficients after impos-

ing conservation. The stress-tensor Ward identity (2.23) yields two additional constraints,

so 〈J (4)TJ (4)〉 depends on 10 OPE coefficients and the normalization of J (4).

To completely remove the lower bounds on E(4,r)
TT,00E

(4,r)
JJ for all r, we need E(4,r)

TJ = 0 for

all r as well. This yields 12 equations and if τ4 > d− 2 the only solution is 〈J (4)TJ (4)〉 = 0

identically. This is of course inconsistent with the Ward identity, so it is impossible to

remove all lower bounds on E(4,r)
TT,00E

(4,r)
JJ in interacting CFTs. We will give an example of

this in the next section for d = 3.

We expect this pattern holds for general J (s), since 〈TJ (s)J (s)〉 depends on 3s indepen-

dent OPE coefficients [52] and setting E(4,r)
TJ = 0 for all r yields 3s equations. The Ward

identity for 〈TJ (s)J (s)〉 gives extra constraints, so we have an over-constrained system and

we generically expect there is no solution consistent with the Ward identity. It would be

interesting to prove this statement for general s.

4.2 Application to the 3d Ising CFT

To be more concrete, we will now specialize to 3d CFTs where the lightest spin-4 operator

has twist τ4 = 1.02. This is close to the spectrum of the 3d Ising model [43], but we will

not actually use any other information about the theory. The structure of these bounds

will carry over to the O(N) models and also to higher dimensions. What is special to 3d
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is we can set any three-point structure proportional to H12H13H23 in (3.18) to zero and

we also only have the j = 0, 1 bounds. We will present approximate, numerical values for

simplicity, but of course there exist analytic expressions for all quantities. We continue to

denote the lightest spin-4 operator by J inside any matrix element or OPE coefficient.

In d = 3, the matrix elements for 〈T |E (2)|T 〉, in our normalization, are

E(2,0)
TT =

nB
32π

, E(2,1)
TT =

nF
32π

. (4.17)

We are following the conventions of [47] where in free field theories nB,F count the total

bosonic and fermionic degrees of freedom, respectively.

We now find positivity for 〈T |E (4)|T 〉 implies:

0 ≤ E (4,0)
TT = 0.315c

(TJT )
101 − 0.311c

(TJT )
002 , (4.18)

0 ≤ E (4,1)
TT = −0.207c

(TJT )
101 + 0.702c

(TJT )
002 . (4.19)

To study the full constraints of ANEC, we next consider the spin-0 positivity bounds

for 〈J (4)|E (2)|J (4)〉:

0≤E (2,0)
JJ,00 =−0.0123c

(JTJ)
000 +0.0275c

(JTJ)
010 +0.00723c

(JTJ)
012 −0.0642c

(JTJ)
020 −0.0671c

(JTJ)
022

+0.161c
(JTJ)
030 −0.575c

(JTJ)
040 −0.0381C

(4)
J , (4.20)

0≤E (2,0)
JJ,11 =−0.00197c

(JTJ)
000 +0.00444c

(JTJ)
010 +0.00118c

(JTJ)
012 −0.0104c

(JTJ)
020 −0.0108c

(JTJ)
022

+0.0259c
(JTJ)
030 −0.0929c

(JTJ)
040 −0.00616C

(4)
J , (4.21)

0≤E (2,0)
JJ,22 =−0.000277c

(JTJ)
000 +0.000625c

(JTJ)
010 +0.000162c

(JTJ)
012 −0.00146c

(JTJ)
020

−0.00151c
(JTJ)
022 +0.00365c

(JTJ)
030 −0.0131c

(JTJ)
040 −0.000862C

(4)
J , (4.22)

0≤E (2,0)
JJ,33 =−0.0000276c

(JTJ)
000 +0.0000621c

(JTJ)
010 +0.0000152c

(JTJ)
012 −0.000145c

(JTJ)
020

−0.000146c
(JTJ)
022 +0.000362c

(JTJ)
030 −0.00130c

(JTJ)
040 −0.0000847C

(4)
J , (4.23)

0≤E (2,0)
JJ,44 = 1.91×10−8C

(4)
J . (4.24)

where C
(s)
J is defined by:

〈J (s)(x1)J (s)(x2)〉 = C
(s)
J

Hs
12

x
2(τs+2s)
12

. (4.25)

As a reminder, we are using the basis introduced in (2.16) for the polarization tensors. To

see why the matrix element E(2,0)
JJ,44 is small, recall from (4.11) that it vanishes when τ → 1

in d = 3.
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The spin-1 positivity conditions similarly yield:

0≤E (2,1)
JJ,00 = 0.0113c

(JTJ)
000 −0.0253c

(JTJ)
010 −0.00662c

(JTJ)
012 +0.0589c

(JTJ)
020 +0.0616c

(JTJ)
022

−0.147c
(JTJ)
030 +0.528c

(JTJ)
040 +0.0351C

(4)
J , (4.26)

0≤E (2,1)
JJ,11 = 0.00191c

(JTJ)
000 −0.00429c

(JTJ)
010 −0.00115c

(JTJ)
012 +0.0100c

(JTJ)
020

−0.0250c
(JTJ)
030 +0.0898c

(JTJ)
040 +0.00596C

(4)
J , (4.27)

0≤E (2,1)
JJ,22 = 0.000277c

(JTJ)
000 −0.000625c

(JTJ)
010 −0.000164c

(JTJ)
012 +0.00146c

(JTJ)
020

+0.00152c
(JTJ)
022 −0.00364c

(JTJ)
030 +0.0131c

(JTJ)
040 +0.000863C

(4)
J , (4.28)

0≤E (2,1)
JJ,33 = 0.0000276c

(JTJ)
000 −0.0000621c

(JTJ)
010 −0.0000152c

(JTJ)
012 +0.000145c

(JTJ)
020

+0.000146c
(JTJ)
022 −0.000362c

(JTJ)
030 +0.00130c

(JTJ)
040 +0.0000848C

(4)
J . (4.29)

To make positivity manifest, we will now parameterize 〈TJ (4)T 〉 by E(4,j)
TT . In ap-

pendix C.2 we similarly parameterize 〈J (4)TJ (4)〉 by E(2,0)
JJ,rr for r = 0, 1, 2 and E(2,1)

JJ,qq for

q = 0, . . . , 3. Of course, we also have non-linear constraints for the matrices E(2,j)
JJ by re-

quiring positivity of all possible principal minors, from size 2 × 2 to 5× 5, but we will not

discuss that here.

Instead, we will consider positivity of all 2× 2 principal minors in (4.2) which involve

〈TTT 〉, 〈TJ (4)T 〉 and 〈J (4)TJ (4)〉. The resulting bounds are:

(
0.0597E(4,0)

TT + 0.000439E(4,1)
TT

)2
≤ E (2,0)

TT E
(2,0)
JJ,00, (4.30)(

0.0000871
(
E(4,0)
TT − E (4,1)

TT

))2
≤ E (2,0)

TT E
(2,0)
JJ,11, (4.31)(

0.0000128
(
E(4,0)
TT − E (4,1)

TT

))2
≤ E (2,0)

TT E
(2,0)
JJ,22, (4.32)(

3.319× 10−6
(
E(4,0)
TT − E (4,1)

TT

))2
≤ E (2,0)

TT E
(2,0)
JJ,33, (4.33)(

1.002× 10−6
(
E(4,0)
TT − E (4,1)

TT

))2
≤ E (2,0)

TT E
(2,0)
JJ,44. (4.34)

The overall coefficients are small in (4.31)–(4.34) relative to (4.30) because the former

should vanish in the limit τ4 → 1. In fact, even though the right hand side of (4.34) is

∼ 10−8, the small prefactor on the left-hand side gives a weak bound on E(4,0)
TT −E

(4,1)
TT . One

nice feature of this particular bound though is it only involves the normalization of J (4),

which we can always set to one, and not on the OPE coefficients of 〈J (4)TJ (4)〉.

