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1 Introduction

The AdS/CFT correspondence [1–3] gives a plausible non-perturbative definition of the

quantum gravity, via the conformal field theories (CFT). The basic building blocks in

CFT are the conformal partial waves (CPW) which are the bases of correlation functions

in CFT. Hence, it is natural to ask the bulk dual of CPW. Recently, the answer of this

interesting question has turned out to be the geodesic Witten diagrams (GWD) [4]. See also

very recent progress of the study with spinning fields [5–10], thermal background [11, 12]

and boundary/defect [13–15].

To show the equivalence between CPW and GWD, we can use the fact that CPW

is a solution of the conformal Casimir equation. In the bulk, this equation corresponds

to the equation of motion of the bulk-bulk propagator in GWD. This relation becomes

manifest via the embedding formalism [16, 17] by which we embed fields in AdSd+1/CFTd

into Rd+1,1. While there is another method to solve the equation, called the shadow

formalism [18–23], the split representation [24–26] of the bulk-bulk propagators makes
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manifest the connection between them. It is worth noting that the embedding formalism

and the split representation are also useful to compute usual Witten diagrams with or

without loop effects (see, for example, [26–32]).

While we can discuss many interesting aspects of the AdS/CFT correspondence with-

out explicit supersymmetry, the well-known examples of the dualities are the ones between

supersymmetric theories since these have been discovered from the superstring theory.

Thus, it is natural to wonder if fermionic degrees of freedom might play the important role

in the correspondence, for example, the stability of the vacuum at strongly coupled regime

in CFT. Furthermore, superconformal partial waves are also important in the conformal

bootstrap program for superconfomral field theories (see, for example, [33–35]). There-

fore, studying the fermionic sector in the correspondence between CPW and GWD is quite

reasonable and interesting.

In this paper, from the above motivations, we investigate the embedding formalism

for the odd dimensional AdS Dirac spinors and its application to the (geodesic) Witten

diagrams. We construct 3pt and 4pt GWD with scalar and spinor fields by using the

embedding formalism. Then, we check that the 4pt fermion exchange GWD with two scalar

and two spinor external fields satisfies the conformal Casimir equation for CPW. To embed

the AdS spinor, there is a small obstacle to impose the conventional “transverse conditions”

such as one at the boundary. We thus need to impose a new condition that is consistent

with the transverse condition at the boundary. We also derive the split representation of

spinor fields and decompose the 4pt Witten diagram with fermion exchange into GWD by

using the split representation. These GWD correspond to the 4pt CPW for the single and

double trace operators which are constructed from scalar and spinor fields.

This paper is organized as follows. In section 2, we prepare the embedding formalism,

the quadratic Casimir equation and the split representation for spinor fields. In section 3,

we construct the 3pt and 4pt (geodesic) Witten diagrams explicitly and show the correspon-

dence between 4pt CPW and GWD with fermion exchange. In section 4, we decompose the

4pt Witten diagram into GWD as the CPW expansion of conformal correlation functions.

We conclude with an outlook in section 5.

2 Embedding formalism for AdS spinors

In this section, we develop the embedding formalism for odd dimensional AdS spinors. By

using the embedding formalism, we introduce auxiliary fields, the covariant derivative, the

AdS propagators and the quadratic Casimir equation for the spinor fields. We also derive

the split representation of the AdS spinor bulk-bulk propagator. Throughout this paper,

we will consider Euclidean AdS and its boundary.

2.1 Embedding AdSd+1 spinors in Rd+1,1

The AdSd+1 space can be embedded into the Rd+1,1 such that

X2 = ηABX
AXB = −(X0)2 +

d∑
i=1

(Xi)2 + (Xd+1)2 = −X+X− +

d∑
a=1

(Xa)2 = −1. (2.1)
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Here ηAB is the flat space metric with Lorentzian signature. In particular, we take the

Poincare coordinates,

XA = (X+, X−, Xa) =
1

z
(1, z2 + x2, xa). (2.2)

Then, the coordinates for the boundary CFT (Rd) can be defined by its conformal boundary,

P 2 = 0, PA ∼ λPA(λ ∈ R), (2.3)

where

PA = (P+, P−, P a) = (1, x2, xa). (2.4)

Since we are interested in the spinor fields, we introduce the Dirac gamma matrices ΓA in

Rd+1,1 which satisfy {
ΓA,ΓB

}
= 2ηAB. (2.5)

In this paper, we will restrict ourself to Dirac fermions in the odd dimensional AdS space

(namely, d is even). It is useful to introduce an auxiliary field S to contract the spinor

indices such that

Ψ(X, S̄) ≡ S̄Ψ(X), (2.6)

where S̄ means Dirac conjucation of S. We would like to relate an AdSd+1 spinor ψ with

Ψ in Rd+1,1. Obviously, ψ and Ψ have different degrees of freedom in general. Thus, we

need to impose some constraints for Ψ so that it reduce to ψ on the AdS sub-manifold.

In practice, it is equivalent to say imposing the constraints for S. The constraint was

first briefly discussed in [17], whereas we will introduce a different condition for the AdS

fermions. In particular, we impose the condition,

XAΓASb = ΓSb, (2.7)

for the auxiliary field S. As we spell out below, our basis of the fermions (2.7) makes

the connection to the original AdS ones manifest. Here Γ is the chiral gamma matrix in

Rd+1,1. Notice that we can not take the conventional “transverse condition”, XAΓASb = 0

for the AdS spinors. Such a naive condition gives rise to Sb = 0 due to the non-vanishing

determinant ofXAΓA. In our convention, summarized in appendix A, the solution of (2.7) is

Sb =
1√
z

[
(zγ0 + γaxa)χ

χ

]
, (2.8)

where γa (a = 1, 2, · · · d) is the d-dimensional gamma matrices, and γ0 is the chiral gamma

matrix in the same dimension. Here χ is an auxiliary field for the original AdS. Taking

the limit z → 0, Sb goes to z−
1
2S∂ , where

S∂ =

[
(γaxa)s

s

]
. (2.9)

Here s is an auxiliary field in the boundary CFT. This S∂ is conventional one in the

embedding formalism for CFT fermions [36–38].
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2.2 Equation of motion and its solutions

We shall define the covariant derivative ∇A for the embedding fermions. It should be the

straightforward extension for the tensor fields. That is,

∇A = GAB∂
B + ΣABX

B, (2.10)

where GAB ≡ ηAB + XAXB is the induced metric, and ΣAB ≡ 1
4 [ΓA,ΓB] is the generator

of rotation for the fermions. Then, the Dirac equation in the embedding space is1

[
ΓA∇A −m

]
Ψ(X) = 0, (2.11)

Ψ̄(X)

[
←
∇AΓA +m

]
=
[
(GAB(∂BΨ̄(X))− Ψ̄(X)ΣABX

B)ΓA +mΨ̄(X)
]

= 0. (2.12)

Hereafter we will use the notation ← that represents the differential action from the

right side.

