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aUniversité Libre de Bruxelles and International Solvay Institutes,

ULB-Campus Plaine CP231, B-1050 Brussels, Belgium
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1 Introduction

The BMS symmetry was originally discovered at null infinity in the context of gravitational

radiation in asymptotically flat spacetimes [1–6]. A major development in the field has been

the realization that soft graviton theorems could be interpreted as Ward identities for the

BMS asymptotic symmetries (for a review, see [7]). Now, Ward identities can only be

derived from bona fide conserved charges. This raises the question of constructing the

BMS charges that canonically generate the BMS symmetries.

The question is not entirely trivial since it has been long appreciated that at null

infinity, the natural concepts to be considered are fluxes, rather than charges, which are

not conserved whenever the fluxes are non zero [8–11]. The symmetries are in fact not

even canonically generated and the association of functions with symmetries is therefore

intricate. The situation is somewhat analogous to the dynamics of a system in a box

with semi-permeable boundary conditions that allow non-vanishing outgoing (or incom-

ing) fluxes. Hypersurfaces that “reach” null infinity are non-Cauchy. As one moves from

one non-Cauchy hypersurface to the next, the past (or future) development shrinks with

information leaking to (or coming from) null infinity. It is only when the fluxes at null

infinity (known as “the news” in the gravitational case) vanish that one recovers a standard

Hamiltonian picture.
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By contrast, the description of the dynamics on Cauchy hypersurfaces is Hamilto-

nian even if there is gravitational radiation, since Cauchy hypersurfaces capture the whole

dynamical system. There is no flux at spatial infinity and any symmetry is directly gen-

erated by a conserved charge that can be determined by standard canonical techniques,

without having to impose the physically rather restrictive condition that the news is zero.

The charge-generators for the full BMS group, including supertranslations, can thus be

worked out in principle at spatial infinity, by considering the dynamical variables on

Cauchy hypersurfaces.

Until recently, however, Hamiltonian analyses at spatial infinity failed to exhibit the

BMS4 algebra as a genuine asymptotic symmetry with well-defined charges. Either the

boundary conditions were invariant under a bigger infinite-dimensional algebra, but the el-

ements of that algebra had generically divergent charges; or the boundary conditions, taken

to be more restrictive to avoid these divergences, admitted then as non-trivial canonical

asymptotic symmetries only the finite-dimensional Poincaré algebra.

In order to resolve this somewhat schizophrenic tension between null infinity and spatial

infinity, a new set of boundary conditions were given in [12] for pure gravity at spatial

infinity. These new conditions were shown to be invariant under BMS4 supertranslations,

which acted non-trivially. But they had two unsatisfactory features. The first is that they

excluded solutions with non-zero gravitational magnetic charges, such as the Taub-NUT

metric. The second was the presence of solutions that developed logarithmic divergences

at null infinity and broke the differentiability conditions usually accepted there (while

remaining finite at spatial infinity) [13].

A similar difficulty was pointed out in [14] for electromagnetism and solved there.

Following the lines of that article (in which the results of the present note were in fact

announced), we give here a new set of boundary conditions for gravity at spatial infinity

that keeps the good properties of the boundary conditions of [12] while avoiding their

annoying features. To be specific, these boundary conditions are such that

1. Solutions with gravitational magnetic mass belong to the phase-space so defined (in

addition to solutions with gravitational electric mass such as Schwarzschild or Kerr).

2. The symplectic form, and thus the kinetic term in the action, is finite.

3. The asymptotic symmetry is the BMS4 algebra, all elements of which have well-

defined canonical generators.

We then extend the analysis to the coupled Einstein-Maxwell system. We also compute

the Poisson brackets of the charges and verify that their algebra is the natural semi-

direct product of the BMS4 algebra with the abelian algebra of angle-dependent u(1)

transformations.1

1The charges are given by surface contributions plus weakly vanishing bulk terms. The bulk terms

are arbitrary but can be determined by means of gauge conditions, corresponding to the fact that global

symmetries are determined up to (proper) gauge transformations in the absence of gauge fixing. Once gauge

conditions are imposed, one must use the corresponding Dirac bracket instead of the Poisson bracket. For

gauge-invariant observables, however, the two coincide (up to weakly vanishing terms set anyway strongly
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Our paper is organized as follows. We first consider pure gravity. In section 2, we

explain the general idea underlying the choice of boundary conditions, starting from the

pioneering work [15] where parity conditions were imposed asymptotically. We then give

in section 3 the precise form of these boundary conditions. To streamline the presentation,

we first give their explicit form, which turns out to be unexpectedly simple, and verify next

that they possess all the good properties that they should have. In section 4, we review

the asymptotic structure of free electromagnetism in Minkowski space and then combine

it with the gravitational one in order to describe the asymptotic structure of the Einstein-

Maxwell system. Section 5 is devoted to conclusions and comments, including a discussion

of the connection with other works. In appendix A, we give more details on the structure

of the new asymptotic conditions for gravity.

We close this introductory section with an important question. Why can one state

that the BMS4 symmetries exhibited at spatial infinity are the same BMS4 symmetries

found at null infinity? This question was answered already in [12–14], but since this is an

important point, we examine it again here from a somewhat more conceptual standpoint.

A symmetry is a transformation that leaves the action invariant. Symmetries are con-

veniently discussed in the Hamiltonian formulation, where the action is S[qi(t), pi(t)] =´
dt
(
piq̇

i −H
)
. The Hamiltonian can have an explicit time dependence. A symmetry

transformation must preserve the kinetic term of the action and so must be a canonical

transformation. Let G be its generator. It is a phase space function that may depend ex-

plicitly on t. The action will be completely invariant (up to a term at the time boundaries)

if and only if dG
dt ≡

∂G
∂t + [G,H] = 0. This equation shows that giving a symmetry trans-

formation at a time t0, say, (i.e., its generator G(t0)), determines it uniquely at all times.

The same is true in field theory: giving a symmetry on a Cauchy hypersurface determines

it everywhere (modulo proper gauge transformations [16] in the case of gauge theories).

