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1 Introduction

Precise measurements of the properties of the Higgs boson, discovered by the ATLAS

and CMS collaborations at the CERN Large Hadron Collider [1, 2] in 2012, are not only

crucial for testing the Standard Model (SM) but also allow to constrain physics beyond the

Standard Model. Supersymmetric extensions of the SM are theoretically well motivated,

in particular the Minimial Supersymmetric Standard Model (MSSM) with quite specific

predictions for Higgs bosons.

In the MSSM, the Higgs sector consists of two Higgs doublets, with vacuum expectation

values (vevs) v1 and v2 which can be chosen real and non-negative without loss of generality.

After electroweak symmetry breaking, the two Higgs doublets accommodate five physical

Higgs states: the light and heavy CP-even h and H bosons, the CP-odd A boson, and the

pair H± of charged Higgs bosons. At the tree level, all Higgs boson masses are determined

by two parameters, conventionally chosen to be tan β = v2/v1 and the mass of the A boson,

MA. These tree-level relations, however, are affected by large higher-order corrections

resulting from the quantum effects of the MSSM.

Since no direct evidence for SUSY particles has been found so far, the range of MSSM

parameters can only be constrained indirectly. In addition to the classic set of precision

observables (Z and W boson masses, effective electroweak mixing angle, . . . ), the mass of

the Higgs boson, determined by ATLAS and CMS [3] to be 125.09 ± 0.24 GeV, can serve

as an additional powerful precision observable. When interpreted as the mass of a light

Higgs boson within the MSSM spectrum, it is very sensitive especially to the parameters

of the top-squark sector and can therefore be used to assess the SUSY scale. In the light of

the high level of precision reached by the experiments, an accurate and reliable theoretical

prediction is essential.

Therefore, a substantial amount of work has been dedicated to reduce the uncertainty of

the theoretical prediction. Full one-loop corrections have been calculated diagrammatically

in [4–7], dominant two-loop corrections in [8–31] and partial three-loop corrections in [32–

34]. Besides fixed-order calculations, also effective field theory (EFT) methods were applied

(see [35–40]) as an alternative strategy.

The advantage of EFT methods is a resummation of logarithms which become large if

the relevant scales are widely separated, like in the case of a high SUSY scale MSUSY. Fixed-

order calculations become unreliable for such wide scale separations, since the appearance

of large logarithms can spoil the perturbative expansion. Fixed-order calculations, on

the other hand, capture all terms with inverse powers of MSUSY. Though suppressed in

case of a high scale, they can become relevant for lower MSUSY and thus are needed for

accurate predictions as well. These terms are missed in EFT calculations, at least when

no higher-dimensional operators are taken into account (see [40] for a study including

higher-dimensional operators).

In order to obtain results as accurate as possible for all SUSY scales, hybrid methods

have been developed [41–46]. In [41, 42, 45] the strategy has been pursued to incorporate

an EFT calculation on top of a fixed-order calculation. Additional subtraction terms are

introduced to avoid double counting of terms contained in both the EFT and the fixed-
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order calculation. The method has been implemented in the publicly available computer

code FeynHiggs [7, 13, 47–49]. So far, the EFT calculation in that approach was restricted

to scenarios in which all non-SM particles share a common mass scale (with the only

exception of possibly light electroweakinos and/or a light gluino), leaving the SM as the low-

energy EFT.

In this paper, we report on an improvement of this method by introducing a Two-Higgs-

Doublet Model (THDM) as the effective theory below the SUSY scale, in replacement of

the SM. This setup allows to cover the possibility of light non-standard Higgs bosons in

the EFT calculation. Also scenarios with additional light electroweakinos are considered,

which are especially interesting in view of the increasingly tight constraints on colored

SUSY particles from the LHC. We give a detailed description of the steps needed to

combine the THDM EFT calculation with the fixed-order calculation and illustrate the

impact of the new hybrid version on the Higgs boson masses by numerical comparisons with

previous versions of FeynHiggs. An earlier pure EFT study [38] with an effective THDM

found potentially large effects originating from the resummation of logarithms of the SUSY

scale over MA, and observed significant differences with respect to FeynHiggs in specific

parameter regions. We will clarify this situation by a detailed comparison and explain the

current differences between [38] and our new THDM-improved hybrid calculation.

The outline of this paper is as follows: in section 2, we detail on the EFT calculation.

Subsequently, we describe the consistent combination with the fixed-order part in section 3.

In section 4, we compare our approach to that of other publicly available codes. This is

followed by a numerical analysis in section 5, with conclusions in section 6. The sections

A to E of the appendix provide additional technical information.

2 EFT calculation of Higgs-boson masses

If the SUSY particles are significantly heavier than all SM particles, they can be integrated

out. In the simplest case when all non-standard particles occur at a common mass scale,

the SUSY scale MSUSY, the remaining EFT is the SM, with the Higgs self-coupling deter-

mined via matching conditions at MSUSY. This self-coupling and all the other remaining

SM couplings are evolved from the SUSY scale down to the electroweak scale by means of

renormalization group equations (RGEs); fixing the remaining SM couplings at the elec-

troweak scale by matching to physical observables determines the input quantitites from

which the SM Higgs-boson mass can be calculated. This approach has the advantage that

large logarithmic contributions are resummed. On the other hand, terms suppressed by

MSUSY are missed unless higher-dimensional operators are included in the EFT Lagrangian.

The assumption that all non-standard particles have a common mass scale is quite

restrictive. For a better flexibility and wider applicabilty, more refined EFTs have to be

considered. In our approach, we allow for several independent mass scales where each

of them corresponds to the appearance of distinguished new phenomena. To be specific,

we take into account five mass scales in our EFT calculation: the SM scale Mt, the non-

standard Higgs-boson scale MA, the electroweakino scale Mχ, the gluino mass scale Mg̃ and

the SUSY scale MSUSY. We define the SUSY scale to be the mass scale of sfermions, which
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Figure 1. EFT towers covered in this work (gluino threshold not shown).

we assume to be approximately mass degenerate. Below MSUSY, sleptons and squarks are

removed from the EFT; below Mg̃, we remove the gluino. The electroweakino scale Mχ is

defined by

Mχ ∼M1,M2, µ, (2.1)

where M1,2 are the soft-breaking electroweakino mass parameters and µ is the Higgsino

mass parameter. Below Mχ, we remove the electroweakinos from the EFT. MA marks the

scale at which the heavy Higgs bosons are integrated out.

We assume MA and Mχ to be smaller or equal to MSUSY. Therefore, we have a set

of eight different EFTs: the SM, the SM plus electroweakinos, the THDM and the THDM

plus electroweakinos (plus the same with added gluino). This diversity leads to various

different hierarchies, as illustrated in figure 1.

In our EFT calculation, we take into account full one-loop threshold corrections and

full two-loop RGEs. This implies a full LL and NLL resummation. Additionally, we include

O(αsαt) matching conditions for the Higgs self-couplings. O(α2
t ) threshold corrections for

matching the THDM to the MSSM are currently not known. Moreover, three-loop RGEs

for the THDM are not yet available. Since the SM three-loop running is negligible, one

may believe that this also holds for the three-loop THDM running [38]. Nevertheless, the

resummation of NNLL contributions is incomplete.

2.1 Relevant EFTs

Here we give a brief overview of the various EFTs appearing in our calculation and specify

our notation. We will not describe EFTs with gluino, since the presence of the gluino does

not induce any effective couplings that are relevant at the order of the calculation presented

in this paper. It, however, does alter the RGEs (see [42]).

– 4 –
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The Two-Higgs-Doublet Model. Decoupling all sfermions, gauginos and Higgsinos

from the full MSSM leads to a THDM as the remaining effective theory below the SUSY

scale. The THDM Higgs potential can be written as follows,

VTHDM(Φ1,Φ2) = m2
1 Φ†1Φ1+m2

2 Φ†2Φ2−m2
12(Φ†1Φ2 + Φ†2Φ1)+

1

2
λ1(Φ†1Φ1)2+

1

2
λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2
λ5

(
(Φ†1Φ2)2 + (Φ†2Φ1)2

)
+ λ6(Φ†1Φ1)

(
(Φ†1Φ2) + (Φ†2Φ1)

)
+ λ7(Φ†2Φ2)

(
(Φ†1Φ2) + (Φ†2Φ1)

)
,

(2.2)

where Φ1,2 denote the two doublets of scalar fields. Since we consider only the real MSSM,

all the coefficients can be chosen as real parameters. At the minimum of the potential each

Higgs field Φi acquires a vacuum expectation value (vev),

〈Φi〉 =

(
0

vi

)
, i = 1, 2. (2.3)

Decomposing the Higgs fields into components according to

Φi =

(
φ+
i

vi + 1√
2
(φi + iχi)

)
, (2.4)

introducing the quantities

v =
√
v2

1 + v2
2, tβ ≡ tanβ =

v2

v1
, (2.5)

and expanding the potential around the minimum yields the mass matrix of the CP-even

neutral Higgs bosons,

M2
φφ =

(
m2

1 −m2
12

−m2
12 m2

2

)
+ v2

(
a11 a12

a12 a22

)
, (2.6)

with the entries

a11 = 3λ1c
2
β + (λ3 + λ4 + λ5)s2

β + 6λ6sβcβ , (2.7)

a12 = 2(λ3 + λ4 + λ5)sβcβ + 6λ6c
2
β + 6λ7s

2
β , (2.8)

a22 = 3λ2s
2
β + (λ3 + λ4 + λ5)c2

β + 6λ7sβcβ , (2.9)

where the abbreviations

sγ ≡ sin γ, cγ ≡ cos γ, tγ ≡ tan γ (2.10)

for a generic angle γ have been introduced.

With the minimum conditions for the Higgs potential, m2
1 and m2

2 can be eliminated;

the following relations for the masses of the CP-odd neutral A boson and of the charged

H± bosons are obtained,

m2
A =

m2
12

sβcβ
− v2(2λ5 + λ6/tβ + λ7tβ), (2.11)

mH± = m2
A + v2(λ5 − λ4), (2.12)
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and the CP-even mass matrix M2
φφ can be cast into the following form,

M2
φφ = m2

A

(
s2
β −sβcβ

−sβcβ c2
β

)
+ 2v2

(
b11 b12

b12 b22

)
(2.13)

with

b11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (2.14)

b12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (2.15)

b22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β . (2.16)

The tree-level mass eigenstates h and H are obtained by a rotation,(
H

h

)
=

(
cα sα
−sα cα

)(
φ1

φ2

)
, (2.17)

with the angle α determined by

s2α =
2M2

φ1φ2√(
M2

φ1φ1
−M2

φ2φ2

)2
+ 4

(
M2

φ1φ2

)2
, −π

2
< α <

π

2
. (2.18)

Often, it is useful to work in the Higgs basis instead of the h,H mass eigenstate basis [50].

It is obtained by rotating the original doublets Φ1,2 by the angle β,(
H1

H2

)
=

(
cβ sβ
−sβ cβ

)(
Φ1

Φ2

)
. (2.19)

In this basis, only H1 acquires a vev,

〈H1〉 =

(
0

v

)
with v ≡

√
v2

1 + v2
2, (2.20)

and the mass matrix (2.13) is transformed into

M2
HH = m2

A

(
0 0

0 1

)
+ 2v2

(
c11 c12

c12 c22

)
(2.21)

with

c11 = λ1c
4
β + λ2s

4
β + 2(λ3 + λ4 + λ5)s2

βc
2
β + 4λ6sβc

3
β + 4λ7s

3
βcβ , (2.22)

c12 = −λ1sβc
3
β + λ2s

3
βcβ + (λ3 + λ4 + λ5)sβcβc2β − λ6c

2
β(3s2

β − c2
β)

+ λ7s
2
β(3c2

β − s2
β), (2.23)

c22 = (λ1 + λ2)s2
βc

2
β − 2(λ3 + λ4)s2

βc
2
β + λ5(s4

β + c4
β)− (λ6 − λ7)s2βc2β . (2.24)

To get from the Higgs basis to the mass eigenstate basis, we have to rotate by the angle

α− β.
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We also need the Yukawa part of the effective THDM Lagrangian, which is given by

LYuk(Φ1,Φ2) = −
[
ht t̄R(−iΦT

2 σ2)QL + h′t t̄R(−iΦT
1 σ2)QL + h.c.

]
, (2.25)

with the third-generation quark doublet QL and the Pauli matrix σ2. ht and h′t are the

effective top Yukawa couplings. All other Yukawa couplings are neglected in the EFT

calculation; they are, however, fully captured through the diagrammatic calculation at the

one-loop level, in case of the bottom Yukawa coupling also at the two-loop level.

As already noted in [38], the effective THDM with the Yukawa texture as given in

eq. (2.25) is not a type II model where only Φ2 couples to up-type quarks. Although the

tree-level Yukawa sector of the MSSM is that of a THDM of type II, loop corrections induce

also a coupling of Φ1 to the top-quark, which enters through the matching procedure in

the effective THDM. Differently from [38], we take this coupling fully into account in all

the affected RGEs and threshold corrections. Hence, we have to deal with 12 coupling

constants, consisting of three gauge couplings, seven Higgs self-couplings, and two Yukawa

couplings. We derived the RGEs for the considered THDM using the Mathematica package

SARAH [51]. The corresponding expressions are available from the authors upon request.

The Two Higgs-Doublet Model with electroweakinos. If in addition to the non-

SM Higgs bosons also light electroweak gauginos and Higgsinos (EWinos) are present, the

effective Lagrangian below the scale MSUSY is the one of the THDM described above,

extended by extra mass and interaction terms

L =LTHDM −
1

2
MχW̃W̃ − 1

2
MχB̃B̃ −Mχ (iH̃Tuσ2)H̃d

− 1√
2
H†u

(
ĝ2uuσaW̃

a + ĝ1uuB̃
)
H̃u −

1√
2
H†d

(
ĝ2ddσaW̃

a − ĝ1ddB̃
)
H̃d

− 1√
2

(iHT
d σ2)

(
ĝ2duσaW̃

a + ĝ1duB̃
)
H̃u −

1√
2

(−iHT
u σ2)

(
ĝ2udσaW̃

a − ĝ1udB̃
)
H̃d

+ h.c. (2.26)

for the Bino field B̃, the Wino fields W̃ a, and the Higgsino fields H̃u,d. The associated

Higgs fields Hu,d are related to the doublets Φ1,2 in (2.4) by

Hu = Φ2, (2.27)

Hd = iσ2Φ∗1. (2.28)

The coupling constants ĝ1uu,1dd,1ud,1du,... are effective Higgs-Higgsino-Gaugino couplings.