2.2.1 Propagators

One can explicitly check that there are non-normalizable solutions of (2.11), namely the

bulk-boundary propagators for the spinors [39, 40].2 In the embedding space, these are

given by

G
∆, 1

2
b∂ (X, S̄b;P, S∂) = C∆, 1

2

〈S̄bΠ−S∂〉
(−2X · P )∆+ 1

2

, (2.13)

Ḡ
∆, 1

2
b∂ (X,Sb;P, S̄∂) = C∆, 1

2

〈S̄∂Π−Sb〉
(−2X · P )∆+ 1

2

, (2.14)

where

C∆, 1
2

=
1

πd/2
Γ
(
∆ + 1

2

)
Γ
(
∆ + 1−d

2

) , (2.15)

is the normalization constant fixed by the behavior at the boundary. Here Π± is the chiral

projection, Π± ≡ 1±Γ
2 . We also used the relation m = ∆− d

2 . Note that the chiral projection

is necessarily for the propagators to be the solutions. In the AdS/CFT correspondence, on-

shell Dirac fermions in the AdS space become Weyl fermions in the boundary theory [39]. If

we flip the sign of the mass m to −m in the equation of motion (2.11), the chiral projection

Π− in (2.13) also becomes Π+. For the notation and connection to the usual AdS space,

please see appendix A. The bulk-boundary propagator for the scalar fields is given by

G∆,0
b∂ (X;P ) = C∆,0

1

(−2X · P )∆
, (2.16)

C∆,0 =
1

2πd/2
Γ (∆)

Γ
(
∆ + 1− d

2

) . (2.17)

1With the index-free notation, these derivatives ΓA∇A should be replaced by S̄bΓ
A∇A∂S̄b

.
2Our definiton of ∆ is the same as one of [39], however, it is different from one of [40].
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We also have the bulk-bulk propagator [40] given by

G
∆, 1

2
bb (X, S̄b;Y, Tb) = 〈S̄b Π+Tb〉

(
d

du
G

∆+,0
bb (u)

)
+ 〈S̄b Π−Tb〉

(
d

du
G

∆−,0
bb (u)

)
, (2.18)

where G∆,0
bb (u) is the bulk-bulk propagator for a scalar field, and

d

du
G∆,0
bb (u) = − 1

πh
Γ(∆ + 1)

Γ(∆− h+ 1)
(2u)−1F2,∆(u), (2.19)

F2,∆(u) = (2u)−∆
2F1(∆ + 1,∆− h+ 1/2, 2∆− 2h+ 1,−2u−1)

=
u

2∆(u+ 1)∆+1 2F1

(
∆ + 1

2
,

∆

2
+ 1,∆− h+ 1,

1

(u+ 1)2

)
. (2.20)

Here we used ∆± = ∆± 1/2, h = d/2 and the chordal distance u = −1−X · Y .

2.2.2 Connection to the conformal Casimir equation

As usual, we also have the Klein-Gordon type equation of motion,[
(ΓA∇A)2 −m2

]
Ψ(X) = 0. (2.21)

By using the above definitions, one can show the well-known relation

(ΓA∇A)2 = ηAB∇A∇B −
1

4
R, (2.22)

where R = −d(d+ 1) is Ricci scalar for AdSd+1. Thus, the Klein-Gordon equation is now

equivalent to [
∇2 −m2

eff.

]
Ψ(X) = 0, (2.23)

where m2
eff. = m2 − R

4 is an effective mass. From the above equation, we obtain a useful

relation for the AdS Dirac fermion,

− 1

2
LABLABΨ(X) =

[
(ΓA∇A)2 +

1

8
R

]
Ψ(X) = C∆, 1

2
Ψ(X), (2.24)

where LAB = XA∂
X
B − XB∂

X
A + ΣAB is the SO(d + 1, 1) generator. Here C∆, 1

2
is

the same as the quadratic conformal Casimir for d-dimensional spinor representation,

C∆, 1
2

= ∆(∆− d) + d
8(d− 1), (not the coefficient of the bulk-boundary propagators C∆, 1

2
).

In particular, the bulk-bulk propagator (2.18) satisfies the above quadratic Casimir equa-

tion (2.24) when X 6= Y . This fact will be important to show that GWD satisfies the

conformal Casimir equation.

2.3 Split representation

Let us define the harmonic function for the AdS fermions,

Ων, 1
2
(X,Y )

≡ i

2π

∫
∂AdSd+1

[dP ]

[
G
h+iν, 1

2
b∂ (X, S̄b;P, S∂)

]
(
←
∂ S∂

P
→
∂ S̄∂

)

[
Ḡ
h−iν, 1

2
b∂ (Y, Sb;P, S̄∂)

∣∣∣∣
Π+↔Π−

]
,

(2.25)
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where
←
∂ SP

→
∂ S̄ is the projector and necessary for the conformal integral with respect to

P [23]. In what follows, we will often use a short hand notation for the Dirac matrices, say

P ≡ PAΓA. (2.25) is a solution of the Dirac equation,

[(Γ · ∇X)− iν]Ων, 1
2
(X,Y ) = Ων, 1

2
(X,Y )[(

←
∇Y · Γ)− iν] = 0. (2.26)