Here, the most powerful bound is generically (4.30), which says that E(2,0)
TT E

(2,0)
JJ,00 is

bounded below by a strictly positive quantity in interacting CFTs. A similar feature was

seen for d = 4 in (4.7).
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Repeating this argument for the spin-1 polarization tensors, we find a similar structure:(
0.0004460E(4,0)

TT + 0.05966E(4,1)
TT

)2
≤ E (2,1)

TT E
(2,1)
JJ,00, (4.35)(

0.0000854(E(4,0)
TT − E (4,1)

TT )
)2
≤ E (2,1)

TT E
(2,1)
JJ,11, (4.36)(

0.0000123(E(4,0)
TT − E (4,1)

TT )
)2
≤ E (2,1)

TT E
(2,1)
JJ,22, (4.37)(

3.32× 10−6(E(4,0)
TT − E (4,1)

TT )
)2
≤ E (2,1)

TT E
(2,1)
JJ,33. (4.38)

Finally, we will consider how spin-4 HS ANEC (4.3) constrains this same system of

three-point functions. The matrix elements for E(4,j)
TJ and E(4,j)

JJ are fairly large, so we will

leave their explicit form to appendix C.2. Instead, we focus on the form of the quadratic

bounds which involve the three-point functions 〈TJ (4)T 〉, 〈J (4)TJ (4)〉 and 〈J (4)J (4)J (4)〉:(
E(4,0)
TJ,0a

)2 ≤ E (4,0)
TT E

(4,0)
JJ,aa, for a = 0, 1, . . . , 4 (4.39)(

E(4,1)
TJ,0b

)2 ≤ E (4,1)
TT E

(4,1)
JJ,bb, for b = 0, 1, . . . , 3. (4.40)

Unlike E(2,j)
TJ , the off-diagonal matrix elements here, E(4,j)

TJ , do not have any manifest

positivity properties. We do find however that it is impossible to set E(4,j)
TJ = 0 for all j

without violating the Ward identity for 〈J (4)TJ (4)〉, as was mentioned earlier. As a caveat,

there may be some positivity property we are missing by not considering the non-linear

constraints more systematically.

Finally, it is possible to rewrite these expressions as lower bounds on E(4,i)
TT and use

them inside the bounds (4.34) and (4.35) to derive lower bounds on 〈TTT 〉 in terms of

〈J (4)J (4)J (4)〉 and 〈J (4)TJ (4)〉. This kind of inequality, which relates 〈J (4)J (4)J (4)〉 and

〈TTT 〉, cannot be derived from ANEC alone. To derive it through a direct study of cross-

ing symmetry would require studying a mixed system of four-point functions containing

T and J (4).

5 Comparison to analytic bootstrap

So far, we have focused on how HS ANEC constrains fundamental CFT data, but we

will now take the reverse approach and study if predictions from the bootstrap are always

compatible with HS ANEC. We will assume the leading trajectory is composed of double-

twist operators, J (s) = [φφ]n=0,s, for scalar φ. We can then use the analytic bootstrap to

extract 〈ψψ[φφ]0,s〉, for scalar ψ, from the four-point function 〈φφψψ〉.
In the examples we consider, the light operators in the φψ OPE which lead to correc-

tions for 〈ψψ[φφ]0,s〉 will not be the leading Regge trajectory itself. For example, we can

consider light scalars, which do not fall on Regge trajectories, or assume a global symmetry

prevents the exchange of [φφ]0,s, e.g. if φ is odd and ψ is even under a Z2 symmetry.

One motivation for this analysis is that there are solutions to crossing symmetry at

large N which do not obey the spin-s sum rules used in the derivation of (HS) ANEC.
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For example, in [26] they showed that a scalar EFT13 in AdS with a shift symmetry and

a λ(∂φ)4 interaction violates the spin-2 sum rule if λ < 0. This is the AdS version of the

causality arguments in [53]. The higher spin sum rules can also be used to bound higher

derivative, quartic interactions.14 One of our goals is to understand if there are similar

issues with cubic interactions.

We will show that the exchange of isolated operators or towers of double-twist operators

in the φψ OPE is always consistent with HS ANEC, at finite and asymptotically large spin

respectively. For CFTs with a large N description, this corresponds to obeying basic

causality constraints at tree and one-loop level, assuming the dual AdS theory only has

cubic interactions. To obtain consistent results at finite spin, we also have to include non-

perturbative effects in the large spin expansion. We will also present results for large spin

OPE coefficients from ladder diagrams in the bulk which may be of interest for the study

of large N CFTs in general.

5.1 SL(2,R) expansion

To set up the conventions, we use the lightcone coordinates x = (x−, x+, xi) and the metric

ds2 = dx+dx−+dxidx
i. For the four-point function, we choose the standard configuration:

x1 = 0, x2 = (z, z̄, 0), x3 = (1, 1, 0), x4 =∞. (5.1)

We will study four-point functions of scalars, 〈φ1φ2φ3φ4〉, and require the φ1φ2 → φ4φ3

and φ3φ2 → φ4φ1 OPEs agree. This is also known as s↔ t crossing symmetry and implies:

((1− z)(1− z̄))
∆2+∆3

2

∑
O
c12Oc43Og

∆12,∆34

O (z, z̄)

= (zz̄)
1
2

(∆1+∆2)
∑
O′

c32O′c41O′g
∆32,∆14

O′ (1− z, 1− z̄).
(5.2)

where the blocks are normalized as in [56] with c` = 1.15

We will consider the lightcone limit 1 − z̄ � z � 1, which allows us to solve for

〈φ1φ2[φ3φ4]n,`〉 and 〈φ3φ4[φ1φ2]n,`〉 for ` � 1 in terms of the small twist operators in the

φ1φ4 and φ2φ3 OPE. We also adopt the conventions of [39] and parametrize CFT data in

terms of:

h =
∆− `

2
, h̄ =

∆ + `

2
. (5.3)

This choice of variables is especially convenient when discussing conformal blocks in 1d, or

the SL(2,R) blocks,

kh12,h34

2h (z) = zh2F1(h− h12, h+ h34, 2h, z), hij = hi − hj , (5.4)

13For this theory there is no gravity in the bulk, so the CFT does not contain a stress-tensor and this is

not a violation of the ANEC. However, the spin-two sum rule for the four-point function should still hold.
14See also [54, 55] for related work.

15In comparison to [39], these are the same blocks as g∆12,∆34
∆,` , while G

∆12
2
,
∆34

2

h,h̄
defined there has an extra

factor of v−
∆12

2 .
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Figure 1. s = t crossing equation for cφφ[φφ]0,scψψ[φφ]0,s with isolated operator in t-channel.

and also in even dimensions where the conformal blocks can be written down in terms of

1d blocks [57, 58]. In [39] it was also found how to sum the SL(2,R) blocks to reproduce

powers of y = z
1−z plus terms which are Casimir-regular16 in z. The expression we will

need is:(
y

1+y

)−r ∑
h=h0+`
`=0,1,...

Sr,sa (h)kr,s2h (1−z) = ya+

∞∑
k=0

(
Br,s
a,k(h0)yk−r+Bs,r

a,k(h0)yk−s
)
, (5.5)

Sr,sa (h) =
Γ(h−r)Γ(h−s)Γ(h−a−1)

Γ(−a−r)Γ(−a−s)Γ(2h−1)Γ(h+a+1)
, (5.6)

Br,s
a,k(h) =

πΓ(−a+h−1)csc(π(r−s))Γ(h+k−r)
Γ(k+1)Γ(a+h)(a−k+r)Γ(−a−r)Γ(−a−s)Γ(h−k+r−1)Γ(k−r+s+1)

. (5.7)

We also need to expand the SO(d, 2) blocks in terms of the SL(2,R) blocks:

g2r,2s

h,h̄
(z, z̄) =

∞∑
n=0

n∑
j=−n

Ar,sn,j(h, h̄)yh+nkr,s
2(h̄+j)

(z̄), (5.8)

where the blocks are normalized so Ar,s0,0(h, h̄) = 1. Here we will only work to leading order

in the SL(2,R) expansion.