The numeral in the subscript refers to the attached gauge symmetry (i.e. U(1) or SU(2)),

the first letter to the involved Higgs doublet, and the second letter to the involved Hig-

gsino. Altogether, we now have 20 effective couplings in the game. Also the RGEs of

the THDM+EWinos have been derived using SARAH. They are available from the authors

upon request.
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The Standard Model with electroweakinos. If we decouple all non-standard Higgs

bosons, but keep light EWinos in the EFT, the effective Lagrangian simplifies to

L =LSM −
1

2
MχW̃W̃ − 1

2
MχB̃B̃ −Mχ (iH̃Tuσ2)H̃d −

1√
2

Φ†SM

(
g̃2uσaW̃

a + g̃1uB̃
)
H̃u

− 1√
2

(−iΦT
SMσ2)

(
g̃2dσaW̃

a − g̃1dB̃
)
H̃d + h.c. (2.29)

with ΦSM being the SM-like Higgs doublet,

ΦSM =

(
φ+

v + 1√
2
(φ+ iχ)

)
. (2.30)

The scalar potential in the SM part of the Lagrangian is given by

VSM(ΦSM) =
λ

2

[
(Φ†SMΦSM)− v2

]2
. (2.31)

g̃1u,1d,2u,2d are the effective Higgs-Higgsino-Gaugino couplings of the SM+EWinos, in ob-

vious notation. The number of couplings is reduced to 8. Two-loop RGEs can be found

in [35]. Below the electroweakino scale the effective model is eventually the pure SM.

2.2 Matching the EFTs

After having specified the various EFTs, we describe how they are matched to each other.

To derive the matching conditions, we have to compare physical amplitudes with external

light particles computed in the EFT valid below the matching scale and in the full model

(or the more complete EFT) valid above the matching scale. The difference between the

physical amplitudes has to be absorbed by adapting the effective couplings in the particular

EFT that is to be matched.

Terms contributing to the matching conditions arise from different vertex corrections

and from different normalizations of the external fields. The part coming from the vertex

corrections is obtained by calculating the vertex functions in the high-energy and the low-

energy theory. The difference can then directly be absorbed into the effective coupling

of the low-energy theory. At least at the one-loop level, at which we mostly work, this

procedure is straightforward. Therefore, we will not go into more details.

If all external fields are non-mixed mass eigenstates, the external leg corrections are just

given the corresponding LSZ factors, the wave-function renormalization. The difference

between the LSZ factors in the high-energy and the low-energy theory has again to be

absorbed by the low-energy effective coupling.

In case of mixing in the external fields, a more careful discussion is required. Even

when the external fields are diagonal at the tree level, loop contributions to the two-point

vertices induce mixing between the mass eigenstates at higher orders. This transition has

to be included as further external leg corrections, in addition to the LSZ factors. In the

MSSM and the THDM, the mixing between the CP-even Higgs bosons h,H is the important

issue. It is ascribed to a non-diagonal self-energy ΣhH .

– 8 –
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Conveniently, all external leg corrections can be written in form of a single matrix, the

Z-matrix (see [7] for more details). It gives the relation between the external, asymptotical-

free physical states and the tree-level mass eigenstates used for the calculation of the vertex

correction. At the one-loop level, the MSSM relation reads

(
hphys

Hphys

)
=

1 + 1
2 Σ̂′hh(m2

h)
Σ̂hH(m2

h)

m2
h−m

2
H

Σ̂hH(m2
H)

m2
H−m

2
h

1 + 1
2 Σ̂′HH(m2

H)

( ĥ
Ĥ

)
, (2.32)

where we used the symbol ̂ to mark MSSM quantities. Σhh and ΣHH are the diagonal

self-energies entering the LSZ factors. The prime denotes the derivative with respect to

the external momentum. The corresponding relation in the THDM is written as follows,

(
hphys

Hphys

)
=

1 + 1
2 Σ̃′hh(m2

h)
Σ̃hH(m2

h)

m2
h−m

2
H

Σ̃hH(m2
H)

m2
H−m

2
h

1 + 1
2 Σ̃′HH(m2

H)

( h̃
H̃

)
, (2.33)

where we used the symbol ˜ to mark THDM quantities.

Eqs. (2.32) and (2.33) yield the relation between the mass eigenstates of the MSSM

and the THDM, (
h̃

H̃

)
=

1 + 1
2∆Σ′hh(m2

h)
∆ΣhH(m2

h)

m2
h−m

2
H

∆ΣhH(m2
H)

m2
H−m

2
h

1 + 1
2∆Σ′HH(m2

H)

( ĥ
Ĥ

)
, (2.34)

where the ∆Σxy summarize the differences between the self-energies, for x, y ∈ {h,H},

∆Σxy(p
2) ≡ Σ̂xy(p

2)− Σ̃xy(p
2). (2.35)

The mass eigenstates are related to the original field components φ1,2 via eq. (2.17),(
h̃

H̃

)
= Uα̃

(
φ̃1

φ̃2

)
=

(
−sα̃ cα̃
cα̃ sα̃

)(
φ̃1

φ̃2

)
, (2.36)(

ĥ

Ĥ

)
= Uα̂

(
φ̂1

φ̂2

)
=

(
−sα̂ cα̂
cα̂ sα̂

)(
φ̂1

φ̂2

)
. (2.37)

With these relations, eq. (2.34) can be transformed into a relation between the component

fields φ1,2,

(
φ̃1

φ̃2

)
= UTα̃

1 + 1
2∆Σ′hh(m2

h)
∆ΣhH(m2

h)

m2
h−m

2
H

∆ΣhH(m2
H)

m2
H−m

2
h

1 + 1
2∆Σ′HH(m2

H)

Uα̂

(
φ̂1

φ̂2

)
. (2.38)

In the THDM, the mixing angle α̃ is a free parameter. We fix it at lowest order by requiring

that the THDM fields φ̃1,2 are aligned with the MSSM fields φ̂1,2. Consequently, the two

mixing angles α̃ and α̂ are equal at the tree level. At the one-loop level we change the

– 9 –
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tree-level basis of the THDM slightly allowing for a small misalignment between the THDM

and the MSSM fields,

∆α = α̂− α̃. (2.39)

Using this shift to replace α̃ by α̂ in eq. (2.38) we obtain, expanded up to the one-loop level,(
φ̃1

φ̃2

)
= UTα̂

 1 + 1
2∆Σ′hh

∆ΣhH(m2
h)

m2
h−m

2
H
−∆α

∆ΣhH(m2
H)

m2
H−m

2
h

+ ∆α 1 + 1
2∆Σ′HH

Uα̂

(
φ̂1

φ̂2

)
. (2.40)

Next we expand ∆ΣhH(m2
H) around p2 = m2

h,

∆ΣhH(m2
H) = ∆ΣhH(m2

h) + (m2
H −m2

h) ∆Σ′hH + O(v/MSUSY,MA/MSUSY). (2.41)

All higher order derivatives of the ∆Σxy are suppressed by MSUSY and therefore negligible

in the EFT calculation. For the same reason, we drop the specification of the external

momentum in all derivatives of ∆Σxy in the following (which is always taken at m2
h).

Using the expansion (2.41) and partly rewriting the self-energies yields(
φ̃1

φ̃2

)
=

[(
1 + 1

2∆Σ′11
1
2∆Σ′12

1
2∆Σ′12 1 + 1

2∆Σ′22

)
+

(
∆ΣhH(m2

h)

m2
h −m2

H

− 1

2
∆Σ′hH −∆α

)(
0 −1

1 0

)](
φ̂1

φ̂2

)
.

(2.42)

with the notation ∆Σij ≡ ∆Σφiφj for i, j ∈ {1, 2).

The second matrix corresponds to the one-loop part of a unitary matrix and thereby

to a basis transformation by a rotation. It can be absorbed by adjusting ∆α according to

∆α =
∆ΣhH(m2

h)

m2
h −m2

H

− 1

2
∆Σ′hH . (2.43)

The first matrix in eq. (2.42) is not unitary and hence cannot be removed by a basis

transformation. Therefore, there is a remaining difference between the normalization of

the φ1,2 fields in the MSSM and the THDM, given by the following relation,(
φ̃1

φ̃2

)
=

(
1 + 1

2∆Σ′11
1
2∆Σ′12

1
2∆Σ′12 1 + 1

2∆Σ′22

)(
φ̂1

φ̂2

)
, (2.44)

which corresponds to the one used in [52]. As noted above, it is only valid at the one-loop

level. We have to take care of this relation whenever we match a coupling involving an

external Higgs field. This is achieved by rescaling the Higgs doublets of the THDM (or the

MSSM) according to eq. (2.44).

Since we rescale the whole doublets, a relation similar to eq. (2.44) also holds for

the vevs, (
ṽ1

ṽ2

)
=

(
1 + 1

2∆Σ′11
1
2∆Σ′12

1
2∆Σ′12 1 + 1

2∆Σ′22

)(
v̂1

v̂2

)
. (2.45)
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This directly implies

β̃ = β̂ +
1

2

[(
∆Σ′22 −∆Σ′11

)
sβcβ + ∆Σ′12c2β

]
= β̂ +

1

2
∆Σ′H1H2

, (2.46)

or

tan β̃ = tan β̂ +
1

2c2
β

∆Σ′H1H2
, (2.47)

respectively, with H1,2 being the fields of the Higgs basis defined in eq. (2.19).

Following this procedure and including vertex corrections, we derived a full set of

one-loop threshold corrections for all appearing effective couplings and hierarchies. Below,

we list only the tree-level matching conditions and the dominant one-loop corrections, i.e.

those proportional to the strong gauge coupling or the top Yukawa couplings. Full one-

loop threshold corrections for all effective couplings including electroweak contributions are

listed in appendix A.

In addition to the calculation of matching conditions, we will also need eq. (2.44) for

combining the diagrammatic fixed-order calculation and the EFT calculation.

Matching the THDM to the MSSM. The Higgs self-couplings in the THDM scalar

potential are fixed at the tree level by [52]

λ1(MSUSY) = λ2(MSUSY) =
1

4
(g2 + g′

2
), (2.48)

λ3(MSUSY) =
1

4
(g2 − g′2), (2.49)

λ4(MSUSY) = − 1

2
g2, (2.50)

λ5(MSUSY) = λ6(MSUSY) = λ7(MSUSY) = 0, (2.51)

where g and g′ are the electroweak gauge couplings.

At one-loop order these relations receive additional contributions [52],

∆λ1 = −1

2
kh4

t µ̂
4 +O(g, g′), (2.52)

∆λ2 = 6kh4
t Â

2
t

(
1− 1

12
Â2
t

)
+O(g, g′), (2.53)

∆λ3 =
1

2
kµ̂2h4

t (3− Â2
t ) +O(g, g′), (2.54)

∆λ4 =
1

2
kµ̂2h4

t (3− Â2
t ) +O(g, g′), (2.55)

∆λ5 = −1

2
kh4

t µ̂
2Â2

t +O(g, g′), (2.56)

∆λ6 =
1

2
kh4

t µ̂
3Ât +O(g, g′), (2.57)

∆λ7 =
1

2
kh4

t µ̂Ât(Â
2
t − 6) +O(g, g′) (2.58)
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with µ̂ = µ/MSUSY and Ât = At/MSUSY. At is the stop trilinear coupling and ht the top

Yukawa coupling of the MSSM.1 The factor k ≡ (4π)−2 is used to mark the loop-order.

In addition to these one-loop corrections, we also include O(αsαt) threshold corrections,

listed in appendix A.7.

For µ̂ = 1, the effective top Yukawa couplings are given by

hTHDM
t (MSUSY) = ht

{
1 + k

[
4

3
g2

3(1− Ât)−
1

4
h2
t Â

2
t

]}
+O(g, g′), (2.59)

h′t
THDM

(MSUSY) = htk

{
4

3
g2

3 +
1

4
h2
t Ât

}
+O(g, g′). (2.60)

The full expressions for µ̂ 6= 1 are given in appendix A.

The threshold correction for tan β is obtained from eq. (2.47) yielding

tTHDM
β (MSUSY) = tMSSM

β (MSUSY)

[
1 +

1

4
kh2

t (Ât − µ̂/tβ)(Ât + µ̂tβ) +O(g, g′)

]
. (2.61)

Matching the THDM+EWinos to the MSSM. Neglecting the weak gauge cou-

plings, the relations for matching the THDM to the MSSM are also valid when the

THDM+EWinos is matched to the MSSM. The additional effective Higgs-Higgsino-

Gaugino couplings of the THDM+EWinos fulfill the tree-level relations

ĝ1uu(MSUSY) = ĝ1dd(MSUSY) = g′, (2.62)

ĝ2uu(MSUSY) = ĝ2dd(MSUSY) = g, (2.63)

ĝ1ud(MSUSY) = ĝ1du(MSUSY) = ĝ2ud(MSUSY) = ĝ2du(MSUSY) = 0. (2.64)

Matching the THDM to the THDM+EWinos. Matching the THDM to the

THDM+EWinos, the Higgs self-couplings, the gauge couplings, the top Yukawa couplings

and tβ are not modified at the tree level. If the weak gauge couplings are neglected,

there are also no loop corrections. The full one-loop corrections including the weak gauge

couplings are listed in appendix A.

Matching the SM to the THDM. In this specific case, the characteristic scale for all

the couplings below is the mass MA. In the decoupling limit MA � MZ (α → β − π
2 ),

which is assumed when the heavy Higgs bosons are integrated out, the Higgs self-coupling

λ of the SM is obtained by

λ(MA) = c11 + ∆λ , (2.65)

with c11 from eq. (2.22), β = βTHDM, and the one-loop correction

∆λ =− 3k
{

(λ6 + λ7)c2β + (λ6 − λ7)c4β −
(
λ1c

2
β − λ2s

2
β − (λ3 + λ4 + λ5)c2β

)
s2β

}2
.

(2.66)

1For definiteness, we now assign an explicit label for the Yukawa couplings ht, h
′
t introduced in (2.25)

for the THDM.
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The THDM top Yukawa couplings are related to the SM top Yukawa coupling yt via

yt(MA) =(hTHDM
t sβ + h′THDM

t cβ)

[
1− 3

8
k
(
hTHDM
t cβ − h′THDM

t sβ
)2]

. (2.67)

As stated above, the SM top Yukawa coupling is extracted from the top pole mass at the

scale Mt. The top Yukawa couplings of the THDM are then determined by numerically

solving the system of RGEs with the boundary conditions given in eqs. (2.67), (2.59)

and (2.60) (see also eqs. (A.18) and (A.19) for more general expressions).

Matching the SM+EWinos to the THDM+EWinos. Neglecting the weak gauge

couplings, the relations for matching the SM to the THDM are also valid when the

SM+EWinos is matched to the THDM+EWinos. At the tree level, the effective Higgs-

Higgsino-Gaugino couplings of the SM+EWinos and the THDM+EWinos are related by

g̃1u = ĝ1uusβ + ĝ1ducβ , g̃2u = ĝ2uusβ + ĝ2ducβ , (2.68)

g̃1d = ĝ1ddcβ + ĝ1udsβ , g̃2d = ĝ2ddcβ + ĝ2udsβ . (2.69)

One-loop corrections proportional to the electroweak gauge couplings can be found in

appendix A.

Matching the SM to the SM+EWinos or the MSSM. The matching conditions of

the SM to the SM+EWinos or to the MSSM are well-known and can be found in [35, 37].

Matching EFTs without and with gluino. If the gluino is integrated out, no thresh-

old corrections arise at the one-loop level. At the two-loop level however, the matching

conditions of the scalar self-couplings between the THDM and the MSSM are modified if

a gluino is added to the THDM. Corresponding expressions are listed in appendix A.7.