Note that Ων, 1
2

is not a solution of the other Dirac equation Ψ̄[(
←
∇X · Γ) + iν] = 0. One

can confirm this feature by showing that Ων, 1
2

is a linear combination of the bulk-bulk

propagators with different scaling dimensions (see appendix B.1),

Ων, 1
2
(X,Y ) =

i

2π

{
G
h+iν, 1

2
bb (X,Y )−

(
G
h−iν, 1

2
bb (X,Y )

∣∣∣∣
Π+↔Π−

)}
. (2.27)

Then, the split representation of the fermion bulk-bulk propagator is,

G
∆, 1

2
bb (X,Y ) =

∫ ∞
−∞

dν

ν + i(∆− h)
Ων, 1

2
(X,Y ). (2.28)

The derivation of (2.28) is as follows. From the explicit form of the propagator, G
h±iν, 1

2
bb

converges at Im(ν)→ ∓∞. Then, we can show3

i

2π

∫ ∞
−∞

dν

ν + i(∆− h)
G
h+iν, 1

2
bb (X,Y ) = G

∆, 1
2

bb (X,Y ),

i

2π

∫ ∞
−∞

dν

ν + i(∆− h)
G
h−iν, 1

2
bb (X,Y )|Π+↔Π− = 0, (2.29)

from the residue theorem. These lead (2.28).

3 Conformal partial waves from geodesic Witten diagrams

In this section, we show the equivalence between 4pt CPW and GWD including fermionic

degrees of freedom. In section 3.1, we start analysis of 3pt tree-level (geodesic) Witten

diagrams with two spinor fields and a scalar field. We highlight the ratio of these amplitude,

which will be useful in the next section. In section 3.2, we demonstrate the aforementioned

correspondence especially between the 4pt CPW and GWD including an internal spinor

field and external scalar and spinor fields.

3.1 Warm up: fermion-fermion-scalar amplitude

As warm up exercise, let us compute the tree-level 3pt Witten diagram associated with the

Yukawa-like interaction in the embedding space,

Sint. =

∫
AdSd+1

dX Ψ̄1(X)Ψ2(X)Φ3(X). (3.1)

3We implicitly assume ∆ > h = d/2.
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The amplitude of the diagram can be written as

A3 =

∫
AdSd+1

dX Ḡ
∆1,

1
2

b∂ (X,Sb;P1, S̄1∂)(
←
∂ Sb

→
∂ S̄b

)G
∆2,

1
2

b∂ (X, S̄b;P2, S2∂)G∆3,0
b∂ (X;P3). (3.2)

It reduces to

A3 = 〈S̄1∂Π−S2∂〉 C∆1,
1
2
C∆2,

1
2
C∆3,0

∫
AdSd+1

dX
1

(−2P1 ·X)δ1(−2P2 ·X)δ2(−2P3 ·X)δ3
.

(3.3)

Here we introduced δi ≡ ∆i+si, where si is magnitude of the spin of i-th operator. (Namely,

δ1 = ∆1 + 1
2 , δ2 = ∆2 + 1

2 and δ3 = ∆3 in this example.) Notice that the integrand is the

same as the scalar 3pt amplitude of the Witten diagram with scaling dimension δ1, δ2 and

δ3. By using the standard Schwinger-Feynman integral method, one can obtain

A3 =Cψ̄1ψ2O3

〈S̄1∂Π−S2∂〉
(−2P1 ·P2)

1
2

(δ1+δ2−δ3)(−2P2 ·P3)
1
2

(δ2+δ3−δ1)(−2P3 ·P1)
1
2

(δ3+δ1−δ2)
, (3.4)

Cψ̄1ψ2O3
=πhC∆1,

1
2
C∆2,

1
2
C∆3,0Γ

(
1

2

(
−d+

3∑
i=1

δi

))

×
Γ
(

1
2(δ1+δ2−δ3)

)
Γ
(

1
2(δ2+δ3−δ1)

)
Γ
(

1
2(δ3+δ1−δ2)

)
2Γ(δ1)Γ(δ2)Γ(δ3)

. (3.5)

Then, let us consider the corresponding 3pt geodesic Witten diagram,

W3(γ12) =

∫
γ12

dλḠ
∆1,

1
2

b∂ (X,Sb;P1, S̄1∂)(
←
∂ Sb

→
∂ S̄b

)G
∆2,

1
2

b∂ (X,S̄b;P2,S2∂)G∆3,0
b∂ (X;P3). (3.6)

Here the integration domain γij represents the geodesic anchored on the boundary points

Pi and Pj . The bulk coordinate X on the geodesic γij is given by

XA(λ) =
e−λP1A + eλP2A√
−2P1 · P2

. (3.7)

By using the integral representation of the beta function, we readily obtain

W3(γ12) =C
(γ12)

ψ̄1ψ2O3

〈S̄1∂Π−S2∂〉
(−2P1 ·P2)

1
2

(δ1+δ2−δ3)(−2P2 ·P3)
1
2

(δ2+δ3−δ1)(−2P3 ·P1)
1
2

(δ3+δ1−δ2)
, (3.8)

C
(γ12)

ψ̄1ψ2O3
=

1

2
C∆1,

1
2
C∆2,

1
2
C∆3,0B

(
δ3−δ1+δ2

2
,
δ3+δ1−δ2

2

)
. (3.9)

It is worth noting that, the “ratio” of the usual diagram A3 to the geodesic one W3(γ12) is

A3

W3(γ12)
= πhΓ

(
1

2

(
−d+

3∑
i=1

δi

))
Γ
(

1
2(δ1 + δ2 − δ3)

)
Γ(δ1)Γ(δ2)

(3.10)

In the same way, one can evaluate W3(γ23) and W3(γ31). As expected, we get the same

3pt function as (3.8), while the over all coefficients are different from W3(γ12):

A3

W3(γ23)
= πhΓ

(
1

2

(
−d+

3∑
i=1

δi

))
Γ
(

1
2(δ2 + δ3 − δ1)

)
Γ(δ2)Γ(δ3)

, (3.11)

A3

W3(γ31)
= πhΓ

(
1

2

(
−d+

3∑
i=1

δi

))
Γ
(

1
2(δ3 + δ1 − δ2)

)
Γ(δ3)Γ(δ1)

