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1 Introduction

Recently, holographic complexity has been suggested as a new tool with which to gain

insight in the role of entanglement in the emergence of spacetime geometry in quantum

gravity [1–6]. In particular, it has drawn attention to new gravitational observables to

probe the bulk spacetime in the holographic theories. The complexity=volume (CV) con-

jecture suggests that complexity is dual to the volume of an extremal (codimension-one)
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bulk surface anchored to a certain time slice in the boundary [1, 4]. Alternatively, the

complexity=action (CA) conjecture identifies the complexity with the gravitational action

evaluated on a particular bulk region, known as the Wheeler-DeWitt (WDW) patch, which

is again anchored on a boundary time slice [5, 6].1

Both of the holographic complexity conjectures point out new classes of interesting

gravitational observables and there has been a growing interest in studying these new

observables and the corresponding conjectures, e.g., [7–19]. At present, both conjectures

appear to provide viable candidates for holographic complexity, but this research program

is still at a preliminary stage. While understanding the properties of the new gravitational

observables certainly deserves further study, providing concrete, even qualitative, tests of

the two conjectures is hampered because we lack a good understanding of what complexity

actually means in the boundary CFT, or in quantum field theory, more generally. Certainly,

this lack of understanding stands as an obstacle to constructing a precise translation be-

tween the new bulk observables and specific quantities in the boundary theory, e.g., in

an analogous way that the translation of the replica construction in the boundary yielded

a derivation of holographic entanglement entropy [20–22]. Beyond gaining new insights

into holographic complexity, developing an understanding of complexity in quantum field

theory is an interesting research program in its own right. For example, it may lead to

progress in quantum simulations of field theories, e.g., [23–26], or in our understanding of

Hamiltonian complexity, e.g., [27, 28] and the description of many-body wave functions,

e.g., [29, 30].

Recently, some preliminary steps were taken to provide a precise definition of cir-

cuit complexity in quantum field theories, e.g., [31–39]. The present paper extends these

investigations by examining complexity in a free fermionic quantum field theory. Our cur-

rent investigation is closely related to the discussions in refs. [32, 33], which studied the

ground state complexity of a free scalar field theory. In particular, ref. [32] adapted a

geometric approach, which was developed by Nielsen and collaborators [40–42], to eval-

uate circuit complexity in a scalar field theory, and here we apply Nielsen’s approach to

defining the complexity of states in a fermionic field theory. We might note that a possible

connection between Nielsen’s approach and holographic complexity had been advocated by

Susskind [2, 43, 44], but further, the complexity for the free scalar [32] was found to show

some surprising similarities to holographic complexity, despite the enormous differences

between the quantum field theories appearing in these two settings. We should also point

out that ref. [33] developed an alternative approach of defining complexity for the free

scalar field theory using the Fubini-Study metric, which matched many results found using

Nielsen’s approach.2 Even though, we will focus on Nielsen’s approach for the fermionic the-

ory, we will also comment on this alternative approach, as well as point out differences and

similarities with the scalar theory. An important difference to the bosonic case lies in the

fact that all energy eigenstates of free fermionic theories are Gaussian, and so our methods

1One can think of the WDW patch as the causal development of the spacelike extremal surface picked

out in the CV construction.
2We also refer the interested reader to ref. [45], which introduces an interesting connection between

quantum algorithms and geodesics on the Fubini-Study metric.

– 2 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

can be applied directly here to evaluate the complexity of arbitrary excited energy eigen-

states.3 This means that we do not develop new methods to deal with these excited states,

which might then also be applied in bosonic theories, but rather we are exploiting the fact

that a large family of fermionic excited states fall into the same class as the ground state.

The remainder of the paper is organized as follows: in section 2, we provide a brief

review of Nielsen’s geometric approach to evaluating circuit complexity and we introduce a

group theoretic perspective that naturally arises in applying this technique to evaluate the

complexity of quantum field theory states. In section 3, we continue to develop this group

theoretic approach by first reviewing its application to Gaussian states in free scalar field

theories [32, 39]. This review then sets the stage to extend this technique to examine the

complexity of Gaussian states in free fermionic theories, which is discussed in section 3.2. As

well as discussing the salient features of the application to a general theory of N fermionic

degrees of freedom, we present some explicit calculations for the simple case of two fermions.

We can then apply the previous analysis to evaluate the complexity of the ground state of a

free Dirac field in section 4. In section 4.2, we also evaluate the complexity of certain excited

states. Section 5 presents a general framework which allows one to evaluate the circuit

complexity of arbitrary Gaussian states in any fermionic theory. In section 6, we apply

this general method to further examine complexity of the free Dirac field. In particular, we

investigate how the complexity of the ground state is effected by alternate choices for the

reference state, and also the complexity of more general excited states. We close with a

brief discussion of our results and of possible future directions in section 7. We leave some

additional technical details for appendices. In appendix A, we discuss a particular class of

simple geodesics on general Lie groups, which are relevant in our application of Nielsen’s

approach to quantum field theories. Appendix B provides a general construction of the

minimal geodesics connecting an arbitrary reference state to any desired target state in a

fermionic theory.

Note added. While the present paper was in preparation, refs. [36, 37] appeared which

also address the question of circuit complexity of free fermionic theories. In particular,

there is a strong overlap with our study of the ground state complexity in section 4.

However, we would like to note that our approach adopts a more abstract group theoretic

formalism, which allows us to prove e.g., that our unitary circuits in fact correspond to

minimal geodesics, which is lacking in [36, 37]. Further, we evaluate the complexity of the

ground state for a variety of different reference states, and we also consider the complexity

of various excited states.

2 Complexity, Nielsen and group theory

The concept of complexity stems from the notion of computational complexity in computer

science [46, 47]. The question of interest is to ask how much of certain computational

3There is a subtlety for free (quadratic) Hamiltonians with degenerate eigenspaces. In this case, it is

true that one can find a complete orthonormal basis of Gaussian energy eigenstates, but there will also be

linear combinations of Gaussian states within degenerate eigenspaces that are not Gaussian themselves.
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resources are required to solve a given task. For a digital computer, we can ask what

is minimal number of computational gates required to implement a specific algorithm,

i.e., a specific map between a certain sets of input bits and output bits. This question

readily extends to quantum information science where the question becomes what is the

minimal number of gates chosen from some set of elementary unitaries {VI} to implement

a unitary transformation U , which produces a desired map from some n-qubit inputs to

the corresponding n-qubit outputs [48, 49]. An implementation of U becomes a string

of elementary unitaries, i.e., U =
∏D
k=1 VIk where D defines the circuit depth of this

particular implementation. The circuit complexity then corresponds to the depth of the

optimal construction, i.e., the minimal number of gates needed to build U . To be even more

precise, it is rarely possible to write a given U exactly as a finite string of discrete gates VI ,

but rather only up an error ε. Hence the circuit complexity of a unitary transformation U

is usually defined with respect to some gate set {VI} and a given tolerance ε as the minimal

number of VI required to implement U , up to an error of ε.

In the context of holography, or in applying these concepts to quantum field theory, we

are interested in quantifying the effort required to prepare a certain target state |ψT〉 from

a specific reference state |ψR〉 by applying a sequence of unitary gates. Here, |ψR〉 will be

chosen with some notion of simplicity in mind, e.g., the degrees of freedom are completely

unentangled. Hence the complexity of a family of target states is defined with respect to

the reference state |ψR〉, as well as the gate set {VI} and the tolerance ε.4 Again, we wish

to construct the optimal unitary or shortest circuit which implements

|ψT〉 = U |ψR〉 , (2.1)

and the complexity of the state |ψT〉 is simply defined as the number of elementary gates

comprising this optimal U . Of course, generally there will exist infinitely many differ-

ent sequences of gates which produce the same target state from a given reference state.

Hence, our challenge is to identify the optimal circuit from amongst the infinite number

of possibilities.

Nielsen and collaborators [40–42], introduced a geometric approach to identify the

optimal circuit, which was adapted in [32] to evaluate the complexity of the ground state of

a free scalar field. In contrast to the previous discussion, where U is constructed as a string

of discrete gates, this new approach begins with a continuous description of the unitary

U = ~P exp

[
−i
∫ 1

0
ds H(s)

]
where H(s) =

∑
I

Y I(s)OI , (2.2)

where the ‘time-dependent Hamiltonian’ H(s) is expanded in terms of a basis of Hermitian

operators OI , and the ~P indicates a ‘time’ ordering such that the circuit is built from

4Hence the concept of state complexity differs slightly from the computational complexity introduced

above. The later requires constructing the optimal U which implements a particular map for many different

inputs. With a state complexity, we consider a single fixed input (i.e., the reference state) and construct a

new (optimal) circuit for each output (i.e., the target states). This differences introduces an ambiguity in

the boundary conditions, as explained in the discussion around eq. (2.11).
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right to left as s increases.5 Here one might think of the elementary gates taking the

form VI = exp[−iεOI ] where ε is some small parameter, and then the control functions

Y I(s) indicate which gates are being applied at a given time s in the circuit represented by

eq. (2.2). Further, rather than only considering the complete circuit (2.2), Nielsen extends

this construction to consider trajectories in the space of unitaries,

U(s) = ~P exp

[
−i
∫ s

0
ds̃ H(s̃)

]
. (2.3)

In this space, the circuits of interest are the trajectories satisfying the boundary conditions

U(s = 0) = 1 and U(s = 1) = U .6 In this framework, ~Y (s) = (Y 1(s), Y 2(s), · · · ) can also

be interpreted as the tangent vector of the corresponding trajectory,

Y I(s)OI = ∂sU(s)U−1(s) . (2.4)

Let us also note that there is no need to consider a tolerance ε with this continuous

description, since the ~Y (s) can always be adjusted to produce exactly the desired transfor-

mation (2.1).

Now Nielsen’s approach is to optimize the circuit (2.2) by minimizing a particular cost

defined by

D(U(t)) =

∫ 1

0
ds F

(
U(s), ~Y (s)

)
, (2.5)

where the cost function F (U, ~Y ) is a local functional along the trajectory of the position

U(s) and the tangent vector ~Y (s). Some simple examples would include:

F1(U, ~Y ) =
∑
I

∣∣Y I
∣∣ , F1p(U, ~Y ) =

∑
I

pI
∣∣Y I
∣∣ ,

F2(U, ~Y ) =

√∑
I

(Y I)2 , Fκ(U, ~Y ) =
∑
I

∣∣Y I
∣∣κ . (2.6)

Given the interpretation of the Y I as indicating when certain gates appear in the circuit,

the F1 measure is the closest to the original definition of simply counting the number of

gates in the circuit. In F1p, penalty factors pI are introduced to favour certain directions in

the circuit space over others, i.e., to give a higher cost to certain classes of gates. Of course,

the F2 measure can be recognized as the proper distance in a Riemannian geometry on the

space of unitaries. This choice will be the focus of much of our discussion in the following.

The κ measures Fκ were introduced in [32] because the resulting complexity compared well

with results for holographic complexity. Of course, with κ = 2, the Fκ measure yields the

same optimal trajectories as F2 with a test particle action in the corresponding geometry,

while with κ = 1, this reverts back to the F1 measure. We return to discussing the relative

merits of these measures in more detail in section 7.

5Note that our notation here differs slightly from that in [32] where the overall factor of −i was absorbed

in the OI , which were then anti-Hermitian operators.
6We define the boundary conditions more precisely below in the discussion around eq. (2.11).
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In applying the above approach to a free scalar field theory in [32], a group theoretic

structure was found to naturally appear. To produce a tractable problem, only a limited

basis of operators OI were used in constructing the unitary circuit (2.2) and these operators

naturally formed a closed algebra, i.e., a Lie algebra g with [OI ,OJ ] = ifIJ
KOK . In [32],

a GL(N,R) algebra appeared in the construction of the free scalar ground state using a

lattice of N bosonic degrees of freedom.7 In the following discussion of free fermions, we

will be making use of the analogous group structure, which turns out to be O(2N). One

advantage of this group theoretic perspective is that the physical details of the operators

OI become less important. Rather, we can simply think of the generators in eq. (2.2) as

the elements of the Lie algebra g and the circuits are then trajectories in the corresponding

group manifold G, without making reference to a specific representation, or rather we can

choose whichever representation is most convenient for our calculations.

Let us phrase the preceding description of Nielsen’s approach in the corresponding

group theoretic language — see appendix A for further discussion. In particular, the cir-

cuits (2.2) of interest become continuous trajectories γ : [0, 1] → G which connect the

identity 1 with the desired unitary transformation U . In identifying the elementary gen-

erators with a basis of the Lie algebra g, we are presented a natural cost function which

is inherited from the geometry of the underlying group structure. That is, we restrict

ourselves to a cost function

‖A‖ =
√
〈A,A〉1 (2.7)

that is induced by a positive definite metric 〈·, ·〉1 : g × g → R on the Lie algebra.8 If

we extend a circuit U → e−εA U by applying the gate exp[−εA] from the right, then

δU ≈ −iεAU and we expect that the length of the circuit should increase by a step ε‖A‖,
irrespective of the precise form of U , or equivalently that the tangent vector AU ∈ TUG
has the same length as A ∈ T1U . We can therefore extend the metric 〈·, ·〉1 to arbitrary

tangent spaces via right-translation, leading to the right-invariant metric

〈X,Y 〉U = 〈XU−1, Y U−1〉1 . (2.8)

Using the F2 cost function, the circuit complexity of a given U ∈ G is then defined as the

minimal path length

C2(U) = min
γ

∫ 1

0
dt ‖γ̇(t)‖ , (2.9)

which is nothing else than the geodesic distance between 1 and U on G, which was turned

into a Riemannian manifold by the metric 〈·, ·〉U . If instead, we wished to consider the

Fκ=2 measure, the circuit complexity becomes

Cκ=2(U) = min
γ

∫ 1

0
dt ‖γ̇(t)‖2 , (2.10)

7This was extended to an Sp(2N,R) algebra in [39], as discussed below.
8Here, we use the standard identification of the Lie algebra g with the tangent space T1G at the identity.
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G

γ1

γ2

Sta [U ] = U Sta

1

U

Uu

Figure 1. This figure illustrates the geometry of the Lie group G with stabilizer subgroup Sta,

whose elements u satisfy u|ψR〉 = |ψR〉. This subgroup induces a fibration of G into equivalence

classes given by displaced stabilizers [U ] = U Sta. The complexity of a target state |ψT〉 = U |ψR〉
is then given by the minimal path γ to a point on [U ], of which we illustrate two examples. γ1 goes

from 1 to U and γ2 from 1 to Uu where u ∈ Sta.

The group theoretic perspective proves to be quite powerful in evaluating the circuit

complexity of simple states in quantum field theory, as was already implicitly seen with

the analysis in [32]. In the following, we will apply the tools of Lie theory and the study of

symmetric spaces to examine fermionic Gaussian states. In this case, we can restrict our

attention to the group G = O(2N) for N fermionic degrees of freedom. Taking N →∞ then

leads to the continuum limit of a fermionic field theory. We will be able solve for the minimal

geodesic analytically using the metric 〈·, ·〉1, which is compatible with the group structure.

In closing this section, let us add the following aside: recall that evaluating the com-

plexity of a given target state amounts to finding the optimal circuit U which produces the

desired transformation in eq. (2.1). However, this prescription typically does not actually

fix the boundary condition U(s = 1). That is, one will find that there are simple transfor-

mations u which leave the reference state invariant, i.e., |ψR〉 = u|ψR〉 and then given any

unitary U0 satisfying eq. (2.1), U = U0 u will produce the desired transformation as well.