5.2 Isolated operator exchange

Returning to the correlator 〈φφψψ〉, now that we can perform infinite sums of SL(2,R)

blocks in the s-channel to reproduce a pure power law in the t-channel, we can start to

solve for 〈ψψ[φφ]0,s〉. This is shown diagramatically in figure 1. We can also consider s↔ u

crossing, but it will give the same result up to factors of (−1)s. Since we are interested in

the case where s is even, this factor is irrelevant and we can ignore the u-channel.

16In the language of [3], these are terms with a vanishing double-discontinuity. See also [59] for an

alternative method to sum degenerate twist trajectories.
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At large h̄, the contribution from a single t-channel primary O in the φψ OPE to

cφφ[φφ]0,scψψ[φφ]0,s is [9, 10, 39]:

cφφ[φφ]0,s(h̄)cψψ[φφ]0,s(h̄) ∼ c2
ψφO

√
π23−2h̄Γ(2h̄O)Γ(2(hψ − hφ))h̄2hφ+2hψ−2hO− 3

2

Γ
(
hψ − hφ + h̄O

)2
Γ (hφ + hψ − hO)2

, (5.9)

so as long as hψ > hφ and unitarity is obeyed, the right hand side is positive and HS

ANEC is satisfied. In contrast, cφφ[ψψ]0,scψψ[ψψ]0,s is not sign definite. If we also considered

[φφ]0,s for odd spin, the u-channel could give large negative contributions which swamp

the positive t-channel contribution.

From the perspective of the lightcone bootstrap, if we restrict to isolated operator

exchange in the ψφ → φψ channel, it is not clear if this positivity continues to hold at

finite s. This is of interest for large N CFTs since a t-channel, exchange Witten diagram for

a field of spin J has a t-channel conformal block decomposition that includes the dual single-

trace operator, O∆,J , plus double-traces [φψ]n,`≤J . The double-trace operators, [φψ]n,`≤J ,

do not affect cφφ[φφ]0,scφφ[ψψ]0,s for s > J . Therefore, in this class of theories and for s > J ,

we need to understand how to write a single t-channel block as a sum of s-channel blocks.

The answer was recently found for d = 2 and d = 4 in [60] using the CFT inversion

formula [3]. For d = 4, we can extract OPE data from their 6j symbol:

cφφ[φφ]0,s(h̄)cψψ[φφ]0,s(h̄)

=
Γ(2(hO−1))csc(2π(hφ−hψ))Γ(−hφ−hψ+h̄O+2)2 sin2(π(hφ+hψ−hO))Γ(h̄)2Γ(2h̄O)

Γ(2h̄−1)Γ(2hφ−2hψ+1)Γ(−hφ+hψ+hO−1)2

×csc(π(hφ+hψ+h̄−h̄O))4F̃3

(
−hφ−hψ+h̄O+2,−hφ−hψ+h̄O+2,hφ−hψ+h̄O,−hφ+hψ+h̄O

2h̄O,−hφ−hψ−h̄+h̄O+3,−hφ−hψ+h̄+h̄O+2
;1

)

+
csc(2π(hψ−hφ))Γ(2hO−2)Γ(h̄)4Γ(2h̄O)Γ(2hφ+h̄−2)Γ(2hψ+h̄−2)sin2(π(hφ+hψ−hO))

Γ(2h̄−1)Γ(2hφ−2hψ+1)Γ(hφ−hψ+h̄O)Γ(−hφ+hψ+h̄O)Γ(−hφ+hψ+hO−1)2

×csc(π(hφ+hψ+h̄−h̄O))4F̃3

(
2hφ+h̄−2,2hψ+h̄−2, h̄, h̄

hφ+hψ+h̄−h̄O−1,hφ+hψ+h̄+h̄O−2,2h̄
;1

)

−
(
h̄O↔hO−1

)
. (5.10)

where F̃ is the regularized hypergeometric function.

The first term, and its (h̄O ↔ hO − 1) reflection, matches the asymptotic expansion

found via the lightcone bootstrap order by order in h̄−1. The second term and its reflection,

on the other hand, are exponentially suppressed at large h̄ in comparison and are only

visible through the inversion formula.17 Neither term individually is positive for all values

of the scaling dimensions and spin, but it can be checked extensively that the sum is

positive and obeys HS ANEC. This gives a simple example where truncating the large spin

expansion, but neglecting possible non-perturbative effects, can give an answer inconsistent

with HS ANEC, and therefore causality.

17We thank David Poland for discussions on this point. See [60–64] for examples of this phenomena.
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Figure 2. Crossing equation with double-twist dominance in t-channel.

5.3 Double-twist exchange

Since the exchange of an isolated conformal block is always consistent with HS ANEC, a

more non-trivial problem is when the leading contribution in the t-channel comes from an

infinite tower of operators with degenerate twist, as shown in figure 2. For a generic CFT,

this can happen in the ψφ OPE if ∆ψ + ∆φ < τOmin, where O is the isolated operator with

minimal twist in this OPE.18 In this case, we need to sum over the full [φψ]0,` tower in the

t-channel before matching to the [φφ]0,s data in the s-channel.

For a large N CFT, this can happen if there are no cubic couplings, 〈φψχ〉, where χ

is any single-trace operator. There are always s-channel, exchange Witten diagrams corre-

sponding to φφ→ T → ψψ, or graviton exchange in AdS, but this only affects 〈ψψ[φφ]n,s〉
for s ≤ 2. Boundedness in the Regge limit implies that at tree-level we should only have

single-trace operators with spin J ≤ 2, with similar bounds for quartic interactions [25, 65].

For large N CFTs, it is therefore possible that 〈ψψ[φφ]n,s>2〉 = 0 at tree level.

We will also assume there exists selection rules such that the [φψ]0,s tower is dominant

over multi-twist trajectories composed of φ. For example, if φ is even and ψ is odd under

a Z2 symmetry, then no φ multi-twist operators can appear in the φψ OPE. We will also

restrict ourselves to large N theories.

In the limit 1− z̄ � z � 1, the problem of determining cφφ[φφ]0,scψψ[φφ]0,s from crossing

is now:

(1−z̄)hφ+hψ
∑
s

cφφ[φφ]0,scψψ[φφ]0,sg
0,0
[φφ]0,s

(z, z̄) = z2hφ
∑
`

c2
φψ[φψ]0,`

g
2hψφ,2hφψ
[φψ]0,`

(1−z,1−z̄)

∣∣∣∣
z

2hφ

,

(5.11)

where on the right hand side we picked out the piece proportional to z2hφ to match the

[φφ]0,s double-twist states on the left hand side.

It is not important where we start the sum over ` since individual conformal blocks

always yield an answer consistent with HS ANEC, it is only the infinite sum over ` which

matters. Using (5.4) and (5.8) we first expand (5.11) to leading order in z � 1 − z̄ � 1

18Conserved spin-1 currents and the stress-tensor cannot appear in this OPE.
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Figure 3. Correction to [φψ] due to T exchange.

and then expand to second order in the anomalous dimension:19

= z2hφ
∑
`

c2
φψ[φψ]0,`

(1− z̄)hφ+hψ
Γ (2(hψ − hφ)) Γ (2(hφ + hψ + `))

Γ(2hψ + `)2

(γ0,`

2

)2
log2(1− z̄).

(5.12)

To calculate c2
φψ[φψ]0,`

and γ0,` we now need to solve the crossing problem:

φψ → [φψ]0,` → ψφ ⇐⇒ φφ→ O → ψψ (5.13)

where we assume isolated operators O determine the large ` asymptotics of [φψ]0,`. One

operator which always appears on the right hand side is the stress-tensor, T , as shown

in figure 3.

This method of iteratively solving crossing in the large spin limit works because the

double-twist operators [φφ] and [ψψ] in the φφ → ψψ channel give a small contribution

to the double-twist operators [φψ] in the dual channel, φψ → ψφ. Generically, the reverse

is true and the [φψ] operators lead to small corrections for cφφ[φφ]n,scψψ[φφ]n,s , as can be

seen explicitly in (5.9). Here we are considering a fine-tuned example where this small

contribution gives the leading order correction to cφφ[φφ]n,scψψ[φφ]n,s .