The same is also true for asymptotic symmetries where the relevant dynamics is the

asymptotic dynamics, which is fixed once one has chosen the time slicing at infinity. In the

case relevant to our question, in order to do the matching between spatial infinity and null

infinity, one must integrate the equation for the symmetry generator from the given Cauchy

hypersurface to the “critical spheres”, i.e., the past of future null infinity and the future of

past null infinity. To that end, it is convenient to blow up spatial infinity, which is a single

point in Penrose’s compactification [4], to a cylinder bounded by the critical spheres, and

to adopt a time slicing that covers that cylinder, such as hyperbolic coordinates [17–21]

or the coordinates introduced in [22–24]. In practice, since any transformation that leaves

the action invariant also maps solutions on solutions, one can determine the asymptotic

symmetry from its “initial data” by requesting that the equations of motion at infinity be

preserved. This is the method followed in [12–14] for pure gravity and the Einstein-Maxwell

system, leading to a precise (and somewhat subtle) matching between the descriptions of

the BMS4 symmetry at spatial infinity and at null infinity.

equal to zero) — and coincide also with the reduced phase space Poisson bracket. For that reason, it has

become customary not to make the distinction between Poisson and Dirac brackets in this context.
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2 Parity conditions

Our boundary conditions strongly rely on the approach developed in [15], where parity

conditions were imposed on the leading orders of the asymptotic fields.

The rationale behind the parity conditions can be understood as follows. If one con-

siders the usual asymptotics for gravity without parity conditions, the bulk integral of the

symplectic structure acquires a logarithmic divergence for generic configurations. Now, a

finite symplectic form is necessary for having a well-defined canonical structure. In order

to cancel the divergence, one must therefore restrict further the asymptotic fields. This

can be done by means of parity conditions.

The natural choice for these parity conditions [15] is such that the resulting symmetry

algebra reduces to the exact symmetries of the background, i.e., the Poincaré algebra. This

is because any supertranslation which is not a translation is either trivial — i.e., is pure

gauge with zero charge — or forbidden — i.e., does not preserve the parity conditions. A

different choice of parity conditions must thus be considered.

The different boundary conditions proposed in [12] involve a twist in the parity condi-

tions for the leading orders of the angular components of the metric. These new conditions,

while still being Lorentz invariant, keep the symplectic structure finite and allow for the

non-trivial enhancement of the asymptotic symmetry algebra to the BMS4 algebra. How-

ever, as we pointed out above, the twist implies that solutions with non-zero gravitational

magnetic charges, like the Taub-NUT metric, are not part of the phase-space. Furthermore,

the new boundary conditions generically lead to divergences in the magnetic components

of the Weyl tensor as one goes to null infinity. As suggested by the analysis of [25], se-

lecting appropriate parity conditions is a key step in order to remove divergences. How,

then, can one devise new boundary conditions that allow for a non trivial action of the

BMS4 group without leading to these undesirable features? The way out is suggested by

electromagnetism.

Electromagnetism enlarges further the symmetry by introducing asymptotic angle-

dependent u(1) transformations, which were identified at null infinity in [26, 27]. A similar

picture holds, namely, that the angle-dependent u(1) transformations are not canonically

generated at null infinity whenever the “electromagnetic news function” does not vanish. In

order to exhibit the conserved charge-generators, the precise asymptotic structure of elec-

tromagnetism at spatial infinity (i.e., on Cauchy hypersurfaces) has been studied in [14]

(earlier important work include [28]). Again, the symplectic structure diverges unless one

imposes extra conditions which can be parity conditions. The natural parity conditions,

given in [29], suffers however from the same drawback as the corresponding ones for grav-

ity: they freeze the possibility to perform non trivial angle-dependent u(1) transformations,

except constant ones. A twist of the parity conditions on the angular components of the

asymptotic fields is thus also necessary in this case if one wants a non-trivial action of

the angular dependent u(1)-transformations present at null infinity. But as in the gravita-

tional case, while imposing these twisted parity conditions leads to a well-defined system,

this choice excludes magnetic monopoles and introduces solutions possessing a logarithmic

divergent electromagnetic field at null infinity.
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However, it was shown in [14] that it is sufficient for this twist to be an improper

gauge transformation (for “improper”, we follow the terminology of [16]). This leads to

the introduction of a set of hybrid parity conditions combining the best of both choices: a

non-trivial action of the enhanced asymptotic symmetry algebra, the absence of solutions

diverging at null infinity and the possibility to describe magnetic monopoles.

We show in this paper that the same procedure also works for gravity. The gravitational

analog of the hybrid parity conditions introduced for electromagnetism are a mixture of the

parity conditions of [15] with those of [12]. More precisely, the twisted parity component

of [12] that we include here is an improper gauge transformation (i.e., diffeomorphism).

These hybrid parity conditions for gravity form a well-defined system and allow for a non-

trivial action of the BMS4 supertranslations without the drawbacks mentioned earlier.

They are given in the next section.

The new boundary conditions (“parity of [15] on the asymptotic fields modulo an arbi-

trary improper gauge transformation”) are deceptively simple. While they are straightfor-

wardly invariant under BMS4 transformations, which are improper gauge transformations,

they lead to complications in the verification of the finiteness of the symplectic form and of

the charges, which holds only if additional conditions are imposed at infinity. These extra

conditions are also explicitly spelled out. In the case of electromagnetism, the twist of the

parity conditions by an improper gauge transformation also leads to the surprising feature

that an extra surface degree of freedom must be introduced in order for the generators of

Lorentz transformations to exist [14]. No such additional degree of freedom is necessary in

the case of gravity.

3 Pure gravity

As announced in the introduction, we first give the boundary conditions and then check

that they have the requested properties.

The hamiltonian action of gravity can be written as

S =

ˆ
dt

{ˆ
d3x

(
πij∂tgij −N iHgrav

i −NHgrav
)
−BS∞

}
, (3.1)

Hgrav = −√gR+
1
√
g

(
πijπij −

1

2
π2

)
, Hgrav

i = −2∇jπji . (3.2)

where BS∞ is a boundary term on the sphere at spatial infinity that depends on the

asymptotic values of the lapse and the shift (see below).

3.1 Boundary conditions

The boundary conditions on the dynamical variables that define asymptotically flat space-

times are, in spherical coordinates:

grr = 1 +
1

r
hrr +

1

r2
h(2)
rr + o(r−2), πrr = πrr +

1

r
π(2)rr + o(r−1),

grA =
1

r
h

(2)
rA + o(r−1), πrA =

1

r
πrA +

1

r2
π(2)rA + o(r−2),

gAB = r2γAB + rhAB + h
(2)
AB + o(1), πAB =

1

r2
πAB +

1

r3
π(2)AB + o(r−3).