This ambiguity is elegantly characterized in our group theoretic approach if we define the

stabilizer subgroup

Sta = {u ∈ G s.t. u|ψR〉 = |ψR〉} , (2.11)

that preserves |ψR〉. We can then define the equivalence relation U ∼ V iff U = V u with

u ∈ Sta, i.e., iff U |ψR〉 = V |ψR〉. Hence the problem of finding the minimal circuit now

involves a double extremization. First, we must find the family of geodesics running from

1 to all unitaries in the equivalence class [U ] ∈ G/Sta. Secondly, we must find the shortest

geodesic amongst this family. Note that the equivalence class [U ] is just given by U Sta,

where we displace the stabilizer by multiplying with an arbitrary representative U from

the left. We illustrate the involved geometry in figure 1.

In the setting of bosonic and fermionic Gaussian states, we have Sta = U(N) and the

quotient manifolds G/∼ turn out to be given by symmetric spaces [50], namely type DI cor-

responding to Sp(2N,R)/U(N) for bosons and type CIII corresponding to SO(2N)/U(N)

for fermionic systems.

– 7 –
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3 Prelude: fermions versus bosons

In developing our complexity model for free fermions, we are interested in describing

fermionic Gaussian states and the unitary transformations that map Gaussian states onto

Gaussian states. As we discuss below, this problem naturally involves the group O(2N)

for N fermionic degrees of freedom. Nielsen’s approach to defining circuit complexity

was recently applied for free scalars [32], which required understanding the analogous uni-

tary transformations mapping bosonic Gaussian states amongst themselves. A GL(N,R)

structure arose in this analysis but this is only a subgroup of the full Sp(2N,R) family

of transformations, as we review below [39, 52, 53]. Hence it is useful to begin here by

comparing and contrasting the bosonic and fermionic Gaussian states.

As emphasized above, the precise representation of the unitary circuits becomes unim-

portant with our group theoretic perspective. We use this freedom here to focus on the

simple description of the group of transformations mapping Gaussian states amongst them-

selves given in terms of their action on the covariance matrix, e.g., [51–53]. In particular,

we will parametrize Gaussian states in terms of their covariance matrix,

〈ψ| ξa ξb |ψ〉 =
1

2
(Gab + i Ωab) (3.1)

where ξa ≡ (q1, · · · , qN , p1, · · · , pN ) describes N degrees of freedom, which may be either

bosonic or fermionic. On the right-hand side, Gab = G(ab) is the symmetric part of the

correlation matrix on the left, while Ωab = Ω[ab] denotes the antisymmetric part.

Bosons. For a system of bosonic degrees of freedom, Ωab is trivial in that it simply

encodes the canonical commutation relations of the qi’s and pi’s. On the other hand, the

symmetric two-point function Gab completely characterizes the corresponding Gaussian

state |ψ〉 — we are assuming that 〈ψ|ξa|ψ〉 = 0 here and in the rest of this paper. Hence,

as described in [52] and below, a simple description of the group of transformations mapping

bosonic Gaussian states amongst themselves is then given in terms of their action on the

symmetric covariance matrix.

Fermions. When we consider eq. (3.1) for a fermionic system instead, the symmetric part

Gab is fixed by the anti-commutation relations amongst the fermionic degrees of freedom

while the antisymmetric part Ωab completely characterizes the fermionic Gaussian state

|ψ〉. Hence the covariance matrix (3.1) again provides a simple framework to discuss the

corresponding group of unitary transformations for fermionic Gaussian states, as we discuss

in the following.

3.1 Single boson

It is well known that the group of transformations preserving Gaussian states for N bosonic

degrees of freedom is Sp(2N,R), as explained in [39, 52, 55]. As above, we assemble the

conjugate position and momentum operators as ξa ≡ (q1, · · · , qN , p1, · · · , pN ). Then the

– 8 –
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antisymmetric component of the covariance matrix (3.1) becomes

Ωab = −i 〈ψ| [ξa, ξb] |ψ〉 ≡

(
0 1

−1 0

)
, (3.2)

where 1 and 0 are N×N identity and zero matrices, respectively. This result holds for

any Gaussian state (or in fact, any state), since the canonical commutation relations can

be written as [ξa, ξb] = i Ωab. The nontrivial component of eq. (3.1) is then the symmetric

two-point function

Gab = 〈ψ| {ξa, ξb} |ψ〉 , (3.3)

which gives a complete characterization of the Gaussian state |ψ〉.
As a simple example, we consider one bosonic degree of freedom, so the group of

interest is simply Sp(2,R) and we have ξa ≡ (q, p). Now, another way to characterize the

Gaussian states is in terms of annihilation and creation operators,9 e.g.,

a =
1√
2

(q + i p) , a† =
1√
2

(q − i p) . (3.4)

That is, given these operators, there is a corresponding Gaussian state satisfying a |ψ〉 = 0.

However, there is some freedom in the precise definition the annihilation operator, namely

the Bogoliubov transformations,10

ã = αa+ β a† , (3.5)

ã† = α∗ a† + β∗ a .

In order to preserve the commutation relations [ã, ã†] = [a, a†] = 1, the coefficients α and

β need to satisfy

|α|2 − |β|2 = 1 . (3.6)

From this, we can conclude that the most general Bogoliubov transformation (for a single

degree of freedom) is given by

α = eiϕ cosh r , (3.7)

β = eiϑ sinh r .

Now given two pairs of creation and annihilation operators, namely (a, a†) and (ã, ã†),

they define two distinct Gaussian states satisfying a |ψ〉 = 0 and ã |ψ̃〉 = 0. Hence the

Bogoliubov transformations (3.5) describe the desired group of transformations mapping

9To correctly account for the dimensions of q and p, these expressions should include a specific scale, e.g.,

a = 1√
2
(ω1 q + i p/ω1) yields a properly dimensionless annihilation operator. One effect of the Bogoliubov

transformations (3.5) is then to scale this scale, e.g., ω1 → erω1 with ϕ = ϑ = 0 in eq. (3.7). See [39] for

further discussion.
10Note that we can change a to ã = eiϕa without changing the vacuum, which corresponds to a U(1)

subgroup of Bogoliubov transformations that do not change the vacuum. For N bosonic degrees of freedom,

there is the freedom of unitarily mixing all N annihilation operators (and creation operators respectively)

among themselves, leading to a U(N) subgroup of different choices of ai that all define the same vacuum.

– 9 –
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the Gaussian states amongst themselves. We can invert eq. (3.4) to ξ̃a ≡ (q̃, p̃) for the pair

(ã, ã†). Then, the Bogoliubov transformation (3.5) from (a, a†) to (ã, ã†) induces a linear

transformation Ma
b on the space V ∗ spanned by ξa and ξ̃a, i.e., ξa = Ma

b ξ̃
b. Note that we

define M to be the inverse transformation that maps ξ̃ into ξ. The condition of preserving

the commutation relations then translates into

(MΩMᵀ)ab = Ma
c Ωcd (Mᵀ)d

b = Ωab , (3.8)

where Ω is a symplectic on V ∗. This expression (3.8) extends trivially to the case of N

degrees of freedom (by simply extending the range of the indices) and then reveals the

Sp(2N,R) group structure noted at the beginning of this section. Of course, we are also

interested in the transformation of the symmetric two-point correlator

G̃ab = (MGMᵀ)ab = Ma
cG

cd (Mᵀ)d
b , (3.9)

which encodes the transformation of the state, namely G̃ab = 〈ψ̃| {ξa, ξb} |ψ̃〉, i.e., the

expectation value of the original operators ξa in the transformed state. In particular, in a

discussion of the circuit complexity of these states, we can represent the gates and unitary

circuits with the appropriate symplectic transformations, and describe their action on the

state in terms of the above transformation, e.g., see [51, 52].

In our example with N = 1, the Bogoliubov transformation (3.5) gives the symplectic

matrix

M ≡

(
cos(ϕ) cosh(r) + cos(ϑ) sinh(r) sin(ϑ) sinh(r)− sin(ϕ) cosh(r)

sin(ϕ) cosh(r) + sin(ϑ) sinh(r) cos(ϕ) cosh(r)− cos(ϑ) sinh(r)

)
. (3.10)

If we start with an initial state |ψ〉, whose covariance matrix is G ≡ 1, then using eq. (3.9),

the transformed state |ψ̃〉 is described by11

G̃ab ≡

(
cosh(2r) + cos(ϑ+ ϕ) sinh(2r) sin(ϑ+ ϕ) sinh(2r)

sin(ϑ+ ϕ) sinh(2r) cosh(2r)− cos(ϑ+ ϕ) sinh(2r)

)
. (3.11)

We notice that the final state |ψ̃〉 is independent of (ϑ − ϕ), which corresponds to the

U(1) subgroup where we just multiply creation and annihilation operators with opposite

complex phases. As a manifold, we have Sp(2,R) = R2×U(1) where (r, ϑ+ϕ) provide polar

coordinates of the plane and (ϑ − ϕ), the remaining coordinate on the circle U(1). Since

this overall phase is trivial, the space of states Mb,1 is properly described by the quotient

Mb,1 = R2 = Sp(2,R)/U(1). In the general case of N degrees of freedom, this expression

for the space of states would become Mb,N = Sp(2N,R)/U(N), where the U(N) group

mixes the various annihilation operators amongst themselves leaving the corresponding

Gaussian state unchanged. Mb,N is also known as the symmetric space of type CI [50].

For a detailed discussion of the resulting geometry and geodesics, we refer the interested

reader to [39]. However, we add the following comments to conclude our review here:

11This method was already used for circuit complexity in bosonic systems [39]. Most of the formalism

for bosonic (and fermionic) Gaussian states in this paper is based on [52, 55].
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for every Gaussian state |G〉, we can choose a canonical basis ξa ≡ (qi, pi), such that

G ≡ 1. This means the bilinear form G does not contain information that is invariant

under changing the canonical basis or put simply: “All Gaussian states look the same if

we can choose the right basis for each individual state.” This changes of course, if we have

two Gaussian states |G〉 and |G̃〉 in the same system12 and force ourselves to represent

the two-point functions G and G̃ with respect to the same canonical basis. Again, we

can choose a basis, such that G ≡ 1, but we will not be able to accomplish the same

for G̃. The remaining freedom of choosing a canonical basis is described by the group

U(N) = Sp(2N,R) ∩ SO(2N) consisting of canonical transformation (i.e., MΩMᵀ = Ω)

that simultaneously orthogonal with respect to G (i.e., MGMᵀ = G). The invariant

information about the relation between the original state |ψ〉 and the transformed state

|ψ̃〉 is completely captured by the eigenvalues of the relative covariance matrix13

∆a
b = G̃ac gcb with g = G−1 , (3.12)

i.e., Gacgcb = δab. In particular, any quantities that depend on the two states in a

Sp(2N,R)-invariant way, e.g., their inner product,14 can be computed purely from ∆.

This will apply to the complexity provided that we choose a geometry that is Sp(2N,R)-

invariant, e.g., we do not introduce penalty factors which conflict with the group structure.

For our Bogoliubov transformation (3.5), we have spec(∆) = (e2r, e−2r). We say that |ψ̃〉
arises from a one-mode squeezing of |ψ〉 with squeezing parameter r. For bosonic Gaussian

states, understanding one-mode squeezing is the key to relate any two states. That is, for

any two bosonic Gaussian states |ψ〉 and |ψ̃〉 with N degrees of freedom, there exists a

normal mode basis (q1, · · · , qN , p1, · · · , pN ), such that |ψ̃〉 is the result of N independent

one-mode squeezing operations in the N different normal modes [39, 51, 52]. This is related

to the Iwasawa (or KAN) decomposition of Sp(2N,R), e.g., see [56, 57].

3.2 Two fermions

We now turn to the case of fermionic Gaussian states. In this case, the space of Gaussian

states for N fermionic degrees of freedom is given by the quotient Mf,N = O(2N)/U(N),

which has dimension N(N − 1), e.g., [52]. Of course, this space is a small submanifold

within the full 2N -dimensional Hilbert space H of the fermionic system. Further, it is not

preserved by general unitary transformations U(2N ) acting on H, but only the subgroup

O(2N) corresponding to Bogoliubov transformations. That is, the most straightforward

way to think of characterizing the fermionic Gaussian states is in terms of the annihilation

and creation operators. With N fermionic pairs (ai, a
†
i ) satisfying {ai, a†j} = δij , the corre-

sponding Gaussian state is again defined by ai|ψ〉 = 0 and the Bogoliubov transformations

mixing these fermionic operators map Gaussian states to Gaussian states.

12Of course, this is the situation where we are examining circuit complexity of states since we have both

the target state and the reference state.
13Note that one could have just as easily defined ∆̂ = G g̃ with g̃ = G̃−1. However, one then has ∆̂ = ∆−1

and due to the fact that ∆ is symplectic, the two have the same spectrum. This is discussed in more detail

in section 5.
14For bosonic states, we find the simple formula |〈G|G̃〉|2 = det

√
2∆1/4
√
1+∆

derived in [52].
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In analogy to eq. (3.4) for the bosons, we begin by defining a set of Hermitian fermionic

operators given by

qi =
1√
2

(
a†i + ai

)
and pi =

i√
2

(
a†i − ai

)
, (3.13)

which are commonly referred to as Majorana modes. In contrast to the analogous bosonic

operators, they do not consist of conjugate pairs (qi, pi), but rather they are governed by

the anti-commutation relations: {qi, qj} = δij = {pi, pj} and {qi, pj} = 0. Turning to the

covariance matrix (3.1), if we choose the Majorana basis ξa ≡ (q1, · · · , qN , p1, · · · , pN ), the

symmetric component becomes simply

Gab = 〈ψ| {ξa, ξb} |ψ〉 = δab . (3.14)

This result holds for any Gaussian state since G simply encodes the canonical anti-

commutation relations Gab = {ξa, ξb} ≡ δab (which are preserved by the Bogoliubov

transformations). Further, as we will see below, this matrix Gab provides a useful pos-

itive definite metric. Hence, in the fermionic case, the nontrivial component of eq. (3.1) is

the antisymmetric two-point correlator

Ωab = −i 〈ψ| [ξa, ξb] |ψ〉 , (3.15)

which characterizes the corresponding Gaussian state |ψ〉. Given eq. (3.13) above, we may

evaluate this matrix for the state |ψ〉 annihilated by ai as

Ω ≡

(
0 1

−1 0

)
, (3.16)

where 1 and 0 are N×N identity and zero matrices, respectively. We note that this Ω

coincides with the form of the symplectic form (3.2) for bosons.

Now in analogy with our discussion of bosons, a pair (ai, a
†
i ) and (ãi, ã

†
i ) defines two

distinct Gaussian states satisfying ai |ψ〉 = 0 and ãi |ψ̃〉 = 0. Hence understanding the

group of transformations mapping fermionic Gaussian states amongst themselves is again

understanding the Bogoliubov transformations acting on the fermionic annihilation and

creation operators. It is simplest to work with the Majorana basis, i.e., ξ̃a ≡ (q̃i, p̃i) and

ξa ≡ (qi, pi), where the Bogoliubov transformations act as a linear transformation. Again,

we define the inverse transformation M , such that ξa = Ma
b ξ̃

b. The condition of preserving

the anti-commutation relations translates into

(M GMᵀ)ab = Ma
cG

cd (Mᵀ)d
b = Gab . (3.17)

Recalling that Gab ≡ δab in the Majorana basis, eq. (3.17) makes evident the O(2N) group

structure, which we referred to above. Of course, the transformation of the states is now

encoded in the transformation of the antisymmetric two-point correlator

Ω̃ab = (MΩMᵀ)ab = Ma
c Ωcd (Mᵀ)d

b . (3.18)
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Hence in a discussion of the circuit complexity of fermionic Gaussian states, we can

represent the unitary circuits and gates with the appropriate orthogonal transforma-

tions and their generators, and describe their action on the states in terms of the above

transformation.