. (3.12)
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One can also obtain the above 3pt functions with opposite chirality by replacing Π∓ → Π±
for each intermediate step. For Ψ(P1) with the chirality Π−, generic fermion-fermion-scalar

3pt correlators have the following two different tensor structures:

〈Ψ(P1, S̄1)Ψ̄(P2, S2)Φ(P3)〉

=
C1 〈S̄1∂Π−S2∂〉+ C2 〈S̄1∂Π−P3S2∂〉

√
(−2P1·P2)

(−2P1·P3)(−2P2·P3)

(−2P1 · P2)
1
2

(δ1+δ2−δ3)(−2P2 · P3)
1
2

(δ2+δ3−δ1)(−2P3 · P1)
1
2

(δ3+δ1−δ2)
, (3.13)

where C1,2 are OPE coefficients for each spinor bi-linear. In the same manner, we have two

classes of 3pt interactions in AdS for fermion-fermion-scalar vertices. To get the second

term of (3.13) from the AdS integral, for example, one can consider a derivative interaction:

Sint. =

∫
AdSd+1

dX Ψ̄1(X)ΓAΨ2(X)∇AΦ3(X). (3.14)

One can also take a more exotic interaction,

Sint. =

∫
AdSd+1

dX Ψ̄1(X)ΓAΨ2(X)XAΦ3(X), (3.15)

which will be formally appeared in the GWD decomposition of the Witten diagram in the

next section. In these cases, we need to take the bulk-boundary propagators with relatively

opposite chirality projection because of ΓA in (3.14) and (3.15). In appendix B.2, we leave

intermediate steps from the derivative interaction (3.14) to the second spinor bi-linear

in (3.13). We will compute 3pt GWD with the exotic one (3.15) in section 4.

3.2 Conformal partial waves from geodesic diagrams with fermion exchange

Next, we would like to show the equivalence between CPW and GWD both of which possess

external/internal fermions. However, GWD with 4 external fermions and an internal scalar

is almost trivially equivalent to CPW. One may understand this triviality from the previous

3pt calculations — (3.6) can be expressed as a scalar 3pt GWD times the spinor bi-linear

〈S̄1∂Π−S2∂〉. Similarly, the above 4pt GWD can be written as a scalar 4pt GWD times

spinor bi-linears such as 〈S̄1∂Π−S2∂〉 and 〈S̄3∂Π−S4∂〉. Therefore, the problem almost

reduces to the correspondence between the scalar GWD and CPW.

Thus, here we display only the detailed proof for the fermion exchange. We con-

sider a fermion exchange GWD with two external spinors and two external scalars in the

embedding space. The amplitude of this GWD is given by

W4(∆,∆i) =

∫ ∞
−∞

dλF∆[P1, P2, Y (λ), S̄1∂ , Tb](
←
∂ Tb(1 + Y (λ))

→
∂ T̄b)

×G∆4,
1
2

b∂ (Y (λ), T̄b;P4, S4∂)G∆3,0
b∂ (Y (λ);P3), (3.16)

where

F∆[P1,P2,Y, S̄1∂ ,Tb]≡
∫ ∞
−∞

dλḠ
∆1,

1
2

b∂ (X(λ),Sb;P1, S̄1∂)G∆2,0
b∂ (X(λ);P2)(

←
∂ Sb

(1+X(λ))
→
∂ S̄b

)

×G∆, 1
2

bb (X(λ), S̄b;Y,Tb). (3.17)

– 8 –
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The reader may wonder why we consider a strange interaction (
←
∂ Sb

(1 + X)
→
∂ S̄b

) rather

than (
←
∂ Sb

→
∂ S̄b

). As discussed below, one can also take the latter. The different choice gives

rise to the different combination of spinor bi-linears in the corresponding CPW. For the

meanwhile, however, we will take the former (strange one) since we can show that this

choice of interaction reproduces the Yukawa-like interaction for the original AdSd+1 space,∫
AdSd+1

√
−gdd+1x ψ̄∆iψ∆jφ∆k

. (3.18)

In other words, our choice of the interaction will be useful for the bulk computation in the

next section.4 For more detail, please see appendix B.3.

The above function F [P1, P2, Y, S̄1∂ , Tb] is invariant under the simultaneous rotation

by L1 + L2 +
←
LY . Using this fact twice and (2.24), we get

−1

2
(L1 + L2)2F∆[P1, P2, Y, S̄1∂ , Tb] = F∆[P1, P2, Y, S̄1∂ , Tb]

(
−1

2
(
←
LY )2

)
= C∆, 1

2
F∆[P1, P2, Y, S̄1∂ , Tb]. (3.19)

Therefore, we have shown that W4 satisfies the conformal Casimir equation:

− 1

2
(L1 + L2)2W4(∆,∆i) = C∆, 1

2
W4(∆,∆i). (3.20)

Moreover, the above GWD has two independent solutions of the conformal Casimir equa-

tion since LAB = YA∂
Y
B − YB∂YA + ΣAB commutes with Π±. Let us decompose the above

GWD W4 into two pieces,

W4(∆,∆i) =W+
4 (∆,∆i) +W−4 (∆,∆i), (3.21)

W±4 (∆,∆i) ≡
∫ ∞
−∞

dλF±∆ [P1, P2, Y (λ), S̄1∂ , Tb](
←
∂ Tb(1 + Y (λ))

→
∂ T̄b)

×G∆4,
1
2

b∂ (Y (λ), T̄b;P4, S4∂)G∆3,0
b∂ (Y (λ);P3), (3.22)

where we defined

F±∆ [P1,P2,Y, S̄1∂ ,Tb]≡
∫ ∞
−∞

dλḠ
∆1,

1
2

b∂ (X(λ),Sb;P1, S̄1∂)G∆2,0
b∂ (X(λ);P2)(

←
∂ Sb

(1+X(λ))
→
∂ S̄b

)

×G∆, 1
2
,±

bb (X(λ), S̄b;Y,Tb), (3.23)

G
∆, 1

2
,±

bb (X,S̄b;Y,Tb) = 〈S̄bΠ±Tb〉
(
d

du
G

∆±,0
bb (u)

)
. (3.24)

Both ofW±4 (∆,∆i) indeed satisfy the appropriate boundary conditions; hence, W±4 (∆,∆i)

are individually CPW with different spinor bi-linears 〈S1∂Π−P2P3S4∂〉 and 〈S1∂Π−S4∂〉,
4Unfortunately, the relation of 3pt interactions between the embedding space and the original space

is non-trivial in general. This troublesomeness simply comes from the higher dimensional embedding of

spinors (2.8).
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respectively.5 To extract one of these bi-linears from GWD, one needs other “3pt inter-

actions” for its amplitude, whereas the above choice is obviously convenient for the GWD

decomposition of the Witten diagram with (3.18). For example, if we consider (
←
∂ Sb

→
∂ S̄b

)

instead of (
←
∂ Sb

(1 +X)
→
∂ S̄b

) in (3.17), (3.16) reduces to W−4 (∆,∆i).