2.3 Calculation of pole masses in the EFT approach

The proper way to calculate the physical masses of the CP-even Higgs bosons in the EFT

framework depends on the mass hierarchy. For MA �Mt, the low-energy theory is the SM

(or the SM+EWinos). Therefore, the procedure described e.g. in [45] can be applied. For

MA ∼Mt, though, there is no need to integrate out the non-standard Higgs bosons and the

low-energy theory is better described by a THDM (or a THDM+EWinos). In this case,

the physical masses of the CP-even Higgs bosons are obtained by finding the poles of the

propagators, i.e. the zeroes of the determinant of the inverse propagator matrix, depicted

here in the Higgs basis as a possible choice,

−i∆−1

H̃H̃
(p2) =

(
p2 − m̃2

H1H1
+ Σ̃

H̃1H̃1
(p2) −m̃2

H1H2
+ Σ̃

H̃1H̃2
(p2)

−m̃2
H1H2

+ Σ̃
H̃1H̃2

(p2) p2 − m̃2
H2H2

+ Σ̃
H̃2H̃2

(p2)

)
. (2.70)

The widetilde ˜ indicates, as in section 2.2, that the corresponding quantities are those of

the THDM, at the scale MA. The quantitites m̃2
HiHj

are the entries of the matrix MHH

defined in eq. (2.21), and the various Σ̃’s denote the corresponding self-energies of the

THDM (or the THDM+EWinos) renormalized in the MS scheme.
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In situations where MA is larger than Mt, but the separation is also not too large, e.g.

MA−Mt ∼ 100 GeV, it is difficult to decide if the SM should be used as low-energy theory

or the THDM might the better choice. Therefore, a smooth transition between the two

cases is beneficial. To implement such a transition, we follow a procedure similar to the

one introduced in [38]: we include the contribution of the running between MA and Mt,

∆(MA →Mt) = 2v2 (λ(Mt)− λ(MA)) , (2.71)

into the H1H1 element of eq. (2.70). The same contribution is in addition added to the

H1H2 and H2H1 entries with a prefactor 1/tβ and to the H2H2 element with a prefac-

tor 1/t2β ,2

−i∆−1

H̃H̃
(p2)→ −i∆−1

H̃H̃
(p2)−∆(MA →Mt)

 1 1
tβ

1
tβ

1
t2β

 . (2.72)

In this way both limits, MA �Mt and MA ∼Mt, are properly recovered.3

3 Combination of fixed-order and EFT calculation

The program FeynHiggs already contains a state-of-the-art fixed-order calculation, i.e.,

it comprises full one-loop and O(αtαs, αbαs, α
2
t , αtαb, α

2
b) higher-order corrections to the

Higgs self-energies [7, 13, 18, 19, 21, 23, 26, 29, 30, 47–49]. For these corrections, a mixed

OS/DR scheme is employed (see [7] for more details), with the stop sector renormalized by

default using the OS scheme. With version 2.14.0, the possibility of using the DR scheme

for the renormalization of the stop sector was introduced [45]. Field renormalization of the

Higgs doublets and thereby the renormalization of tan β is always performed in the DR

scheme, independent of the renormalization of the stop sector.

Our goal is to combine the result of this diagrammatic fixed-order calculation with the

EFT calculation described in section 2. This combination is done in several steps. First,

we have to relate the quantities computed in the EFT approach, namely the entries of

the inverse propagator matrix, the two-point vertex function, to those in the fixed-order

approach. Second, proper subtraction terms have to be identified and subtracted such that

double-counting of terms appearing in the two results is avoided. Finally, differences in

input parameters resulting from different renormalization schemes have to be considered

by proper conversion of the parameters.

We choose to perform the combination in the gauge eigenstate basis. Therefore, we

need to know the relation between the two-point vertex function matrix in the full MSSM,

denoted by ∆−1

φ̂φ̂
, and in the effective THDM, labeled as ∆−1

φ̃φ̃
. Again, as in section 2.2, the

symbol ̂ is used to mark quantities in the full MSSM, and ˜ to mark quantities in the

effective THDM. The two matrices have to be equal in case of Higgs fields with the same

2Corresponding to the additional factor 1/tβ in the top Yukawa coupling for H2, which is responsible

for the dominant contribution to ∆(MA →Mt) (see also [41]).
3Note that in addition it is necessary to ensure that logarithms of MA over Mt contained in ∆(MA →Mt)

as well as in the THDM self-energies Σ̃H̃iH̃j
are not double-counted.

– 14 –



J
H
E
P
0
7
(
2
0
1
8
)
1
8
2

normalization in either of the models. In our case, however, the Higgs field normalization

is different, as specified by eq. (2.44), which leads to the relation

∆−1

φ̂φ̂
(p2) =

(
1 + 1

2∆Σ′11
1
2∆Σ′12

1
2∆Σ′12 1 + 1

2∆Σ′22

)
∆−1

φ̃φ̃
(p2)

(
1 + 1

2∆Σ′11
1
2∆Σ′12

1
2∆Σ′12 1 + 1

2∆Σ′22

)
. (3.1)

As noted in section 2.2 this formula is valid only in the decoupling limit of MSUSY � Mt

and at the one-loop level. Explicit formulae for the ∆Σ′ij are listed in appendix B.

In the combination of the EFT and fixed-order results, it is convenient to take ac-

count of eq. (3.1) by introducing a finite shift in the field renormalization constants of

the fixed-order result. Originally, the MSSM Higgs fields are renormalized by the scale

transformation (up to two-loop order)(
φ̂1

φ̂2

)
→

(
1 + 1

2δ
(1)Z11 + 1

2∆(2)Z11
1
2δ

(1)Z12 + 1
2∆(2)Z12

1
2δ

(1)Z12 + 1
2∆(2)Z12 1 + 1

2δ
(1)Z22 + 1

2∆(2)Z22

)(
φ̂1

φ̂2

)
(3.2)

with

∆(2)Zij = δ(2)Zij −
1

4

(
δ(1)Zij

)2
. (3.3)

The divergent pieces are fixed via the DR prescription in terms of the one- and two-loop

self-energies,

δ(1)Z11

∣∣∣
div

= −Re
[
Σ̂

(1)′
11

]
div
, δ(1)Z22

∣∣∣
div

= −Re
[
Σ̂

(1)′
22

]
div
, δ(1)Z12

∣∣∣
div

= 0, (3.4)

δ(2)Z11

∣∣∣
div

= −Re
[
Σ̂

(2)′
11

]
div
, δ(2)Z22

∣∣∣
div

= −Re
[
Σ̂

(2)′
22

]
div
, δ(2)Z12

∣∣∣
div

= 0. (3.5)

In FeynHiggs so far, the DR definition of the field renormalization constants is employed.

We now add finite pieces to compensate for the different normalization of the MSSM and

THDM Higgs doublets, redefining

δ(1)Zij = δ(1)Zij

∣∣∣
div

+ δ(1)Zij

∣∣∣
fin

(3.6)

with the proper choice, according to eq. (3.1),

δ(1)Z11

∣∣∣
fin

= −∆Σ′11, δ(1)Z22

∣∣∣
fin

= −∆Σ′22, δ(1)Z12

∣∣∣
fin

= −∆Σ′12. (3.7)

Since eq. (3.1) is valid only at the one-loop level, it cannot be applied for the two-loop field

counterterms δ(2)Zij . These two-loop terms, however, drop out completely (see appendix C

for more details).

With the additional finite parts introduced in the field renormalization constants, the

inverse propagator matrix of the MSSM becomes equal to that of effective THDM (with

restriction to the same perturbative order). Hence, the combination of the fixed-order

(MSSM) and the EFT (THDM) approach is straightforward, which means that the MSSM

inverse propagator matrix is replaced by

∆−1

φ̂φ̂
→ ∆−1

φ̂φ̂
+ ∆EFT, (3.8)
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where ∆EFT contains the resummed logarithms and corresponding subtraction terms,

∆EFT = ∆−1

φ̃φ̃

∣∣∣
logs
−∆−1

φ̂φ̂

∣∣∣
logs

. (3.9)

We checked numerically that the logarithms of the EFT calculation properly recover the

logarithmic behavior of the full fixed-order result when restricted to the same perturbative

order. For more details on the calculation of the subtraction terms we refer to [42, 45].

3.1 Redefinition of tan β

As mentioned above, in FeynHiggs by default the DR-scheme is employed for field renor-

malization of the Higgs doublets and for the renormalization of tan β. Thus, there is a

renormalization scale entering the diagrammatic calculation. By default, it is chosen to

be equal to the pole mass Mt of the top quark. This in particular means that tan β is

normally a MSSM DR quantity defined at the scale Mt.

The redefinition of the field renormalization constants by a finite shift, as described

above, has an impact on the renormalization and hence the conceptual definition of tan β.

In presence of an off-diagonal field renormalization constant, the counterterm of tan β is

given by (assuming still δ(i)v1/v1 = δ(i)v2/v2)

δ(1)tβ =
1

2
tβ

(
δ(1)Z22 − δ(1)Z11

)
+

1

2

(
1− t2β

)
δ(1)Z12. (3.10)

For the corresponding two-loop counterterm, see appendix C. With the finite parts of the

field renormalization constants in eq. (3.7) and switching to the Higgs basis, we find

δ(1)tβ

∣∣∣
fin

= − 1

2c2
β

∆Σ′H1H2
. (3.11)

Comparing this result to eq. (2.47), we realize that tan β by now is not a MSSM quantity

anymore, but instead a quantity of the THDM. Furthermore, the scale is changed to MA,

since the THDM part in ∆Σ′H1H2
is evaluated at the scale MA. In conclusion, the finite

shift in the field normalization constants of the MSSM leads to the conversion

tMSSM
β (Mt)→ tTHDM

β (MA). (3.12)

Hence, tTHDM
β (MA) is the proper input parameter of the fixed-order calculation.

3.2 Conversion of input parameters

The diagrammatic calculation implemented in FeynHiggs employs either the OS or the DR

scheme for the renormalization of the stop sector. In case of an OS renormalization, this

means in particular that the stop masses and the stop mixing angle are renormalized on-

shell. For the EFT calculation however, respective DR quantities are needed. Therefore,

the parameters have to be converted. As argued in [42], one-loop conversion including

only logarithmic terms is sufficient to reproduce the diagrammatic OS expressions from

the EFT DR result. Any further terms in the conversion induce higher order contributions

which are presently not under control.
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It was noticed in [41, 42] that the conversion of the stop mass scale does not involve

large logarithms; only the stop mixing parameter Xt was found to be affected by logarithmic

terms. In that previous analysis, a common scale MA = MSUSY was assumed. Here, we ex-

tend the conversion formulas to the case of MA �MSUSY. As in the case of MA = MSUSY,

we find no large logarithms in the conversion of the stop mass scale MS = MSUSY. For

the stop mixing parameter, however, additional large logarithms appear in the conversion

formula,

XDR
t (MS) = XOS

t

{
1 +

[
αs
π
− 3αt

16π

(
1− X̂2

t

)]
L− 3

16π

αt
t2β

(
1− Ŷ 2

t

)
LA

}
, (3.13)

using the abbreviations

L = ln

(
M2
S

M2
t

)
, LA = ln

(
M2
S

M2
A

)
, X̂t =

Xt

MS
= Ât −

µ̂

tβ
, Ŷt = Ât + µ̂tβ . (3.14)

More details and full one-loop expressions for the parameter conversion are given in ap-

pendix D.

4 Comparison to other codes

There are two other publicly available codes for calculating the Higgs pole masses via a

THDM matched to the MSSM: the MhEFT package [53], based on [38], and the program

FlexibleSUSY [54] in the recent version [46], based on [55]. As pointed out in [46], agree-

ment has been found with the MhEFT results. We therefore restrict ourselves to a comparison

of FeynHiggs to MhEFT (version 1.1).

The basis of MhEFT is a pure EFT calculation. Therefore, terms suppressed by heavy

scales are absent. Apart from this obvious distinction, there are a few more differences

to FeynHiggs:

• MhEFT does not employ the DR scheme for renormalization of the SUSY parameters.

Instead, MS renormalization is used. Therefore, conversion of the input parameters

is needed for the comparison with FeynHiggs. Corresponding conversion formulas

can be found in [56].

Although, as argued in [45], this conversion will induce unwanted higher order terms,

it is currently the only way to compare the two results, since neither FeynHiggs

offers the possibility of a MS renormalization nor MhEFT the possibility of a DR

renormalization. In practice it is a viable method since the numerical impact of the

conversion is almost negligible, owing to the small numerical difference between MS

and DR parameters.

• The EFT calculations entering FeynHiggs and MhEFT differ in various aspects. MhEFT

assumes a type II THDM as the effective THDM in the evolution equations. Fur-

thermore, EWino contributions to the various threshold corrections are neglected.

Also in the RGEs, EWino contributions are neglected at the two-loop level and only
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taken into account in approximate form at the one-loop level. In addition the one-

loop threshold corrections between the SM and the THDM are neglected for the top

Yukawa coupling and approximated for the SM Higgs self-coupling (i.e., the heavy

Higgs contribution to the one-loop threshold correction between the SM and the

MSSM is used). On the other hand, MhEFT has implemented an approximation for

the O(α2
t ) threshold corrections for the quartic couplings by including the known

O(α2
t ) threshold correction from matching the SM to the MSSM in λ2, whereas all

other self-couplings receive no O(α2
t ) threshold correction.

• In MhEFT, the THDM self-energies Σ̃
H̃1H̃2

and Σ̃
H̃2H̃2

(see eq. (2.70)) are neglected.

Thereby, terms of O(Mt/MA) are missed.

These differences should be kept in mind, when interpreting the numerical results of the

comparison presented in section 5.

5 Numerical results

In this section, we investigate the numerical impact of the implementation of an effective

THDM into FeynHiggs. This means in practice that we compare the results from the latest

version FeynHiggs2.14.1 to those from the calculation presented in this paper, which is im-

plemented in a still private FeynHiggs version based on FeynHiggs2.14.1. In addition, we

show results from FeynHiggs2.14.0 to point out the impact of the non-degenerate O(α2
t )

threshold corrections [40] , which were implemented as a new feature in FeynHiggs2.14.1.

The degenerate O(α2
t ) threshold corrections [39], used in FeynHiggs2.14.0, implicitly as-

sume MA = MSUSY. We furthermore compare the results of the calculation presented in

this paper to those of MhEFT.

For illustration of the numerical effects, we investigate simplified scenarios with

a common mass scale MS for all sfermions, and Mχ for the EWinos, setting (if not

stated otherwise)

MS ≡MSUSY, Mχ ≡M1 = M2 = µ, Ae,µ,τ,u,d,c,s,b = 0. (5.1)

Also the gluino mass Mg̃ is set equal to MSUSY.4 As default values for the figures, we set

MSUSY = 100 TeV and Mχ = 500 GeV. In combination with low MA and tanβ values, this

choice maximizes the numerical impact of the effective THDM in the phenomenologically

most interesting region of Mh ∼ 125 GeV.

The numerical impact of the effective THDM can also get large for MSUSY ∼ 1 TeV

and moderate values of tan β, if µ > MSUSY. This corresponds, however, to a hierarchy

which we did not cover in this paper.