To make this discussion more concrete, let us consider a simple example. However (as

we now show), the simplest case of a single pair, i.e., N = 1, turns out to be trivial. In

this case, the most general Bogoliubov transformation is

ã = αa+ β a† , (3.19)

ã† = α∗ a† + β∗ a .

Demanding that the anti-commutation relation is preserved, i.e., {ã, ã†} = 1, yields

|α|2 + |β|2 = 1 . (3.20)

However, fermionic creation and annihilation operators also need to satisfy ã2 = (ã†)2 = 0.

Computing this explicitly for above transformation leads to a second requirement

ã2 = αβ{a, a†} = 2αβ = 0 . (3.21)

This means up to an overall phase, the only possible transformations are α = 1, β = 0 or

α = 0, β = 1. That is, ã = a or we swap the role of creation and annihilation operators

with ã = a†. With N = 1, the space of Gaussian states isM = O(2)/U(1), where the U(1)

corresponds to the overall complex phase, but this space simply consists of two points.15

This means that — in contrast to a single bosonic degree of freedom — the squeezing

of a single fermionic degree of freedom is trivial. The first non-trivial system consists of

two fermionic degrees of freedom, often interpreted as two qubits. With N = 2, the state

manifold will be

Mf,2 = O(4)/U(2) = S2 ∪ S2 , (3.22)

which is two-dimensional. In this case, we consider two pairs fermionic creation and an-

nihilation operators, (a1, a
†
1) and (a2, a

†
2). For this example, let us consider the fermionic

Bogoliubov transformation

ã1 = αa1 − β a†2 , (3.23)

ã†2 = β∗ a1 + α∗ a†2 .

This is not the most general transformation, but the natural choice if we want to mix a1

with a†2. In fact, one can show that one can bring any Bogoliubov transformation into

this form by mixing a1 with a2, and ã1 with ã2 via U(2), which does not change the

corresponding Gaussian states, |ψ〉 and |ψ̃〉.
15It will be a general feature (for any N) that the full set of fermionic Gaussian states always consists of

two disconnected components corresponding to the Z2 grading of states with even and odd fermion number.

Note that neither of the two components is preferred and which corresponds to an even and odd fermion

number depends on one’s choice of the vacuum, or alternatively on one’s notion of particle.
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Further, for eq. (3.23), we may choose α to be real so that the following parametrization

works well:

α = cosϑ , β = eiϕ sinϑ . (3.24)

The induced transformation M that maps ξ̃a into ξa can then be written as

M ≡


1 0 0 0

0 cos(ϕ) 0 −sin(ϕ)

0 0 1 0

0 sin(ϕ) 0 cos(ϕ)




cos(ϑ) sin(ϑ) 0 0

−sin(ϑ) cos(ϑ) 0 0

0 0 cos(ϑ) −sin(ϑ)

0 0 sin(ϑ) cos(ϑ)




1 0 0 0

0 cos(ϕ) 0 sin(ϕ)

0 0 1 0

0 −sin(ϕ) 0 cos(ϕ)



=


cos(ϑ) sin(ϑ)cos(ϕ) 0 sin(ϑ)sin(ϕ)

−sin(ϑ)cos(ϕ) cos(ϑ) −sin(ϑ)sin(ϕ) 0

0 sin(ϑ)sin(ϕ) cos(ϑ) −sin(ϑ)cos(ϕ)

−sin(ϑ)sin(ϕ) 0 sin(ϑ)cos(ϕ) cos(ϑ)

 (3.25)

Here, we have decomposed M as a series of rotations and so it is clear that M ∈ O(4) or

rather M ∈ SO(4), because we can continuously reach 1, and satisfies MGMᵀ = G. The

antisymmetric covariance matrix Ω̃ = MΩMᵀ of the transformed state |ψ̃〉 can then be

evaluated to be

Ω̃ ≡


0 − sin(2ϑ) sin(ϕ) cos(2ϑ) sin(2ϑ) cos(ϕ)

sin(2ϑ) sin(ϕ) 0 − sin(2ϑ) cos(ϕ) cos(2ϑ)

− cos(2ϑ) sin(2ϑ) cos(ϕ) 0 sin(2ϑ) sin(ϕ)

− sin(2ϑ) cos(ϕ) − cos(2ϑ) − sin(2ϑ) sin(ϕ) 0

 . (3.26)

Note that we get the same state for ϑ = 0 and ϑ = π, which is perhaps half the expected

range. This is due to the fact that the transformation with ϑ = π leads to ã1 = −a1

and ã2 = −a2, which leaves the vacuum invariant. Therefore the state which is most

distant16 from the original Gaussian state |ψ〉 corresponds ϑ = π/2, which we see trades

the annihilation and creation operators, i.e., eq. (3.23) reduces to (ã1, ã2) = (−ã†2, ã
†
1) with

ϑ = π/2 (and ϕ = 0).

As mentioned in eq. (3.22), the space of states is given by the quotient Mf,2 =

O(4)/U(2) = S2 ∪ S2 because we need to divide by the subgroup U(2) associated to

mixing creation and annihilations operators among themselves, respectively. In particular,

we see that the manifold of fermionic Gaussian states again consists of two disconnected

components — see footnote 15. We can only continuously deform one state to the other,

if they lie in the same component — unless we are willing to leave the space of Gaussian

states. Our choice of Bogoliubov transformations parametrized by ϑ and ϕ corresponds to

the S2 connected to the identity.

16Of course, we mean ‘most distant’ on the S2 component connected to the identity. We cannot reach the

states on the other component along a continuous trajectory without leaving the space of Gaussian states.
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Similar to the bosonic example, we can ask how to encode the invariant relative infor-

mation between two fermionic Gaussian states |Ω〉 and |Ω̃〉. As a preliminary step towards

answering this question, let us note that with an appropriate choice of an orthonormal

basis ξa ≡ (q1, q2, p1, p2) of Majorana modes, G ≡ 1 and the covariance matrix Ω takes the

standard form

Ω ≡

(
0 1

−1 0

)
. (3.27)

While preserving these forms, we would also like to bring Ω̃ into a standard form. The

allowed transformations are given by the subgroup U(2) = O(4)∩Sp(4,R), just like for the

bosonic case. One can show that the covariance matrix Ω̃ can be brought into the standard

form17

Ω̃ =


0 0 cos(2ϑ) − sin(2ϑ)

0 0 sin(2ϑ) cos(2ϑ)

− cos(2ϑ) − sin(2ϑ) 0 0

sin(2ϑ) − cos(2ϑ) 0 0

 , (3.28)

provided that |Ω〉 and |Ω̃〉 belong to the same connected component. This indicates that

the invariant relative information is encoded in ϑ alone, i.e., the second angle ϕ in eq. (3.24)

is irrelevant.

Following the discussion of the bosonic theories (e.g., compare to eq. (3.12)), we can

describe this invariant information about the relation between the two states in terms of

the relative (fermionic) covariance matrix18

∆a
b = Ω̃ac ωcb with ω = Ω−1 , (3.29)

i.e., Ωac ωcb = δab.
19 The invariant information is then captured in the eigenvalues of

this matrix. For our choice of Bogoliubov transformation in eqs. (3.23) and (3.24), we

have spec(∆) = (e2iϑ, e2iϑ, e−2iϑ, e−2iϑ) and as expected, ϕ does not appear here. We will

later show that for a natural choice of invariant metric on the group, our Bogoliubov

transformation that changes ϑ continuously from zero to its final value along a path of

fixed ϕ is the minimal geodesic connecting a reference state |ψ〉 to a target state |ψ̃〉. In

particular, the geodesic length will be given by |2ϑ| ∈ [0, π]. These paths are just the

great circles passing through the pole (at ϑ = 0) on the corresponding two-sphere. This

17Examining the transformation in eq. (3.25), one finds the final rotation can be eliminated with the

phase rotation (ã1, ã2) → (ã1, e
−iϕã2), which of course leaves the |ψ̃〉 unchanged. Further, applying the

latter transformation takes Ω̃ from eq. (3.26) to the canonical form (3.28).
18For fermionic states, we find the formula |〈Ω|Ω̃〉|2 = det

√
1+∆√

2∆1/4 derived in [52] which is strikingly similar

to the one for bosons from footnote 14.
19We will see in section 5 that the bosonic and fermionic relative convariance matrices ∆ arise in the

same way when one labels states by their linear complex structure J .
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means in each linearly independent direction, the maximal path length is π/2.20 However,

if with a large number of degrees of freedom, geodesic will be moving along several such

paths in orthogonal directions at the same time. In particular, the overall path can become

arbitrarily large in the field theory limit where we consider an infinite number of degrees

of freedom.

For bosons, we reviewed that any two Gaussian states define a set of normal modes,

such that there is a natural transformation built from linearly independent one-mode

squeezing operations in these modes. In the case of fermions, we observed that: (a) there

are two disconnected components on the manifold of states (separating states with even

and odd fermion number); and (b) one-mode-squeezing is trivial and we need to perform

two-mode squeezing operations. Therefore, we can only find normal modes if two Gaus-

sian states lie in the same connected component and these normal modes always come in

pairs, so that the two states are related by a collection of independent two-mode squeezing

operations. In particular, if we have an odd number of fermionic degrees of freedom, there

will always be a single normal mode left that is not squeezed when moving from one state

to the other.

3.3 Gates, circuits and complexity

So far, our discussion of fermionic Gaussian states has been at a fairly abstract level. We

have used the covariance matrix Ω as a convenient parametrization of the manifold of

fermionic Gaussian states and the action of Bogoliubov transformations on this space. In

particular, much of the discussion focused on the case of two fermionic degrees of freedom.

Here, we would like to bring the discussion more closely in line with the continuous de-

scription of unitary circuits in eqs. (2.2) and (2.3). In particular, these unitaries will be

constructed using some basis of Hermitian operators OI , which act on the states in the

Hilbert space of our fermionic system. Since we are focusing our attention on circuits which

map Gaussian states to Gaussian states, i.e., which implement Bogoliubov transformations,

we will only consider generators that are quadratic operators, in analogy with the study

of bosonic Gaussian states in [32, 33, 39]. One may describe these quadratic generators in

terms of the annihilation and creation operators, but we find it more convenient to work

with the Majorana modes (3.13), i.e., ξa = (qi, pi). That is, we choose our basis of gen-

erators to be the antisymmetric combinations OI = i ξ[aξb].21 The antisymmetric form of

the indices for these basis generators hints at an SO(2N) group structure, which is readily

confirmed by examining the commutation algebra of the generators.

20One may be surprised to find π/2 rather than π here. The reason is that at π, we would reach the

group element M = −1, as shown by eq. (3.25), which is as far away from 1 as possible. However, the

transformed two-point function becomes Ω̃ = MΩMᵀ = Ω, i.e., eq. (3.26) reduces to the initial covariance

matrix in eq. (3.27) with ϑ = π, and so the final state is identical to the initial one at ϑ = π. This means

the group elements, which take our state as far away as possible from the initial one, are those sitting on

the circle at ϑ = π/2, i.e., the equator of the connected S2 component. Recall that at ϑ = 2π, M returns

to the identity, but when we measure the length of the circle covered by ϑ running from 0 to 2π (with fixed

ϕ) using our metric 〈·, ·〉1 (see eq. (3.37) below), its length is actually 4π. Therefore the resulting distance

to the maximally distant states is π.
21Of course, the symmetric combinations are trivial, since {ξa, ξb} = Gab ≡ δab.
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Let K̂ be a general real linear combination of these Hermitian quadratic operators.

Such an operator is completely characterized by an antisymmetric matrix kab = k[ab],

K̂ =
i

2
kab ξ

a ξb . (3.30)

As a Hermitian operator, K̂ gives rise to the unitary operator U(K̂) = e−iK̂ which acts

on our Gaussian states, i.e., |ψ〉 → |ψ̃〉 = U(K̂)|ψ〉. However, we wish to understand this

transformation through the action of U(K̂) on the covariance matrix. Hence we consider

the corresponding action on the operators ξa themselves, i.e.,

ξ̃a = U(K̂) ξa U †(K̂) =

∞∑
n=0

(−)n

n!
[iK̂, ξa](n) (3.31)

where we have defined [iK̂, ξa](n+1) = [iK̂, [iK̂, ξa](n)] and [iK̂, ξa](0) = ξa, and we have

used Baker-Campbell-Hausdorff to simplify this expression. With some algebra, we find

that the first commutator yields

[iK̂, ξa](1) = [iK̂, ξa] = −1

2
kbc[ξ

bξc, ξa] = Gackcb ξ
b , (3.32)

where we used the anti-commutation relations {ξa, ξb} = Gab. By defining

Ka
b = Gackcb , (3.33)

we can write successive commutators as [iK̂, ξa]n = (Kn)ab ξ
b. The action of U(K̂) in

eq. (3.31) can therefore be simply expressed as

ξ̃a = U(K̂) ξa U †(K̂) = (e−K)ab ξ
b , (3.34)

or alternatively, following the notation introduced in the preceding discussion we have

ξa = M(K)ab ξ̃
b with M(K)ab = (eK)ab . (3.35)

Again, from the antisymmetry of kab, it is obvious that the generator K will be given by

an antisymmetric matrix with respect to a basis where Gab ≡ δab, which was implicitly

chosen in using the Majorana modes for the above. Hence we recognize M(K) as a group

element in SO(2N) with the generator Ka
b = Gack[cb] ∈ so(2N).

Recall that in discussing the complexity, we must choose a metric 〈·, ·〉1 in eq. (2.7)

on the Lie algebra, i.e., so(2N) for N fermionic degrees of freedom. This Lie algebra is

(2N −1)N -dimensional, so the possible metrics correspond to the space of positive definite

linear forms described by symmetric (2N − 1)N × (2N − 1)N matrices, which has some

very large dimension.22 However, there is one particularly natural choice that is induced

by the anticommutation relations, namely

〈A,B〉1 = Tr(AGBᵀg) = AabG
bc(Bᵀ)c

dgda . (3.36)

22 N(2N − 1)(2N2 −N + 1)/2.
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This inner product is clearly positive definite because in a basis with Gab ≡ δab, we have

〈A,A〉1 = Tr(AAᵀ) ≥ 0. This inner product can be recognized to be a canonical Lie algebra

structure by realizing that for A ∈ so(2N), we have GAᵀg = −A, so that we can rewrite

〈A,B〉1 = Tr(AGBᵀg) = −Tr(AB) . (3.37)

The last expression is well known to be proportional to the negative Killing form, which

is a positive definite inner product for semi-simple compact Lie groups [58]. Recall that

this metric is then extended to the entire group by right translation as in eq. (2.8). For

this choice of metric, the computation of geodesics becomes relatively simple. In fact, in

appendix A, we prove that every geodesic beginning at the identity is given by esA for

some fixed A ∈ so(2N). For the rest of this paper, we will always refer to this metric, if

not indicated otherwise.