The answer for the anomalous dimensions and OPE coefficients of [φψ] in the lightcone

expansion were found in [39]:

c2
φψ[φψ]0,`

(h̄)γ[φψ]0,`(h̄) ∼ 2
∑
m≥0

cφφOcψψOV
(0)φψψφ
O,m (h̄) + u-channel, (5.14)

c2
φψ[φψ]0,`

(h̄) ∼
∑
m≥0

cφφOcψψOW
(0)φψψφ
O,m (h̄) + u-channel, (5.15)

where V and W are defined in [39], but we will not need their full form. Instead, we focus

on the m = 0 terms, which gives the leading order result at large h̄. Since we are also at

large N , we can use the generalized free field values for the OPE coefficients [66]:

c2
φψ[φψ]0,`

=
(2hφ)`(2hψ)`

`!(2hφ + 2hψ + `− 1)`
. (5.16)

19The 0th and 1st order terms are Casimir-regular and do not contribute to the large spin data in the

s-channel.
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Figure 4. A universal AdS loop diagram for theories with gravity. We label AdS fields by their

dual CFT operators.

Focusing on the corrections to the anomalous dimensions, we find for m = 0:

V
(0)φψψφ
O,0 (h̄) = −

Γ(2h̄O)Γ(hφ − hψ + h̄)Γ(−hφ + hψ + h̄)Γ(hφ + hψ + h̄− hO − 1)

Γ(2h̄− 1)Γ(h̄O)2Γ(2hφ − hO)Γ(2hψ − hO)Γ(−hφ − hψ + h̄+ hO + 1)
.

(5.17)

This is in fact the full answer when the operator O has twist exactly τO = 2hO = d−2.20

We can now plug in the generalized free field OPE coefficients and the m = 0 term for

the anomalous dimensions into (5.12) and perform the sum over `. The sum converges if

hO > hφ and yields the following correction to the OPE coefficients:

cφφ[φφ]0,s(h̄)cψψ[φφ]0,s(h̄)

∣∣∣∣
γ2

[φψ]0,`

≈ 2c2
φφOc

2
ψψO

Γ(2hφ)2Γ(2h̄O)2Γ(2hψ−2hφ)Γ(2hφ+2hψ)Γ(2hφ+2hψ−hO−1)2

Γ(h̄O)4Γ(hO+1)2Γ(2hφ+2hψ−1)2Γ(2hφ−hO)2Γ(2hψ−hO)2

6F5

(
1,1,2hφ,hφ+hψ+ 1

2 ,2hφ+2hψ−hO−1,2hφ+2hψ−hO−1

hφ+hψ− 1
2 ,2hψ,2hφ+2hψ−1,hO+1,hO+1

;1

)
∂2
aS

0,0
−hφ−hψ+a(h̄)

∣∣∣∣
a=0

.

(5.18)

If O = T , this gives the large spin, one-loop correction due to gravity for the OPE

coefficients cφφ[φφ]0,scψψ[φφ]0,s . This can also be found via the s-channel conformal block

decomposition of the Witten diagram in figure 4.

As an aside, we can also expand (5.11) to nth order in γn[φψ]0,`
, isolate the leading log

term in the t-channel, sum over `, and perform the s-channel conformal block decomposition

to find the OPE coefficients at large spin to all orders in 1/N . From (5.4) and (5.8), the

leading log term comes from expanding (1 − z̄)h in the anomalous dimension. Assuming

20For [φψ]n>0,` we have to include m > 0 terms as well.
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Figure 5. Ladder diagram for graviton exchange in AdS.

the anomalous dimension of [φψ]0,` is due to a single isolated operator, O, we find:

cφφ[φφ]0,scψψ[φφ]0,s

∣∣∣∣
γn

[φψ]0,`

≈ 2cnφφOc
n
ψψO

(−1)nΓ(2hψ−2hφ)Γ(2hφ)nΓ(2hψ)n−2Γ(2hO)nΓ(2hφ+2hψ−h̄O−1)n

n!Γ(h̄O+1)nΓ(hO)2nΓ(2hφ+2hψ−1)nΓ(2hφ−h̄O)nΓ(2hψ−h̄O)n

Γ(2hφ+2hψ)2n+2F2n+1

(
2hφ,hφ+hψ+ 1

2 ,
n1,n(2hφ+2hψ−h̄O−1)

hφ+hψ− 1
2 ,∆ψ,

n−1(2hφ+2hψ−1),n(1+h̄O)
;1

)
∂naS

0,0
−hφ−hψ+a(h̄)

∣∣∣∣
a=0

.

(5.19)

where we have introduced the shorthand nb for n copies of b in the hypergeometric function.

In AdS, this gives the leading, large spin contribution for a ladder diagram with n

horizontal rungs, each exchanging the same operator, e.g. figure 5 whenO = T . It should be

stressed these results only give finite answers when hO > hφ. In general, we have to be more

careful about order of limits when performing the sum over ` and taking the lightcone limit.

Returning to HS ANEC, we find the OPE coefficients from (5.18) are always positive if

hψ > hφ, which we have assumed from the beginning. This result also follows from the fact

the summand in (5.12) goes like `−4hφ−4hO−1 and converges if hO > hφ. Since individual

blocks gave answers consistent with HS ANEC, the positive, convergent sum should as well.

The result (5.19) can be negative for n = 3, that is at two-loop order, but it is subleading

in 1/N .

The case where hO = hφ needs to be handled differently and we have to modify our

initial assumptions. In the sum over the [φψ]0,` conformal blocks, there will be non-trivial

cancellations of divergences and their final contribution to cφφ[φφ]0,scψψ[φφ]0,s can in principle

be negative.

The crossing problem for determining the [φψ]0,` data is now:

φψ → [φψ]0,` → ψφ ⇐⇒ φφ→ φ→ ψψ. (5.20)

Therefore, we need 〈φφφ〉〈ψψφ〉 6= 0. As a reminder, the original crossing problem is:

φφ→ [φφ]0,s → ψψ ⇐⇒ φψ → O′ → ψφ. (5.21)
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If 〈ψψφ〉 6= 0, then O′ = ψ exchange will always give the leading, large s contribution

to the [φφ]0,s data and the effect of the [φψ]0,` family is subleading. Although in this

situation the [φψ]0,` operators do yield negative corrections to cψψ[φφ]0,scφφ[φφ]0,s , at large

spin the positive correction from ψ is always dominant. Therefore, HS ANEC is still obeyed

at asymptotically large spin. For the interested reader, we present the corrections from

[φψ]0,` exchange for this case in appendix D.

6 Conclusion

In this work, we have presented a variety of new results on the structure of unitary, local

CFTs through the study of higher spin, positivity conditions. We showed how studying

HS ANEC reveals new bounds and restrictions on CFT data which are not manifest in

other approaches. In particular, we have shown how HS ANEC puts lower bounds on the

dimensions of charged operators and constrains the behavior of CFTs close to either a

generalized or genuine free field description. The proof that ANEC saturation implies the

theory is free does not require HS ANEC, but the spin-4 positivity condition does allow us

to derive stronger lower bounds on 〈TTT 〉. Moreover, HS ANEC allows us to relate more

directly the observables 〈J (4)J (4)J (4)〉 and 〈TTT 〉. Finally, we have verified HS ANEC

holds in a large class of theories by using the analytic bootstrap.

There are clearly many more avenues that should be explored in this program. For one,

it would be useful to rederive some of the results presented here with different methods,

especially those that make more direct use of analyticity in spin [3, 27]. For example, it

would be nice to extend our results to the entire leading Regge trajectory, to continuous

spin, and also to find a more direct way to relate 〈TTT 〉 and 〈J (s)J (s)J (s)〉. Another open

question is understanding when HS ANEC saturation also implies the theory is free. To

answer these questions, it may help to study the OPE and commutator algebra for light-ray

operators [67–69] or the sum rules more directly [3, 5, 24, 27].