(3.3)
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The asymptotic 2-dimensional metric γAB is here the usual metric on the sphere. In

Cartesian coordinates, the decay expressed by these conditions is the standard one, namely,

gij − δij ∼ 1
r and πij ∼ 1

r2
.

The leading orders of the dynamical variables are further subject to two types of extra

conditions: (i) Parity conditions; (ii) Constraint conditions.

In order to describe these conditions, it is useful to introduce a 1+2 radial split of the

3 dimensional metric gij :

grr = λ2 + γABλ
AλB, grA = γABλ

B, gAB = γAB, (3.4)

λ = 1 + r−1λ+ r−2λ(2) + o(r−2), λA = r−3λ(2)A + o(r−3), (3.5)

γAB = r2γAB + rhAB + h
(2)
AB + o(1). (3.6)

We will use DA and DA to respectively denote the covariant derivatives of γAB and γAB.

The indices A,B, . . . on bulk fields will be lowered and raised with γAB and its inverse γAB

while the same indices on asymptotic fields will be lowered and raised with γAB and its

inverse γAB. The extrinsic curvature of the constant r surfaces is then given by

KAB =
1

2λ
(−∂rγAB+DAλB+DBλA), KA

B = −r−1δAB+r−2k
A
B+r−3k(2)A

B+o(r−3). (3.7)

Constraint conditions. The constraints are requested to asymptotically decay faster

than what (3.3) implies, i.e., one imposes:

Hgrav = o(r−1), Hgrav
r = o(r−1), Hgrav

A = o(1). (3.8)

In terms of the asymptotic fields, these conditions are:

DADBk
AB −DAD

A
k = 0, πrA +DBπ

AB = 0, DADBπ
AB + πAA = 0. (3.9)

Parity conditions. We further request that the leading part of the asymptotic fields

fulfill the following parity conditions under the sphere antipodal map, in coordinates where

this map takes the form2 xA → −xA:

λ = even, πrr − πAA = odd, πrA = (πrA)even −
√
γD

A
V, (3.10)

πAB = (πAB)odd +
√
γ(D

A
D
B
V − γABDCD

C
V ), (3.11)

kAB = (kAB)even +DADBU + UγAB. (3.12)

Here, it is the same scalar V that appears in the parity conditions of πrA and πAB. One

easily sees that the two functions U and V can be restricted to be odd and even, respectively,

since the contributions of the opposite parity terms can be absorbed through a redefinition

of (πrA)even, (πAB)odd and (kAB)even.

2Note that in terms of standard spherical coordinates, the antipodal map is actually θ → π − θ and

ϕ→ ϕ+ π (and r → r). This implies dθ → −dθ and dϕ→ dϕ. Therefore, the condition that kAB is even

(for example), i.e., kAB(−xB) = kAB(xB), is equivalent to the statement that kθθ and kϕϕ are even and

kθϕ is odd.

– 6 –
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Comparison with previous parity conditions. The asymptotic decay (3.3) with the

above constraint and parity conditions define our phase space. In appendix A, subsec-

tion A.2, we rewrite these boundary conditions more invariantly in terms of the components

of the asymptotic Weyl tensor, which are shown to possess definite parities.

If one sets U = V = 0 in the parity conditions, one recovers the parity conditions

of [15]. This shows that the phase space defined by the boundary conditions includes the

Schwarzschild and Kerr metrics as well as their transformed under asymptotic boosts. It

also includes the Taub-NUT solution [30] but one does not need to impose the symmetric

gauge conditions adopted asymptotically in that reference to see it.

If one sets (πrA)even, (πAB)odd and (kAB)even to zero, one gets a subset of the con-

figurations considered in [12], which have these fields of opposite parity, i.e., πrA = odd,

πAB = even and kAB = odd (“twisted parity conditions”). We do include here angular

components of twisted parity, but they have to take the specific “improper gauge” form

parametrized by the functions U and V . It is only under this specific form that twisted

parity components are compatible with generic components of untwisted parity, allowing

thereby the Taub-NUT metric.

Lapse and shift. The lapse N and the shift Nk, which are Lagrange multipliers for

the (first-class) constraints, must be chosen so that the dynamical evolution preserves

the boundary conditions. This means that they can be taken to parametrize a generic

asymptotic symmetry. It is customary to take:

N = 1 +O(r−1), N r = O(r−1), NA = O(r−2). (3.13)

This corresponds to slicings by hypersurfaces that become asymptotically parallel hyper-

planes. Imposing these boundary conditions on the lapse and the shift means that we have

to add to the action the ADM energy, i.e,

BS2 =

˛
d2x
√
γ 2hrr (3.14)

(see below).

3.2 Symplectic form

We now start to check that the boundary conditions provide a consistent Hamiltonian

description. We first verify that the symplectic structure is well defined.

The leading term of the kinetic term in the action,

ˆ
d3xπij ġij =

ˆ
dr

r

ˆ
dθdφ

(
2(πrr − πAA)λ̇+ 2πAB k̇AB

)
+ . . . , (3.15)

is generically logarithmically divergent with the decay prescribed by (3.3). The extra

conditions are added to cancel this divergence.

One way to eliminate the logarithmic term would be to take the fields and the corre-

sponding conjugate momenta to have definite and opposite parities so that the integral over

the angles vanishes. There are only two ways to assign these definite parities in a Lorentz

– 7 –
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invariant manner compatible with the Schwarzschild solution, which are respectively de-

scribed in [15] (untwisted case) and [12] (twisted case). But neither is fully satisfactory

(non invariance under the BMS4 algebra, or non-inclusion of the Taub-NUT metric).

To get a satisfactory phase space where the asymptotic symmetry is the full BMS4

algebra and where the Taub-NUT metric is included, one cannot take the asymptotic fields

to have definite parities. One must allow both untwisted and twisted parity components.

But the logarithmic term in the symplectic form must remain zero. This is why the twisted

parity component is forced to take the specific form of (3.10)–(3.12). Using integrations by

part and the asymptotic constraints (3.9), one then easily shows that the integral on the

sphere appearing in the divergent term of the symplectic structure is indeed always zero.