Finally, we comment on the extension to the external higher spin fields. We can

construct these CPW from the seed CPW with differential operators invented in [41].

Similarly, we can construct the corresponding GWD from the seed GWD as studied in [5–9].

We can follow the similar story even with fermions. In our example, W±4 play the role of the

seed GWDs. However, the relation between the differential operators in the boundary and

3pt interactions in the bulk would be involved. We will come back this point in section 5.

4 GWD decomposition of Witten diagram

Finally, we demonstrate the GWD decomposition of an exchange Witten diagram with

fermion exchange as a concrete example. Based on the method in [9], we can extract the

conformal dimension in the CPW expansion systematically from the ratio between the

usual diagram A3 and the geodesic one W3.

We shall consider the following amplitude,

A4 =

∫
dX

∫
dY Ḡ

∆1,
1
2

b∂ (X,Sb;P1, S̄1∂)G∆2,0
b∂ (X;P2)

×(
←
∂ Sb

(1+X)
→
∂ S̄b

)G
∆0,

1
2

bb (X,S̄b;Y,Tb)(
←
∂ Tb(1+Y )

→
∂ T̄b)G

∆4,
1
2

b∂ (Y, T̄b;P4,S4∂)G∆3,0
b∂ (Y ;P3).

(4.1)

The difference between (4.1) and the previous amplitude (3.16) is just the integration

domain, the geodesics or the entire bulk. We would like to decompose (4.1) into the

summation of (3.16) and to read off the OPE data. To this end, it is useful to employ the

shadow formalism. By using (2.28), we obtain the relation between 3pt and 4pt GWD as∫
∂AdSd+1

[dP ]W3(P1,P2,P )(
←
∂ S∂

P
→
∂ S̄∂

)W ′3(P,P3,P4) =
∑
c=±

[
Wc

4(∆,∆i)−Wshadow,c
4 (∆,∆i)

]
,

(4.2)

where6

W3(P1, P2, P ) =

∫
γ12

dλ Ḡ
∆1,

1
2

b∂ (X(λ), Sb;P1, S̄1∂)(
←
∂ Sb

→
∂ S̄b

)

×G∆, 1
2

b∂ (X(λ), S̄b;P, S∂)G∆2,0
b∂ (X(λ);P2), (4.3)

W ′3(P, P3, P4) =

∫
γ34

dλ Ḡ
d−∆, 1

2
b∂ (X(λ), Sb;P, S̄∂)

∣∣∣∣
Π+↔Π−

(
←
∂ Sb

X(λ)
→
∂ S̄b

)

×G∆4,
1
2

b∂ (X(λ), S̄b;P4, S4∂)G∆3,0
b∂ (X(λ);P3), (4.4)

5Here each chiral projection in (3.24) selects one of the spinor bi-linears. For example, W+
4 (∆,∆i)

initially includes 4 spinor bi-linears 〈S1∂Π−1Π+1Π−S4∂〉, 〈S1∂Π−XΠ+1Π−S4∂〉, 〈S1∂Π−1Π+Y Π−S4∂〉,
and 〈S1∂Π−XΠ+Y Π−S4∂〉. The first three bi-linears become zero, and only 〈S1∂Π−XΠ+Y Π−S4∂〉 =

〈S1∂Π−XY S4∂〉 survives. Then, this leads to 〈S1∂Π−P2P3S4∂〉.
6Based on the cubic vertices in (4.1), we can also defineW3 by using

←
∂ Sb(1+X)

→
∂ S̄b

instead of
←
∂ Sb

→
∂ S̄b

.

Such definition is reduced to (4.3) owing to the chiral projection operators Π± in the fermion propagators.

The same is true for W ′3.
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and

Wshadow,±
4 (∆,∆i)≡

∫ ∞
−∞

dλ

[
F±d−∆[P1,P2,Y (λ), S̄1∂ ,Tb]

∣∣∣
Π±→Π∓

]
×(
←
∂ Tb(1+Y (λ))

→
∂ T̄b)G

∆4,
1
2

b∂ (Y (λ), T̄b;P4,S4∂)G∆3,0
b∂ (Y (λ);P3). (4.5)

We also define A3 and A′3 by replacing the geodesic integrals of (4.3) and (4.4) with the

entire bulk integrals. The former ones, A3 andW3, were computed in the previous section.

Here we note the final result of A′3 and A′3/W ′3 for references;

A′3 =
Cd−∆, 1

2
C∆3,0C∆4,

1
2

2τ
〈S̄∂Π+

∂

∂P
S4〉
∫
dX

1

(−2X ·P )τ (−2X ·P3)δ3(−2X ·P4)δ4

=
τ+δ3−δ4

2τ

πh

2
Γ

(
1

2
(−d+τ+δ3+δ4)

)
Γ(1

2(τ+δ3−δ4))Γ(1
2(δ3+δ4−τ))Γ(1

2(δ4+τ−δ3))

Γ(τ)Γ(δ3)Γ(δ4)

×Cd−∆, 1
2
C∆3,0C∆4,

1
2

〈S̄∂Π+P3S4〉
(−2P ·P3)

1
2

(τ+δ3−δ4)+1(−2P3 ·P4)
1
2

(δ3+δ4−τ)(−2P ·P4)
1
2

(τ+δ4−δ3)
,

(4.6)

A′3
W ′3

=πhΓ

(
1

2
(−d+τ+δ3+δ4)