Given this key result from appendix A, we can easily compute the complexity associated

to the state produced by such a geodesic

γ : [0, 1]→ SO(2N) : s 7→ esA , (3.38)

which connects some reference state |ψR〉 at s = 0 to the target state |ψT〉 = U(Â) |ψR〉
at s = 1. The key simplification is that the magnitude of the tangent vector along these

geodesics is fixed. We can compute explicitly γ̇(s) = AesA leading to

‖γ̇(s)‖2 = 〈AesA, AesA〉esA = 〈AesAe−sA, AesAe−sA〉1 = 〈A,A〉1 = ‖A‖2 , (3.39)

using eq. (2.8). The result is not very surprising because the trajectory is moving contin-

uously in the direction generated by a single Lie algebra element A.

The geodesic trajectory arises naturally in evaluating the complexity using the F2

measure as in eq. (2.9), in which case it is given by the Riemannian length of the geodesic,

C2(eA) =

∫ 1

0
ds ‖γ̇(s)‖ =

∫ 1

0
ds ‖A‖ = ‖A‖ . (3.40)

However, the same geodesic appears using the κ measure with κ = 2 as in eq. (2.10), and

then the complexity is given by

Cκ=2(eA) =

∫ 1

0
ds ‖γ̇(s)‖2 =

∫ 1

0
ds ‖A‖2 = ‖A‖2 . (3.41)

Note that these two results are very simply related, i.e., Cκ=2(eA) = C2(eA)2.

We can make this discussion more explicit by turning the N = 2 case considered in the

previous subsection. In particular, given the two-mode squeezing transformation M(ϑ, ϕ)

in eq. (3.25), we find the generator to be

A(ϑ, ϕ) = ϑ


0 cos(ϕ) 0 sin(ϕ)

− cos(ϕ) 0 − sin(ϕ) 0

0 sin(ϕ) 0 − cos(ϕ)

− sin(ϕ) 0 cos(ϕ) 0

 . (3.42)
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That is, we can write M(ϑ, ϕ) = eA(ϑ,ϕ). To gain some intuition for these transformations,

we might imagine that ϕ is fixed but ϑ allowed to vary. Recall that these angular coor-

dinates cover the S2 connected to the identity in eq. (3.22). The identity corresponds to

say, the north pole (i.e., ϑ = 0). Fixing the angle ϕ corresponds selecting a direction from

amongst the lines of longitude, which describe the different state-changing directions at the

identity. Finally varying ϑ from zero to say, π/2 describes a trajectory along this line of

longitude from the north pole to the equator. Of course, as described above if we continue

along the same great circle, we arrive at the south pole at ϑ = π and return to the north

pole at ϑ = 2π.

We can use the above expressions to build a geodesic path from the identity to the

group element eA(ϑ,ϕ) given by

γ(ϑ, ϕ, s) : [0, 1]→ SO(4) : s 7→ esA(ϑ,ϕ) . (3.43)

Further, for the generator A(ϑ, ϕ) in eq. (3.42), we can compute the magnitude of the

tangent vector using eq. (3.37),

‖A(ϑ, ϕ)‖2 = 〈A(ϑ, ϕ), A(ϑ, ϕ)〉1 = Tr(AGAᵀ g) = −Tr(A2) = 4ϑ2 , (3.44)

which can then be substituted into either eq. (3.40) or (3.41) to evaluate the complexity.

In particular, the geodesic length of eq. (3.43) is simply given by ‖γ(ϑ, ϕ)‖ = 2ϑ. At this

point, we have not proven that eq. (3.43) is the minimal geodesic (i.e., recall the discussion

around eq. (2.11)), but based on the results of appendix A, we have shown that the geodesic

distance between 1 and eA(ϑ,ϕ) is given by 2ϑ.

4 Complexity for the Dirac field

Before developing systematic methods to compute the circuit complexity of arbitrary

fermionic Gaussian states, we can already apply the previous results from section 3 dis-

cussing two fermionic degrees of freedom to find the complexity of the ground state of

a free Dirac fermion. We are applying Nielsen’s approach to build the optimal unitary

circuit U , which accomplishes the transformation |ψT〉 = U |ψR〉. The target state will be

the ground state of the Dirac field, |ψT〉 = |0〉. As reference state, we will choose a state

where the local fermionic degrees of freedom (at each spatial point on a given time slice)

are unentangled, |ψR〉 = |0̄〉.
We consider a free Dirac field in four-dimensional Minkowski space.23 We introduce

the following basis of four-component spinors

u1(0) =


1

0

1

0

 , u2(0) =


0

1

0

1

 , v1(0) =


1

0

−1

0

 , v2(0) =


0

1

0

−1

 . (4.1)

23Here, we closely follow the conventions of [59]. However, note that we have changed the normalization

of the basis spinors by a factor of
√
m, e.g.,

[
us(p)

]
[59]

=
√
m
[
us(p)

]
here

.
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Boosted spinors can then be found by acting with the boost matrix, e.g.,

us(p) =
1√
m

(√
p · σ 0

0
√
p · σ

)
us(0) , (4.2)

where p · σ = Ep 1− p · ~σ and p · σ = Ep 1 + p · ~σ, with Ep =
√
m2 + p2. Of course, the

analogous formula applies for vs(p). We can now write the Dirac spinor field (on a fixed

time slice, e.g., t = 0) as

ψ(x) =

∫
d3p

(2π)3

√
m√

2Ep

∑
s

(
asp u

s(p) eip·x + bs†p vs(p) e−ip·x
)
. (4.3)

Clearly, we have four fermionic degrees of freedom per (spatial) momentum p. Recall that

the annihilation and creation operators satisfy

{asp, ar†q } = (2π)3 δrs δ(p− q) = {bsp, br†q } . (4.4)

The ground state is the fermionic Gaussian state |0〉, defined by asp|0〉 = 0 = bsp|0〉, and

this will be the target state for which we are evaluating the circuit complexity.

As we indicated above, our desired reference state, |ψR〉 = |0̄〉, will be a Gaussian state

where the local fermionic degrees of freedom at each spatial point on a given time slice

are unentangled. Therefore, let us now introduce local creation and annihilation operators

(āsx, ā
s†
x ) and (b̄sx, b̄

s†
x ) satisfying

{āsx, ār†y } = δ(x− y) δrs = {b̄sx, b̄r†y } . (4.5)

These operators are not completely defined until we make a specific choice on how to

express the Dirac field (4.3) in terms of these local operators as

ψ(x) =
1√
2

∑
s

(
āsxu

s(0) + b̄s†x v
s(0)

)
. (4.6)

Our unentangled reference state is then defined by āsx|0̄〉 = 0 = b̄sx|0̄〉. Note that in this

expression, we intentionally chose the rest-frame basis spinors (4.1) with p = 0 to find

a rotationally invariant reference state |0̄〉, but we will discuss alternative choices of our

reference state in section 6.1.

As described in the previous section, the unitary transformation from reference state

to the target state, i.e., |0̄〉 → |0〉 = U |0̄〉, can be understood in terms of the Bogoliubov

transformation relating the annihilation and creation operators with which we define these

states. Hence to simplify the latter, we first find the Fourier transformed version of local

operators introduced above,

āsp =

∫
d3x e−ip·x āsx and b̄p =

∫
d3x e−ip·x b̄sp . (4.7)

The Dirac field is then expressed as

ψ(x) =

∫
d3p

(2π)3

1√
2

∑
s

(
āsp u

s(0) eip·x + b̄s†p vs(0) e−ip·x
)
. (4.8)
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We note that the Fourier transform performs a ‘trivial’ Bogoliubov transformation, in that

it mixes only the annihilation operators āsx amongst themselves and the same for the b̄sx.

As a result, the Gaussian state defined by these new operators is still the unentangled

reference state |0̄〉, i.e., āsp|0̄〉 = 0 = b̄sp|0̄〉.
Now comparing eqs. (4.3) and (4.8), we can immediately identify the Bogoliubov trans-

formation which yields (āsp, ā
s†
p , b̄

s
p, b̄

s†
p ) → (asp, a

s†
p , b

s
p, b

s†
p ). In particular, computing the

product with the conjugate basis spinors ur†(p) and vr†(−p) from the left,24 we find

arp =

√
m

2
√
Ep

∑
s

(
[ur†(p)us(0)] āsp + [ur†(p) vs(0)] b̄s†−p

)
, (4.9)

br†−p =

√
m

2
√
Ep

∑
s

(
[vr†(−p)us(0)] āsp + [vr†(−p)vs(0)] b̄s†−p

)
(4.10)

The spinor products are most easily evaluated by assuming that p points in, e.g., the third

spatial direction, p = (0, 0, pz) and then rotating to a general frame with spinor labels r̄

and s̄.25 The resulting products are

ur̄†(p)us̄(0) =
δr̄s̄√
m

(√
Ep + |p|+

√
Ep − |p|

)
,

ur̄†(p) vs̄(0) = (−)r̄
δr̄s̄√
m

(√
Ep + |p| −

√
Ep − |p|

)
, (4.11)

vr̄
′†(−p)us̄(0) = (−)r̄

′ δr̄s̄√
m

(√
Ep + |p| −

√
Ep − |p|

)
,

vr̄†(−p)vs̄(0) =
δr̄s̄√
m

(√
Ep + |p|+

√
Ep − |p|

)
.

Note that in the third line, we have introduced the notation r̄′ ≡ r̄+1 (mod 2). Substuting

these into eqs. (4.9) and (4.10), from before, we find a simple Bogoliubov transformation

for pairs of operators given by

as̄p = αs̄p ā
s̄
p − βs̄p b̄

s̄′†
−p , (4.12)

bs̄
′†
−p = βs̄p ā

s̄
p + αs̄p b̄

s̄′†
−p .

where

αs̄p =

√
Ep + |p|+

√
Ep − |p|

2
√
Ep

,

βs̄p = (−)s̄+1

√
Ep + |p| −

√
Ep − |p|

2
√
Ep

. (4.13)

24Here, we use the orthogonality relations [59]: ur†(p) vs(−p) = 0 = vr†(−p)us(p).
25We must point out that this rotation acts on both the momentum and spin at the same time. As a

result, the spin labels in eqs. (4.11) and throughout the rest of this section are implicitly oriented along the

momentum direction, and we have introduced that ‘barred’ spin labels to denote this orientation. To be

precise, as̄†p (or bs̄†p ) with s̄ = 1 creates a particle (an antiparticle) with its spin aligned with the momentum

p, while with s̄ = 2, the spin is oriented in the −p direction. Further, we note that the reference state is

rotationally invariant and so these rotations leave |0̄〉 unchanged.
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Note that there is no sum on s̄ in eq. (4.12). Further, it is easy to verify |αs̄p|2 + |βs̄p|2 = 1,

which ensures that we indeed have a proper fermionic Bogoliubov transformation. Hence

for the annihilation and creation operators are paired according to their momentum and

spin (i.e., s̄ ∈ {1, 2}), but for each of these pairs the Bogoliubov transformation takes

the simple form given in eq. (3.23). In particular, comparing to eq. (3.24), we may set

cosϑ = αsp and ϕ = 0 for s̄ = 1 (or ϕ = π for s̄ = 2).

4.1 Dirac ground state

For the complexity to transform the unentangled reference state |0̄〉 into the fermionic

vacuum |0〉, we recall that the geodesic distance was given by 2ϑ in the parameterization of

a fermionic two-mode squeezing operations in eq. (3.24) — see discussion around eqs. (3.43)

and (3.44). In particular, there is a generator analogous to that in eq. (3.42) for each pair

of modes and the magnitude of this generator is given by

Y (m,p, s̄) = 2 cos−1
[
αs̄p
]

= 2 tan−1

(
|p|

Ep +m

)
= tan−1

(
|p|
m

)
. (4.14)

Above, the sign is not fixed by the cos−1 but with choices of ϕ above, we ensure that

sinϑ > 0 and so Y (m,p, s̄) > 0 in the final expression. Note that for each momentum, the

two spins (i.e., s̄ = 1, 2) give two identical contributions. Figure 2 shows this expression as

a function of |p| for various values of the mass m. We note that for large |p|, the complexity

per mode rapidly approaches

Y (m,p, s̄) ' π

2
− m

|p|
+

m3

3|p|3
+O

(
m5

|p|5

)
. (4.15)

A special case is m = 0 for which the complexity per mode is a fixed constant, i.e.,

Y (m = 0,p, s̄) = π/2. That is, Y takes the maximal value for all modes in the theory of

the massless free fermion.

To generate the vacuum state |0〉 from our unentangled reference state |0̄〉, we are

squeezing all of the modes, and we should think of Y (m,p, s̄) for various values of p and s̄

as the components of the tangent vector ~Y to the geodesic trajectory in the full geometry.

The total complexity is then found by integrating over all momenta and summing over the

spins with either the F2 or Fκ=2 measures in eq. (2.6).26 With the F2 measure, we find

C2

(
|0̄〉 → |0〉

)
=

√
V

∫
d3p

(2π)3

∑
s̄

Y (m,p, s̄)2 , (4.16)

where the spatial volume V appears to normalize the momentum integral. Similarly, for

the κ measure with κ=2, we find

Cκ=2

(
|0̄〉 → |0〉

)
= V

∫
d3p

(2π)3

∑
s̄

Y (m,p, s̄)2 . (4.17)

26See also eqs. (3.40) and (3.41).
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m=0

m=1

m=2

m=3

m=4

m=5

0 5 10 15
0

π

4

π

2

3 π

4

π

|p|

Y
(m
,p
,s
)

Y(m,p,s)

Figure 2. This plot shows the function Y (m,p, s̄) in eq. (4.14) describing the complexity per mode

of a massive Dirac field in its ground state as a function of |p|. Note that there is a single universal

curve if we consider this as a function of |p|/m.

Note that the integral is over the squares of the individual complexities per mode. The

gate generating the minimal circuit corresponds to the sum of individual gates for each

mode. As Lie algebra generators, they are orthogonal with respect to our right-invariant

metric, such that the total norm of their sum is by an pythogerean sum, or rather integral.

Of course, we also have the expected relation Cκ=2 = C 2
2 .

Because Y (m,p, s̄) tends to the constant π/2 at large momenta (as shown in eq. (4.15)),

this total complexity is UV divergent. Choosing a hard cutoff Λ for the momentum integral

allows us to compute the integral exactly leading to a rather long expression given by

Cκ=2

(
|0̄〉 → |0〉

)
=

V

36π2

[
12 im3Li2

(
1− 2m

m− iΛ

)
+m2

(
12Λ + imπ2

)
+ 48

(
Λ3 + im3

)
tan−1

(
Λ√

Λ2 +m2 +m

)2

(4.18)

−24m

(
Λ2 + 2m2 log

(
2m

m− iΛ

)
+m2

)
tan−1

(
Λ√

Λ2 +m2 +m

)]
.

This expression can be simplified by expanding for large Λ/m, which yields

Cκ=2

(
|0̄〉→ |0〉

)
' V

12

[
Λ3− 6m

π
Λ2+

12m2

π2
Λ+

4m3

π
log

(
Λ

2m

)
− 2m3

3π
+O(m4/Λ)

]
. (4.19)

This result becomes more and more precise in the massless limit as we can infer from

figure 2, where the complexity per mode approaches the constant π/2. That is, for the

massless theory, we have simply Cκ=2

(
|0̄〉 → |0〉

)
= V Λ3/12.