Some other possible generalizations would be to include more general representations of

the Lorentz group for the external states [70], include parity odd three-point structures [50],

or perform a more thorough analysis of OPE coefficients in large N theories [60]. It may

also be interesting to study the constraints of slightly-broken higher spin symmetries on

the correlation functions of HS ANEC operators, especially when considering higher-point

functions [23].

We have also shown that HS ANEC is not always obeyed in the asymptotic, lightcone

expansion. At finite spin, we need to include terms exponentially suppressed at large spin

which are only visible with the inversion formula. One effect we have not discussed however

is mixing between multi-twist families, which can lead to large corrections at finite spin. It

would be interesting to explore if the effects of mixing always yields results consistent with

HS ANEC or if there is a preferred way to include mixing effects such that HS ANEC is man-

ifestly obeyed. This should be testable using the twist Hamiltonian [39] or by studying large

N CFTs at one-loop and higher [60, 71, 72]. Understanding how and when to truncate the

large spin expansion is an important open question to see if the beautiful matching between

the analytic and numerical bootstrap demonstrated in [39, 73, 74] holds more broadly.
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Finally, the study of causality and positivity conditions in CFTs is also crucial to

understanding the AdS/CFT correspondence. It is well known that CFTs with N � 1

and no light higher spin, single-trace operators, i.e. ∆gap � 1, are dual to weakly-coupled

AdS theories of Einstein gravity plus matter [3, 37, 38, 49, 51, 65, 75–79]. What is less

studied is how the higher spin trajectory must behave such that causality is not violated

at finite coupling [38, 65, 80–82]. Since we studied the exact, leading trajectory of the

CFT, we can make contact with this program when ∆gap � 1. When the gap scale is

small, the CFT is weakly coupled and the AdS theory contains many light string states.

For this class of CFTs, our trajectory coincides with the leading single-trace trajectory for

a large range of spin. On the other hand, when ∆gap � 1, our trajectory consists solely of

double-trace operators and is distinct from the single-trace trajectory. The new results we

have presented here, when applied to large N , weakly coupled CFTs, can hopefully shed

light on the behavior of holographic CFTs at finite coupling.
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A Integrals of three-point functions

Our method for calculating (HS) ANEC matrix elements will follow the approach of [7]. To

simplify the calculations, we replace the polarization tensors for symmetric, traceless oper-

ators with null polarization vectors, λµ1...µs → zµ1 . . . zµs . Then the conformally invariant

tensor structures, Vi,jk and Hij are [48]:

Vi,jk =
x2
ijxik · zi − x2

ikxij · zi
x2
jk

, (A.1)

Hij = x2
ijzi · zj − 2xij · zixij · zj . (A.2)

For convenience, we define V1 = V1,23, plus cyclic permutations. The general three-

point function tensor structure is:

Q~n,~m =
V n1

1 V n2
2 V n3

3 Hm12
12 Hm13

13 Hm23
23

x2h̄123
12 x2h̄231

23 x2h̄312
31

, (A.3)

h̄ijk = h̄i + h̄j − h̄k, h̄i =
1

2
(∆i + `i), (A.4)

~n = (n1, n2, n3), ~m = (m23,m13,m12). (A.5)
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In d = 3, there is a degeneracy among the Vi,jk and Hij structures and we can drop any

three-point function proportional to H12H13H23.

In the collider limit, x2 · n̄→∞, this reduces to

Q~n,~m ≈
V̂ n1

1 V̂ n2
2 V̂ n3

3 Ĥm12
12 Ĥm13

13 Ĥm23
23

(−1)h2(x2 · n̄)h2(x12 · n)h123+n3(x23 · n)h231+n1(x2
13)h312+n2

, (A.6)

where the hatted tensor structures are [7]:

V̂1 = −
x13 · z1x12 · n− z1 · n

x2
13
2

x23 · n
, V̂2 =

x13 · n
x2

13

, (A.7)

V̂3 = −
x13 · z3x23 · n− z3 · n

x2
13
2

x12 · n
, Ĥ12 = −z1 · n, (A.8)

Ĥ13 = z1 · z3x
2
13 − 2x13 · z1x13 · z3, Ĥ23 = −z3 · n. (A.9)

To perform the light-ray integrals, we use:

∞∫
−∞

d(x2 · n)
1

(x12 · n)a(x23 · n)b
=

2πiΓ(a+ b− 1)

(x13 · n)a+b−1Γ(a)Γ(b)
. (A.10)

The general Fourier integrals we need to compute are:

IFT (q, n, a1, a2, b1, b2) =

∫
ddxe−iq·x

(x · z1)a1(x · z3)a3

(x · n)b1(x2)b2
. (A.11)

The case where a1 = a3 = 0 is simple to compute:

IFT (q, n, 0, 0, b1, b2) =
e
iπb1

2 (−n · q)−b1
(
π
d
2

+12−b1−2b2+d+1
)

(−q2)b1+b2− d2

Γ(b2)Γ
(
b1 + b2 − d

2 + 1
) , (A.12)

so the general answer is given recursively by:

IFT (q, n, a1, a2, b1, b2) = e
−iπ

2
(a1+a3)∂a1

t1
∂a3
t3
IFT (q + t1z1 + t3z3, n, 0, 0, b1, b2)

∣∣∣∣
ti→0

. (A.13)

For the calculations presented here, this recursive definition is sufficient.21 As a reminder,

we will always choose n · q = q2 = −1.

B Conservation and Ward identities

In this appendix we will include some details on conservation conditions and Ward identities

which we used in the body of the paper. To impose conservation we will use the embedding

space technology of [48]. The simplest three-point function to study is 〈V J (s)φ〉 for a

21See also [83] for efficient methods to calculate Fourier transforms of translationally invariant kernels

in CFTs.
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conserved current V and a scalar φ. We have two OPE coefficients, {c(V sφ)
000 , c

(V sφ)
001 } which

are related by:

c
(V sφ)
001 = −

c
(V sφ)
000 (−∆φ + s+ τs)

d+ ∆φ − τs − 2
. (B.1)

The next simplest case is 〈V J (s)V 〉 for a conserved vector. After imposing permutation

symmetry we have four OPE coefficients, {c(V sV )
000 , c

(V sV )
001 , c

(V sV )
101 , c

(V sV )
010 } and conservation

yields [48]:

c
(V sV )
101 =

sc
(V sV )
000 (−d+s+τs+1)−c(V sV )

001

(
τs(−d+4s+2)+2s(−2d+s+3)+τ2

s

)
(2d−τs−4)(2s+τs)

, (B.2)

c
(V sV )
010 =

c
(V sV )
000 (−d+s+τs+1)+c

(V sV )
001 (2d−τs−2)

2s+τs
. (B.3)

Conservation for 〈TJ (s)φ〉 implies the constraints:

c
(Tsφ)
001 =

2c
(Tsφ)
000 ((d−1)∆φ−d(s+τs)+τs)

(d−2)(d+∆φ−τs)
, (B.4)

c
(Tsφ)
002 =

c
(Tsφ)
000

(
(d−1)∆2

φ−2(d−1)∆φ(s+τs)+2(d−1)sτs+(d−2)(s−1)s+(d−1)τ2
s

)
(d−2)(d+∆φ−τs−2)(d+∆φ−τs)

.