) Γ

(
1

2
(δ3+δ4−τ)

)
Γ(δ3)Γ(δ4)

, (4.7)

where we defined τ ≡ d − ∆ − 1
2 = h − iν − 1

2 . Then, we can rewrite (4.1) by using 4pt

GWD,

A4 =
i

2π

∫
dν

ν+i(∆0−h)

∫
∂AdSd+1

[dP ]A3(P1,P2,P )(
←
∂ S∂

P
→
∂ S̄∂

)A′3(P,P3,P4)

=
i

2π

∫
dν

ν+i(∆0−h)
(A3/W3)(A′3/W ′3)

×
∫
∂AdSd+1

[dP ]W3(P1,P2,P )(
←
∂ S∂

P
→
∂ S̄∂

)W ′3(P,P3,P4)

=
i

2π

∫
dν

ν+i(∆0−h)
(A3/W3)(A′3/W ′3)

(
W+

4 +W−4 −W
shadow,+
4 −Wshadow,−

4

)
, (4.8)

where W±4 includes G
∆, 1

2
,±

bb = G
h+iν, 1

2
,±

bb , and Wshadow,±
4 does G

d−∆, 1
2
,±

bb = G
h−iν, 1

2
,±

bb .

We apply a complex contour integral for the integration with respect to ν in (4.8).

Since G
h±iν, 1

2
,±

bb converges at Im(ν) → ∓∞, we consider the lower half complex ν-plane

for W±4 and the upper half complex ν-plane for Wshadow,±
4 . In the lower half plane,

(A3/W3)(A′3/W ′3)

ν + i(∆0 − h)
has the poles at

h+ iν = ∆0, (4.9)

h+ iν = ∆1 + ∆2 + 2m, h+ iν = ∆3 + ∆4 + 2m, (m = 0, 1, 2, · · · ). (4.10)

In the upper half plane, the poles of
(A3/W3)(A′3/W ′3)

ν + i(∆0 − h)
are

h− iν = ∆1 + ∆2 + 2m+ 1, h− iν = ∆3 + ∆4 + 2m+ 1, (m = 0, 1, 2, · · · ). (4.11)
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In the point of the view of CFT, (4.9) corresponds to the single trace spinor operator.

(4.10) and (4.11) correspond to the double trace operators which are constructed from

the scalar and spinor fields. Their schematic forms are φ∆i(∂a∂
a)mψ∆j + . . . , where φ∆i

and ψ∆j are the scalar and spinor fields in CFT. We note that the difference between 2m

and 2m + 1 in (4.10) and (4.11) is related to Π+ ↔ Π− exchange in (4.5). For example,

G
∆1+∆2+2m, 1

2
,+

bb (X, S̄b;Y, Tb) and G
∆1+∆2+2m+1, 1

2
,−

bb (X, S̄b;Y, Tb)|Π+↔Π− are the same prop-

agators. One can obtain the coefficients of W4 by applying the residue theorem explicitly.

Summarizing the above, the 4pt Witten diagram (4.1) can be expressed by GWD

as (4.8). After the integration with respect to ν, we can obtain the GWD expansion of (4.1).

These GWD correspond to CPW for the single trace spinor operator with the conformal

dimension (4.9) and the double trace operators with the conformal dimension (4.10). Gen-

eralization to the GWD decomposition of other Witten diagrams is straightforward, but

we leave it for future work.

5 Outlook

In this paper, we have developed the embedding formalism for AdS fermions in section 2

and applied it to the proof of the correspondence between GWD and CPW with fermions in

section 3. We have also decomposed the fermion exchange Witten diagram into the infinite

sum of GWD (equivalently, CPW) in section 4. The key ingredient for the computation

was the split representation for AdS fermions, which was given by (2.28). We list several

future directions as concluding remarks.

Generalization to odd d. In this paper, we focused on the embedding formalism with

the even dimensional Minkowski spacetime. It is also important to organize the embedding

formalism in the odd dimensional Minkowski spacetime for the odd dimensional CPW

and the even dimensional GWD. In odd dimensional field theories, we cannot introduce

chirality or Weyl fermions. Thus, the spinor structure of the independent even dimensional

GWD is probably different from the odd dimensional one. Interesting research topics

in the odd dimensional CFT with fermion are, for example, 3d (supersymmetric) U(N)

model [29, 42–44] and 1d cSYK [45, 46].

Make geodesic Witten diagram super. One of the motivation of our work was to

extend the arguments to the superconformal field theories (SCFT). We can decompose cor-

relation functions of SCFT into the superconformal partial waves (SCPW) corresponding

to the exchange of superconformal primaries and their descendants. The superconformal

partial waves are the solutions of the super conformal Casimir equation. The most trans-

parent approach should be again the super embedding formalism which has been used for

constructing SCPW via the shadow formalism [47]. Then, it is quite reasonable to develop

the counterpart in AdS fields. It would help to construct the super version of GWD and

show their equivalence to SCPW.
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Higher spin fields and interactions. One may be curious about extending the argu-

ment in the present paper to higher (half-integer) spin fields, for example, the gravitino.

With the previous developments for the bosonic higher spin fields [4–10, 26], one can

straightforwardly extend our calculation to the (geodesic) Witten diagrams with the most

generic representations. However, the calculation does not become so simple since the

spinor bi-linears in the embedding AdS do not satisfy the transverse condition. In addi-

tion, the relation between 3pt interactions in the original space and ones in the embedding

space becomes involved due to the higher dimensional embedding of fermions; but of course,

one can formally introduce 3pt interactions in the embedding space and use it for GWD.

This is because the interaction for GWD is not unique and probably no physical meaning.

Improving these unsatisfactory points might give more useful tools to compute the Witten

diagrams including higher spin fermionic degrees of freedom.
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A Convention for spinors

In this appendix, we summarize our convention of spinors in d+ 2 dimensional Lorentzian

spacetime (the embedding space for AdSd+1/CFTd). For more detail, we refer to [36–38].

We basically follows one in [38].