Of course, as noted above, the results for the F2 measure are simply given by taking

a square root of the above complexities, i.e., C2 =
√
Cκ=2. However, the divergence struc-
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ture produced with the κ = 2 measures matches more closely that found in holographic

complexity, i.e., we expect that Cholo ∼ V Λ3 [12].

At this point, we should add that our results in eqs. (4.18) and (4.19) agree with those

presented in [37], up to an overall normalization constant (i.e., if we multiply our results by

2π2, the expressions agree). This discrepancy simply arises due to a slight difference in the

choice of conventions. Further, let us emphasize that our methods presented in section 5

and appendix B prove that our path is the minimal geodesic in the full SO(2N) group of

the fermionic theory, which was left an open question in [37].

We might also consider the κ = 1 measure (or equivalently, the F1 measure) with,

Cκ=1

(
|0̄〉 → |0〉

)
= V

∫
d3p

(2π)3

∑
s̄

|Y (m,p, s̄)| . (4.20)

If we again introduce the cutoff Λ, we can do this integral explicitly and find the relatively

simple expression

Cκ=1

(
|0̄〉 → |0〉

)
=

V

6π2

[
2Λ3 tan−1

(
Λ

m

)
−mΛ2 +m3 log

(
1 +

(
Λ

m

)2
)]

. (4.21)

This expression then yields the following large Λ/m expansion for the complexity,

Cκ=1

(
|0̄〉 → |0〉

)
' V

6π

[
Λ3 − 3m

π
Λ2 +

2m3

π
log

(
Λ

m

)
+

2m3

3π
+O(m5/Λ2)

]
. (4.22)

However, we should note that this measure (as well as the general κ measures with κ 6= 2) is

basis dependent [32] and so implicitly we are choosing the normal mode basis in eq. (4.20).

4.2 Simple excited states

We should note that we can also evaluate the complexity of a number of excited states

as well. First, we observe that the state |ψ̃〉 = ar̄†q |0〉 with a single particle excita-

tion (in a fixed spin state) remains a Gaussian state since it is annihilated by ar̄†q , i.e.,

ar̄†q |ψ〉 = (ar̄†q )2|0〉 = 0, as well as the usual annihilation operators for all of the other

spins and momenta. However, this particular state has odd fermion number and is on the

disconnected component of the space of Gaussian states — see footnote 15. While we can

only evaluate the complexity of Gaussian states with even fermion number, we will have

to develop our formalism further in the next section to describe the complexity of general

states with even fermion number — see the discussion in section 6.2. However, one simple

set of states which we can consider here given the Bogoliubov transformations in eq. (4.12)

are excited states of the form27

(A) |ψ̃〉 = ar̄†q br̄
′†
−q |0〉 . (4.23)

27Recall our notation is r̄′ = r̄+1 (mod 2). There is no sum over r̄ here but both creation operators carry

the opposite spin labels. Note that this state has vanishing particle number since it involves one particle

and one antiparticle. Similarly, it has zero net momentum, but there is a net spin because, e.g., with r̄ = 1,

the particle’s spin is oriented in the +q direction and the antiparticle with r̄′ = 2 also has its spin pointing

in the +q direction — see footnote 25.
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The above state is annihilated by ar̄†q and br̄
′†
−q (and again by the usual annihilation op-

erators for all of the other modes). Hence eq. (4.14) still applies for most of the pairs

of modes, but we must reconsider the contribution for the pair labeled by p = q and

s = r. However, for this pair of modes, we can simply relabel the annihilation operators

(ã, b̃) = ((−)r̄
′
br̄
′†
−q, (−)r̄ar̄†q ). With this choice, eq. (4.12) can be rewritten as

ã = α̃ ār̄q − β̃ b̄
r̄′†
−q , (4.24)

b̃† = β̃ ār̄q + α̃ b̄r̄
′†
−q .

with

α̃ = (−)r̄
′
β r̄q =

√
Eq + |q| −

√
Eq − |q|

2
√
Eq

, (4.25)

β̃ = (−)r̄αr̄q = (−)r̄
√
Eq + |q|+

√
Eq − |q|

2
√
Eq

. (4.26)

Hence the Bogoliubov transformation still takes the simple form given in eq. (3.23). In

particular, comparing to eq. (3.24), we may set cos ϑ̃ = α̃ and ϕ = π for r̄ = 1 (or ϕ = 0

for r̄ = 2).

Now the analog of eq. (4.14) for the Bogoliubov transformation (4.25) for these par-

ticular modes is given by

Ỹ (m,q, r̄) = 2 cos−1[α̃] = 2 tan−1

(
Eq +m

|q|

)
= π − tan−1

(
|q|
m

)
. (4.27)

Again, this result is independent of the spin label r̄ appearing in the state (4.23). Com-

paring eqs. (4.14) and (4.27), we see that Y (m,q, r̄) + Ỹ (m,q, r̄) = π.28 Therefore while

Y ∈ [0, π/2], we have Ỹ ∈ [π/2, π]. Figure 3 shows this expression as a function of |q|
for various values of the mass m. We note that for large |q|, the complexity per mode

rapidly approaches π/2, which is now the minimal value (and also coincides with the con-

tribution of these modes to the vacuum complexity). Again, m = 0 is a special case where

Ỹ (m = 0,q, r̄) = π/2.

As before, when evaluating the total complexity of our excited state (4.23), we must

integrate the Y (m,p, s̄) over all momenta p, as well as sum over the spin labels s̄. However,

in this integration only a single contribution, i.e., p = q and s̄ = r̄, differs from that in the

vacuum complexity. Hence, for example, with the κ = 2 measure, we have

Cκ=2

(
|0̄〉 → |ψ̃〉

)
= Ỹ (m,q, r̄)2 − Y (m,q, r̄)2 + V

∫
d3p

(2π)3

∑
s̄

Y (m,p, s̄)2

= Ỹ (m,q, r̄)2 − Y (m,q, r̄)2 + Cκ=2

(
|0̄〉 → |0〉

)
.

(4.28)

Let us note an important subtlety in arriving at the above expression: at first sight, one

may think that since Ỹ only differs for a single momentum mode, this should correspond to

a set of measure zero in the integration and hence the complexity should remain unchanged.

28Alternatively, comparing eqs. (4.24) and (4.25), we have cos ϑ̃ = sinϑ and so ϑ̃ = π
2
− ϑ.
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Figure 3. This plot shows the function Ỹ (m,q, r̄) describing the complexity of the modes excited

in the state in eq. (4.23), i.e., |ψ̃〉 = ar̄†q br̄†−q |0〉, as a function of |q|.

However, if we are working with a finite volume V , the momentum integral would become

a discrete sum. Alternatively, each momentum mode occupies a cell of size (2π)3/V in the

continuous integration, i.e., one can think that exciting a single discrete (physical) mode q

is properly approximated by exciting all momenta in a cell of size (2π)3/V around q. These

two perspectives are then reconciled by noting that in eq. (4.28), the additional terms do

not scale with volume, i.e., their contribution is vanishingly small in the limit V →∞.

Now just as with the vacuum complexity, the complexity of these excited states are

UV divergent, as shown in eq. (4.19). However, eq. (4.28) shows that exciting the particle-

antiparticle pair in eq. (4.23) only makes a finite perturbation of the vacuum complexity.

Thus an interesting quantity to consider is the difference between the complexity of our

excited state and that of the vacuum state, i.e.,

∆Cκ=2

(
|0̄〉 → |ψ̃〉

)
≡ Cκ=2

(
|0̄〉 → |ψ̃〉

)
− Cκ=2

(
|0̄〉 → |0〉

)
= Ỹ (m,q, r̄)2 − Y (m,q, r̄)2

= π (π − 2Y (m,q, r̄)) ,

(4.29)

which yields a UV finite quantity, i.e., the UV divergences in the complexity of the ex-

cited state are precisely canceled by those in the vacuum complexity. Note that we used

Y (m,q, r̄) + Ỹ (m,q, r̄) = π in the final expression. We can construct a similar difference

using the κ = 1 measure, which yields

∆Cκ=1

(
|0̄〉 → |ψ̃〉

)
≡ Cκ=1

(
|0̄〉 → |ψ̃〉

)
− Cκ=1

(
|0̄〉 → |0〉

)
= Ỹ (m,q, r̄)− Y (m,q, r̄)

= π − 2Y (m,q, r̄) .

(4.30)
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Interestingly, both of these differences are equal to one another up to an overall factor of

π. In general, one finds tht ∆Cκ
(
|0̄〉 → |ψ̃〉

)
∝ π − 2Y (m,q, r̄) but the full expressions are

more complex for general κ. Therefore, since Y (m,q, r̄) tends to π/2 for large momenta,

∆Cκ
(
|0̄〉 → |ψ̃〉

)
→ 0 in the limit of large q.

One could attempt similar calculations with the F2 measure (4.16). However, be-

cause of the square-root appearing in this expression, one finds that the difference in the

complexities is vanishingly small, i.e.,

∆C2

(
|0̄〉 → |ψ̃〉

)
≡ C2

(
|0̄〉 → |ψ̃〉

)
− C2

(
|0̄〉 → |0〉

)
' 1

2

∆Cκ=2√
Cκ=2

∝ π − 2Y (m,q, r̄)√
V Λ3

. (4.31)

Hence this analysis is less interesting for the F2 measure.

A simple extension of the above discussion would be to excite a finite number of

particle-antiparticle pairs in a state of the form

|ψ̃〉 =
∏
i

ar̄i†qi b
r̄′i†
−qi |0〉 . (4.32)

Again, these simple states are characterized by having vanishing particle number and van-

ishing net momentum. The above calculations extend in a straightforward manner and one

would find, e.g.,

∆Cκ=2

(
|0̄〉 → |ψ̃〉

)
= π

∑
i

(π − 2Y (m,qi, r̄i)) . (4.33)

With the methods developed so far, we can also examine the complexity of some other

families of simple excited states. For example, we next consider states where we excite two

particles or two antiparticles with the same momentum but opposite spins,

(B) a1†
q a2†

q |0〉 and (C) b1†q b2†q |0〉 . (4.34)

We will focus on the (B) states with two particle excitations in the following, but of course,

the discussion for (C) states would be the same after exchanging a↔ b (as well as q↔ −q).

In the new state a1†
q a2†

q |0〉, the sector describing q momentum mode has annihila-

tion operators (ãr̄q, b̃
r̄
−q) = (ar̄†q , b

r̄
−q) for r̄ = 1, 2. Similarly the creation operators are

(ãr̄†q , b̃
r̄†
−q) = (ar̄q, b

r̄†
−q), and so for this sector, the Bogoliubov expression (4.12) becomes

ãr̄†q = αr̄q ā
r̄
q − β r̄q b̄

r̄′†
−q , (4.35)

b̃r̄
′†
−q = β r̄q ā

r̄
q + αr̄q b̄

r̄′†
−q ,

where αr̄q and β r̄q are given by eq. (4.13). While this transformation does not take our

standard form (4.12), we see that the creation operators are both given by some (real) linear

combination of ār̄q and b̄r̄
′†
−q. Analogously, the annihilation operators are linear combinations

of ār̄†q and b̄r̄
′
−q and hence both the target state and the reference state are annihilated by

b̄r̄
′
−q! This contrasts with the standard situation for all of the other momentum modes.

Examining eq. (4.12), it is straightforward to show that the target state is not annihilated
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by ās̄p, b̄s̄
′
−p or any linear combination of these operators. Hence the essential feature of

the transformation (4.35) is that it implicitly swaps ār̄q to ār̄†q . Hence since the above

transformation does not take our usual form, we instead pair the (annihilation) operators

of the reference state as (ā1
q, ā

2
q) and (b̄1−q, b̄

2
−q). We can then produce the desired target

state (4.34) with two transformations of the form in eqs. (3.23) and (3.24). The first

performs the desired swap on the ār̄q with ϑ2 = π/2 and the second leaves the b̄r̄−q unchanged

with an angle ϑ1 = 0, i.e., we have

Ỹ (m,p, ā) = 2ϑ1 = π , Ỹ (m,p, b̄) = 2ϑ2 = 0 . (4.36)

Hence, as in eq. (4.28) with the κ = 2 measure, we have

Cκ=2

(
|0̄〉 → |ψ̃〉

)
= Ỹ (m,q, ā)2 + Ỹ (m,q, b̄)2 − Y (m,q, 1)2 (4.37)

− Y (m,q, 2)2 + Cκ=2

(
|0̄〉 → |0〉

)
.

However, as in eq. (4.29), we may also consider the difference between the complexities of

our excited state and the vacuum state, which yields

∆Cκ=2

(
|0̄〉 → |ψ̃〉

)
= π2 − 2Y (m,q, 1)2 , (4.38)

where we used the fact that Y (m,q, r̄) in eq. (4.14) is actually independent of the spin. We

must note that the generators implied by the transformation described above in eq. (4.36)

are not the same as the standard two-mode squeezing operators producing eq. (4.12).

Hence, we have implicitly made use here of the fact that the κ = 2 measure is independent

of the basis of generators. While the same is not true of the κ = 1 measure, we may write

∆Cκ=1

(
|0̄〉 → |ψ̃〉

)
= π − 2Y (m,q, 1) , (4.39)

as long as we align the basis for the excited modes with the generators which produce

the above transformation. We note that this difference is identical to that found for the

previous excited states with the κ = 1 measure, in eq. (4.30).

To close the discussion here, we examine the complexity of a fourth class of simple

excited states,

(D) |ψ̃〉 = ar̄†q b
r̄†
−q|0〉 . (4.40)

In these states, we excite one particle and one antiparticle with opposite momenta as in

eq. (4.23), but here their spins are anti-aligned with each other. For example, setting

r̄ = 1, a1†
q creates to a particle with its spin aligned to the +q direction. However for

the antiparticle, we have b1†−q which creates an antiparticle whose spin points in the same

direction to its momentum −q. Thus the antiparticle spin oriented in the opposite direction

to the spin of the particle, and the state (4.40) has zero net spin.

Now using reasoning analogous to that in the previous case, one concludes that both

the reference state and the new excited state are annihilated by ār̄
′

q and b̄r̄
′
−q. Further the

desired transformation must swap ār̄q to ār̄†q and b̄r̄−q to b̄r̄†−q. Hence following the previous
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reasoning, we pair the annihilation operators as (ār̄q, b̄
r̄
−q) and (ār̄

′
q , b̄

r̄′
−q). We can then

produce the desired target state (4.40) with two standard Bogoliubov transformations (as

in eqs. (3.23) and (3.24)) where the transformation acting on the first pair produces the

desired swap with ϑ1 = π/2 and one which leaves the second pair unchanged with ϑ2 = 0.

Hence, we arrive at essentially the same result as in eq. (4.36)

Ỹ (m,p, P1) = 2ϑ1 = π , Ỹ (m,p, P2) = 2ϑ2 = 0 . (4.41)

Further, the results for the complexity are identical to those above for the states in

eq. (4.34). In particular, if we evaluate the difference between the complexities of this

excited state and the vacuum state with the κ = 2 and 1 measures, we find precisely the

results in eqs. (4.38) and (4.39), respectively.