3.3 Asymptotic symmetries

The asymptotic symmetries preserving the boundary conditions are generated by the vec-

tor fields

ξ = b
(
r − λ− k

)
+ T +O(r−1), ξA = Y A +

1

r

(
D
A
W +

2b√
γ
πrA

)
+O(r−2), (3.16)

ξr = W +O(r−1), DADBb+ γABb = 0, LY γAB = 0, (3.17)

where b(xB), Y A(xB) describe boosts and spatial rotations, while T (xB) and W (xB) are

field-independent functions on the sphere. The choices T (xB) ∼ Y 0
0 and W (xB) ∼ Y 1

m cor-

respond to spacetime translations, but higher spherical harmonics are allowed and involve

the BMS4 supertranslations.

The action of these symmetries on the asymptotic fields is given by

δξkAB = LY kAB +DADBW +WγAB

+
b√
γ

(πAB − γABπCC) +
1√
γ
DA(bπrCγCB) +

1√
γ
DB(bπrCγCA), (3.18)

δξλ =
b

4
√
γ
p+ Y C∂Cλ, (3.19)

δξ(π
rr − πAA) = LY (πrr − πAA) +

√
γ
(

2bDCD
C
λ+ 2D

C
b∂Cλ+ 6bλ

)
(3.20)

δξπ
rA = LY πrA +

√
γ
(
DB(bk

BA
) +D

A
bk −DA

T
)
, (3.21)

δξπ
AB = LY πAB +

√
γ
(
D
A
D
B
T − γABDCD

C
T
)

+ 3b
√
γ
(
k
AB − γABk

)
+
√
γb
(
γABDCD

C
k +DCD

C
k
AB −DCD

A
k
CB −DCD

B
k
CA
)

+
√
γ
(
−DA

bD
B
k −DB

bD
A
k + γABDCbD

C
k + 2γABD

D
k
C
D∂Cb

−DA
k
BC
∂Cb−D

B
k
AC
∂Cb+D

C
k
AB
∂Cb

)
. (3.22)

These transformation rules display one important feature. One can read from them

that the variation of the functions (U)odd and (V )even take the following form:

δξ(U)odd = Y C∂C(U)odd − b(V )even + (W )odd, (3.23)

δξ(V )even = Y C∂C(V )even − 3b(U)odd − ∂AbD
A

(U)odd − bDAD
A

(U)odd + (T )even. (3.24)

– 8 –
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From these, one sees that the variation of these functions under finite supertranslations is

additive. Therefore, the twisted piece in the parity conditions is just that induced by a finite

transformation of the asymptotic fields. It follows that if one starts from a configuration

that satisfies the untwisted parity conditions, one generically generates a nonvanishing

twist that takes exactly the prescribed form, except if one restricts the transformation to

the Poincaré algebra in which case the twist remains zero. Invariance of the boundary

conditions under the extended set of transformations is in that sense direct. That the

enhancement, described here by the two functions T (xB) and W (xB) on the sphere, leads

exactly to the BMS4 algebra requires further analysis since the BMS4 supertranslations are

characterized by a single function on the sphere. This was shown in [12]. To understand

this point necessitates the form of the charges and is explained in the next section.

3.4 Charge-generators

The construction of the charges follows standard Hamiltonian lines [15]. The steps and

difficulties parallel those of the treatment of the twisted case given in [12], so we only give

the result. Assuming that the asymptotic parameters T,W, Y A and b are field independent,

one finds that the asymptotic symmetries are canonical transformations generated by

P grav
ξ [gij , π

ij ] =

ˆ
d3x

(
ξH+ ξiHi

)
+ Bgrav

ξ [gij , π
ij ]. (3.25)

Here, as in [12], the boundary term Bξ is finite thanks to the constraint conditions on the

asymptotic fields. Explicitly, one finds for Bξ

Bξ[gij , πij ] =

˛
d2x

{
Y A
(

4kABπ
rB − 4λγABπ

rB + 2γABπ
(2)rB

)
+ 2W

(
πrr − πAA

)
+ T 4

√
γ λ+ b

√
γ
(

2k(2) + k
2

+ k
A
Bk

B
A − 6λk

)
+ b

2√
γ
γABπ

rAπrB
}
. (3.26)

Note that the charges involve contributions that are quadratic in the asymptotic fields.

These are absent for untwisted parity conditions [15]. By making a BMS transformation

away from an “untwisted frame”, one therefore generates quadratic contributions.

Due to the parity conditions on λ and πrr − πAA, the transformations generated by

even W ’s and odd T ’s have zero charge and are proper gauge transformations. They

do not change the physical state of the system and can be factored out. By contrast,

the transformations generated by odd W ’s and even T ’s generically have non-vanishing

charges. Such transformations are improper gauge transformations that do change the

physical state of the system [16]. The physically relevant functions of the angles appearing

in the transformations are then (T )even and (W )odd.

The algebra is easily evaluated to be:{
P grav
ξ1

[gij , π
ij ], P grav

ξ2
[gij , π

ij ]
}

= P grav

ξ̂
[gij , π

ij ], (3.27)

– 9 –
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where ξ̂ generates an asymptotic symmetry with the following parameters

Ŷ A = Y B
1 ∂BY

A
2 + γABb1∂Bb2 − (1↔ 2), (3.28)

b̂ = Y B
1 ∂Bb2 − (1↔ 2), (3.29)

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1D

A
W2 − b1DAD

A
W2 − (1↔ 2), (3.30)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2). (3.31)

Modding out the trivial transformations generated by even W ’s and odd T ’s, the resulting

algebra is the algebra found in [12]. Using the results of [13], this algebra was shown

there to be the BMS4 algebra expressed in an unfamiliar parametrization. This was done

by integrating the equations of motion for the symmetry parameters all the way to null

infinity, along the lines explained in the introduction. One finds that the odd W ’s and even

T ’s combine to yield the arbitrary function of the angles parametrizing supertranslations

in the original parametrization. This enables one to conclude that the symmetry at spatial

infinity is the same BMS4 as the BMS4 uncovered at null infinity.