The gamma matrices ΓA are now given by

Γ0 =

[
0 1

−1 0

]
,Γa =

[
γa 0

0 −γa

]
,Γd+1 =

[
0 1

1 0

]
, (A.1)

where γas satisfy {γa, γb} = δab (a, b = 1, 2, · · · , d). The chiral gamma matrix for

d+ 2 = 2n+ 2 dimension is defined by

Γ ≡ 1

in+3
Γ0Γ1 · · ·Γd+1 ≡

[
−γ0 0

0 γ0

]
, (A.2)

where we defined one for 2n-dimension (with Euclidian signature) as γ0≡−i−(n+1)γ1γ2 · · · γd.
For the Dirac conjugation, we use −Γ0 rather than Γ0 so does [38]. Namely,

Ψ̄ ≡ Ψ†(−Γ0). (A.3)
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Next, we briefly note the convention for the boundary fermions. The primary fields

with spin 1
2 should satisfy

Ψ∂(λP ) = λ−(∆+ 1
2

)Ψ∂(P ), (A.4)

so that it can reproduce the conformal algebra for spin 1
2 fields. We also introduce the

index-free notation for the boundary spinors,

Ψ(P, S̄∂) ≡ S̄∂Ψ(P ). (A.5)

On the projective null cone P 2 = 0, S∂ satisfies the conventional “transverse condition”,

ΓAPAS∂ = 0. (A.6)

We can consistently impose this condition since (ΓAPA)2 = 0, as opposed to the bulk

fermions. We also use the notation for the spinor bi-linears for the auxiliary fields, say

〈S̄b1 · · ·S∂2〉. Here the suffixes b (∂) represent the fields on the bulk (boundary).

We leave some explicit formulae of the spinor bi-linears in the original space,

〈S̄bΠ±S∂〉 = − 1√
z
χ†[zγ0 + γa(xb − x∂)a]P±s, (A.7)

〈S̄∂Π±Sb〉 =
1√
z
s†P∓[zγ0 + γa(xb − x∂)a]χ, (A.8)

〈S̄biΠ±Sbj〉 =
1
√
zizj

χ†i [P∓γ
µ(zj)µ − γµ(zi)µP±]χj , (A.9)

where χ (s) are the bulk (boundary) auxiliary fields in the original space, and P∓ ≡ 1∓γ0

2 .

With these formulae, the AdS propagators (2.13), (2.14) and (2.18) can be written as

G
∆, 1

2
b∂ (z,xb,χ;x∂ ,s) =−

C∆, 1
2√
z
χ†[γ0z+γa(xb−x∂)a]P−s

(
z

z2+(xb−x∂)2

)∆+ 1
2

,

(A.10a)

Ḡ
∆, 1

2
b∂ (z,xb,χ;x∂ ,s) =

C∆, 1
2√
z
s†P+[γ0z+γa(xb−x∂)a]χ

(
z

z2+(xb−x∂)2

)∆+ 1
2

,

(A.10b)

G
∆, 1

2
bb (z1,x1b,χ1;z2,x2b,χ2) =− 1

√
z1z2

[
χ†1(zµ1 γµP−−P+z

µ
2 γµ)χ2

d

du
G

∆−,0
bb (u)

+χ†1(zµ1 γµP+−P−zµ2 γµ)χ2
d

du
G

∆+,0
bb (u)

]
. (A.10c)

After dropping the auxiliary fields s and χ, these are consistent with the expressions in [40].
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We also leave several formulae about the covariant derivative for help to check (2.22)

and (2.24):

ΓA∇AΓB∇B = ΓA[∇A,ΓB]∇B+ηAB∇A∇B+2ΣAB∇A∇B, (A.11)

ΓA[∇A,ΓB]∇B =XAΓA(Γ·∇) = +ΣABLXAB−
d+1

2
, (A.12)

[GAC∂
C
X ,GBD∂

D
X ] =−LXAB, (A.13)

2ΣAB[ΣACX
C ,GBD∂

D
X ] =−R

2
+

(d+1)

2
, (A.14)

ΣAB[ΣAC ,ΣBD]XCXD =
R

4
, (A.15)

ηAB∇A∇B = [GAB∂
A
X∂

B
X+(d+1)(X ·∂X)]−LXABΣAB+ηABΣACΣBDX

CXD,

(A.16)

ηABΣACΣBD =−1

4
[dΓCΓD+ηCD] , (A.17)

ΣABΣAB =
1

4
R− d+1

2
, (A.18)

where R = −d(d+ 1) and LXAB = XA∂
X
B −XB∂

X
A .

B Computational details

In this appendix, we supply some of the details which were omitted in the main text for

the sake of presentation.

B.1 Derivation of (2.27)

We complement the intermediate calculation of (2.27). In [29], there is the same analysis

by Fourier transformation without the embedding formalism. Let us start to rewrite the

harmonic function (2.25),

Ων, 1
2
(X,Y ) =

i

2π
C∆, 1

2
Cd−∆, 1

2

∫
∂AdSd+1

[dP ]
〈S̄bΠ−S∂〉

(−2X · P )∆+ 1
2

(
←
∂ S∂

P
→
∂ S̄∂

)
〈S̄∂Π+Tb〉

(−2P · Y )(d−∆)+ 1
2

,

(B.1)

where ∆ = h+ iν. By using the following formulae:∫
∂AdSd+1

[dP ]
PA

[−2P · Y ]d+1
=
πhΓ(h+ 1)

Γ(2h+ 1)

YA
(−Y 2)h+1

, (B.2)

1

AxBy
=

Γ(x+ y)

Γ(x)Γ(y)

∫ ∞
0

dt

t
ty

1

[A+ tB]x+y
, (B.3)

we obtain

Ω∆, 1
2
(X,Y ) =

i

2π
C∆, 1

2
Cd−∆, 1

2

πhΓ(h+1)

Γ(∆+ 1
2)Γ(d−∆+ 1

2)

∫ ∞
0

dt

t
td−∆+ 1

2
〈S̄bΠ+Tb〉−t〈S̄bΠ−Tb〉

[−(X+tY )2]h+1
,

(B.4)
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where we used (2.7). The 1st term in (B.4) is

C∆, 1
2
Cd−∆, 1

2

πhΓ(h+ 1)