For the SUSY parameters, we use the DR-scheme with the corresponding renormal-

ization scale being MSUSY. The DR scheme is also used for Xt (except in figure 6, where

the OS scheme is used). tan β is defined as tan βTHDM(MA), unless stated otherwise.

4Note that our EFT calculation also allows to treat scenarios with Mg̃ as an independent parameter.

The numerical effect of the additional threshold, however, is small since the dominant two-loop effect is

already captured by the fixed-order calculation (see also [42]).
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Figure 2. Left: Mh as function of tan β for XDR
t /MSUSY = 0 (solid) and XDR

t /MSUSY =
√

6

(dashed) in a scenario with a low MA and with different definitions of tan β: in the MSSM at the

scale Mt (blue) and at the scale MSUSY (red, overlapping with blue), and in the THDM at the scale

MA (green). Right: same signature, but for MA = MSUSY (overlapping red and green curves).

Aside from the simplified scenarios, we also study a more complicated situation, the

“low-tan β-high” scenario proposed by the LHC Higgs Cross section Working Group in [57].

5.1 Shifts from tanβ definition

As explained in section 3, we account for the different normalization of the Higgs doublets

in the full MSSM and the effective THDM by introducing a finite shift in the field renor-

malization constants of the fixed-order calculation. This changes the definition of tan β:

from a MSSM quantity to one of the THDM, along with a change of the renormalization

scale from Mt (the default of FeynHiggs) to MA.

We analyze the numerical effect of this redefinition in figure 2. It shows results of

FeynHiggs for Mh using different definitions of tan β: tanβMSSM(Mt) (default definition

in FeynHiggs), tan βTHDM(MA) (default definition in this section) and, for comparison,

tanβMSSM(MSUSY) (by shifting the renormalization scale to MSUSY). Accordingly, the

meaning of the horizontal axis is not the same for the different curves.

The left panel displays a low-MA scenario. The curves for tan βMSSM(Mt) and

tanβTHDM(MA) are very close to each other. This is essentially due to MA ∼Mt, the ad-

ditional non-logarithmic threshold correction of tan β between the THDM and the MSSM

in eq. (2.61) has only a small numerical impact. In contrast, there is a large hierarchy

between Mt (or MA) and MSUSY. Therefore, the third curve for tan βMSSM(MSUSY) is

shifted upwards for low tan β, by up to ∼ 2 GeV for tan β & 1.2. This shift shrinks for

rising tan β, as a consequence of the decreasing dependence of Mh on tanβ. For tan β . 1.2

a small downwards shift of up to 2 GeV is visible.

In the right panel, the same set of curves is displayed, but now for MA equal to MSUSY.

Therefore, the curves using tan βTHDM(MA) and tan βMSSM(MSUSY) are very close; again,

the additional non-logarithmic threshold correction of tan β between the THDM and the

MSSM turns out to be negligible. Due to the large scale separation between Mt and MSUSY

the curve using tan βMSSM(Mt) is shifted downwards by up to 2 GeV between tan β ∼ 1.2

and tan β ∼ 6. For tan β . 1.2, a small upwards shift up to 1 GeV is visible.
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Figure 3. Mh as a function of MA for XDR
t /MSUSY = 0 (solid) and XDR

t /MSUSY =
√

6 (dashed).

Left: tan β = 1. Right: tan β = 3. The results of FeynHiggs without effective THDM — using

the degenerate O(α2
t ) threshold correction (blue) and using the non-degenerate O(α2

t ) threshold

correction (green) — are compared with the results of FeynHiggs with effective THDM (red).

Note that for the rest of this section, tan β is defined as tan βTHDM(MA) for all dis-

played results.

5.2 Impact of the effective THDM

Having investigated the numerical effect of different definitions of tan β, we now scrutinize

the impact of the main result of this paper — the implementation of an effective THDM

into the hybrid framework of FeynHiggs.

In figure 3, we compare the results of various stages of FeynHiggs by showing Mh

in dependence of MA: the previous version without an intermediate effective THDM us-

ing degenerate O(α2
t ) threshold corrections (corresponding to version 2.14.0) as well as

using non-degenerate O(α2
t ) threshold corrections (corresponding to version 2.14.1), and

the new version with the effective THDM implemented. One observes that the curves of

FeynHiggs with and without effective THDM converge to each other for rising MA. This is

expected since for MA = MSUSY, the SM+EWinos can be matched directly to the MSSM

and no effective THDM is needed. The small remaining deviation of the THDM curve

for MA = MSUSY and XDR
t /MSUSY =

√
6 is caused by the O(α2

t ) threshold correction,

which is part of the current FeynHiggs (without effective THDM) but not available for

the THDM-modified version. For MA �MSUSY we observe sizeable shifts, in particular in

the left panel where tan β is set to 1. The step from degenerate to non-degenerate O(α2
t )

threshold corrections already induces a downwards shift of up to 5 GeV for vanishing stop

mixing and of up to 7 GeV for XDR
t /MSUSY =

√
6. Implementing now the effective THDM

leads to a further shift downwards by up to 2 GeV for vanishing stop mixing and up to

3 GeV for XDR
t /MSUSY =

√
6.

In the right panel with tan β = 3, the curves show the same qualitative behavior,

i.e. for low MA the implementation of an effective THDM shifts Mh downwards, but in

comparison to the results with tan β = 1, the effects are less pronounced (. 1.5 GeV).

This strong dependence on tan β is visualized more specifically in figure 4, where Mh is

shown versus tan β for the same cases as in figure 3. In the left panel, the difference between
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Figure 4. Mh as a function of tan β for XDR
t /MSUSY = 0 (solid) and XDR

t /MSUSY =
√

6 (dashed).

Left: MA = 200 GeV. Right: MA = 1 TeV. The results of FeynHiggs without effective THDM —

using the degenerate O(α2
t ) threshold correction (blue) and using the non-degenerate O(α2

t ) thresh-

old correction (green) — are compared with the results of FeynHiggs with effective THDM (red).
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Figure 5. Mh as a function of XDR
t /MSUSY for tanβ = 1, (solid) tan β = 2.5 (dashed), and

tanβ = 3.5 (dotdashed). Left: MA = 200 GeV. Right: MA = 1 TeV. The results of FeynHiggs

without effective THDM — using the degenerate O(α2
t ) threshold correction (blue) and using the

non-degenerate O(α2
t ) threshold correction (green) — are compared with the results of FeynHiggs

with effective THDM (red).

FeynHiggs with and without effective THDM is displayed for MA = 200 GeV and in the

right panel for a larger value MA = 1 TeV. The effects of the various steps of improvement

are most pronounced for low tan β and shrink quickly for increasing values; for tan β & 5,

the shifts are negligible. Again, the use of the non-degenerate O(α2
t ) threshold correction

brings the result without effective THDM closer to that with effective THDM. The curves

in the left and right panel behave very similar; the overall Mh values are higher for larger

MA, but the shifts remain of the same size despite the slightly reduced hierarchy between

MA and MSUSY.

Next, the dependence on the stop-mixing parameter XDR
t is analyzed in figure 5,

presenting Mh versus XDR
t /MSUSY for two different mass scales MA = 200 GeV (left) and

MA = 1 TeV (right). As one can see, the difference between Mh predicted by FeynHiggs

with and without effective THDM is only mildly dependent on XDR
t /MSUSY. For all
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Figure 6. Mh as a function of XOS
t /MSUSY for tan β = 1 (solid), tan β = 2.5 (dashed), and

tanβ = 3.5 (dotdashed). Left: MA = 200 GeV. Right: MA = 1 TeV. The results of FeynHiggs

without effective THDM — using the degenerate O(α2
t ) threshold correction (blue) and using the

non-degenerate O(α2
t ) threshold correction (green) — are compared with the results of FeynHiggs

with effective THDM (red).

values, the effect of including the THDM is a downwards shift of Mh, becoming smaller for

increasing tan β.

From a phenomenological point of view, shifting the curves according to the various

levels of improvement is relevant for the proper determination of the parameter range that

predicts Mh compatible with the measurement. We have kept in all the figures the case

with degenerate O(α2
t ) threshold correction in the version without THDM in order to point

out the significance of going to the non-degenerate O(α2
t ) threshold correction (realized in

FeynHiggs2.14.1) which already accounts for a substantial part of the shift when turning

to the new version with the effective THDM.

So far, all the numerical results refer to the DR scheme for the stop-sector renormaliza-

tion. As a distinct feature of FeynHiggs, also the OS scheme can be used for renormalizing

the stop input parameters. In order to illustrate the use of OS renormalization, we include

figure 6 as the equivalent of figure 5, now in the OS scheme, displaying the Mh depen-

dence on XOS
t /MSUSY for MA = 200 GeV (left) and for MA = 1 TeV (right). The overall

behavior of the results is similar to the results obtained in the DR scheme; also the shifts

when turning to the THDM case are similar in size, although slighty more pronounced in

the OS scheme.

Here, it is however important to note that the shift between FeynHiggs with and

without effective THDM depends sensitively on the Higgsino mass parameter µ when the

OS scheme is used.5 This is due to the needed conversion of Xt between the DR and the

OS scheme, according to eq. (3.13), which involves an extra term that can become large

for MA �MSUSY, low tan β, µ ∼MSUSY and XOS
t /MSUSY ∼ 2, inducing large differences

between XOS
t and XDR

t . This signals that in those regions the one-loop conversion is

insufficient yielding unreliable results for Mh, and recommends the use of the DR scheme.

The MSUSY scale dependence of the effect from implementing the THDM is explicitly

shown in figure 7. In the left panel, we set tan β = 1 and MA = 200 GeV to maximize

5µ is set to Mχ = 500 GeV in figure 6.
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Figure 7. Mh as a function of MSUSY for XDR
t /MSUSY = 0 (solid) and XDR

t /MSUSY =
√

6

(dashed). Left: tan β = 1 and MA = 200 GeV. Right: tan β = 3 and MA = 1 TeV. The results

of FeynHiggs without effective THDM — using the degenerate O(α2
t ) threshold correction (blue)

and using the non-degenerate O(α2
t ) threshold correction (green) — are compared with the results

of FeynHiggs with effective THDM (red).

the shift for illustrational purposes. Even for MSUSY ∼ few TeV, a sizeable shift occurs

between the results with and without effective THDM, despite the small hierarchy between

MA and MSUSY. Phenomenologically this observation is, however, of less interest since the

Higgs mass values reached are below 115 GeV over the whole considered range of MSUSY.

The configuration in the right panel of figure 7, with tan β = 3 and MA = 1 TeV, is

more relevant for phenomenology since Mh ∼ 125 GeV can be reached for MSUSY ∼ 10 TeV

(and XDR
t /MSUSY =

√
6). The difference between the results from FeynHiggs with and

without effective THDM, however, is negligible for MSUSY . 20 TeV. We conclude that in

the commonly considered scenarios with stop masses around the TeV scale, Mχ ≤MSUSY

and the h boson playing the role of the SM Higgs boson the additional corrections from an

intermediate THDM are negligible.

5.3 Results for the heavier Higgs bosons

The role of the SM-like Higgs boson can not only be played by the h boson, also the

H boson is a potential candidate (see [58, 59] for recent studies) and deserves a closer

inspection. In the following, we investigate the prediction for the mass of H boson within

our hybrid approach.

In this class of scenarios MA is smaller than Mt. In consequence, the proper EFT at the

electroweak scale is the THDM and not the SM. In the present study, we approximate the

values of the SM MS couplings (yt, g1, g2, g3) at the scale Mt computed in [60] as boundary

values for the EFT calculation. Thus, the EFT at the scale Mt is replaced by the SM,

which is then matched to the THDM. This procedure avoids the detailed calculation of

the THDM MS couplings at the electroweak scale, but neglects THDM-specific terms (i.e.,

terms of order O(Mt/MA)).

In order to estimate the uncertainty arising from this approximate determination of

the boundary values, we investigate the numerical effect of the presence of extra Higgs

bosons for the determination of the MS top mass, as the parameter with the strongest
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Figure 8. Shifts to the SM MS top mass induced by non-SM Higgs bosons as a function of MA

for tan β = 1 (blue), tan β = 2 (red) and tan β = 5 (green).
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Figure 9. Left: MH as a function of MA for tan β = 1. Right: MH as a function of tan β for

MA = 80 GeV. The results of FeynHiggs without effective THDM using the non-degenerate O(α2
t )

threshold correction (green) and with effective THDM (red) are compared. XDR
t /MSUSY = 0 (solid)

and XDR
t /MSUSY =

√
6 (dashed).

impact in the Higgs-boson mass calculation. As a rule of thumb, a shift of 1 GeV in the top

mass implies a shift of the same size in the Higgs masses. As displayed in figure 8, the shift

induced by the presence of extra non-SM Higgs bosons is at most 300 MeV. This value

is reached if MA = 80 GeV and tan β = 1. For larger MA and/or larger tan β, the shift

is quickly diminished below 100 MeV. Accordingly, we estimate the uncertainty induced

by neglecting the non-SM Higgs bosons when extracting the MS couplings to be below

O(0.5 GeV).

In figure 9, the dependence of MH on MA (left) and on tan β (right) is presented.

In contrast to the parameters in the previous figures, we set Mχ = MSUSY = 10 TeV

to reduce the overall size of MH . The left panel illustrates the situation for tan β = 1,

when the differences between the various versions are sizeable. We find an approximately

constant shift between the results with and without effective THDM (employing the non-

degenerate O(α2
t ) threshold correction), of about 1 GeV for unmixed top squarks and

4 GeV for XDR
t /MSUSY =

√
6. For the range of input quantities, however, MH is too large

for H playing the role of the SM Higgs boson.
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MH can only be significantly decreased by raising tan β. This possibility is analyzed

in the right plot of figure 9, where MA is set to 80 GeV. The shift between the results with

and without effective THDM shrinks for rising tan β, as was the case for Mh. To reach the

desired value of 125 GeV for MH , tanβ has to be at least > 7. In this region, however,

the difference between the results with and without the effective THDM is completely

negligible. Also the uncertainty induced by not including contributions from non-SM Higgs

bosons in the extraction of the low-energy couplings, estimated above, is totally negligible.

In addition, we also investigated the impact of the effective THDM on the prediction

of the charged Higgs mass MH± . For the calculation of MH± no resummation of large

logarithms was available before. Nevertheless, we only find negligible shifts below 1 GeV

in the scenarios considered above.

As noted above, the numerical impact of the effective THDM on the heavier Higgs

boson masses might be enhanced in case of µ > MSUSY, which is not covered in this work.

5.4 The “low-tanβ-high” scenario

In the “low-tan β-high” scenario, defined in [57], all soft SUSY-breaking sfermion masses,

as well as the gluino mass, are set equal to MSUSY. The value of MSUSY is chosen such

that the result for Mh is close to the experimentally determined mass and varies between

a few TeV (in case of large MA or tanβ) and 100 TeV (in case of small MA or tanβ). In

its original definition, the OS scheme was employed for renormalization, with the OS stop

mixing parameter varying with tan β as follows,

XOS
t /MSUSY =


2 for tanβ ≤ 2

0.0375 tan2 β − 0.7 tanβ + 3.25 for 2 < tanβ ≤ 8.6

0 for 8.6 < tanβ

(5.2)

Owing to the problems with OS parameters in scenarios with low MA mentioned in sec-

tion 5.2, we define all parameters as DR quantitites.6 Accordingly, we modify the values

for Xt,

XDR
t /MSUSY =

{
0.0375 tan2 β − 0.7 tanβ + 3.25 for tanβ ≤ 8.6

0 for 8.6 < tanβ
. (5.3)

In this way, XDR
t /MSUSY will be close to the value which maximizes Mh when tan β = 1

is approached.