At this point, we would like to emphasize that it was essential in our derivation of

the complexity of the (A) and (D) families of excited states, in eqs. (4.23) and (4.40) that

the spin axis of all of the excitations was aligned (or anti-aligned) with the momentum

of the given mode. After developing systematic analytical tools in section 5, we will be

able to generalize these classes in section 6.2 by allowing a spin axis independent of the

momentum direction. In contrast, the (B) and (C) families in eq. (4.34), the two particles

(or antiparticles) combine to form a spin singlet and therefore the result for the complexity

should not rely on the alignment of the spin and momentum axes. As a final note, let us

add that it is straightforward to extend to the discussion of the complexity of the states

in eqs. (4.34) and (4.40) to states where we excite a finite number of pairs of particles and

antiparticles (in analogy to eq. (4.32)).

5 Complexity of general fermionic Gaussian states

We study the circuit complexity of arbitrary fermionic Gaussian states |Ω̃〉 with respect

to an arbitrary Gaussian reference state |Ω〉. In accord with our previous discussions, the

notation here indicates that the state is characterized by Ωab, the antisymmetric part of

the covariance matrix (3.1). As discussed in section 3, when we apply Nielsen’s method by

geometrizing the problem of finding the circuit complexity for fermionic systems, we restrict

our study to Gaussian states. On the level of Lie groups, this means we are restricting

ourselves to a SO(2N) subgroup of the full U(2N ) group of unitary transformations, which

could act on the states for our system of N fermionic degrees of freedom.

5.1 Gaussian states from Kähler methods

Recently, it has become apparent that bosonic and fermionic Gaussian states can be char-

acterized in a unified framework [52] based on a triangle of structures (Kähler methods)

consisting of a positive definite metric G, a symplectic form Ω and a linear complex struc-

ture J . We will review the relevant ingredients of these methods and fix conventions.

For the most part, this is a straightforward generalization of our initial warm up exercise

with two fermionic degrees of freedom, and much of this analysis was anticipated in the

discussion in section 3.
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A system withN fermionic degrees of freedom is defined on a Hilbert spaceH=(C2)⊗N .

Linear observables can equivalently described by N pairs of creation and annihilation op-

erators (ai, a
†
i ) or their hermitian counterparts, the Majorana modes (qi, pi) in eq. (3.13).

The latter provides a basis ξa = (q1, · · · , qN , p1, · · · , pN ) for linear fermionic observables.

These form a vector space Γ∗ which we refer to as the dual phase space,29 equipped with the

positive definite metric Gab that fixes the anticommutation relations as {ξa, ξb} = Gab. Re-

call that the Gaussian states are completely characterized by the antisymmetric covariance

matrix iΩab = 〈ψ|ξaξb − ξbξa|ψ〉 and we will label these states accordingly, i.e., |ψ〉 = |Ω〉,
in the following. Hence for our fermionic Gaussian states, eq. (3.1) becomes

〈Ω| ξa ξb |Ω〉 =
1

2
(Gab + iΩab) . (5.1)

Again, this same form also applies for bosonic Gaussian states, however, the roles of G and

Ω are interchanged: for bosons, G labels the state and Ω fixes the bosonic commutation

relations, and as indicated above, Ω labels the fermionic states while G determines the

anticommutation relations for the fermionic degrees of freedom. We also introduce the

inverse matrices g and ω defined by the conditions Gacgcb = δab and Ωacωcb = δab.

Mathematically speaking, G represents a positive definite metric and Ω a symplectic

form on the classical phase space isomorphic to R2N . Together they define a third object

Jab = Ωacgcb = −Gacωcb , (5.2)

called a linear complex structure. Together, they form a triangle of structures that we call

Kähler structures due to its common use in the context of Kähler manifolds. The beauty

of parameterizing Gaussian states with these structures lies in the fact that this provides

a unifying framework for both bosonic and fermionic Gaussian states [52–54]. The linear

complex structure J can be used to label both types of states and characterizes them

uniquely (up to a complex phase) via the following equation:

1

2
(δab − i Jab) ξ

b |J〉 = 0 . (5.3)

The relative covariance matrix ∆ between a state |J̃〉 and |J〉 can be directly computed

as ∆ = −J̃ J . Again, this is the same formula for bosons and for fermions. However, as

we will exclusively focus on fermions for the rest of this paper, we will continue to use the

antisymmetric covariance matrix Ω to label the Gaussian state |Ω〉.

5.2 Geometry of SO(2N)

We explore the differential geometry of the group SO(2N) that corresponds to all fermionic

squeezing operations that are connected to the identity. The Lie algebra so(2N) is given

by generators K that satisfy

Ka
cG

cb = −Gac (Kᵀ)c
b , (5.4)

29This is in direct analogy to the bosonic case, where linear observables are linear phase space functions

and thus elements of the dual phase space. The same construction works for fermionic degrees of freedom,

as well.
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which is equivalent to saying that K is antisymmetric with respect to G. As discussed in

section 3.2, a group element M = eK transforms a Gaussian state as

|Ω〉 −→ |Ω̃〉 = |MΩMᵀ〉 , (5.5)

in accord with eq. (3.18).

Recall that if we choose a target state |ΩT〉 and a reference state |ΩR〉, eq. (2.1) still

leaves an ambiguity in the desired transformation because there are transformations which

leave the reference state unchanged — see discussion around eq. (2.11). Hence we must

find the stabilizer subgroup that preserves |ΩR〉:

Sta = {M ∈ SO(2N)
∣∣MΩRM

ᵀ = ΩR} . (5.6)

Due to the fact that ΩR is a symplectic form, the stabilizer subgroup of the state |ΩR〉 is

given by the intersection of the symplectic and the special orthogonal group which is well

known to be U(N), i.e., Sta = U(N) = SO(2N) ∩ Sp(2N,R). Similar to what we saw in

section 3.2, this U(N) subgroup corresponds to Bogoliubov transformations which only mix

creation and annihilation operators among themselves respectively and which therefore do

not change the state being annihilated. The corresponding Lie subalgebra u(N) ⊂ so(2N)

is generated by algebra elements K satisfying

KΩR = −ΩRK
ᵀ = (KΩR)ᵀ , (5.7)

which means that K is symmetric with respect to ΩR, i.e., (KΩR)ab = (KΩR)(ab).

Before we can compute geodesics on SO(2N), we need to equip it with a geometric

structure, namely a right-invariant metric following Nielsen’s approach. At this point, we

need to make a choice and for a general metric, we would not be able to continue with

analytical methods, because even for a right-invariant metric, computing the corresponding

geodesics will be very hard. However, for the group SO(N), there is canonical choice that

is compatible with the group structure and built from the metric G that determines the an-

ticommutation relations. As introduced in eq. (3.36), this choice of metric 〈·, ·〉1 is given by

〈A,B〉1 = Tr(AGBᵀg) = AabG
bc(Bᵀ)c

dgda . (5.8)

For bosons, such a choice depends on the reference state, but for fermions it is the com-

pletely canonical choice that is already induced by the group structure. Not surprisingly,

it is proportional to minus the Killing form which is provides a negative definite bilinear

form for compact groups. Such a canonical choice does not exist for bosons, because the

symplectic group is non-compact and therefore its Killing form is not definite [58]. Rather

it would give rise to a Lorentzian geometry.

In order to find the minimal geodesic from the identity to some final group element

M that prepares a target state |ΩT〉, we will need to identify the equivalence classes of

all group elements preparing the same state. The equivalence relation therefore becomes

M ∼ M̃ iff MΩRM
ᵀ = M̃ΩRM̃

ᵀ. The latter can be reformulated as

ΩR = M−1M̃ΩRM̃
ᵀ(M−1)ᵀ = (M−1M̃)ΩR(M−1M̃)ᵀ , (5.9)
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which implies (M−1M̃) ∈ Sta = U(N), the subgroup (5.6) that preserves the reference

state |ΩR〉. If we define u := M−1M̃ ∈ U(N), we find M̃ = M u. This means M ∼ M̃ iff

there exists a u ∈ U(N), such that M̃ = M u.

Similar to the bosonic case, there exists a polar decomposition of any group element

M ∈ SO(2N), such that M = Tu with

T =
√
MΩRMᵀωR and u = T−1M . (5.10)

We need to verify that TΩRT
ᵀ = MΩRM

ᵀ holds which implies u ∈ U(N). We can do this

by first confirming that T 2 = MΩRM
ᵀωR is symplectic since it satisfies T 2ΩR = ΩR(T 2)ᵀ.

This implies that its squareroot is also symplectic, i.e., it implies that

TΩR = ΩRT
ᵀ , (5.11)

which will be a distinguishing feature to identify T . Now to complete the proof, we use

the above feature to compute

TΩRT
ᵀ = T 2ΩR = MΩRM

ᵀωRΩR = MΩRM
ᵀ , (5.12)

which we wanted to verify. Now using eq. (5.5), we write the target state as |ΩT〉= |MΩRM
ᵀ〉,

which implies

T 2 = MΩRM
ᵀωR = ΩTωR = ∆ , (5.13)

where we recall from eq. (3.29) that ∆a
b = Ωac

T (ωR)cb is the relative covariance matrix

between the states |ΩT〉 and |ΩR〉. ∆ will have eigenvalues ei2ϑ with modulus 1. The

square root ∆ =
√
T then has eigenvalues eiϑ with ϑ ∈ [−π/2, π/2].

At this point, we reached a fairly good geometric understanding of the group SO(2N)

as a fiber bundle over its quotient SO(2N)/U(N). In particular, we can use the polar

decomposition to select a unique point from each fiber, namely the group element T which

satisfies TΩR = ΩRT
ᵀ, as in eq. (5.11). In contrast to the symplectic group, there are many

Lie algebra elements A ⊂ so(2N) that satisfy eA = T . However, if we use the standard

definition of the logarithmic map that takes ei2ϑ to a real number ϑ ∈ (−π/2, π/2], the Lie

algebra element A = log T = 1
2 log ∆ becomes unique.

5.3 Normal modes and two-mode squeezing

Now we show how for any two fermionic Gaussian states, we can find a set of normal modes,

such that one state results from the other by applying independent two-mode squeezing

operations onto pairs of normal modes.

Recall the group invariant information about the relation between reference and target

state is captured in the relative covariance matrix (3.29)

∆a
b = Ωac

T (ωR)cb . (5.14)

In particular, for ∆ = 1, reference and target state are the same. Note that ∆ satisfies

∆ΩR = ΩR∆ᵀ which is a similar, but different condition than being symplectic. Due
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to being an element of SO(2N), its eigenvalues are complex numbers with unit modulus

e2iϑI . They can either appear in quadruples (e2iϑI , e2iϑI , e−2iϑI , e−2iϑI ) or in pairs (1, 1) or

(−1,−1). There are in general two classes of spectra which correspond to:

• Reference and target state cannot be disconnected.

If there is an odd number of pairs (−1,−1) in the spectrum of ∆, the reference

and target states are located on disconnected components of the space of fermionic

Gaussian states Mf,N = O(2N)/U(N) and they cannot be joined by a geodesic

through SO(2N).

• Reference and target state can be connected.

In all other instances, we can find a geodesic that connects the reference state to the

target state.

We could assign a complexity of infinity to the former class of states, because reference and

target state cannot be connected by applying quadratic operators as gates. Instead, one

could try to extend the group or analytically continue the formula for the geodesic distance

that we will find. However in the following, we will only be considering the complexity for

the latter class of states that lie on the same connected component.

After computing the eigenvalues of ∆, we can combine the complex eigenvectors as-

sociated to a quadruple of eigenvalues (e2iϑI , e2iϑI , e−2iϑI , e−2iϑI ) to choose a quadruple of

real eigenvectors which form an orthonormal basis (in this I’th sector with respect to G):

(ξa)I = (q,Q, p, P )I . In particular, the latter can be chosen such that the associated block

of ∆ takes the form

∆I ≡


cos(2ϑI) − sin(2ϑI) 0 0

sin(2ϑI) cos(2ϑI) 0 0

0 0 cos(2ϑI) sin(2ϑI)

0 0 − sin(2ϑI) cos(2ϑI)

 , (5.15)

which we can recognize from our discussion in section 3.2, if we combine the covariance

matrices in eqs. (3.27) and (3.28) together in eq. (3.29). For eigenvalue pairs (1, 1), we have

orthonormal eigenvectors (q, p)I , such that the corresponding block in ∆ takes the form

∆I ≡

(
1 0

0 1

)
, (5.16)

which is associated to a degree of freedom that was not squeezed. For eigenvalue pairs

(−1,−1), we need to count how many such pairs exist. If we have an even number of

such pairs, we can actually group them to form quadruples (e2iϑI , e2iϑI , e−2iϑI , e−2iϑI ) with

ϑI = π/2. However, if we have an odd number of pairs, i.e., an even number of eigenvalues

−1 that cannot be divided by 4, we are left with one degree of freedom with basis (q, p)I ,

such that the block in ∆I takes the form

∆I ≡

(
−1 0

0 −1

)
. (5.17)
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If such a block stands alone and cannot be combined with another one, it implies that ref-

erence and target states belong to topologically disconnected components ofMf,N because

there is no one-mode squeezing operation connected to the identity that connects reference

to target state. We can always find a basis, in which reference and target state in this

sector take the form

(ΩR)I ≡

(
0 −1

1 0

)
and (ΩT)I ≡

(
0 1

−1 0

)
. (5.18)

Clearly, this transformation could be implemented by the group element

MI ≡

(
1 0

0 −1

)
∈ O(2) (5.19)

with ΩT = MI ΩRM
ᵀ
I . However, this group element is not connected to the identity on

O(2) and logMI will not give a proper Lie algebra element in so(2).30

We prove in appendix B that the shortest geodesic between reference and target states

that can be connected is given by

γ : [0, 1]→ SO(2N) : s 7→ esA with A =
1

2
log ∆ . (5.20)

Right-invariance of the metric implies that the length of this path is just given by the norm

of A. Using the F2 cost function (2.6), this implies that we can compute the complexity as

C2

(
|ΩR〉 → |ΩT〉

)
=

∥∥∥∥1

2
log ∆

∥∥∥∥ =
1

2

√
Tr [(i log ∆)2] . (5.21)

In terms of our eigenvalue quadruples (e2iϑI , e2iϑI , e−2iϑI , e−2iϑI ), we find

C2

(
|ΩR〉 → |ΩT〉

)
=

√∑
I

(2ϑI)2 , (5.22)

where ϑI ∈ [0 , π/2]. If we choose generators OI in eq. (2.2) that coincide with the two-mode

squeezing operations that generate ϑI , we can normalize them to satisfy

Y I = 2ϑI . (5.23)

Such a choice would always be adapted to the pair consisting of reference and target state

because ∆ = ΩTωR and explicitly given by

OI =
log ∆I

‖log ∆I‖
. (5.24)

30In fact, the logarithm could be computed as logMI =

(
0 0

0 iπ

)
, which is not a real Lie algebra element,

but lies in the complexification of so(2). In particular, there exists a minimal path from 1 to MI within the

complexification of O(2).
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The complexity with the κ = 2 measure is then given by

Cκ=2

(
|ΩR〉 → |ΩT〉

)
=
∑
I

|Y I |2 = 4
∑
I

ϑ 2
I , (5.25)

while in this basis,31 the κ = 1 measure yields

Cκ=1

(
|ΩR〉 → |ΩT〉

)
=
∑
I

|Y I | = 2
∑
I

|ϑI | . (5.26)

6 Applications

At this point, we have developed general methods to compute the circuit complexity of

arbitrary pairs of fermionic Gaussian states as reference and target states. Hence in the

present section, we will return to considering the free Dirac field in four dimensions. In

section 4, we already considered the circuit complexity of the ground state and of certain

special excited states. Here, we extend these results for the free Dirac field by applying the

general method developed in section 5. For example, our calculations in section 4 implicitly

involved choosing a particularly simple reference state. In section 6.1, we examine how

other choices for the reference state modify the complexity of the ground state. Further

in section 6.2, we discuss the complexity of more general excited states. However, we

begin below by describing how the general construction of section 5 can be adapted to the

continuum quantum field theory of a free Dirac fermion.