In this context, we note that the parity conditions are conditions relating fields at

antipodal points on the same asymptotic spheres at spatial infinity. When passing to

hyperbolic coordinates to go from spatial infinity to future null infinity and past null infinity,

one finds that the parity conditions relate then antipodal points on different spheres since

the antipodal transformation is accompanied by a change of sign of the hyperbolic time

τ [12, 13]. This implies that the values of the fields on asymptotic spheres at null infinity

are not restricted by parity conditions. One gets instead matching conditions between the

values of the fields on the future and past critical spheres (i.e., the past boundary of future

null infinity and the future boundary of past null infinity), which involves the antipodal

map in agreement with [7]. One way to get an idea of why the future critical sphere is

related to the past critical sphere under parity is to boost arbitrary data fulfilling the parity

conditions given on some Cauchy hypersurface. For each value of the velocity, one gets a

new Cauchy hypersurface bounded by an asymptotic sphere on which the parity conditions

are satisfied since these are Lorentz invariant. In the limit of infinite velocity, the parity

conditions are still fulfilled, but the asymptotic sphere S meets the critical spheres at points

that are antipodally related, so that the antipodal map sends the intersection of S with

the future critical sphere on the intersection of S with the past critical sphere.

We also note that the boundary conditions imply that the components of the Weyl

tensor do fulfill the definite parity conditions of [15] since the twisted part drops from them.

For that reason, they remain finite as one goes to null infinity [13]. The unwanted feature

of generic twisted parity contributions is absent.

4 Einstein-Maxwell system

In this section, we combine the pure gravity case presented above with results on electro-

magnetism described in [14] in order to obtain the asymptotic structure of the Einstein-

Maxwell system. We begin with a short review of the asymptotic structure of Maxwell’s

theory in Minkowski space and then couple it to gravity in the second subsection.
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4.1 Maxwell field on Minkowski background

We start with a review of [14] to which we refer for details. We use the same notation as

in the previous section in order to describe the background Minkowski metric:

ds2 = −dt2 + dr2 + r2γABdx
AdxB. (4.1)

The global action of electromagnetism in Minkowski space can then be written as follows:

SH [Ai, π
i,Ψ, πΨ;At, χ] =

ˆ
dt

{ˆ
d3xπi∂tAi + πΨ∂tΨ−

˛
d2x
√
γ Ar∂tΨ

−
ˆ
d3x

(
1

2
√
g
πiπi +

√
g

4
F ijFij

)
−
ˆ
d3x (χπΨ +AtG)

}
,

(4.2)

with the following asymptotic behaviour for the fields

Ar =
1

r
Ar +

1

r2
A(1)
r + o(r−2), πr = πr +

1

r
π(1)r + o(r−1), (4.3)

AA = AA +
1

r
A

(1)
A + o(r−1), πA =

1

r
πA +

1

r2
π(1)A + o(r−2), (4.4)

At = At +
1

r
A

(1)
t + o(r−2), ∂iπ

i = O(r−2), (4.5)

Ψ =
1

r
Ψ +

1

r2
Ψ(1) +O(r−3), πΨ =

1

r
π

(1)
Ψ + o(r−1), (4.6)

χ =
1

r
χ+

1

r2
χ(1) +O(r−3). (4.7)

On top of the usual dynamical fields, i.e. the vector potential Ai and the electric field

πi, we have an extra canonical pair (Ψ, πΨ). The fields At and χ are lagrange multipliers

for the two first class constraints: Gauss’s law G = −∂iπi ≈ 0 and a new constraint

πΨ ≈ 0. Locally, this new constraint can be easily solved and one recovers the usual

bulk hamiltonian action for electromagnetism. However, it was shown in [14] that these

extra fields and the boundary contribution to the kinetic term are needed for the global

description of the system and its symmetries.

As in the gravity case, one has to impose parity conditions in order to have a finite

kinetic term. Various propositions were made in [14, 29]. We adopt here the ones that

allow for the simultaneous description of all know solutions and of the angle dependent

u(1)-symmetries introduced at null infinity. They can be expressed as [14]

Ar = (Ar)
odd, πr = (πr)even, AA = (AA)even + ∂AΦ, πA = (πA)odd, (4.8)

where the function Φ can be restricted to be an even function on the sphere. One easily

checks that the radial logarithmic divergence appearing in the bulk integral of the kinetic

term disappears by combining these parity conditions with the asymptotic constraints

imposed in (4.5) and (4.6) [14].

A particularity of the action is that the symplectic structure Ω derived from its kinetic

term has a boundary term:

Ω =

ˆ
d3x
(
dV π

i dVAi + dV πΨ dV Ψ
)
−
˛
d2x
√
γ dVAr dV Ψ, (4.9)
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where we used dV to denote the exterior derivative in phase-space. For that reason, the

prescription −iXΩ = dV F that associates a function F to a canonical transformation

described by the phase-space vector field X can lead to a surface contribution even if the

bulk part of F contains no spatial derivative.

The action is invariant under two linearly independent gauge transformations: usual

electromagnetic gauge transformations and arbitrary shifts of Ψ. Their action on the

dynamical fields are

δε,µAi = ∂iε, δε,µπ
i = 0, δε,µΨ = µ, δε,µπΨ = 0, (4.10)

with the following asymptotic behaviour for the gauge parameters

ε = ε+
1

r
ε(1) +O(r−2), µ =

1

r
µ+

1

r2
µ(1) +O(r−3). (4.11)

Assuming that µ and ε are field independent, their total generator is given by

Gε,µ =

ˆ
d3x(µπΨ + εG) +

˛
d2x(ε πr −

√
γ µAr). (4.12)

Due to the parity conditions (4.8), only the transformations for which ε is even or µ is odd

are improper gauge transformations.