The remaining parameters are given by

µ = 1.5 TeV, M2 = 2 TeV, Ab,c,s,u,d = 2 TeV. (5.4)

M1 is fixed via the GUT relation M1 = 5
3 tan2 θWM2 ≈ 0.5M2.

The left panel of figure 10 contains Mh obtained from the FeynHiggs version includ-

ing the THDM, in dependence of tan β and MA. One finds that Mh comes close to the

6The use of the DR scheme will be also be beneficial when comparing with MhEFT in the next subsection.
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Figure 10. Left: Mh computed with FeynHiggs including the effective THDM as a function of MA

and tan β in the low-tan β-high scenario. Right: difference between the results with and without

effective THDM (FeynHiggs2.14.0).

experimental value of 125 GeV only in the upper part of the plot where tan β & 6. For

lower values of tan β, Mh drops down to the region around 105 GeV. If additionally MA

is small (∼ 200 GeV), Mh is even below 102 GeV. In comparison with the results shown

in figure 3 of [57], Mh is reduced by several GeV.

The results in [57] were produced using FeynHiggs2.10.4. Since then, many addi-

tional improvements were implemented in FeynHiggs (see also the discussions in [42, 45]

of important changes that have entered the versions 2.13.0 and 2.14.0). To point out

the effect of the most recent developments since FeynHiggs2.14.0, we show the difference

between the most topical version of FeynHiggs with effective THDM and the non-THDM

version 2.14.0 in the right panel of figure 10. The diagram shows that for the considered

scenario the Mh values obtained with an effective THDM are below the values obtained

without effective THDM. For tan β & 3, the downwards shift is small (below 1 GeV). For

smaller tan β, the shift increases to about 4 GeV for MA = 500 GeV. If in addition also

MA is small (∼ 200 GeV), the difference amounts to even more than 8 GeV.

5.5 Comparison to MhEFT

After investigating the numerical impact of an effective THDM on the hybrid calculation

of FeynHiggs, we compare our results to MhEFT (version 1.1).

First, we compare the results for Mh in dependence of MA (see left panel of figure 11).

We choose tan β = 1 to maximize the impact of the effective THDM. For vanishing stop

mixing, FeynHiggs and MhEFT are in close agreement. Also for XDR
t /MSUSY =

√
6, the

two codes agree within ∼ 1 GeV. The remaining deviation is caused by the different

parameterization of non-logarithmic terms (see [45] for an extensive discussion). For low

MA this constant shift is compensated by terms of O(Mt/MA) originating from the THDM

self-energies (see eq. (2.70)) which are included in FeynHiggs but not in MhEFT.
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Figure 11. Left: Mh as a function of MA for tan β = 1. Right: Mh as a function of tan β

for MA = 200 GeV. The results of FeynHiggs with effective THDM (blue) and MhEFT (red) are

compared for XDR
t /MSUSY = 0 (solid) and XDR

t /MSUSY =
√

6 (dashed).

-3 -2 -1 0 1 2 3

95

100

105

110

115

120

125

130

200 300 400 500

1

2

3

4

5

6

7

8

9

10

0

0.5

1.0

1.5

Figure 12. Left: Mh as a function of Xt for tanβ = 1 (solid), tan β = 2.5 (dashed), and tan β = 3.5

(dotdashed). MA = 200 GeV is chosen. The results of FeynHiggs with effective THDM (blue) and

MhEFT (red) are compared. Right: Mh in the “low-tan β-high” scenario. The difference between

FeynHiggs with effective THDM and MhEFT is displayed.

In the right panel of figure 11, the results are compared as a function of tan β, setting

MA = 200 GeV. The overall good agreement is confirmed. Especially around tan β ∼ 3 the

two results are very close to each other, whereas the agreement is slightly worse for smaller

or higher values of tan β (but still within 1 GeV). Reasons for the disagreement are again

the different parameterization of non-logarithmic terms as well as terms of O(Mt/MA).

This behavior is also reflected in the left panel of figure 12 showing Mh as a function

of XDR
t . For tan β = 2.5 and tanβ = 3.5, FeynHiggs and MhEFT nearly superpose each

other. Only for |XDR
t /MSUSY| > 2.5, small deviations are visible which originate from the

different parameterizations of non-logarithmic terms. These terms become large for large

|XDR
t /MSUSY|. For tan β = 1, a deviation of . 1 GeV is visible for |XDR

t /MSUSY| < 2.5,

which is mainly caused by O(Mt/MA) terms.

In the right panel of figure 12, we have another look at the “low-tan β-high” scenario

using the DR scheme, as defined in section 5.4. In the whole MA–tanβ plane the difference

– 27 –



J
H
E
P
0
7
(
2
0
1
8
)
1
8
2

between the two codes is smaller than 2 GeV. Especially for low MA or low tan β the two

codes agree very well, whereas FeynHiggs yields slightly larger results than MhEFT in the

rest of the parameter plane.

Finally, we comment on the comparison between FeynHiggs and MhEFT shown in [38]

(see figure 10 and 11 therein). The authors of [38] compared the two codes in the low-

tanβ-high scenario and found deviations of up to 15 GeV. According to their claim, this

discrepancy was mainly caused by the missing implementation of an effective THDM in

FeynHiggs. In our figure 10, right panel, we found, however, the effective THDM to induce

shifts of not more than 8 GeV. This raises the question for the origin of the remaining

difference of ∼ 7 GeV. One reason is certainly the fact that FeynHiggs has evolved a lot

since version 2.10.2, which was taken for the comparison in [38]. A second more important

reason is the parameter conversion used for the comparison, which was done for the “low-

tanβ-high” scenario defined with OS parameters, eq. (5.2). Therefore, the OS stop mixing

parameter had to be converted to the MS scheme which is employed in MhEFT. In this

conversion, MA = MSUSY was assumed. Thereby, an important logarithmic contribution

was missed (last term in eq. (3.13)), which is especially large for low tan β and low MA,

thus exactly in the parameter region where the largest deviation between FeynHiggs and

MhEFT was observed.

6 Conclusions

In this paper, we discussed the implementation of an effective THDM into the hybrid

framework of FeynHiggs for the calculation of the MSSM Higgs boson mass spectrum.

Our new EFT calculation allows to treat the case of light non-SM Higgs bosons as well

as of light EWinos and a light gluino. Furthermore, it includes complete one-loop and

dominant two-loop threshold corrections and takes all appearing effective couplings fully

into account. In this context, we also discussed how the matching between the various

EFT versions is performed paying special attention to the different normalization of the

Higgs doublets in the MSSM and the THDM.

This difference in field normalization plays a crucial role in the combination of the

existing fixed-order calculation in FeynHiggs with the new EFT calculation for low MA.

Our accounting of the different normalizations is done by introducing finite shifts in the field

renormalization constants of the fixed-order calculation, which affects also the conceptual

definition of tan β as an input parameter. Moreover, we investigated the effect of a low

MA in the scheme conversion of the parameters for the stop sector, which is necessary if

OS input parameters are used.

In our numerical study, we compared FeynHiggs2.14.0 and FeynHiggs2.14.1, both

with the SM as the EFT, to our new computation with an effective THDM, which is

implemented in a still private FeynHiggs version based on 2.14.1. We found the switch

to an effective THDM to cause a negative shift in Mh of up to 3 GeV with respect to

FeynHiggs2.14.1. This maximal value is reached when tan β ∼ 1 and the hierarchy

between the SUSY scale and MA is large (MSUSY/MA ∼ 103). The shift shrinks quickly

when tan β is increased. For tan β & 7, the effects resulting fom the THDM are almost
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completely negligible. Similarly, the shift decreases when MA is increased or MSUSY is

lowered. Larger shifts, up to 10 GeV, are found when comparing to FeynHiggs2.14.0. In

that version, the implemented O(α2
t ) threshold correction implicitly assumed MA to be

equal to MSUSY, leading to an overestimate of Mh in scenarios with MA �MSUSY.

We also investigated predictions for the mass of the second CP-even Higgs boson H.

In the phenomenologically most interesting parameter region, where the H boson can play

the role of the SM Higgs boson, we found the shift induced by an effective THDM to

be negligible. Also the prediction of the charged Higgs boson mass is only marginally

affected. In addition, we looked at the “low-tanb-high” benchmark scenario developed by

the LHCHXSWG. For this scenario, we found corrections of up to -8 GeV for tan β . 3 with

the consequence that the updated Mh prediction is too low for meeting the experimental

Higgs boson mass. Finally, we compared our results with those of the code MhEFT finding

good agreement within 1 GeV throughout the considered parameter space.

Our calculation will become publicly available as part of the code FeynHiggs in a future

version. We leave possible improvements of the present work, like the implementation

of threshold corrections valid for arbitrary masses of the decoupled particles, or O(α2
t )

threshold corrections, for future work.
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A Threshold corrections

In this appendix one-loop formulas for matching the various EFTs to each other are pro-

vided. All expressions are derived under the assumption that all particles that are inte-

grated out have masses equal to the matching scale. The couplings on the right hand side of

all following expressions have to be evaluated at the scale given on the left hand side of the

corresponding expressions. Couplings not listed do not receive any one-loop contributions

to the matching conditions.

In addition, two-loop O(αsαt) corrections for the matching of the THDM quartic

couplings to the full MSSM are given.

Expression for matching the SM to the MSSM and the SM to the SM+EWinos are

listed e.g. in [37].

A.1 Matching the SM+EWinos to the MSSM

The threshold corrections for matching the SM+EWinos to the MSSM are also known

(see e.g. [37]). We extend the known expressions for the effective Higgs-Higgsino-Gaugino
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couplings g̃1u,1d,2u,2d by including also terms owing to the external Higgs wave-function

renormalization, which are proportional to X̂2
t . They have been neglected in [37], because

of |Xt| � MSUSY in the split-SUSY scenarios considered there. We split up the matching

expressions into four pieces,

g̃1u(MSUSY) = g′sβ + ∆f̃ g̃1u + ∆H g̃1u + ∆DR→MSg̃1u, (A.1a)

g̃2u(MSUSY) = gsβ + ∆f̃ g̃2u + ∆H g̃2u + ∆DR→MSg̃2u, (A.1b)

g̃1d(MSUSY) = g′cβ + ∆f̃ g̃1d + ∆H g̃1d + ∆DR→MSg̃1d, (A.1c)

g̃2d(MSUSY) = gcβ + ∆f̃ g̃2d + ∆H g̃2d + ∆DR→MSg̃2d. (A.1d)

The sfermion contributions are given by

∆f̃ g̃1u = g′sβk

(
−5

2
g′

2
+

1

4
h2
t (9− s2

βX̂
2
t )

)
, (A.2a)

∆f̃ g̃2u = gsβk

(
−3

2
g2 +

1

4
h2
t (9− s2

βX̂
2
t )

)
, (A.2b)

∆f̃ g̃1d = −g′cβk
(

5

2
g′

2
+

1

4
h2
t s

2
βX̂

2
t

)
, (A.2c)

∆f̃ g̃2d = −gcβk
(

3

2
g2 +

1

4
h2
t s

2
βX̂

2
t

)
. (A.2d)

Note that the new wave-function renormalization contributions proportional to X̂2
t have

been already implemented in FeynHiggs from version 2.13.0 on.

Integrating out the heavy Higgs yields

∆H g̃1u =
1

16
g′sβk

(
21g2c2

β + g′
2
(−2 + 7c2

β)
)
, (A.3a)

∆H g̃2u =
1

16
gsβk

(
−g2(2 + 11c2

β) + 7g′
2
c2
β

)
, (A.3b)

∆H g̃1d =
1

16
g′cβk

(
21g2s2

β + g′
2
(−2 + 7s2

β)
)
, (A.3c)

∆H g̃2d =
1

16
gcβk

(
−g2(2 + 11s2

β) + 7g′
2
s2
β

)
, (A.3d)

where we neglected terms of O(Mχ/MA).

Changing the regularization scheme from DRED for Q > MSUSY to DREG for

Q < MSUSY gives rise to

∆DR→MSg̃1u = −1

8
g′sβk(3g2 + g′

2
), (A.4a)

∆DR→MSg̃2u =
1

24
gsβk(23g2 − 3g′

2
), (A.4b)

∆DR→MSg̃1d = −1

8
g′cβk(3g2 + g′

2
), (A.4c)

∆DR→MSg̃2d =
1

24
gcβk(23g2 − 3g′

2
). (A.4d)

See e.g. [61] for more details on the origin of these contributions.
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A.2 Matching the SM to the THDM

The SM Higgs self-coupling is obtained in terms of the λi of the THDM by

λ(MA) =λtree + ∆λ (A.5)

with

λtree = λ1c
4
β + λ2s

4
β + 2(λ3 + λ4 + λ5)c2

βs
2
β + 4λ6c

3
βsβ + 4λ7cβs

3
β , (A.6)

∆λ = − 3k
{

(λ6 + λ7)c2β + (λ6 − λ7)c4β −
(
λ1c

2
β − λ2s

2
β − (λ3 + λ4 + λ5)c2β

)
s2β

}2
.

(A.7)

Plugging in the tree-level expressions for the λi from the matching of the THDM to the

MSSM, we recover the heavy Higgs contribution to the matching condition of the SM Higgs

self-coupling to the full MSSM given in eq. (10) of [37].

The top Yukawa coupling of the SM yt is related to the top Yukawa couplings of the

THDM via

yt(MA) =(htsβ + h′tcβ)

[
1− 3

8
k
(
htcβ − h′tsβ

)2]
. (A.8)

This correction corresponds to the heavy Higgs contribution to the threshold of the top

Yukawa coupling when matching the SM to the MSSM given in eq. (24) of [37].