(B.5)

The result for 〈TJ (s)T 〉 can be found in appendix A of [48], so we will not reproduce

it here. The next case to consider is 〈J (4)TJ (4)〉. The full solution to conservation was

worked out in [52], as well as the more general case 〈TO∆,`O∆,`〉. For 〈J (4)TJ (4)〉 we find:

c
(JTJ)
001 =

1

16
(2d(d+6)c

(JTJ)
002 −(d−2)(d+8)c

(JTJ)
101 +8c

(JTJ)
000 ), (B.6)

c
(JTJ)
011 =

1

12
(8dc

(JTJ)
002 +2d(d+4)c

(JTJ)
012 −3(d−2)c

(JTJ)
101 −(d−2)(d+6)c

(JTJ)
111 +6c

(JTJ)
010 ),

(B.7)

c
(JTJ)
021 =

1

8
(6dc

(JTJ)
012 +2d(d+2)c

(JTJ)
022 −2(d−2)c

(JTJ)
111 −(d−2)(d+4)c

(JTJ)
121 +4c

(JTJ)
020 ), (B.8)

c
(JTJ)
031 =

1

4

(
−
(
d2−4

)
c

(JTJ)
131 +4dc

(JTJ)
022 −(d−2)c

(JTJ)
121 +2c

(JTJ)
030

)
. (B.9)

As expected, 〈J (4)TJ (4)〉 is a function of 12 OPE coefficients. We can next solve the

Ward identities by computing:∫
Sd−2

d~n〈λ4 · J (4)|E (2)(n)|λ4 · J (4)〉 = 2dq0〈λ4 · J (4)|λ4 · J (4)〉. (B.10)

To keep things compact, we introduce a vector of OPE coefficients:

CJTJ =
(
C

(4)
J , c

(JTJ)
000 , c

(JTJ)
002 , c

(JTJ)
010 , c

(JTJ)
012 , c

(JTJ)
020 , c

(JTJ)
022 , c

(JTJ)
030 , c

(JTJ)
040 , c

(JTJ)
121 , c

(JTJ)
131

)
.

(B.11)
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Then the Ward identity implies:

c
(JTJ)
101 =C(JTJ) ·A101, c

(JTJ)
111 =C(JTJ) ·A111 (B.12)

A101 =



4π
1
2−

d
2 ((d+4)∆J−8(d+1))Γ( d2−1)Γ( d2 +4)

3(d−2)Γ( d−1
2 )

4(d+1)
d−2

2(d−6)
3

− (d+1)(d+6)
d−2

− (d−2)(d+6)
3

(d+1)(d+4)(d+6)
3(d−2)

1
3d(d+4)(d+6)

− (d+1)(d+2)(d+4)(d+6)
6(d−2)

(d−1)(d+2)(d+4)2(d+6)
6(d−2)

(d+4)(d+6)
6

−d(d+2)(d+4)(d+6)
6



, ~A111 =



2π
1
2−

d
2 ((d+6)∆J−8(d+2))Γ( d2−1)Γ( d2 +3)

(d−2)Γ( d−1
2 )

12(d+2)
(d−2)(d+6)

3(d−2)
d+6

−3(d+2)
d−2

−3d
2

(d+2)(d+4)
d−2

(d+4)(3d+2)
2

− (d+2)2(d+4)
2(d−2)

(d−1)(d+2)(d+4)(d+6)
2(d−2)

d+4

−d(d+2)(d+4)
4



.

(B.13)

We have choosen to keep the normalization of the spin-4 operators, C
(4)
J , arbitrary,

although it can be fixed to any convenient value. This approach for studying Ward identities

is also useful for non-conserved, spin-two operators and operators with even higher spin.

C Examples of spin-2 & 4 matrix elements

In this appendix, we list some matrix elements used in deriving the results of section 4.1.

Results for d = 3 can be found by setting all OPE coefficients cijk with i, j, k ≥ 1 to zero.

C.1 General dimensions

First, we will calculate E(s,j)
TT for arbitrary s, j, and d. We define the vector:

CTsT =
(
c

(TsT )
002 , c

(TsT )
011 , c

(TsT )
101

)
, (C.1)

and then the matrix elements are:

E(s,0)
TT = B

(4,0)
TT · CTsT

π
d+3

2 is2−d+s+τs(d+ 2s+ τs − 2)Γ
(
s+ τs

2 + 1
2

)
Γ
(
d− τs

2

)
Γ
(
s+ τs

2

)
Γ
(

1
2(d+ 2s+ τs)

) Q(d, s, τs)
−1, (C.2)

E(s,1)
TT = B

(4,1)
TT · CTsT

π
d+3

2 is2−d+s+τs(d+ 2s+ τs − 2)Γ
(
s+ τs

2 + 1
2

)
Γ
(
d− τs

2

)
Γ
(
s+ τs

2

)
Γ
(

1
2(d+ 2s+ τs)

) Q(d, s, τs)
−1, (C.3)

E(s,2)
TT = B

(4,2)
TT · CTsT

π
d+3

2 is2−d+s+τsΓ
(
s+ τs

2 + 1
2

)
Γ
(
d− τs

2

)
Γ
(
s+ τs

2

)
Γ
(

1
2(d+ 2s+ τs)

)Q(d, s, τs)
−1, (C.4)
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where Q(d, s, τs) is a polynomial:

Q(d,s,τs) = s(2s+τs−1)

(
(d−6)(d−1)τ3

s −2τ2
s (d(d(d−2s−9)+11s+14)−8s−2)

+τs
(
(d(5d−22)+16)s2−(d−2)d(6d−29)s+d((d−10)(d−3)d−12)+8(s−1)

)
+2(d−2)

(
(d−2)s3−2(d−3)ds2+(d((d−7)d+7)+2)s+(d−2)d(d+1)

))
.

(C.5)

The vectors B
(s,j)
TT are in general too large to include here, but B

(s,0)
TT , which is used for

deriving bounds on 〈TJ (s)φ〉, does take a simple form:

B
(s,0)
TT =

 4(d−1)τ2
s −8sτs+6d(−2d+s+4)τs+4(d−2)

(
2d2−2(s+1)d+(s−1)s

)
(d−6)τ2

s −((d−12)d+4(s+4))τs−2(d−2)(2d+(s−5)s)

−(d−2)(2d−τs−2)(d−s−τs)

 .
(C.6)

If we set s = 4, the vectors B
(4,1)
TT and B

(4,2)
TT simplify slightly:

B
(4,1)
TT =



4
(
2d5−(5τ4+28)d4+(τ4(4τ4+47)+114)d3−(τ4+2)(τ4(τ4+19)+68)d2

+(τ4(τ4(2τ4+19)+32)+8)d−τ2
4 (τ4+2)

)
−(d−6)(d−1)τ3

4 +2(d−1)((d−14)d+46)τ2
4−d(d((d−27)d+230)−648)τ4

−4(d−6)d((d−15)d+46)−160(3τ4+4)

−(d−2)(2d−τ4−2)
(
(d−1)τ2

4−2(d−6)dτ4+(d−6)(d−5)d−10(τ4+4)
)


, (C.7)

B
(4,2)
TT =



4
(
(d−1)2τ4

4−(d−1)(d(5d−22)+6)τ3
4 +(3d−2)((d−3)d(3d−17)+4)τ2

4

+d(72−(d−6)d(d(7d−53)+86))τ4+2d(d(d(d((d−18)d+113)−276)+136)+208)−16(5τ4+6)
)

(d−6)(d−1)τ4
4−(d−1)(3(d−14)d+140)τ3

4 +(d(d(d(3d−73)+614)−1748)+1216)τ2
4

−d(d(d((d−39)d+578)−3392)+7296)τ4−4d((d−20)d((d−15)d+82)+2728)+64(70τ4+89)

−(d−2)(2d−τ4−2)
(
d4−3(τ4+5)d3+(τ4(3τ4+31)+74)d2

−(τ4(τ4(τ4+17)+88)+160)d+τ4(τ4(τ4+14)+88)+224
)


.