The system is also invariant under Poincaré transformations. The associated total

generator can be written as

Pξ,ξi =

ˆ
d3x

(
ξHEM + ξiHEM

i

)
+ BEM

(ξ,ξi), (4.13)

HEM = −Ψ∂iπ
i −Ai∇iπΨ +

1

2
√
g
πiπ

i +

√
g

4
FijF

ij , (4.14)

HEM
i = Fijπ

j −Ai∂jπj + πΨ∂iΨ, (4.15)

BEM
ξ,ξi =

˛
d2x

(
b(Ψπr +

√
γAAD

A
Ar) + Y A(AAπ

r +
√
γΨ∂AAr)

)
, (4.16)

where the Killing vectors of the background (ξ, ξi) are given by

ξ = br + T, ξA = Y A +
1

r
D
A
W, ξr = W, (4.17)

DADBb+ γABb = 0, LY γAB = 0. (4.18)

The algebra of the various generators is easily computed:

{Pξ1,ξi1 , Pξ2,ξi2} = P
ξ̂,ξ̂i
, (4.19)

{Gµ,ε, Pξ,ξi} = Gµ̂,ε̂, {Gµ1,ε1 , Gµ2,ε2} = 0, (4.20)

ξ̂ = ξi1∂iξ2 − ξi2∂iξ1, ξ̂i = ξj1∂jξ
i
2 − ξ

j
2∂jξ

i
1 + gij(ξ1∂jξ2 − ξ1∂jξ2), (4.21)

µ̂ = −∇i(ξ∂iε)− ξi∂iµ, ε̂ = −ξµ− ξi∂iε. (4.22)
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The algebra of the symmetries is thus a semi-direct sum of the Poincaré algebra and the

abelian algebra parametrized by µ and ε, the action of the Poincaré subalgebra character-

ising this semi-direct sum being given by:

δ(Y,b,T,W )µ = Y A∂Aµ+DA(bD
A
ε), δ(Y,b,T,W )ε = Y A∂Aε+ bµ. (4.23)

It was also shown in [14] that this algebra agrees with the one obtained at null infinity. The

core idea is that the even and odd functions, ε and µ, combine to form a single function on

the sphere that generates the angle-dependent u(1)-transformations seen at null infinity.

4.2 Combining gravity and electromagnetism

Combining all the results described in the previous sections for gravity and electromag-

netism is straightforward. The starting point is the following action for the Einstein-

Maxwell system:

S =

ˆ
dt

{ˆ
d3x
(
πij∂tgij + πi∂tAi + πΨ∂tΨ

)
−
˛
d2x
√
γ Ar∂tΨ

−
ˆ
d3x
(
χπΨ +AtG +N iHi +NH

)
−
˛
d2x
√
γ 2hrr

}
, (4.24)

H = −√gR+
1
√
g

(
πijπij −

1

2
π2

)
−Ψ∂iπ

i −Ai∇iπΨ +

√
g

4
FijF

ij +
1

2

1
√
g
πiπi, (4.25)

Hi = −2∇jπji + Fijπ
j −Ai∂jπj + πΨ∂iΨ. (4.26)

The asymptotic conditions appropriate to this action are the ones we described previously

for gravity and electromagnetism: see equations (3.3) to (3.13) for the gravitational field

and equations (4.3) to (4.8) for the electromagnetic one.

We assume in particular that the constraints hold asymptotically, in the sense that

they fall off at least one order faster than the one implied by the boundary conditions on

the fields,

H = o(r−1), Hr = o(r−1), HA = o(1), ∂iπ
i = o(r−1). (4.27)

As the contribution of the electromagnetic field to the gravitational constraints is sub-

leading, the asymptotic conditions on the gravitational fields are unchanged

πrA +DBπ
BA = 0, DADBπ

AB + πAA = 0, DADBk
AB −DAD

A
k = 0. (4.28)

The generators of the large u(1) gauge transformations in equation (4.12) are easily

seen to remain allowed functionals in the combined case. To build the generators of the

BMS4 transformations, we add the gravitational generators P grav
ξ of equation (3.25) to the

Poincaré generators (4.13) of electromagnetism:

Pξ = P grav
ξ + PEM

ξ , (4.29)

and allow the diffeomorphism generators ξ = (ξ⊥, ξi) to take the same general form as in

the pure gravitational case:

ξ⊥ = b
(
r − λ− k

)
+ T +O(r−1), ξA = Y A +

1

r

(
D
A
W +

2b√
γ
πrA

)
+O(r−2), (4.30)

ξr = W +O(r−1), DADBb+ γABb = 0, LY γAB = 0. (4.31)
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This gives the expression

Pξ =

ˆ
d3x

(
ξ⊥H+ ξiHi

)
+ Bξ, (4.32)

where the boundary term reads

Bξ[gij , πij ] =

˛
d2x

{
T 4
√
γ λ+ 2W

(
πrr − πAA

)
+ Y A

(
4kABπ

rB − 4λγABπ
rB + 2γABπ

(2)rB +AAπ
r +
√
γΨ∂AAr

)
(4.33)

+ b
√
γ
(

2k(2) + k
2

+ k
A
Bk

B
A − 6λk + Ψπr +

√
γAAD

A
Ar

)
+ b

2√
γ
γABπ

rAπrB
}
.

Using the previous results, we can easily check that

dV Pξ = −iξΩ, (4.34)

where Ω is the symplectic structure of the Einstein-Maxwell action given in (4.24):

Ω =

ˆ
d3x
(
dV π

ij dV gij + dV π
i dVAi + dV πΨ dV Ψ

)
−
˛
d2x
√
γ dVAr dV Ψ. (4.35)

As in the pure gravitational case, the a priori divergent term produced by the variation of

the generator disappears using the asymptotic constraints (4.28). Moreover, one can also

check that the associated variations preserve the asymptotic conditions on the canonical

variables. The two properties together prove that the generators written in (4.32) are

allowed functionals.

The algebra of the constraints leads to the following algebra for the gauge parameters:

[(ξ⊥1 , ξ
i
1, µ1, ε1), (ξ⊥2 , ξ

i
2, µ2, ε2)]M = (ξ̂⊥, ξ̂i, µ̂, ε̂), (4.36)

where

ξ̂i ≈ [ξ1, ξ2]iSD + δ2ξ
i
1 − δ1ξ

i
2, ξ̂⊥ ≈ [ξ1, ξ2]⊥SD + δ2ξ

⊥
1 − δ1ξ

⊥
2 , (4.37)

µ̂ ≈ ∇i(ξ⊥1 ∂iε2) + ξi1∂iµ2 + Ψ∇i(ξ⊥1 ∂iξ⊥2 )− π

2
√
g
Aiξ⊥1 ∂iξ

⊥
2 + δ2µ1 − (1↔ 2), (4.38)

ε̂ ≈ ξ⊥1 µ2 + ξi1∂iε2 + δ2ε1 − (1↔ 2). (4.39)

The variations δ1 and δ2 denotes the action of the gauge transformations acting on the

canonical fields. From this, we can read off the algebra of the asymptotic gauge parameters

using the transformation laws of the asymptotic fields:

Ŷ A = Y B
1 ∂BY

A
2 + γABb1∂Bb2 − (1↔ 2), b̂ = Y B

1 ∂Bb2 − (1↔ 2), (4.40)

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1D

A
W2 − b1DAD

A
W2 − (1↔ 2), (4.41)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2), (4.42)

µ̂ = Y A
1 ∂Aµ2 +DA(b1D

A
ε2)− (1↔ 2), ε̂ = Y A

1 ∂Aε2 + b1µ2 − (1↔ 2). (4.43)
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As before, the transformations generated by W and µ even and T and ε odd are proper

gauge transformations and have to be modded out.