A.3 Matching the THDM to the MSSM

At tree level the Higgs self-couplings of the THDM are given by

λ1,tree(MSUSY) = λ2,tree(MSUSY) =
1

4
(g2 + g′

2
), (A.9a)

λ3,tree(MSUSY) =
1

4
(g2 − g′2), (A.9b)

λ4,tree(MSUSY) = − 1

2
g2, (A.9c)

λ5,tree(MSUSY) = λ6,tree(MSUSY) = λ7,tree(MSUSY) = 0. (A.9d)

At one-loop level corrections arise from integrating out the stops, EWinos, as well as

from the transition from DR to MS. We split up the stop contribution into one part

originating from vertex corrections and another part originating from the wave function

renormalization (WFR) of the Higgs fields,

λi(MSUSY) = λi,tree + ∆Ver.Cor.λi + ∆WFRλi + ∆EWinosλi + ∆DR→MSλi. (A.10)
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The stop contributions have originally been calculated in [52]; they are listed here for

completeness. The vertex corrections from box and triangle diagrams are given by

∆Ver.Cor.λ1 = −1

2
kh4

t µ̂
4 +

3

4
k(g2 + g′

2
)h2
t µ̂

2, (A.11a)

∆Ver.Cor.λ2 = 6kh4
t Â

2
t

(
1− 1

12
Â2
t

)
− 3

4
(g2 + g′

2
)h2
t Â

2
t , (A.11b)

∆Ver.Cor.λ3 =
1

2
kµ̂2h4

t (3− Â2
t )−

3

8
k(g2 − g′2)h2

t (Â
2
t − µ̂2), (A.11c)

∆Ver.Cor.λ4 =
1

2
kµ̂2h4

t (3− Â2
t ) +

3

4
kg2h2

t (Â
2
t − µ̂2), (A.11d)

∆Ver.Cor.λ5 = −1

2
h4
t µ̂

2Â2
t , (A.11e)

∆Ver.Cor.λ6 =
1

2
kh4

t µ̂
3Ât −

3

8
k(g2 + g′

2
)h2
t µ̂Ât, (A.11f)

∆Ver.Cor.λ7 =
1

2
kh4

t µ̂Ât(Â
2
t − 6) +

3

8
k(g2 + g′

2
)h2
t µ̂Ât, (A.11g)

whereas the WFR corrections read

∆WFRλ1 = −2(Σ̂′11λ1 + Σ̂′12λ6), (A.12a)

∆WFRλ2 = −2(Σ̂′22λ2 + Σ̂′12λ7), (A.12b)

∆WFRλ3 = −(Σ̂′11 + Σ̂′22)λ3 − Σ̂′12(λ6 + λ7), (A.12c)

∆WFRλ4 = −(Σ̂′11 + Σ̂′22)λ4 − Σ̂′12(λ6 + λ7), (A.12d)

∆WFRλ5 = −(Σ̂′11 + Σ̂′22)λ5 − Σ̂′12(λ6 + λ7), (A.12e)

∆WFRλ6 = −1

2
(3Σ̂′11 + Σ̂′22)λ6 −

1

2
Σ̂′12(λ1 + λ3 + λ4 + λ5), (A.12f)

∆WFRλ7 = −1

2
(Σ̂′11 + 3Σ̂′22)λ7 −

1

2
Σ̂′12(λ2 + λ3 + λ4 + λ5), (A.12g)

where the Σ̂′ij =
(

∂
∂p2

Σ̂φiφj

)
|p2=0 are given by

Σ̂′11 =
1

2
kh2

t µ̂
2, (A.13a)

Σ̂′22 =
1

2
kh2

t Â
2
t , (A.13b)

Σ̂′12 = −1

2
kh2

t Âtµ̂. (A.13c)

The scheme change from DR to MS yields the additional contributions

∆DR→MSλ1,2 = − 1

12
k(7g4 + 6g2g′

2
+ 3g′

4
), (A.14a)

∆DR→MSλ3 = − 1

12
k(7g4 − 6g2g′

2
+ 3g′

4
), (A.14b)

∆DR→MSλ4 = −1

3
kg2(g2 + 3g′

2
), (A.14c)

∆DR→MSλ5,6,7 = 0, (A.14d)

which have already been calculated in [62].
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The EWino corrections can be obtained by replacing the effective Higgs-Higgsino-

Gaugino couplings ĝ1uu,1ud,... in the expression for matching the THDM to the

THDM+EWinos given below by their tree-level values.

Due to the wave-function renormalization, also β receives a threshold correction,

βTHDM = βMSSM +
1

2
∆Σ′H1H2

. (A.15)

∆Σ′H1H2
receives corrections from sfermions and EWinos,

∆Σ′H1H2

∣∣∣
f̃

=
1

4
kh2

t s2β(Ât − µ̂/tβ)(Ât + µ̂tβ), (A.16)

∆Σ′H1H2

∣∣∣
EWino

= −1

6
k(3g2 + g′

2
)c2β . (A.17)

Only when taking into account this threshold correction, can the well known one-loop

matching condition of λ (when matching the SM to the MSSM) be recovered from eq. (A.5)

considering the limit MA →MSUSY.

The top Yukawa couplings are obtained at the one-loop level via

hTHDM
t (MSUSY) =ht

{
1 + k

[
4

3
g2

3(1− Ât) + h2
t

(
F5(µ̂)− 1

4
Â2
t

)
+ g2

(
F1(µ̂)− 3

8

)
+ g′

2
(
F3(µ̂)− 1

72

)]}
, (A.18)

(h′t)
THDM(MSUSY) =htk

{
4

3
g2

3µ̂+
1

4
h2
t Âtµ̂+ g2F2(µ̂) + g′

2F4(µ̂)

}
. (A.19)

Here, we implicitly assume that M1 = M2 = µ.

The appearing functions are given by

F1(µ̂) =
3

16(1− µ̂2)2

[
7− 4µ̂2 − 3µ̂4 + 2µ̂2(8− 3µ̂2) ln µ̂2

]
, (A.20a)

F2(µ̂) =
3µ̂2

2(1− µ̂2)2

[
1− µ̂2 + ln µ̂2

]
, (A.20b)

F3(µ̂) =
1

144(1− µ̂2)2

[
(55− 32Âtµ̂+ 51µ̂2)(1− µ̂2) + 2µ̂2(72− 16Âtµ̂− 19µ̂2) ln µ̂2

]
,

(A.20c)

F4(µ̂) =
µ̂2

18(1− µ̂2)2

[
13(1− µ̂2) + (9 + 4µ̂2) ln µ̂2

]
, (A.20d)

F5(µ̂) =
3

8(1− µ̂2)2

[
− 1 + 4µ̂2 − 3µ̂4 + 2µ̂4 ln µ̂2

]
, (A.20e)
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with

F1(0) =
21

16
, F1(1) = −3

4
, (A.21a)

F2(0) = 0, F2(1) = −3

4
, (A.21b)

F3(0) =
55

144
, F3(1) = − 1

36
(9 + 4Ât), (A.21c)

F4(0) = 0, F4(1) = − 5

36
, (A.21d)

F5(0) = −3

8
, F5(1) = 0 (A.21e)

as limiting values.

A.4 Matching the THDM to the THDM+EWinos

We again split up the matching conditions for the Higgs self-couplings into a piece due to

vertex corrections and a piece due to wave-function renormalization,

λTHDM
i (Mχ) = λTHDM+EWinos

i + ∆Ver.Cor.λi + ∆WFRλi. (A.22)

The vertex corrections read

∆Ver.Cor.λ1 =− 1

12
k

[
7ĝ4

1dd + 16ĝ3
1ddĝ1du + 2ĝ2

1dd(9ĝ
2
1du + 7ĝ2

2dd + 8ĝ2ddĝ2du + ĝ2
2du)

+ 16ĝ1ddĝ1du

(
ĝ2

1du + (ĝ2dd + ĝ2du)2
)

+ 7ĝ4
1du

+ 2ĝ2
1du(ĝ2

2dd + 8ĝ2ddĝ2du + 7ĝ2
2du)

+ 3(ĝ2dd + ĝ2du)2(9ĝ2
2dd − 2ĝ2ddĝ2du + 9ĝ2

2du)

]
, (A.23a)

∆Ver.Cor.λ2 =− 1

12
k

[
7ĝ4

1ud + 16ĝ3
1udĝ1uu + 2ĝ2

1ud(9ĝ
2
1uu + 7ĝ2

2ud + 8ĝ2udĝ2uu + ĝ2
2uu)

+ 16ĝ1udĝ1uu

(
ĝ2

1uu + (ĝ2ud + ĝ2uu)2
)

+ 7ĝ4
1uu

+ 2ĝ2
1uu(ĝ2

2ud + 8ĝ2udĝ2uu + 7ĝ2
2uu)

+ 3(ĝ2ud + ĝ2uu)2(9ĝ2
2ud − 2ĝ2udĝ2uu + 9ĝ2

2uu)

]
, (A.23b)

∆Ver.Cor.λ3 =− 1

12
k

[
ĝ2

1dd(7ĝ
2
1ud + 8ĝ1udĝ1uu + 7ĝ2

1uu + 10ĝ2
2ud + 8ĝ2udĝ2uu + 4ĝ2

2uu)

+ 2ĝ1dd

(
2ĝ1du(2ĝ2

1ud + ĝ1udĝ1uu + 2ĝ2
1uu + 2ĝ2

2ud + ĝ2udĝ2uu + 2ĝ2
2uu)

− 3(ĝ1udĝ2ddĝ2ud + ĝ1udĝ2duĝ2uu + ĝ1uuĝ2ddĝ2uu − 3ĝ1uuĝ2duĝ2ud)
)

+ ĝ2
1du(7ĝ2

1ud + 8ĝ1udĝ1uu + 7ĝ2
1uu + 4ĝ2

2ud + 8ĝ2udĝ2uu + 10ĝ2
2uu)

− 6ĝ1du(−3ĝ1udĝ2ddĝ2uu + ĝ1udĝ2duĝ2ud+ĝ1uuĝ2ddĝ2ud+ĝ1uuĝ2duĝ2uu)

+ 10ĝ2
1udĝ

2
2dd + 8ĝ2

1udĝ2ddĝ2du + 4ĝ2
1udĝ

2
2du + 8ĝ1udĝ1uuĝ

2
2dd

+ 4ĝ1udĝ1uuĝ2ddĝ2du + 8ĝ1udĝ1uuĝ
2
2du + 4ĝ2

1uuĝ
2
2dd + 8ĝ2

1uuĝ2ddĝ2du
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+ 10ĝ2
1uuĝ

2
2du + 27ĝ2

2ddĝ
2
2ud + 24ĝ2

2ddĝ2udĝ2uu + 27ĝ2
2ddĝ

2
2uu

+ 24ĝ2ddĝ2duĝ
2
2ud − 12ĝ2ddĝ2duĝ2udĝ2uu + 24ĝ2ddĝ2duĝ

2
2uu

+ 27ĝ2
2duĝ

2
2ud + 24ĝ2

2duĝ2udĝ2uu + 27ĝ2
2duĝ

2
2uu

]
, (A.23c)

∆Ver.Cor.λ4 =− 1

12
k

[
ĝ2

1dd(7ĝ
2
1ud + 8ĝ1udĝ1uu + 4ĝ2

1uu − 5ĝ2
2ud − 4ĝ2udĝ2uu − 2ĝ2

2uu)

+ 2ĝ1dd

(
ĝ1du(4ĝ2

1ud + 5ĝ1udĝ1uu + 4ĝ2
1uu − 2ĝ2

2ud − ĝ2udĝ2uu − 2ĝ2
2uu)

+ 3
(
ĝ1ud(2ĝ2dd + ĝ2du)(2ĝ2ud + ĝ2uu)

+ ĝ1uu(2ĝ2ddĝ2ud + 4ĝ2ddĝ2uu − ĝ2duĝ2ud + 2ĝ2duĝ2uu)
))

+ ĝ2
1du(4ĝ2

1ud + 8ĝ1udĝ1uu + 7ĝ2
1uu − 2ĝ2

2ud − 4ĝ2udĝ2uu − 5ĝ2
2uu)

+ 6ĝ1du

(
ĝ1ud(2ĝ2ddĝ2ud − ĝ2ddĝ2uu + 4ĝ2duĝ2ud + 2ĝ2duĝ2uu)

+ ĝ1uu(ĝ2dd + 2ĝ2du)(ĝ2ud + 2ĝ2uu)
)
− 5ĝ2

1udĝ
2
2dd − 4ĝ2

1udĝ2ddĝ2du

− 2ĝ2
1udĝ

2
2du − 4ĝ1udĝ1uuĝ

2
2dd − 2ĝ1udĝ1uuĝ2ddĝ2du − 4ĝ1udĝ1uuĝ

2
2du

− 2ĝ2
1uuĝ

2
2dd − 4ĝ2

1uuĝ2ddĝ2du − 5ĝ2
1uuĝ

2
2du + 27ĝ2

2ddĝ
2
2ud

+ 24ĝ2
2ddĝ2udĝ2uu + 24ĝ2ddĝ2duĝ

2
2ud + 42ĝ2ddĝ2duĝ2udĝ2uu

+ 24ĝ2ddĝ2duĝ
2
2uu + 24ĝ2

2duĝ2udĝ2uu + 27ĝ2
2duĝ

2
2uu

]
, (A.23d)

∆Ver.Cor.λ5 =− 1

12
k

[
ĝ2

1dd(7ĝ
2
1ud + 8ĝ1udĝ1uu − 2ĝ2

1uu + 2ĝ2
2ud + 4ĝ2udĝ2uu − ĝ2

2uu)

+ 2ĝ1dd

(
ĝ1du(4ĝ2

1ud+11ĝ1udĝ1uu+4ĝ2
1uu+2ĝ2

2ud+7ĝ2udĝ2uu+2ĝ2
2uu)

+ ĝ1ud

(
ĝ2dd(5ĝ2ud + 2ĝ2uu) + 2ĝ2du(ĝ2ud + ĝ2uu)

)
+ ĝ1uu

(
ĝ2dd(2ĝ2ud − ĝ2uu) + 2ĝ2du(ĝ2ud + ĝ2uu)

))
+ ĝ2

1du(−2ĝ2
1ud + 8ĝ1udĝ1uu + 7ĝ2

1uu − ĝ2
2ud + 4ĝ2udĝ2uu + 2ĝ2

2uu)

+ 2ĝ1du

(
ĝ1ud

(
2ĝ2dd(ĝ2ud + ĝ2uu)− ĝ2du(ĝ2ud − 2ĝ2uu)

)
+ ĝ1uu

(
2ĝ2dd(ĝ2ud + ĝ2uu) + ĝ2du(2ĝ2ud + 5ĝ2uu)

))
+ 2ĝ2

1udĝ
2
2dd

+ 4ĝ2
1udĝ2ddĝ2du − ĝ2

1udĝ
2
2du + 4ĝ1udĝ1uuĝ

2
2dd + 14ĝ1udĝ1uuĝ2ddĝ2du

+ 4ĝ1udĝ1uuĝ
2
2du − ĝ2

1uuĝ
2
2dd + 4ĝ2

1uuĝ2ddĝ2du + 2ĝ2
1uuĝ

2
2du

+ 27ĝ2
2ddĝ

2
2ud + 24ĝ2

2ddĝ2udĝ2uu − 6ĝ2
2ddĝ

2
2uu + 24ĝ2ddĝ2duĝ

2
2ud

+ 54ĝ2ddĝ2duĝ2udĝ2uu + 24ĝ2ddĝ2duĝ
2
2uu − 6ĝ2

2duĝ
2
2ud

+ 24ĝ2
2duĝ2udĝ2uu + 27ĝ2

2duĝ
2
2uu

]
, (A.23e)

∆Ver.Cor.λ6 =− 1

12
k

[
ĝ3

1dd(7ĝ1ud + 4ĝ1uu) + ĝ2
1dd(12ĝ1duĝ1ud + 9ĝ1duĝ1uu

+ 7ĝ2ddĝ2ud + 4ĝ2ddĝ2uu + 4ĝ2duĝ2ud + ĝ2duĝ2uu)
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+ ĝ1dd