(C.8)

Next, we will consider the matrices E(2,j)
TJ for j = 0, 1, 2. We will focus on the matrix

elements E(2,j)
TJ,00 since these give the strongest lower bounds on E(2,j)

TT E
(2,j)
JJ and are sufficient

to show that ANEC saturation implies there is a higher spin symmetry. To make positivity

manifest we will use E(4,j)
TT as a basis rather than the OPE coefficients:

E(2,i)
TJ =

2∑
j=0

CijE
(4,j)
TT . (C.9)
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We find:

C0
i =



2d−τ4−6dΓ(d)

(d−2)(d+2)(d+4)Γ(τ4+7)

(
4d7−4τ4d

6+(5τ4(τ4+10)+148)d5−2(τ4(τ4(τ4+15)+76)+148)d4

+(τ4(τ4(τ4(τ4+24)+186)+524)+264)d3−2(τ4(τ4(2τ4+43)+266)+488)d2

−2(τ4(τ4(τ4(τ4+18)+94)+84)−320)d−2τ4(τ4+2)(τ4+4)(τ4+6)

)
2d−τ4−4(d−2)d(τ4−d+2)

(
4d4+16d3+(τ4(τ4+12)+60)d2+(τ4+10)(τ4(τ4+9)+22)d+(τ4+4)(τ4+6)2

)
Γ(d)

(d+2)(d+4)Γ(τ4+7)

2d−τ4−5(d−3)d2(τ4−d+4)(τ4−d+2)
(
4d2+4(τ4+8)d+τ4(τ4+14)+56

)
Γ(d)

(d+2)(d+4)Γ(τ4+7)



,

(C.10)

C1
i =



2d−τ4−8(d−1)d(τ4−d+2)
(
2(τ4+10)d4−(τ4(τ4+12)+12)d3+(τ4+4)(τ4+6)(τ4+12)d2

−2(τ4(τ4+10)+40)d−2(τ4+4)(τ4+6)2
)

Γ(d)

(d−2)2(d+4)Γ(τ4+7)

2d−τ4−7d
(
4(τ4+10)d4−2(τ4−2)(τ4+14)d3+(τ4(5τ4−18)+32)d2

+2(τ4(τ4(τ4(τ4+19)+143)+462)+560)d+τ4(τ4+2)(τ4+4)(τ4+6))Γ(d)

(d+4)Γ(τ4+7)

2d−τ4−7(d−3)d2(τ4−d+2)
(
2(τ4+10)d2+(τ4(3τ4+34)+128)d+τ4(τ4(τ4+16)+76)+128

)
Γ(d)

(d−2)(d+4)Γ(τ4+7)


, (C.11)

C2
i =



2d−τ4−8(d−1)d(τ4−d+4)(τ4−d+2)
(
(τ4+8)(τ4+10)d2+2(τ4(τ4+18)+84)d−4(τ4(τ4+16)+68)

)
Γ(d)

3(d−2)2(d+4)Γ(τ4+7)

2d−τ4−6d(τ4−d+2)
(
(τ4+8)(τ4+10)d2+(τ4(τ4(τ4+19)+138)+408)d+τ4(τ4(3τ4+46)+224)+400

)
Γ(d)

3(d+4)Γ(τ4+7)

2d−τ4−7dΓ(d)

3(d−2)(d+4)Γ(τ4+7)

(
2(τ4(τ4(τ4+17)+102)+244)d3−8(τ4(τ4(τ4(τ4+16)+100)+280)+336)

−4(τ4(5τ4(τ4+12)+232)+440)d+(τ4(τ4(τ4(τ4+16)+112)+352)+256)d2+(τ4+8)(τ4+10)d4

)


.

(C.12)

If τ4 > d − 2 and d ≥ 3 then Cij > 0 and ANEC can not be saturated. If we set

τ4 = d−2 it is possible to saturate the spin-j ANEC bound by only setting E(4,j)
TT = 0. This

positivity is not obvious in the expressions given above, but if we set d = 4 they simplify to:

C(2,0)
TJ =


9 2−τ4−3(τ4(τ4(τ4(3τ4+44)+396)+1120)+8064)

Γ(τ4+7)
2−τ4 (τ4−2)(τ4(τ4(5τ4+108)+724)+4032)

Γ(τ4+7)
2−τ4 (τ4−2)τ4(τ4(τ4+30)+248)

Γ(τ4+7)

 , (C.13)

C(2,1)
TJ =


9 2−τ4−5(τ4−2)(τ4(τ4(7τ4+124)+900)+4176)

Γ(τ4+7)
2−τ4−3(3τ4(τ4(τ4(9τ4+164)+1140)+2944)+56448)

Γ(τ4+7)
3 2−τ4−2(τ4−2)(τ4(τ4(τ4+28)+244)+960)

Γ(τ4+7)

 , (C.14)

C(2,2)
TJ =


3 2−τ4−4(τ4−2)τ4(τ4+10)(5τ4+42)

Γ(τ4+7)
2−τ4−2(τ4−2)(τ4(τ4(7τ4+138)+1064)+3312)

Γ(τ4+7)
2−τ4−1(τ4(τ4(τ4(τ4+22)+308)+2168)+5760)

Γ(τ4+7)

 , (C.15)

and the desired properties hold.
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C.2 d = 3 and Ising-like spectrum

In this section, we will give spin-4 HS ANEC matrix elements for d = 3 CFTs when

τ4 = 1.02, which are relevant to section 4.2.

The off-diagonal spin-4 matrix elements E(4,j)
TJ are:

E(4,0)
TJ =



0.00399C
(4)
J −9.61E(2,0)

JJ,00+316E(2,0)
JJ,11−3860E(2,0)

JJ,22−26.6E(2,1)
JJ,00+269E(2,1)

JJ,11−3440E(2,1)
JJ,22−7470E(2,1)

JJ,33

0.00347C
(4)
J −23.6E(2,0)

JJ,00+254E(2,0)
JJ,11−1970E(2,0)

JJ,22−23.6E(2,1)
JJ,00+162E(2,1)

JJ,11−1760E(2,1)
JJ,22−2800E(2,1)

JJ,33

0.000315C
(4)
J −2.10E(2,0)

JJ,00−166E(2,0)
JJ,11+593E(2,0)

JJ,22−2.10E(2,1)
JJ,00−190E(2,1)

JJ,11+224E(2,1)
JJ,22+287E(2,1)

JJ,33

−0.0000478C
(4)
J +0.102E(2,0)

JJ,00−301E(2,0)
JJ,11+1830E(2,0)

JJ,22+0.102E(2,1)
JJ,00−303E(2,1)

JJ,11+1230E(2,1)
JJ,22+1800E(2,1)

JJ,33

−0.0000863C
(4)
J +0.198E(2,0)

JJ,00−340E(2,0)
JJ,11+2350E(2,0)

JJ,22+0.198E(2,1)
JJ,00−333E(2,1)

JJ,11+1670E(2,1)
JJ,22+2470E(2,1)

JJ,33


,

(C.16)

E(4,1)
TJ =



−0.00148C
(4)
J +11.8E(2,0)

JJ,00+25.5E(2,0)
JJ,11−3410E(2,0)

JJ,22+28.7E(2,1)
JJ,00+53.8E(2,1)

JJ,11−3170E(2,1)
JJ,22−7300E(2,1)

JJ,33

−0.00325C
(4)
J +23.6E(2,0)

JJ,00−288E(2,0)
JJ,11−984E(2,0)

JJ,22+23.7E(2,1)
JJ,00−195E(2,1)

JJ,11−1270E(2,1)
JJ,22−2430E(2,1)

JJ,33

−0.000268C
(4)
J +2.25E(2,0)

JJ,00−21.3E(2,0)
JJ,11−753E(2,0)

JJ,22+2.25E(2,1)
JJ,00+11.8E(2,1)

JJ,11−816E(2,1)
JJ,22−1200E(2,1)

JJ,33

0.0000194C
(4)
J +0.0727E(2,0)

JJ,00+53.9E(2,0)
JJ,11−677E(2,0)

JJ,22+0.0726E(2,1)
JJ,00+67.5E(2,1)

JJ,11−650E(2,1)
JJ,22−837E(2,1)

JJ,33


.

(C.17)

One can check that if we try to set E(4,0)
TJ = E(4,1)

TJ = 0, then we are forced to set 〈TJ (4)J (4)〉 =

0. This implies, for this class of theories, we can not remove all the lower bounds on E(4,j)
JJ

while obeying the Ward identity.