The total algebra of asymptotic symmetries A is therefore the semi-direct sum of

Lorentz algebra with the direct sum of the two abelian algebras representing supertransla-

tions and large u(1) gauge transformations:

A = Lorentz⊕σ (Supertranslations⊕ u(1)-transformations). (4.44)

According to general theorems [31], the algebra of the charges reproduces this algebra, here

without central extension:{
G(ξ⊥1 , ξ

i
1, µ1, ε1), G(ξ⊥2 , ξ

i
2, µ2, ε2)

}
= G(ξ̂⊥, ξ̂i, µ̂, ε̂). (4.45)

The simplest way to check the absence of central extension is to evaluate the Poisson

bracket on the vacuum: Minkowski space with zero electromagnetic field. This algebra is

the globally well-defined one obtained at null infinity in previous analyses [27].

5 Conclusions

In this note, we have provided a description of the Einstein-Maxwell system at spatial

infinity that possesses the following necessary features:

1. Solutions with both gravitational electric and gravitational magnetic mass belong

to the phase-space defined by the boundary conditions. Electromagnetic magnetic

monopoles are also included.

2. The symplectic form, and thus the kinetic term in the action, is finite, so that the

canonical structure is well-defined.

3. The asymptotic symmetry algebra is the BMS4 algebra, or the semi-direct sum of

the BMS4 algebra with the abelian algebra of angle-dependent u(1) gauge trans-

formations when electromagnetism is included. All elements of that algebra have

well-defined canonical generators (otherwise, they would not be true symmetries).

The BMS4 algebra is here the same BMS4 algebra uncovered at null infinity. In that sense

it is a bit misleading to talk about asymptotic symmetries “at spatial infinity” since the

terms “at spatial infinity” are superfluous.

The boundary conditions at spatial infinity involve in an essential way parity con-

ditions on the leading orders of the fields in their asymptotic expansion. These parity

conditions are Lorentz-invariant and acceptable since they do not exclude known physi-

cally interesting solutions. They match the analysis at null infinity, not only by yielding

the same symmetries, but also by leading to fields on the critical spheres bounding future

null infinity and past null infinity that fulfill the matching conditions adopted there [7].

The parity conditions are necessary to make the symplectic form finite. In perfect anal-

ogy with the Maxwell case [14] the boundary conditions can be obtained by acting with

a general supertranslation on the set of solutions satisfying the original untwisted parity
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conditions of [15]. They take a particularly simple form, because the integrated variations

of the relevant functions take the same form as the infinitesimal variations (abelian action).

One motivation behind our work was to provide a direct Hamiltonian description of the

infrared structure and of the charges underlying the soft graviton/photon theorems [32–49].

That one can achieve such a description is not surprising, not only because everything is

anchored on Cauchy hypersurfaces, but also because the matching conditions underlying

the soft theorems are intimately related to the “Coulomb behaviour” of the fields [7, 35]

(and of the dual “magnetic Coulomb behaviour” when there are magnetic charges). This

behaviour is of course recorded at spatial infinity, and we have given the action of the

BMS4 group on the asymptotic fields there. Even though there is no gravitational or

electromagnetic radiation reaching spatial infinity, the action of the group is non trivial on

these asymptotic data. In particular, the asymptotic fields corresponding to the Minkowski

solution (kAB = 0 = λ = πrr = πrA = πAB) do transform under supertranslations. The

Minkowski solution is not invariant and belongs to a non trivial orbit of the action of the

BMS4 algebra, although its charges remain zero.

As one goes to null infinity, the electromagnetic field or the Weyl tensor generically

develops a logarithmic singularity for twisted parity conditions, [13, 14] (see also [50]). This

problem is part of the general question on how Cauchy data behave as one approaches

null infinity (see [51–55] and references therein for the relevant literature). Cauchy data

without logarithmic singularities may diverge logarithmically in that null limit, which,

more generally, needs to be described by a polyhomogeneous expansion in ri logj r. By

taking the twist to be trivial, i.e., given by a gauge transformation that is allowed to be

improper, we eliminate the first, divergent piece in that expansion. Stronger smoothness

conditions at null infinity would imply stronger restrictions on the Cauchy data, but these

would still have to satisfy the boundary conditions adopted here in order to fulfill the

leading regularity condition at null infinity.

Finally, we note that our boundary conditions lead to the original BMS4 algebra as

asymptotic symmetry algebra, without super-rotations [56–58]. This question deserves

further study.
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A More details on the parity conditions

A.1 Tensor decomposition

The coefficient of the divergent term present in the gravitational action has the form
˛
d2x

(
2(πrr − πAA)λ̇+ 2πAB k̇AB

)
. (A.1)
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In order for this term to be zero, we need the various tensors to belong to orthogonal

subspaces. There is little choice for the first term as we want the solution space to contain

black-holes and be invariant under Poincaré transformations, we must impose the parity

conditions described in [15]. On the other hand, there is more freedom in the choice of

conditions on the angular part.

In order to better understand the asymptotic structure, it is interesting to introduce

a decomposition of rank 2 symmetric tensors on the sphere that is adapted to the gravita-

tional fields. A systematic decomposition of tensors on the sphere can be done using spin

coefficients. However, as we only have rank 1 and 2 tensors in this work, it will be more

convenient to use a decomposition based on scalar potentials.

On the sphere, a 1-form VA can be decomposed into a transverse part V T
A and a

longitudinal part V L
A as follows

VA = V L
A + V T

A , V L
A = ∂AV

L, V T
A = e B

A ∂BV
T , (A.2)

where eAB is the anti-symmetric tensor with eθφ = sin θ in usual spherical coordinates.