(
3ĝ2

1du(3ĝ1ud + 4ĝ1uu) + 8ĝ1du(ĝ2dd + ĝ2du)(ĝ2ud + ĝ2uu)

+ (ĝ2dd + ĝ2du)
(
ĝ1ud(7ĝ2dd + ĝ2du) + 4ĝ1uu(ĝ2dd + ĝ2du)

))
+ ĝ3

1du(4ĝ1ud + 7ĝ1uu) + ĝ2
1du(ĝ2ddĝ2ud + 4ĝ2ddĝ2uu + 4ĝ2duĝ2ud

+ 7ĝ2duĝ2uu) + ĝ1du(ĝ2dd + ĝ2du)
(

4ĝ1ud(ĝ2dd + ĝ2du)

+ ĝ1uu(ĝ2dd + 7ĝ2du)
)

+ 3(ĝ2dd + ĝ2du)
(
ĝ2

2dd(9ĝ2ud + 4ĝ2uu)

+ 3ĝ2ddĝ2du(ĝ2ud + ĝ2uu) + ĝ2
2du(4ĝ2ud + 9ĝ2uu)

)]
, (A.23f)

∆Ver.Cor.λ7 =− 1

12
k

[
ĝ1dd

(
7ĝ3

1ud + 12ĝ2
1udĝ1uu + ĝ1ud(9ĝ

2
1uu + 7ĝ2

2ud + 8ĝ2udĝ2uu + ĝ2
2uu)

+ 4ĝ1uu

(
ĝ2

1uu + (ĝ2ud + ĝ2uu)2
))

+ ĝ1du

(
4ĝ3

1ud + 9ĝ2
1udĝ1uu + 4ĝ1ud

(
3ĝ2

1uu + (ĝ2ud + ĝ2uu)2
)

+ ĝ1uu(7ĝ2
1uu + ĝ2

2ud + 8ĝ2udĝ2uu + 7ĝ2
2uu)

)
+ 7ĝ2

1udĝ2ddĝ2ud

+ 4ĝ2
1udĝ2ddĝ2uu + 4ĝ2

1udĝ2duĝ2ud + ĝ2
1udĝ2duĝ2uu + 8ĝ1udĝ1uuĝ2ddĝ2ud

+ 8ĝ1udĝ1uuĝ2ddĝ2uu + 8ĝ1udĝ1uuĝ2duĝ2ud + 8ĝ1udĝ1uuĝ2duĝ2uu

+ ĝ2
1uuĝ2ddĝ2ud + 4ĝ2

1uuĝ2ddĝ2uu + 4ĝ2
1uuĝ2duĝ2ud + 7ĝ2

1uuĝ2duĝ2uu

+ 27ĝ2ddĝ
3
2ud + 36ĝ2ddĝ

2
2udĝ2uu + 21ĝ2ddĝ2udĝ

2
2uu + 12ĝ2ddĝ

3
2uu

+ 12ĝ2duĝ
3
2ud + 21ĝ2duĝ

2
2udĝ2uu + 36ĝ2duĝ2udĝ

2
2uu + 27ĝ2duĝ

3
2uu

]
.

(A.23g)

The WFR corrections are identical to those listed in eqs. (A.12a)–(A.12g), but with

Σ̂′11 = −1

6
k
[
(ĝ1dd + ĝ1du)2 + 3(ĝ2dd + ĝ2du)2

]
(A.24a)

Σ̂′22 = −1

6
k
[
(ĝ1uu + ĝ1ud)

2 + 3(ĝ2uu + ĝ2ud)
2
]

(A.24b)

Σ̂′12 = −1

6
k
[
(ĝ1uu + ĝ1ud)(ĝ1dd + ĝ1du) + 3(ĝ2uu + ĝ2ud)(ĝ2dd + ĝ2du)

]
(A.24c)

The matching conditions of the top Yukawa coupling are purely due to wave-function

renormalization,

hTHDM
t (Mχ) = hTHDM+EWinos

t − 1

2
htΣ̂

′
22 −

1

2
h′tΣ̂

′
12, (A.25a)

(h′t)
THDM(Mχ) = (h′t)

THDM+EWinos − 1

2
h′tΣ̂

′
11 −

1

2
htΣ̂

′
12. (A.25b)

The threshold correction of β reads

βTHDM(MA) = βTHDM+EWinos +
1

2
∆Σ′H1H2

(A.26)

with

∆Σ′H1H2
= sβcβ

(
Σ̂′22 − Σ̂′11

)
+ c2βΣ̂′12 (A.27)
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In the limit of Mχ → MSUSY, we cross-checked the threshold corrections of λ1...7 against

the expressions given in [62] and found agreement.

A.5 Matching the SM+EWinos to the THDM+EWinos

Matching the SM+EWinos to the THDM+EWinos, the threshold corrections for the SM

Higgs self-coupling as well as the top Yukawa couplings are the same as in the case of

matching the SM to the THDM (see section A.2), since no corresponding unsuppressed

diagrams containing heavy Higgs as well as EWinos exist.

We split up the matching condition of the effective Higgs-Higgsino-Gaugino couplings

into a part due to vertex corrections and another one due to wave-function renormalization,

g̃i(MA) = g̃i,tree + ∆Ver.Cor.g̃i + ∆WFRg̃i. (A.28)

The vertex corrections are given by

∆Ver.Cor.g̃2u =
1

2
(ĝ2udcβ − ĝ2ddsβ)

[
(ĝ2ddĝ2uu − ĝ1ddĝ1uu)c2

β

+ (ĝ1ddĝ1du − ĝ1udĝ1uu − ĝ2ddĝ2du + ĝ2udĝ2uu)sβcβ

+ (ĝ1duĝ1ud − ĝ2duĝ2ud)s
2
β

]
, (A.29a)

∆Ver.Cor.g̃2d =
1

2
(ĝ2uucβ − ĝ2dusβ)

[
(ĝ2duĝ2ud − ĝ1duĝ1ud)c

2
β

+ (ĝ1ddĝ1du − ĝ1udĝ1uu − ĝ2ddĝ2du + ĝ2udĝ2uu)sβcβ

+ (ĝ1uuĝ1dd − ĝ2ddĝ2uu)s2
β

]
, (A.29b)

∆Ver.Cor.g̃1u =
1

2
(ĝ1udcβ − ĝ1ddsβ)

[
− (ĝ1uuĝ1dd + 3ĝ2uuĝ2dd)c

2
β

+ (ĝ1ddĝ1du − ĝ1uuĝ1ud − 3ĝ2uuĝ2ud + 3ĝ2ddĝ2du)sβcβ

+ (ĝ1duĝ1ud + 3ĝ2duĝ2ud)s
2
β

]
, (A.29c)

∆Ver.Cor.g̃1d =
1

2
(ĝ1uucβ − ĝ1dusβ)

[
− (ĝ1duĝ1ud + 3ĝ2duĝ2ud)c

2
β

+ (ĝ1ddĝ1du − ĝ1uuĝ1ud − 3ĝ2uuĝ2ud + 3ĝ2ddĝ2du)sβcβ

+ (ĝ1uuĝ1dd + 3ĝ2uuĝ2dd)s
2
β

]
. (A.29d)

The wave-function renormalization contributions read

∆WFRg̃2u =− 1

16
(ĝ2uusβ + ĝ2ducβ)

[
(ĝ2

1uu + 2ĝ2
2ud + 5ĝ2

2uu)c2
β

− 2(ĝ1uuĝ1du + 2ĝ2ddĝ2ud + 5ĝ2uuĝ2du)sβcβ

+ (ĝ2
1du + 2ĝ2

2dd + 5ĝ2
2du)s2

β

]
, (A.30a)
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∆WFRg̃2d =− 1

16
(ĝ2ddcβ + ĝ2udsβ)

[
(ĝ2

1ud + 5ĝ2
2ud + 2ĝ2

2uu)c2
β

− 2(ĝ1ddĝ1ud + 5ĝ2ddĝ2ud + 2ĝ2uuĝ2du)sβcβ

+ (ĝ2
1dd + 5ĝ2

2dd + 2ĝ2
2du)s2

β

]
, (A.30b)

∆WFRg̃1u =− 1

16
(ĝ1uusβ + ĝ1ducβ)

[
(3ĝ2

1uu + 2ĝ2
1ud + 3ĝ2

2uu)c2
β

− 2(2ĝ1ddĝ1ud + 3ĝ1uuĝ1du + 3ĝ2uuĝ2du)sβcβ

+ (2ĝ2
1dd + 3ĝ2

1du + 3ĝ2
2du)s2

β

]
, (A.30c)

∆WFRg̃1d =− 1

16
(ĝ1ddcβ + ĝ1udsβ)

[
(2ĝ2

1uu + 3ĝ2
1ud + 3ĝ2

2ud)c
2
β

− 2(3ĝ1ddĝ1ud + 2ĝ1uuĝ1du + 3ĝ2ddĝ2ud)sβcβ

+ (3ĝ2
1dd + 2ĝ2

1du + 3ĝ2
2dd)s

2
β

]
. (A.30d)

A.6 Matching the THDM+EWinos to the MSSM

The threshold corrections for β and λi are obtained by taking the respective ones from the

matching of the THDM to the MSSM but removing the EWino contributions.

The matching conditions of the effective Higgs-Higgsino-Gaugino couplings, only re-

ceive corrections due to sfermions, given by the expressions (at the scale MSUSY)

∆f̃ ĝ1uu = g′k

(
−5

2
g′

2
+

1

4
h2
t (9− Â2

t )

)
, (A.31a)

∆f̃ ĝ2uu = gk

(
−3

2
g2 +

1

4
h2
t (9− Â2

t )

)
, (A.31b)

∆f̃ ĝ1dd = −g′k
(

5

2
g′

2
+

1

4
h2
t µ̂

2

)
, (A.31c)

∆f̃ ĝ2dd = −gk
(

3

2
g2 +

1

4
h2
t µ̂

2

)
, (A.31d)

and

∆f̃ ĝ1ud = g′ · 1

4
kh2

t Âtµ̂, (A.32a)

∆f̃ ĝ2ud = g · 1

4
kh2

t Âtµ̂, (A.32b)

∆f̃ ĝ1du = g′ · 1

4
kh2

t Âtµ̂, (A.32c)

∆f̃ ĝ2du = g · 1

4
kh2

t Âtµ̂. (A.32d)

In the limit MA → MSUSY, we recover the corresponding matching conditions of the

SM+EWinos to the MSSM, given in eqs. (A.2a) and (A.2d) only if correctly taking into

account the threshold corrections of tan β.
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The corrections due to the change of the regularization scheme read

∆DR→MSĝ1uu = −1

8
g′k(3g2 + g′

2
), (A.33a)

∆DR→MSĝ2uu =
1

24
gk(23g2 − 3g′

2
), (A.33b)

∆DR→MSĝ1dd = −1

8
g′k(3g2 + g′

2
), (A.33c)

∆DR→MSĝ2dd =
1

24
gk(23g2 − 3g′

2
), (A.33d)

∆DR→MSĝ1du = ∆DR→MSĝ1ud = ∆DR→MSĝ2du = ∆DR→MSĝ2ud = 0. (A.33e)

A.7 Two-loop O(αsαt) threshold corrections

For deriving the O(αsαt) threshold corrections for the quartic couplings λi, we follow

the strategy outlined in [38]. As the authors of [38] pointed out, the O(αsαt) threshold

corrections do not depend on tan β. Therefore, they can be extracted from the threshold

correction for the SM quartic coupling λ in the case MA ∼MSUSY from matching the SM

to the MSSM by selecting the coefficients of the various β-dependent terms according to

eq. (2.65) and eq. (2.22).

In contrast to the MS scheme employed in [38], we use the DR scheme. Expressing

the one-loop threshold corrections in terms of XDR
t and the MSSM DR-renormalized top

Yukawa coupling hMSSM
t , the two-loop O(αsαt) threshold correction for λ at MSUSY reads

as follows [37],

∆αsαtλ = −4

3
k2g2

3h
4
t s

4
βX̂t

(
24− 12X̂t − 4X̂2

t + X̂3
t

)
. (A.34)

Inserting X̂t from eq. (3.14) and selecting the terms proportional to (c4
β , s

4
β , c

2
βs

2
β , c

3
βsβ , cβs

3
β)

yields

∆αsαtλ1 = −4

3
k2g2

3h
4
t µ̂

4, (A.35a)

∆αsαtλ2 = 16k2g2
3h

4
t

(
− 2Ât + Â2

t +
1

3
Â3
t −

1

12
Â4
t

)
, (A.35b)

∆αsαtλ345 = 8k2g2
3h

4
t µ̂

2

(
1 + Ât −

1

2
Â2
t

)
, (A.35c)

∆αsαtλ6 =
4

3
k2g2

3h
4
t µ̂

3

(
− 1 + Ât

)
, (A.35d)

∆αsαtλ7 = 4k2g2
3h

4
t µ̂

(
2− 2Ât − Â2

t +
1

3
Â3
t

)
, (A.35e)

where λ345 = λ3 +λ4 +λ5. These expressions are valid under assumption of Mg̃ = MSUSY.

In the case Mg̃ �MSUSY, the SM-MSSM O(αsαt) threshold correction reads [37]

∆
low Mg̃
αsαt λ = −8

3
k2g2

3h
4
t s

4
β

(
9− 12X̂t + X̂4

t

)
. (A.36)
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Selecting again the terms proportional to (c4
β , s

4
β , c

2
βs

2
β , c

3
βsβ , cβs

3
β) yields

∆
low Mg̃
αsαt λ1 = −8

3
k2g2

3h
4
t µ̂

4, (A.37a)

∆
low Mg̃
αsαt λ2 = −8

3
k2g2

3h
4
t

(
9− 12Â2

t + Â4
t

)
, (A.37b)

∆
low Mg̃
αsαt λ345 = 8k2g2

3h
4
t µ̂

2

(
2− Â2

t

)
, (A.37c)

∆
low Mg̃
αsαt λ6 =

8

3
k2g2

3h
4
t Âtµ̂

3, (A.37d)

∆
low Mg̃
αsαt λ7 = −8

3
k2g2

3h
4
t µ̂

(
6− Â2

t

)
. (A.37e)

Using this method, we get only an information about the sum λ345, leaving thus some

arbitrariness. We follow the arrangement in [38], assigning

∆αsαtλ3 =
1

2
∆αsαtλ345, (A.38a)

∆αsαtλ4 =
1

2
∆αsαtλ345, (A.38b)

∆αsαtλ5 = 0, (A.38c)

∆
low Mg̃
αsαt λ3 =

1

2
∆

low Mg̃
αsαt λ345, (A.38d)

∆
low Mg̃
αsαt λ4 =

1

2
∆

low Mg̃
αsαt λ345, (A.38e)

∆
low Mg̃
αsαt λ5 = 0. (A.38f)

Other possible distributions yield numerically very similar results.

B Difference in field normalization

In this appendix, we give explicit formulas for the difference of the field normaliza-

tion between MSSM and THDM fields. The expressions are valid up to terms of

O(Mt/MSUSY,MA/MSUSY,Mt/MA).