Γ(∆ + 1
2)Γ(d−∆ + 1

2)
〈S̄b Π+Tb〉

∫ ∞
0

dt

t
td−∆+ 1

2
1

[−(X + tY )2]h+1

= 〈S̄b Π+Tb〉

[(
d

du
G

∆+,0
bb (u)

)
−
(
d

du
G

∆̃+,0
bb (u)

)]
, (B.5)

where we used∫ ∞
0

dt

t

t−c(
(1+t)2

t + 2u
)b =

Γ(b+ c)Γ(−c)
Γ(b)(2u)b+c

2F1

(
b+ c,

1

2
+ c, 1 + 2c,−2

u

)

+
Γ(b− c)Γ(c)

Γ(b)(2u)b−c
2F1

(
b− c, 1

2
− c, 1 + 2c,−2

u

)
, (B.6)

and we defined ∆± ≡ ∆ ± 1
2 and its shadow ∆̃± ≡ d − ∆± = d − ∆ ∓ 1

2 . The 2nd term

in (B.4) also becomes

C∆, 1
2
Cd−∆, 1

2

πhΓ(h+ 1)

Γ(∆ + 1
2)Γ(d−∆ + 1

2)
〈S̄b Π−Tb〉

∫ ∞
0

dt

t
td−∆+ 1

2
(−t)

[−(X + tY )2]h+1

= 〈S̄b Π−Tb〉

[(
d

du
G

∆−,0
bb (u)

)
−
(
d

du
G

∆̃−,0
bb (u)

)]
. (B.7)

Therefore, we obtain (2.27). From the similar computation, one can also derive (4.2).

B.2 3pt amplitude with a derivative interaction

Here we compute 3pt GWD with derivative interaction (3.14),

Sint.(γ12) =

∫
AdSd+1

dX Ψ̄1(X)ΓAΨ2(X)∇AΦ3(X).

In this case, 3pt GWD is given by

W3,deriv(γ12) =

∫
γ12

dλ Ḡ
∆1,

1
2

b∂ (X(λ),Sb;P1, S̄1∂)(
←
∂ Sb

ΓA
→
∂ S̄b

)

[
G

∆2,
1
2

b∂ (X(λ), S̄b;P2,S2∂)

∣∣∣∣
Π+↔Π−

]
×∇AG∆3,0

b∂ (X(λ);P3) (B.8)

∝ 2∆3

∫
γ12

dλ
〈S̄1∂Π−P3S2∂〉

(−2P1 ·X(λ))∆1+ 1
2 (−2P2 ·X(λ))∆2+ 1

2 (−2P3 ·X(λ))∆3+1
(B.9)

∝
〈S̄1∂Π−P3S2∂〉

√
(−2P1·P2)

(−2P1·P3)(−2P2·P3)

(−2P1 ·P2)
1
2 (δ1+δ2−δ3)(−2P2 ·P3)

1
2 (δ2+δ3−δ1)(−2P3 ·P1)

1
2 (δ3+δ1−δ2)

. (B.10)

Hence, we have obtained the second spinor bi-linear in (3.13).

– 16 –
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B.3 Yukawa-like interaction: embedding space vs. physical space

Finally, we note some intermediate steps to relate the strange interaction in the embedding

AdS space with Yukawa-like interaction in the physical one. In the embedding space, the

exchange diagram (4.1) reduces to

A4 = C∆1,
1
2
C∆2,0C∆3,

1
2
C∆4,0

∫
dX

∫
dY
〈S̄1∂Π−S3∂〉

d

du
G

∆−
bb (u)+〈S̄1∂Π−XΠ+YΠ−S3∂〉

d

du
G

∆+

bb (u)

(−2P1 ·X)∆1+ 1
2 (−2P2 ·X)∆2(−2P3 ·Y )∆3+ 1

2 (−2P4 ·Y )∆4

= C∆1,
1
2
C∆2,0C∆3,

1
2
C∆4,0

∫
dX

∫
dY

〈S̄1∂Π−S3∂〉
d

du
G

∆−
bb (u)+〈S̄1∂Π−XY S3∂〉

d

du
G

∆+

bb (u)

(−2P1 ·X)∆1+ 1
2 (−2P2 ·X)∆2(−2P3 ·Y )∆3+ 1

2 (−2P4 ·Y )∆4

(B.11)

One can see that this amplitude is equivalent to the one in the physical space with the

propagators (A.10) and Yukawa-like interaction (3.18) (for each vertecies),

Aphys.
4 =

∫
dz1d

dx1b

zd+1
1

∫
dz2d

dx2b

zd+1
2

[
Ḡ

∆1,
1
2

b∂ (z1, x1b;x1∂)G∆2,0
b∂ (z1, x1b;x2∂)

×G∆, 1
2

bb (z1, x1b; z2, x2b)G
∆3,

1
2

b∂ (z1, x2b;x3∂)G∆4,0
b∂ (z1, x2b;x4∂)

]
, (B.12)

where the above propagators are given by (A.10) (peeled off the auxiliary spinors). For the

explicit check, it is useful to note that

〈S̄1∂Π−X1X2S2∂〉

=
1

z1z2
s†1
[
P+{(z2

1(x2b−x1∂)iγ
i−z2

2(x1b−x1∂)aγa+(x1b−x1∂)i(x1b−x2b)j(x2b−x2∂)kγ
iγjγk)}

]
s2.

(B.13)

Notice that the second term in (B.11) gives rise to the spinor bi-linear 〈S̄1∂Π−P2P4S3∂〉.
This can be easily seen in the GWD,

W4∝
∫
γ12

dλ

∫
γ34

dλ′
〈S̄1∂Π−S3∂〉

d

du
G

∆−
bb (u)+〈S̄1∂Π−X(λ)Y (λ′)S3∂〉

d

du
G

∆+

bb (u)

(−2P1 ·X(λ))∆1+ 1
2 (−2P2 ·X(λ))∆2(−2P3 ·Y (λ′))∆3+ 1

2 (−2P4 ·Y (λ′))∆4

.

(B.14)

For W4, it is obvious that 〈S̄1∂Π−XY S3∂〉 becomes proportional to 〈S̄1∂Π−P2P4S3∂〉 on

the geodesics γ12 and γ34.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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