Since 〈J (4)|E (4)|J (4)〉 is not constrained by any Ward identities or conservation condi-

tions, its full form is generally complex. To complete our discussion of 3d CFTs though,

we will present bounds for d = 3, τ4 = 1.02 and the polarization tensors λ
(4,0)
0 and λ

(4,1)
0 ,

i.e. those which do not involve any q vectors:

0≤E (4,0)
JJ,00 = 0.0000113c

(JJJ)
000 −0.0000192c

(JJJ)
001 +0.0000146c

(JJJ)
002 −0.0000163c

(JJJ)
003

+0.0000246c
(JJJ)
004 +0.0000103c

(JJJ)
011 −0.0000150c

(JJJ)
012 +0.0000160c

(JJJ)
013

+5.31×10−6c
(JJJ)
022 , (C.18)

0≤E (4,1)
JJ,00 =−8.42×10−6c

(JJJ)
000 +0.0000109c

(JJJ)
001 −2.06×10−6c

(JJJ)
002 −5.04×10−6c

(JJJ)
003

+0.0000143c
(JJJ)
004 −4.38×10−6c

(JJJ)
011 +1.48×10−7c

(JJJ)
012 +7.60×10−6c

(JJJ)
013

+1.42×10−6c
(JJJ)
022 . (C.19)

C.3 Spin-4 ANEC saturation

Here, we will give an example of how saturating the ANEC bound for T implies ANEC is

also saturated for J (4). To be specific, we consider d = 4 and consider saturation of the

spin-0 bound. First, we see from (C.13) that setting E(2,0)
TT = 0 implies τ4 = 2 and E(4,0)

TT = 0.
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Saturation of HS ANEC then implies E(4,0)
TJ = 0, which in terms of the underlying OPE

coefficients gives:

c
(JTJ)
022 =

23

192
c

(JTJ)
000 − 1

8
c

(JTJ)
002 − 7

48
c

(JTJ)
010 +

1

3
c

(JTJ)
012 +

1

8
c

(JTJ)
020 −

6C
(4)
J

π2
, (C.20)

c
(JTJ)
030 =

25

96
c

(JTJ)
000 − 11

24
c

(JTJ)
010 +

3

4
c

(JTJ)
020 −

4C
(4)
J

π2
, (C.21)

c
(JTJ)
040 =

13

192
c

(JTJ)
000 − 5

48
c

(JTJ)
010 +

1

8
c

(JTJ)
020 −

2C
(4)
J

π2
, (C.22)

c
(JTJ)
121 =

67

480
c

(JTJ)
000 − 7

20
c

(JTJ)
002 − 1

6
c

(JTJ)
010 +

7

6
c

(JTJ)
012 +

1

4
c

(JTJ)
020 −

12C
(4)
J

π
, (C.23)

c
(JTJ)
131 =

169c
(JTJ)
000

1440
− 1

15
c

(JTJ)
002 − 23

144
c

(JTJ)
010 +

5

36
c

(JTJ)
012 +

1

6
c

(JTJ)
020 −

4C
(4)
J

π
. (C.24)

We can then take this answer and calculate the diagonal matrix elements E(2,j)
JJ,aa for j =

0, 1, 2 and a = 0, 1, . . . , 5− j. This gives 12 positivity conditions on 6 variables, the 5 OPE

coefficients and the normalization, C
(4)
J . The positivity requirements completely fix 4 of

the OPE coefficients:

c
(JTJ)
002 =

3

16
c

(JTJ)
000 −

9C
(4)
J

7π
, c

(JTJ)
010 =

1

8
c

(JTJ)
000 −

30C
(4)
J

7π
, (C.25)

c
(JTJ)
012 =

3C
(4)
J

2π
− 3

32
c

(JTJ)
000 , c

(JTJ)
020 = −3

8
c

(JTJ)
000 . (C.26)

The final answer for the matrix elements has the expected structure:

E(2,0)
JJ = 0, (C.27)

E(2,1)
JJ,ij ∝ δi0δj0π

3(7πc
(JTJ)
000 + 144C

(4)
J ), (C.28)

E(2,2)
JJ,ij ∝ δi0δj0π

3(16C
(4)
J − 7πc

(JTJ)
000 ). (C.29)

This is also a nice consistency check on the formulas presented here. For E(2,1)
JJ and

E(2,2)
JJ , all but the first, diagonal entry must vanish by conservation. Similar results hold

for all d and if we saturate the other 〈TTT 〉 collider bounds.

D Sums of double-twist operators

In this appendix we give more details on how the [φψ]0,` double-twist operators affect

cφφ[φφ]0,scψψ[φφ]0,s if φ exchange gives the dominant contribution to the [φψ]0,` anomalous

dimensions.
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The first issue is the sum in (5.12) diverges logarithmically. To obtain a finite result,

we replace the exchanged φ with a generic O and then expand 1
4c

2
φψ[φψ]0,`

γ2
[φψ]0,`

in terms

of the functions S
hψφ,hφψ
a (h̄) by matching the asymptotic expansions:

1

4
c2
φψ[φψ]0,`

(h̄)γ[φψ]0,`(h̄)2∼

(
cφφOcψψOV

(0)φψψφ
O,0 (h̄)

)2

S
hψφ,hφψ
−hφ−hψ(h̄)

∼
∑

a=0,1,...

baS
hψφ,hφψ
2hO−hφ−hψ+a(h̄), (D.1)

b0 =
Γ(2hφ)Γ(2hψ)Γ(2h̄O)2Γ(2(hφ−hO))Γ(2(hψ−hO))

Γ(h̄O)4Γ(2hφ−hO)2Γ(2hψ−hO)2
, (D.2)

b1 =
2h2
OΓ(2hφ)Γ(2hψ)Γ(2h̄O)2(hφ+hψ−hO−1)Γ(2hφ−2hO−1)Γ(2hψ−2hO−1)

Γ(h̄O)4Γ(2hφ−hO)2Γ(2hψ−hO)2
, (D.3)

b2 = Γ(2hφ−2hO−2)Γ(2hψ−2hO−2)(−hφ−hψ+hO+1)(−2hφ−2hψ+2hO+3)

×
h2
O(hO+1)2Γ(2hφ)Γ(2hψ)Γ(2h̄O)2

Γ(h̄O)4Γ(2hφ−hO)2Γ(2hψ−hO)2
. (D.4)

In the limit hO → hφ, the bi’s diverge while the S
hψφ,hφψ
2hO−hφ−hψ+a vanish. If we set hO = hφ+ ε

2 ,

first perform the sum over `, and then let ε→ 0 we find [39]:

lim
ε→0

∑
h=h0+`
`=0,1,...

Γ(−ε)Sr,−r−r+ε(h)kr,−r2h (1− z)

∣∣∣∣
z0

=
1

h0 − r
+H2r−1 −Hh0−r −Hh0+r−2, (D.5)

where Ha is the harmonic number. Keeping only the b0 term in (D.1), expanding (5.11) to

leading order in 1− z̄, and using (D.5) to perform the sum, we find:

cφφ[φφ]0,s(h̄)cψψ[φφ]0,s(h̄) ⊃
43hφ−1Γ

(
hφ + 1

2

)3
Γ(2hψ)Γ(2hψ − 2hφ)

π3/2Γ(hφ)3Γ(2hψ − hφ)2
∂2
aS

0,0
−hφ−hψ+a(h̄)

∣∣∣∣
a=0

×
(
H−2hφ+2hψ−1 −H2hφ+`0 −H2hψ+`0−2 +

1

2hφ + `0

)
, (D.6)

where the sum starts at `0.22 Due to the harmonic numbers, this correction is generically

negative, especially as we increase `0. For example, at large `0 we have:

cφφ[φφ]0,s(h̄)cφφ[φφ]0,s(h̄)⊃−log(`0)c2
φφφc

2
ψψφ

26hφ−1Γ
(
hφ+ 1

2

)3
Γ(2hψ)Γ(2hψ−2hφ)

π3/2Γ(hφ)3Γ(2hψ−hφ)2
∂2
aS

0,0
a (h̄)

∣∣∣∣
a=0

,

(D.7)

which is manifestly negative. Of course, as we increase `0 we need to specify information

about the double-twist operators with spin ` < `0.

22We are ignoring the effect of having to reparameterize the sum in generic CFTs [39], which gives a

subleading effect if we take `0 large and/or assume γ[φψ]0,` � 1.
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