The contribution from sfermions is given by

∆f̃Σ′11 =
1

2
kh2

t µ̂
2, (B.1)

∆f̃Σ′12 = −1

2
kh2

t Âtµ̂, (B.2)

∆f̃Σ′22 =
1

2
kh2

t Â
2
t . (B.3)

The contribution from electroweakinos reads

∆χΣ′11 = −1

6
k
(

3g2 + g′
2
)(

1 + 3 ln
M2
χ

Q̂2

)
, (B.4)

∆χΣ′12 = −1

6
k
(

3g2 + g′
2
)
, (B.5)

∆χΣ′22 = −1

6
k
(

3g2 + g′
2
)(

1 + 3 ln
M2
χ

Q̂2

)
. (B.6)
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In addition, also all non SUSY particles, i.e. the particles of the THDM, yield a contribution

if the renormalization scales of the THDM and the MSSM are not equal,

∆THDMΣ′11 = −1

2
k
(

3g2 + g′
2
)

ln
Q̂2

Q̃2
, (B.7)

∆THDMΣ′12 = 0, (B.8)

∆THDMΣ′22 = −1

2
k
(

3g2 + g′
2
)

ln
Q̂2

Q̃2
+ 3kh2

t ln
Q̂2

Q̃2
, (B.9)

with Q̂ being the renormalization scale of the MSSM and Q̃ the scale of the THDM.

C Dependence on field renormalization constants

Here, we specify in more detail how the renormalized two-loop self-energies are influenced

by field renormalization. The discussion is valid in the limit of vanishing electroweak gauge

couplings (gaugeless limit), which is the current approximation applied for the two-loop

fixed-order corrections implemented in FeynHiggs. The notation follows closely that of [30],

where also more details about the renormalization as well as the applied approximations

can be found.

Field renormalization is performed by rescaling the original MSSM Higgs fields, intro-

ducing loop-expanded renormalization constants up to the two-loop level,(
φ̂1

φ̂2

)
→

(
1 + 1

2δ
(1)Z11 + 1

2∆(2)Z11
1
2δ

(1)Z12 + 1
2∆(2)Z12

1
2δ

(1)Z12 + 1
2∆(2)Z12 1 + 1

2δ
(1)Z22 + 1

2∆(2)Z22

)(
φ̂1

φ̂2

)
(C.1)

with

∆(2)Zij := δ(2)Zij −
1

4

(
δ(1)Zij

)2
. (C.2)

In extension of [30], we also allow for the possibility of non-diagonal field renormaliza-

tion terms.

Similarly, we introduce field renormalization constants in the mass eigenstate basis,(
h

H

)
→

(
1 + 1

2δ
(1)Zhh + 1

2δ
(2)Zhh

1
2δ

(1)ZhH + 1
2δ

(2)ZhH

1
2δ

(1)ZhH + 1
2δ

(2)ZhH 1 + 1
2δ

(1)ZHH + 1
2δ

(2)ZHH

)(
h

H

)
. (C.3)

These field renormalization constants are related to the ones in the gauge basis via

δ(1)Zhh = s2
αδ

(1)Z11 − s2αδ
(1)Z12 + c2

αδ
(1)Z22, (C.4a)

δ(1)ZhH = −sαcα
(
δ(1)Z11 − δ(1)Z22

)
+ c2αδ

(1)Z12, (C.4b)

δ(1)ZHH = c2
αδ

(1)Z11 + s2αδ
(1)Z12 + s2

αδ
(1)Z22, (C.4c)

δ(1)ZAA = s2
βδ

(1)Z11 − s2βδ
(1)Z12 + c2

βδ
(1)Z22, (C.4d)

δ(1)ZAG = −sβcβ
(
δ(1)Z11 − δ(1)Z22

)
+ c2βδ

(1)Z12 , (C.4e)

– 41 –



J
H
E
P
0
7
(
2
0
1
8
)
1
8
2

and at the two-loop level,

δ(2)Zhh = s2
α∆(2)Z11 − s2α∆(2)Z12 + c2

α∆(2)Z22, (C.5a)

δ(2)ZhH = −sαcα
(

∆(1)Z11 −∆(2)Z22

)
+ c2α∆(2)Z12, (C.5b)

δ(2)ZHH = c2
α∆(2)Z11 + s2α∆(2)Z12 + s2

α∆(2)Z22, (C.5c)

δ(2)ZAA = s2
β∆(2)Z11 − s2β∆(2)Z12 + c2

β∆(2)Z22, (C.5d)

δ(2)ZAG = −sβcβ
(

∆(2)Z11 −∆(2)Z22

)
+ c2β∆(2)Z12. (C.5e)

In the following we set α = β − π
2 , according to the gaugeless limit.

Moreover, we set the external momentum p2 to zero in the two-loop self-energies, as it

is the default setting for the two-loop corrections in FeynHiggs.7 The renormalized two-

loop self-energies are composed of the unrenormalized self-energies and the corresponding

two-loop counterterms,

Σ̂
(2)
hh (0) = Σ

(2)
hh (0)− δ(2)mZ

h , (C.6a)

Σ̂
(2)
hH(0) = Σ

(2)
hH(0)− δ(2)mZ

hH , (C.6b)

Σ̂
(2)
HH(0) = Σ

(2)
HH(0)− δ(2)mZ

H . (C.6c)

The counterterms can be written in the following way,

δ(2)mZ
h =

1

4
M2
A

(
δ(1)ZhH

)2
+ δ(1)Zhh δ

(1)m2
h + δ(1)ZhH δ

(1)m2
hH + δ(2)m2

h, (C.7a)

δ(2)mZ
hH =

1

2

[(
δ(1)Zhh + δ(1)ZHH

)
δ(1)m2

hH + δ(1)ZhH

(
δ(1)m2

h + δ(1)m2
H

)]
+

1

4
M2
A δ

(1)ZHH δ
(1)ZhH +

1

2
M2
A δ

(2)ZhH + δ(2)m2
hH , (C.7b)

δ(2)mZ
H = M2

A

[
δ(2)ZHH +

1

4

(
δ(1)ZHH

)2
]

+ δ(1)ZHH δ
(1)m2

H + δ(1)ZhH δ
(1)m2

hH + δ(2)m2
H , (C.7c)

involving field renormalization constants and mass counterterms of one-and two-loop order.

The two-loop mass counterterms are given by

δ(2)m2
h = M2

Ac
4
β

(
δ(1)tβ

)2
− e

2MW sW
c2
β δ

(1)tβ δ
(1)TH

− e

2MW sW

[
δ(2)Th + δ(1)Th δ

(1)ZW

]
, (C.8a)

δ(2)m2
hH = M2

Ac
2
β δ

(2)tβ + c2
β δ

(1)M2
A δ

(1)tβ −M2
Ac

3
βsβ

(
δ(1)tβ

)2

− e

2MW sW

[
δ(2)TH + δ(1)TH δ

(1)ZW

]
, (C.8b)

δ(2)m2
H = δ(2)M2

A. (C.8c)

7For the inclusion of non-zero external momentum at the two-loop level see [63–66].
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They involve the tadpole counterterms, the counterms for tan β, as well as the renormaliza-

tion constants of the electric charge, of the W -boson mass, and of sin θW in the combination

δ(1)ZW =
δ(1)e

e
− δ(1)MW

MW
− δ(1)sW

sW
. (C.9)

Also required are the one-loop mass counterterms,

δ(1)m2
h = − e

2MW sW
δ(1)Th, (C.10a)

δ(1)m2
hH = M2

Ac
2
β δ

(1)tβ −
e

2MW sW
δ(1)TH , (C.10b)

δ(1)m2
H = δ(1)M2

A, (C.10c)

δ(1)m2
AG = −M2

Ac
2
β δ

(1)tβ +
e

2MW sW
δ(1)TH . (C.10d)

At the one-loop level, the renormalization of tan β is given by the counterterm

δ(1)tβ =
1

2
tβ

(
δ(1)Z22 − δ(1)Z11

)
+

1

2

(
1− t2β

)
δ(1)Z12. (C.11)

In the gaugeless limit and with the top Yukawa couplings only, the corresponding two-loop

counterterm for tan β reads as follows,

δ(2)tβ =
1

2
tβ

(
δ(2)Z22 − δ(2)Z11

)
+

1

2

(
1− t2β

)
δ(2)Z12

+
1

8
tβ

[
3
(
δ(1)Z11

)2
−
(
δ(1)Z22

)2
]
− 1

8

(
1 + 2tβ − t2β − 2t3β

) (
δ(1)Z12

)2

− 1

4
tβ δ

(1)Z11 δ
(1)Z22 −

1

4

(
1− 2t2β

)
δ(1)Z11 δ

(1)Z12 −
1

4
t2β δ

(1)Z12 δ
(1)Z22. (C.12)

Since we work in the real MSSM, the A-boson mass is used as a renormalized input parame-

ter, with the counterterms determined by mass renormalization at one- and two-loop order,

δ(1)M2
A = Σ

(1)
AA(0)−M2

A δ
(1)ZAA, (C.13)

δ(2)M2
A = Σ

(2)
AA(0)−M2

A

[
δ(2)ZAA +

1

4

(
δ(1)ZAA

)2
]

− δ(1)ZAA δ
(1)M2

A − δ(1)ZAG δ
(1)m2

AG, (C.14)

where the external momentum in the A-boson self-energy is set to zero according to our

approximation.

The tadpole counterterms are fixed by the requirement that the renormalized tadpoles

vanish at the one- and two-loop level,

T
(1)
h,H + δ(1)Th,H = 0, (C.15)

T
(2)
h,H + δ(2)TZ

h,H = 0, (C.16)
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where T
(i)
h,H are the i-loop unrenormalized tadpoles of the h and H fields. The two-loop

counterterms include field renormalization and are given by

δ(2)TZ
h =

1

2

(
δ(1)Zhh δ

(1)Th + δ(1)ZhH δ
(1)TH

)
+ δ(2)Th, (C.17a)

δ(2)TZ
H =

1

2

(
δ(1)ZHH δ

(1)TH + δ(1)ZhH δ
(1)Th

)
+ δ(2)TH . (C.17b)

With the conditions above all renormalization constants entering the renormalized self-

energies in eq. (C.6) are determined.

The two-loop field renormalization constants appear exclusively in the Z-dependent

two-loop counterterms of eq. (C.6), either directly or through the two-loop mass, tadpole

and tanβ counterterms. In the combinations of eq. (C.7) they completely drop out and

hence are not needed for the renormalized self-energies (C.6). This was already noted for

the diagonal field counterterms in [30] for the O(α2
t ) corrections.

The one-loop field renormalization constants δ(1)Zij enter the two-loop renormalized

self-energies eq. (C.6) both through the counterterms and through the unrenormalized self-

energies via one-loop subrenormalization. We extract the following dependence on δ(1)Zij ,

Σ̂
(2)
hh (0)

∣∣∣
δZ

= Σ
(2)
hh (0)

∣∣∣
δZ
− e

2sWMW

(
T

(2)
h

∣∣∣
δZ

+
1

2
s2
βT

(1)
h δ(1)Zhh

)
, (C.18a)

Σ̂
(2)
hH(0)

∣∣∣
δZ

= Σ
(2)
hH(0)

∣∣∣
δZ
− e

2sWMW

(
T

(2)
H

∣∣∣
δZ

+
1

2
s2
βT

(1)
H δ(1)Zhh

)
, (C.18b)

Σ̂
(2)
HH(0)

∣∣∣
δZ

= Σ
(2)
HH(0)

∣∣∣
δZ
− Σ

(2)
AA(0)

∣∣∣
δZ

. (C.18c)

The subscript δZ indicates that only terms proportional to any of the field renormalization

constants are kept. As a cross-check, we verified that adding a finite part to any δ(1)Zij
does not lead to additional divergencies. This is important for our method in section 3 to

incorporate the different normalization of the THDM fields as a finite shift in the one-loop

field renormalization constants of the MSSM.

D Scheme conversion for low MA

In this appendix, we list the formulas necessary to convert the parameters of the stop sector

from the OS to the DR scheme. Building upon the expressions given in [16, 36], we extend

those to the case of MA 6= MS .

First, we give the expression for calculating the DR top quark mass of the MSSM in

terms of the OS top quark mass,(
mDR
t

)2
(Q) = M2

t

{
1− 8

3
kg2

3

[
5 + 3 ln

Q2

m2
t

+ ln
M2
S

Q2
− X̂t

]
+

3

2
k
y2
t

s2
β

[
c2
β

(
1

2
− ln

M2
A

Q2

)
+ s2

β

(
8

3
+ ln

Q2

m2
t

)
− ln

M2
S

Q2
+

1

2
− µ̂2f2(µ̂)

]}
.

(D.1)
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with MS being the stop mass scale (M2
S ≡ mt̃1

mt̃2
with mt̃i

being the stop masses). For

the conversion of this stop mass scale, we get(
MDR
S

)2
(Q) =

(
MOS
S

)2{
1− 16

3
kg2

3

[
2− ln

M2
S

Q2

]
+

3

4
ky2

t

[
2

t2β
M̂2
A ln

M2
S

M2
A

+
2

t2β
M̂2
A

(
1− ln

M2
S

Q2

)
+

1

t2β
Ŷ 2
t

(
M̂2
A ln

M2
S

M2
A

+ (4− M̂2
A)fA(M̂A) + 4− 2 ln

M2
S

Q2

)
+ 4X̂2

t

(
1− 1

2
ln
M2
S

Q2

)
+

2

s2
β

(
µ̂4 ln µ̂2 + (1− µ̂2)

(
3− 2 ln

M2
S

Q2

)
− (1− µ̂2)2 ln(1− µ̂2)

)]}
,

(D.2)

and for the conversion of the stop mixing parameter,

XDR
t (Q) = MOS

S

{
X̂OS
t +

4

3
kg2

3

[
8 + 5X̂t − X̂2

t + 3X̂tL

]
+

1

4
ky2

t

[
6

t2β
Ŷt

(
M̂2
A ln

M2
S

M2
A

+ (4− M̂2
A)fA(M̂A) + 2 ln

M2
S

Q2
− 4

)
− 3

t2β
X̂t ln

M2
S

M2
A

+
1

2
X̂t

(
35− 6 ln

M2
S

m2
t

− 24 ln
M2
S

Q2
+

24

s2
β

(
1− ln

M2
S

Q2

))
− 6

s2
β

X̂t

(
1− µ̂2 +

1

2
f2(µ̂) + µ̂4 ln µ̂2 + (1− µ̂4) ln(1− µ̂2)

)
+

3

t2β
X̂tŶ

2
t

(
(1− M̂2

A) ln
M2
S

M2
A

− (3− M̂2
A)fA(M̂A)− 2

)
+ X̂3

t

(
3 ln

M2
S

m2
t

− 4 ln 2− 6 ln |X̂t|
)]}

. (D.3)

The appearing loop function fA depending on M̂A ≡MA/MS is defined by

fA(M̂A) =
M̂A√

4− M̂2
A

[
arctan

(
M̂A

√
4− M̂2

A

2− M̂2
A

)
− π

]
(D.4)

with the limiting values

fA(0) = 0, fA(1) = − 2

3
√

3
π . (D.5)
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