In the previous section, we computed the complexity for arbitrary fermionic Gaussian

states for systems with a finite number of degrees of freedom, namely N , and the key lesson

was that the computations simplify for two pure Gaussian states |ΩR〉 and |ΩT〉 of the form

ΩR = ⊕I (ΩR)I , ΩT = ⊕I (ΩT)I , (6.1)

where the ΩR and ΩT are block-diagonal with respect to the same basis. This structure

immediately implies that the states themselves are tensor products of the form

|ΩR〉 = ⊗I |(ΩR)I〉 , |ΩT〉 = ⊗I |(ΩT)I〉 . (6.2)

In this case, the relative covariance matrix takes the form

∆ = ⊕I ∆I with ∆I = (ΩT)I (ωR)I . (6.3)

For the Gaussian states on connected component of the state space, each of the ∆I has a

quadruple of eigenvalues (e2iϑI , e2iϑI , e−2iϑI , e−2iϑI ) and the overall complexity is then given

by, e.g.,

Cκ(|ΩR〉 → |ΩT〉) =
∑
I

|2ϑI |κ . (6.4)

31Recall that for general κ measures, i.e., κ 6= 2, the complexity is basis dependent [32] — see further

discussion in section 7.
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If we are dealing with a continuum quantum field theory, the label I can be continuous

by referring for instance to the momentum p or the position x. In this case, the states

|(ΩR)I〉 and |(ΩT)I〉 will describe the degrees of freedom for each mode at a given momen-

tum p or position x, which we expect to be finite in number, e.g., the spin s and particle

number as in section 4. Then as in eq. (5.23), we can recover the complexity per mode with

Y I = 2ϑI =
1

2

√
Tr [(i log ∆I)2] , (6.5)

and we can apply our previous results without any alteration. At this point, we have full

control over the individual contributions to the complexity and can study how the over-

all complexity behaves with various cost functions. We will see that the complexity is in

most cases both, IR and UV divergent, but by understanding the individual pieces, we can

meaningfully regularize these divergences. For the IR divergence, we put the whole system

into a box with volume V and for the UV divergence, we introduce a momentum cutoff Λ.

For the rest of this section, we will focus on translationally invariant states. These

states necessarily have a tensor product structure over momentum modes:32

|ΩR〉 = ⊗p |ΩR(p)〉p , |ΩT〉 = ⊗p |ΩT(p)〉p . (6.6)

For our reference state |ΩR〉, we must choose a state that is not just translationally invari-

ant, but also has zero spatial correlation which implies that it should be a tensor product

state in position space. This requirement enforces that the covariance matrix that charac-

terizes each momentum mode |ΩR(p)〉p must be the same, i.e.,

|ΩR〉 = ⊗p |Ω0〉p = ⊗x |Ω0〉x , (6.7)

Therefore the reference state |ΩR〉 is completely characterized by the finite dimensional

covariance matrix Ω0, which describes the correlations within the degrees of freedom as-

sociated with each mode. The fact that these correlations look the same when studied in

either momentum or position space is a consequence of |ΩR〉 being translationally invariant

without spatial correlations.

Examining translationally invariant states of the Dirac field in more detail, we be-

gin by noting that for each momentum mode p, the Dirac field has the four components

ψ(p) = (ψ1(p), ψ2(p), ψ3(p), ψ4(p))ᵀ with ψi(p) =
∫
d3x e−ip·x ψ(x). The anticommuta-

tion relations are given by

{ψi(p), ψ†j(q)} = (2π)3 δij δ
(3)(p− q) . (6.8)

Thus, we can associate the Hilbert space (C2)4 to each momentum mode p. From the

expansion in eq. (4.3), we have

ψ(p) =

√
m√

2Ep

∑
s

(
asp u

s(p) + bs†−p v
s(−p)

)
. (6.9)

32Translational invariance still allows for the possibility of correlating the mode p with −p, which means

it would be more precisely to have a tensor product of mode pairs (p,−p), but we will focus on states that

are actually tensor product states over all modes p.
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Now following eq. (3.13) for each momentum p, we can define four pairs of Majorana modes

Qi(p) =
1√
2

(
ψ†i (p) + ψi(p)

)
, Pi(p) =

i√
2

(
ψ†i (p)− ψi(p)

)
. (6.10)

In the notation of section 3, we assemble these modes as ξa(p) =
(
Qi(p), Pi(p)

)
, which

then satisfy

{ξa(p), ξb(q)} = (2π)3 δab δ(3)(p− q) . (6.11)

The ground state |0〉 of the Dirac field has a covariance matrix (5.1) given by

〈0|ξa(p)ξb(q)|0〉 =
1

2

(
Gab(p) + iΩab(p)

)
× (2π)3 δ(3)(p− q) . (6.12)

With respect to our basis ξa above, the symmetric component is simply Gab(p) ≡ δab. What

remains is to compute the antisymmetric component Ωab(p), which is a real linear form.

For a pure state, Ωab(p) is a symplectic form compatible with Gab(p), which is equivalent

to saying that with respect to the above basis, the matrix Ωab(p) has eigenvalues ±i.

Recall that Ωab is the component of the covariance matrix that characterizes the

fermionic Gaussian states. As in eq. (6.6), the Dirac vacuum |0〉 can be written as a

tensor product over sectors for each momentum p, i.e.,

|0〉 =
⊗
p∈R3

|Ω(m,p)〉p , (6.13)

where we made the dependence on the mass m explicit. We can evaluate the covariance

matrix Ωab(m,p), which will encode the relevant properties of the complexity in a given

mode p. Computing Ωab(p) explicitly takes some work: we begin by explicitly evaluating

the spinors us̄(p) and vs̄(−p), e.g., see eq. (4.2).33 We then substitute these expressions

into the eq. (6.9) and then write out the left-hand side of eq. (6.12) in terms of the creation

and annihilation operators of |0〉. Using their algebra, we can then simplify the right-hand

side and extract Ωab(m,p). What we find is rather simple and can be expressed using

p = (px, py, pz):

Ωab(m,p) ≡



0
py
Ep

0 0 − pz
Ep
− px
Ep

m
Ep

0

− py
Ep

0 0 0 − px
Ep

pz
Ep

0 m
Ep

0 0 0 − py
Ep

m
Ep

0 pz
Ep

px
Ep

0 0
py
Ep

0 0 m
Ep

px
Ep
− pz
Ep

pz
Ep

px
Ep
− m
Ep

0 0
py
Ep

0 0
px
Ep
− pz
Ep

0 − m
Ep
− py
Ep

0 0 0

− m
Ep

0 − pz
Ep
− px
Ep

0 0 0 − py
Ep

0 − m
Ep
− px
Ep

pz
Ep

0 0
py
Ep

0


, (6.14)

33Recall from footnote 25, that we evaluate us̄(p) and vs̄(−p) by boosting the spinors in eq. (4.1) along

the z-axis with p̃z = |p| and then rotate the spinor to align the momentum (and spin) with the direction of p.
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where as usual, Ep =
√

p2 +m2. Note that here Ωab(m,p) is an eight-by-eight matrix

because for each momentum mode, it describes correlations over both spin and particle

number.34

With eq. (6.14) in hand, it is easy to take various limits. For example, we can consider

the rest frame (p = 0) and the massless limit (m = 0 or equivalently |p| → ∞). In the

next section, we will use these expressions to define the covariance matrix Ω0 appearing

in the reference state (6.7). For example, in this newly developed language, the reference

state |0̄〉 appearing in section 4 can be described as

|0̄〉 = ⊗p |Ω(M, 0)〉p . (6.15)

That is, in this state, we put every single momentum mode p into the same state corre-

sponding to zero-momentum mode of Dirac ground state with covariance matrix Ω(M, 0).

Note that we have introduced a new mass scale M here, but in fact it turns out that

Ω(M, 0) is a special case which independent of M — see further discussion in section 6.1.

6.1 Alternative reference states

Above, we discussed that requiring our reference state |ΩR〉 be translationally invariant and

also have no spatial correlations enforces that |ΩR〉 take the simple form given in eq. (6.7).

Therefore, the reference state is completely determined by a single (finite dimensional)

covariance matrix Ω0, which fixes the correlations for each momentum mode. We can

then study the contribution to the complexity for each momentum mode p by considering

the geodesic length from some reference state |Ω0〉p to |Ω(m,p)〉p ∈ (C2)4. The minimal

geodesic for the full theory then moves in this normal mode submanifold and the full

complexity of the vacuum state combines all of these contributions for each momentum

sector. As alluded to above, we specify the reference covariance matrix Ω0 with eq. (6.14)

and a specific choice of a reference momentum q and a reference mass M , i.e., we set

Ωab
0 = Ωab(M,q).35 We emphasize that we are using the same fixed momentum q for all of

the momentum modes. In the notation of eq. (6.13), the reference state can be written as

|M,q〉 =
⊗
p∈R3

|Ω(M,q)〉p . (6.16)

In comparison to section 4, we are replacing eq. (4.6) with

ψ(x) =
1√
2

∑
s̄

(
ās̄x ũ

s̄(q) + b̄s̄†x ṽs̄(q)
)
, (6.17)

where the basis spinors defined as above, except the tilde superscript indicates the replace-

ment m→M .

34Hence in the following discussion, the corresponding relative covariance matrix (see eq. (6.36) or (6.19))

will have eight eigenvalues e±2iϑI . This contrasts with the previous discussion in section 4, where implicitly

the spin was treated as a separate quantum number and we had a single quadruple of eigenvalues, as

in section 5.
35Of course, as well as substituting p→q and m→M in eq. (6.14), we also replace Ep→ Ẽq =

√
q2+M2.
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Now in principle, for each quadruple of momentum modes, we would compute the

geodesic between |Ω(M,q)〉 to |Ω(m,p)〉. However, given our analysis in the previous

section, we know that we must replace eq. (4.14) with Y (m,p, s̄) = 2ϑ where

2ϑ =
1

2
√

2

√
Tr [(i log ∆)2] with ∆a

b = Ωac(m,p)ωcb(M,q) , (6.18)

using eq. (6.5). The normalization factor is different here because in this construction ∆

has eight (rather than four) eigenvalues ±2iϑ. That is, just as in eq. (4.14), the complexity

per mode Y (m,p, s̄) is independent of the spin s̄, and the trace in eq. (6.18) effectively

sums over the spins as well.

6.1.1 Rotational invariant reference state

We begin here with the simple choice q = 0, which produces a rotationally invariant

reference state. In this particular case, the mass scale M of the reference state does not

enter in any way, i.e., the only nonvanishing entries in Ωab(q = 0,M) reduce to ±Ẽq=0/M =

±1.36 This means, the Y (m,p, s̄) can only depend on the mass and momentum of the mode

that we are considering. Let us construct ∆:

∆a
b = Ωac(m,p)ωcb(M, 0) ≡



m
Ep

0 − pz
Ep
− px
Ep

0 0 0 − py
Ep

0 m
Ep
− px
Ep

pz
Ep

0 0
py
Ep

0
pz
Ep

px
Ep

m
Ep

0 0
py
Ep

0 0
px
Ep
− pz
Ep

0 m
Ep
− py
Ep

0 0 0

0 0 0
py
Ep

m
Ep

0 − pz
Ep
− px
Ep

0 0 − py
Ep

0 0 m
Ep
− px
Ep

pz
Ep

0 − py
Ep

0 0 pz
Ep

px
Ep

m
Ep

0
py
Ep

0 0 0 px
Ep
− pz
Ep

0 m
Ep


(6.19)

The corresponding eigenvalues appear with a multiplicity of four and are explicitly given by

spec(∆) =
m± i|p|
Ep

= e±2iϑ . (6.20)

Note that this corresponds to two quadruples of (e2iϑ, e2iϑ, e−2iϑ, e−2iϑ) associated to the

two spin degrees of freedom s = 1, 2. We can recall from eq. (5.22) that the contribution

to the complexity of each spin is given by

Y (m,p, s̄) = 2ϑ = tan−1

(
|p|
m

)
, (6.21)

which completely agrees with the result found in eq. (4.14). Of course, this is not sur-

prising, because q = 0 corresponds to choosing the same reference state as the one we

considered before, i.e., eq. (6.17) completely agrees with eq. (4.6) since the mass does not

play a role at q = 0 and the basis spinors reduce to those given in eq. (4.1).

36Therefore, the covariance matrix in the rest frame (for massive fermions) is always the same independent

of the mass.
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Figure 4. This plot shows the function Y (m,p, s̄) for p = (px, 0, pz) and a rotationally reference

state |M,q = 0〉.

Figure 4 shows a three-dimensional plot of the function Y given by eq. (6.21) — see

also figure 2. The complexity for the κ = 2 and κ = 1 measures are given in eqs. (4.18)

and (4.22), respectively. Recall as shown in eq. (4.15), that Y (m,p, s̄) → π
2 in the limit

of large momentum and hence both of these complexities are UV divergent, as shown in

eqs. (4.19) and (4.21). More specifically, the leading divergences are

Cκ=2 '
V Λ3

12

(
1− 6m

πΛ
+

12m2

π2Λ2

)
and Cκ=1 '

V Λ3

6π

(
1− 3m

πΛ

)
, (6.22)

as given in eqs. (4.19) and (4.22). In both cases, the next correction is a divergence of

order log (Λ/m).

6.1.2 Massless reference state

We can also choose a reference state that corresponds to spinors associated to a massless

state with momentum q in a given direction. Without loss of generality, we choose the

positive z-direction, namely q = (0, 0, q). In this case, the complexity of the momentum

mode (px, py, pz) should also depend on the angle that p has with the z-axis. This reference

state is therefore not rotationally invariant, but only invariant under the little group of a

massless particle. The explicit form of ∆ is given by

∆a
b = Ωac(m,p)ωcb(0,q) ≡



pz
Ep
− px
Ep

m
Ep

0 0 − py
Ep

0 0
px
Ep

pz
Ep

0 − m
Ep
− py
Ep

0 0 0

− m
Ep

0 pz
Ep
− px
Ep

0 0 0 − py
Ep

0 m
Ep

px
Ep

pz
Ep

0 0 − py
Ep

0

0
py
Ep

0 0 pz
Ep
− px
Ep

m
Ep

0
py
Ep

0 0 0 px
Ep

pz
Ep

0 − m
Ep

0 0 0
py
Ep
− m
Ep

0 pz
Ep
− px
Ep

0 0
py
Ep

0 0 m
Ep

px
Ep

pz
Ep


. (6.23)
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Figure 5. This plot shows the function Y (m,p, s) for p = (px, 0, pz) and a massless reference state

|M = 0,q = (0, 0, q)〉.

Again, we find two quadruples of equal eigenvalues, which are given by

spec(∆) =
pz ± i

√
m2 + p2

x + p2
y

Ep
= e±2iϑ . (6.24)

Hence using eq. (5.22), we can extract the contribution to the complexity to be

Y (m,p, s̄) = 2ϑ =
π

2
− tan−1

 pz√
m2 + p2

x + p2
y

 . (6.25)

We give a three-dimensional plot of this expression in figure 5.