The two scalar functions V L and V T are potentials and are defined up to a constant. The

decomposition is orthogonal in the sense that:˛
d2x
√
γ γAB VAWB =

˛
d2x
√
γ γAB

(
V T
AW

T
B + V L

AW
L
B

)
. (A.3)

A similar decomposition can be introduced for rank 2 symmetric tensors TAB. Indeed,

for all such tensors, there exists a vector VA and a scalar T̂ such that

TAB = DAVB +DBVA + γABT̂ . (A.4)

This property is the linearised version of the statement that all metrics on the sphere are

conformally equivalent: any deformation of the metric, here δγAB = TAB, is the sum of an

infinitesimal diffeomorphism and an infinitesimal Weyl transformation. We then introduce

the decomposition of the vector VA described above to obtain

TAB = 2DADBV
L +

(
e C
A DBDCV

T + e C
B DADCV

T
)

+ γABT̂ . (A.5)

This decomposition is valid in general and is equivalent to the one given in term of spin

coefficients.3 However, it is not well adapted to the gravitational problem and needs to be

slightly modified by introducing alternative potentials. For all pairs of functions (V L, T̂ ),

there exists a unique pair (TL, T T ) such that

2V L = TL + T T , T̂ = TL −∆T T . (A.6)

This can be easily proved using the fact that the operator ∆+1 is invertible on the sphere.

Renaming the potential V T as T TT , we proved that a symmetric rank 2 tensor TAB can

be uniquely decomposed into three parts TLAB, T TAB and T TTAB as follows

TAB = T TTAB + T TAB + TLAB, (A.7)

3Introducing stereographic coordinates on the sphere such that γABdx
AdxB = 2P−2dζdζ and the co-

variant derivative is encoded in the ð and ð operators, we see that the three combinations ð2
V L − ið2

V T ,

ð2V L + ið2V T and P 2(T̂ + ∆V L) correspond to the three spin coefficients of weights 2, -2 and 0 describing

a symmetric rank 2 tensor.
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where

T TTAB = e C
A DBDCT

TT + e C
B DADCT

TT , (A.8)

T TAB = DADBT
T − γAB∆T T , (A.9)

TLAB = DADBT
L + γABT

L. (A.10)

The names of the various parts (TT , T and L) are related to the way they appear in the

gravitational constraints and are inspired by the decomposition of the bulk 3 dimensional

rank 2 tensors. As in the rank 1 case, the decomposition is orthogonal:

˛
d2x
√
γ γACγBD TABUCD =

˛
d2x
√
γ γACγBD

(
T TTABU

TT
CD + T TABU

T
CD + TLABU

L
CD

)
.

(A.11)

Introducing this decomposition for kAB and πAB, one easily shows that the asymptotic

constraints (3.9) impose the following conditions

D
A
D
B
kAB −∆k = 0⇒ k

T
AB = 0, (A.12)

DADBπ
AB + πAA = 0⇒ πLAB = 0, (A.13)

where the decomposition is extended to densities in the natural way. The surface inte-

gral (A.1) controlling the logarithmic divergence of the action then simplifies to

˛
d2xπABkAB =

˛
d2xπTTABk

TT
CD. (A.14)

The only components on which we have to impose parity conditions are these TT compo-

nents while the “pure gauge” components πTAB and k
L
AB can be left arbitrary. The choice

presented in section 3 corresponds to k
TT
AB even and πTTAB odd while the choice leading

to the twisted parity conditions of [12] corresponds to the opposite. In the next part of

this appendix, we will show how the TT components of both tensors are related to the

asymptotic behaviour of the Weyl tensor.

A.2 Weyl tensor

The electric and magnetic parts of the 4 dimensional Weyl tensor Wµνρσ are given in terms

of canonical fields by the following expressions

Eij = Rij +
1

g

(
1

2
ππij − πikπkj

)
, Bij = − 2

√
g
e kl
j ∇k

(
πil −

1

2
πgil

)
, (A.15)

where eijk is the totally antisymmetric tensor such that erθφ =
√
g. In asymptotically

euclidean coordinates, for which the metric and the momenta take the following form

gij = δij +O(r−1), πij = O(r−2), (A.16)

both tensors have the following behaviour

Eij = r−3E ij +O(r−4), Bij = r−3Bij +O(r−4). (A.17)
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Using spherical coordinates, and the asymptotic conditions of section 3, their leading

term takes the form

EAB =
1

r

(
DCDBk

C
A +DCDAk

C
B −DCD

C
kAB −DADBk − 2kAB + kγAB

)
+

1

r

(
γABDCD

C
λ−DADBλ+ γABλ

)
+O(r−2), (A.18)

ErA =
1

r2

(
∂Ak −DBk

B
A

)
+O(r−3), (A.19)

Err =
1

r3

(
−DAD

A
λ− 2λ

)
+O(r−4), (A.20)

BAB =
1

r

−1√
γ

(
eACγBD(πCD +D

C
πrD) + eBCγAD(πCD +D

C
πrD)

)
+O(r−2), (A.21)

BrA =
1

r2

−1√
γ

(
eAC(D

C
πrr + πrC) + eCDDCπDA

)
+O(r−3), (A.22)

Brr =
1

r3

2√
γ
e B
A DBπ

rA +O(r−4). (A.23)

One easily checks that these asymptotic expressions only depend on supertranslation in-

variant quantities

λ, πrr − πAA, k
TT
AB, πTTAB . (A.24)

As such, the new parity conditions introduced in section 3 lead to the following parity

behaviour for the asymptotic electric and magnetic Weyl tensors:

EAB ∼ Err ∼ BAB ∼ Brr = even, EAr ∼ BrA = odd. (A.25)

or, equivalently, in Cartesian coordinates:

E ij ∼ Bij = even. (A.26)

The converse is also true in the sense that, if the parity conditions are imposed on the

radial components λ and πrr−πAA then imposing the parity conditions (A.25) on the Weyl

tensor is equivalent to imposing the standard untwisted parity conditions on the TT part

of the angular components k
TT
AB and πTTAB :

k
TT
AB = even, πTTAB = odd, (A.27)

which is equivalent to the relaxed parity conditions given in (3.10)–(3.12).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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