We expect that the complexity will again be UV divergent. In order to compute the

leading order contribution, we need to take the limit |p| → ∞. This time, there is no

universal limit given by a single constant, but rather the limit will depend on the angle θ

between p and q:37

Y (m,p, s) =
π

2
− tan−1

(
|p| cos θ√

m2 + |p|2 sin2 θ

)

' θ +
m2 cot(θ)

2 |p|2
+O

(
m4

|p|4

)
. (6.26)

We can compare this expression with eq. (4.15) for the restframe reference state. The

leading order contribution to the complexity can be computed by simply substituting this

limit for Y in the desired integral. For example, using eq. (4.17) for the κ = 2 measure,

we find

Cκ=2 (|M = 0,q〉 → |0〉) ' 2V

(2π)3

∫ Λ

0
d|p|

∫ 2π

0
dφ

∫ π

0
dθ |p|2 sin θ

(
θ2 +

m2 θ cot(θ)

|p|2

)
=
V Λ3

6π2

[
(π2 − 4)− 6

m2

Λ2

]
. (6.27)

37That is, cos θ = pz/|p| in the present case where q is aligned with the (positive) z-axis.
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Similarly, using eq. (4.20) for the κ = 1 measure produces

Cκ=1 (|M = 0,q〉 → |0〉) ' V Λ3

6π
+O(V m4/Λ) . (6.28)

Note that the leading divergence above is identical to that found for the reference state

with q = 0 while the leading divergence in Cκ=2 is about 20% larger, e.g., compare with

eq. (6.22). The latter shows that for the restframe reference state, the leading corrections

were O(V mΛ2) but above, we see that the corrections vanish at this order for the massless

reference state. This comparison can be understood from the limiting function for a general

reference state |M,q〉, which we will discuss next.

6.1.3 Massive reference state

We now consider our most general reference state (6.16), corresponding to a Gaussian state

given by a tensor product over identical states |Ω(M,q)〉, with a fixed reference momentum

q and mass M .38 The calculation of complexity can be simplified by choosing again the

momentum q to be along the z-direction, such that we have q = (0, 0, q). The explicit

form of the relative covariance matrix ∆ is then given by

∆a
b = Ωac(m,p)ωcb(M,q)

≡



mM+pzq

EpẼq
− pxq

EpẼq

mq−Mpz
EpẼq

− Mpx
EpẼq

0 − pyq

EpẼq
0 − Mpy

EpẼq

pxq

EpẼq

mM+pzq

EpẼq
− Mpx
EpẼq

Mpz−mq
EpẼq

− pyq

EpẼq
0

Mpy
EpẼq

0

Mpz−mq
EpẼq

Mpx
EpẼq

mM+pzq

EpẼq
− pxq

EpẼq
0

Mpy
EpẼq

0 − pyq

EpẼq

Mpx
EpẼq

mq−Mpz
EpẼq

pxq

EpẼq

mM+pzq

EpẼq
− Mpy
EpẼq

0 − pyq

EpẼq
0

0
pyq

EpẼq
0

Mpy
EpẼq

mM+pzq

EpẼq
− pxq

EpẼq

mq−Mpz
EpẼq

− Mpx
EpẼq

pyq

EpẼq
0 − Mpy

EpẼq
0 pxq

EpẼq

mM+pzq

EpẼq
− Mpx
EpẼq

Mpz−mq
EpẼq

0 − Mpy
EpẼq

0
pyq

EpẼq

Mpz−mq
EpẼq

Mpx
EpẼq

mM+pzq

EpẼq
− pxq

EpẼq

Mpy
EpẼq

0
pyq

EpẼq
0 Mpx

EpẼq

mq−Mpz
EpẼq

pxq

EpẼq

mM+pzq

EpẼq



(6.29)

After some extended calculations, we find the two quadruples of identical eigenvalues cor-

responding to

spec(∆) =
(mM + pzq)± i

√
(p2
x + p2

y)(M
2 + q2) + (Mpz −mq)2

EpẼq

. (6.30)

Let us note that as expected from the covariance matrix (6.29), these eigenvalues are only

functions of the dimensionless ratio q/M (rather than of q and M independently). Hence

to simplify the following expressions, we introduce q̂ = q/M . From here, we can use the

38However, let us note that we will find below that the overall scale is not important. That is, the

complexity will be determined by the normalized vector q̂ = q/M .
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Figure 6. This plot shows the function Y (m,p, s) for p = (px, 0, pz) for a massive reference state

|M,q = (0, 0,M)〉.

same steps as above to find the general function of the complexity, namely

Y (m,p, s̄) =
π

2
− tan−1

 m+ pz q̂√
(q̂2 + 1)(p2

x + p2
y) + (pz −m q̂)2

 . (6.31)

We can verify that in the limit q/M → 0 (restframe) or q/M → ∞ (massless reference

state), we find the expected results in eqs. (6.21) and (6.25), respectively.

We illustrate Y (m,p, s̄) with a three-dimensional plot in figure 6, for q̂ = q/M = 1.

A convenient choice is to study the complexity as function of the dimensionless vectors

p̂ = p/m and q̂ = q/M . In particular, given eq. (6.31), we can write the complexity per

mode as Y (p̂, q̂) — as in the two previous examples, Y is independent of the spin s. Note

that we allow these vectors to be infinitely large for m → 0 or M → 0 corresponding to

point on the two-sphere at infinity. Clearly, Y takes its minimum value (equal to zero)

at the point where p̂ = q̂. We can always choose a plane, such that both points q̂ and

p̂ lie on it. If we now use the (inverse) stereographic projection to map the plane onto a

half-sphere (of unit radius) touching the origin, then Y becomes just the geodesic distance

between the projected points on the sphere. We illustrate this geometry in figure 7.

In order to compute the leading order UV contribution to the complexity, we need to

take the limit |p| → ∞. Again, this limit will depend on the angle θ between p and q, i.e.,

cos θ = pz/|p| in the case where q is aligned with the (positive) z-axis. Again, the other

relevant quantity will be q̂ = q/M . The asymptotics for |p| → ∞ are given by

Y (m,p, s̄) ' π

2
− tan−1

(
q̂ cos(θ)√

(q̂2 + 1) sin2(θ) + cos2(θ)

)
− 1√

(q̂2 + 1) sin2(θ) + cos2(θ)

m

|p|

+
q̂3 sin2(θ) cos(θ)

2
[
(q̂2 + 1) sin2(θ) + cos2(θ)

]3/2 m2

|p|2
+O

(
m3

|p|3

)
,

(6.32)
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x
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p̂

q̂

Y (p̂, q̂)

θ

Figure 7. This figure illustrates the geometry of the complexity Y (p̂, q̂) between a reference state

|Ω(M,q)〉 and the target state |Ω(m,p)〉. By using the inverse stereographical projection of the

plane onto a half-sphere of unit radius, the complexity can be identified with the geodesic distance

on the sphere between the two projected points. We also indicate the angle θ between q̂ and p̂.

which can be used to identify the leading UV divergences in the complexity. Considering

the κ = 2 measure, we substitute the above expression into eq. (4.17) and find

Cκ=2 (|M,q〉 → |0〉) =
2V

(2π)3

∫ Λ

0
d|p|

∫ 2π

0
dφ

∫ π

0
dθ |p|2 sin θ Y (m,p, s̄)2

' V Λ3

12π2

[
π2 − 8 +

8

q̂
tan−1q̂ + 4

(
tan−1q̂

)2
− 6πm

Λ q̂
tan−1q̂ +

12m2

Λ2

(
2

q̂
tan−1q̂ − 1

)
+O

(
m3/Λ3

) ]
.

(6.33)

This function neatly interpolates between the previous results two results, namely between

eq. (6.22) for the restframe reference state with q̂ = q/M → 0, and eq. (6.27) for the

massless reference state with q/M → ∞. Alternatively, using eq. (4.20) for the κ = 1

measure, we find

Cκ=1 (|M,q〉 → |0〉) ' V Λ3

6π

[
1− 3m

πΛq̂
tan−1q̂ +O(m2/Λ2)

]
. (6.34)

It is straightforward to show that in the limit q/M → 0, the above reduces to the cor-

responding expression in eq. (6.22). Similarly in the limit q/M → ∞, one finds that the

subleading correction vanishes above, which is in agreement with the result in eq. (6.28).

– 44 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

6.2 More excited states

The formalism developed in section 5 allows us to compute the complexity between any

two fermionic Gaussian states that belong to the same connected component of the state

space, i.e., they must both have even or odd fermion number (see footnote 15). A key

feature which distinguishes fermions from bosons is that states with individual particle

excitations, e.g.,
∏
i a
r̄i†
pi |0〉, are still Gaussian states. That is, as a result of the fermion

anticommutation relations, these states are annihilated by the operators ar̄i†pi . Hence we

can apply our techniques to compute the complexity of fermionic Gaussian states to such

excited states (provided that the number of excitations is even so that they are on the

same connected component as the reference state). We already considered several simple

examples of such excited states in section 4.2, but with the new methods at our disposal,

we can approach this question systematically here. Thoughout the following analysis, we

will use |0̄〉 as the reference state, with Ω0 = Ω(M,q = 0).

6.2.1 Excitations with a single momentum

We will begin by analyzing excitations in a single mode p, for which we will consider two

and four excitations. In section 4.2, we have already considered the complexity of simple

examples of these states, as given in eqs. (4.23), (4.34) and (4.40). The elaboration here will

have to do with the spin. So far, we only considered spins of the individual (anti)particles

are aligned along the axis defined by the corresponding momentum — see footnote 25.

Previously, we denoted spins with this orientation with the spin labels r̄, s̄. However, we

now introduce the labels r, s ∈ {1, 2} to denote spins aligned along an arbitrary axis that

is not related to the momentum axis, but rather is fixed in the rest frame of the fermions.

Without loss of generality, we will choose this axis to be the z-axis in the following.39

As in section 6.1, the strategy for evaluating the complexity is: given our excited state

|ψ̃〉, we first compute the corresponding covariance matrix. Since the excitations involve

a single momentum q, we need only focus on that sector and the corresponding Ω̃(m,q)

is computed with respect to the basis ξa(q) introduced in eq. (6.10). We then evaluate

the relative covariance matrix ∆(q) = Ω̃(m,q)ω(M, 0), where ω(M, 0) is the inverse of

Ω0 = Ω(M, 0) which means we continue to use the rotational invariant reference state as

in section 4. We then evaluate the spectrum of ∆(q), which reveals the change in the

complexity of the excited state. The tedious part of this computation lies in evaluating

Ω̃(m,q) which is best accomplished by expanding ξa(q) in terms of creation and annihila-

tion operators and keeping in mind that for the excited state, some of the original creation

operators now annihilate |ψ̃〉.
The first class of excited states which we consider here take the form

(E) |ψ̃〉 = ar†q br†−q |0〉 , (6.35)

with arbitrary q. These states are similar to those from eqs. (4.23) and (4.40), but as

described above in the present state, the spins are aligned with the z-axis in the rest

39Our conventions in the following will be that both ar†p and br†p create excitations whose spins are oriented

along the positive (negative) z-axis with r = 1 (with r = 2).
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Figure 8. This plot shows the angles 2ϑ̃i of the two eigenvalue quadruples (e2iϑ̃i , e2iϑ̃i , e−2iϑ̃i , e−2iϑ̃i)

of ∆(q) in the state ar†q b
r†
−q|0〉 for q = (qx, 0, qz).

frame. In fact, it is straightforward to see that the (A) and (E) families coincide for the

special case where the momentum q is oriented along the z-axis. The relative covariance

matrix is given by:

∆(q) = Ω̃(m,q)ω(M,0)

≡



q2z
(Eq+m)Eq

−1 qxqz
(Eq+m)Eq

qz
Eq

0 0
qyqz

(Eq+m)Eq
0 0

qxqz
(Eq+m)Eq

1− q2z
(Eq+m)Eq

0 qz
Eq

− qyqz
(Eq+m)Eq

0 0 0

− qz
Eq

0
q2z

(Eq+m)Eq
−1 qxqz

(Eq+m)Eq
0 0 0

qyqz
(Eq+m)Eq

0 − qz
Eq

qxqz
(Eq+m)Eq

1− q2z
(Eq+m)Eq

0 0 − qyqz
(Eq+m)Eq

0

0 − qyqz
(Eq+m)Eq

0 0
q2z

(Eq+m)Eq
−1 qxqz

(Eq+m)Eq

qz
Eq

0

qyqz
(Eq+m)Eq

0 0 0 qxqz
(Eq+m)Eq

1− q2z
(Eq+m)Eq

0 qz
Eq

0 0 0 − qyqz
(Eq+m)Eq

− qz
Eq

0
q2z

(Eq+m)Eq
−1 qxqz

(Eq+m)Eq

0 0
qyqz

(Eq+m)Eq
0 0 − qz

Eq

qxqz
(Eq+m)Eq

1− q2z
(Eq+m)Eq


(6.36)

The eigenvalues of ∆(q) appear in two quadruples (e2iϑ̃i , e2iϑ̃i , e−2iϑ̃i , e−2iϑ̃i) given by

e±2iϑ̃1 = −

√
m2 + q2

x + q2
y ± i qz

Eq
, e±2iϑ̃2 =

√
m2 + q2

x + q2
y ± i qz

Eq
. (6.37)

Hence the angles ϑ̃i are given by40

2ϑ̃1 = π − sin−1

(
|qz|
Eq

)
, 2ϑ̃2 = sin−1

(
|qz|
Eq

)
. (6.38)

and we plot the values 2ϑ̃i in figure 8. In particular, we notice that with qx = qy = 0,

the spin axis and the momentum axis are aligned and our results agree with eq. (4.27) for

excited states in the (A) class, i.e., in eq. (4.23). Following the analysis in section 4.2, we

40The angles are chosen consistently with eq. (6.37) such that 0 ≤ 2ϑ̃i ≤ π.

– 46 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

then evaluate the difference in the complexity of the excited state and that of the vacuum.

With the κ = 1, 2 measures, we find

∆Cκ=2(|0̄〉 → |ψ〉) = (2ϑ̃1)2 + (2ϑ̃2)2 − 2Y (m,q, s̄)2 (6.39)

∆Cκ=1(|0̄〉 → |ψ〉) = π − 2 |Y (m,q, s̄)| ,

where Y (m,q, s̄) is given in eq. (4.14), and we have used 2ϑ̃1 + 2ϑ̃2 = π in the second

expression. It is interesting to observe that our result here for ∆Cκ=1 is precisely the same

as that found in eq. (4.30) for the excited states in eq. (4.23). Of course, we must reiterate

that the κ = 1 measure is basis dependent and implicitly, for ∆Cκ=1, we are aligning the

basis in the q sector here with the generators which produce the above transformations.

Next as a generalization of the (D) states in eq. (4.40), we consider

(F) |ψ̃〉 = ar†q br
′†
−q |0〉 , (6.40)

where, as before, we use the convention that r′ to refers to the opposite spin label as r,

i.e., r′ ≡ r+ 1 (mod 2). Again, we are considering the spins to be oriented along the z-axis,

independent of the orientation of the momentum q. We can assume qy = 0 without loss of

generality, i.e., we orient the spatial axes so that the momentum lies in the xz-plane. This

choice simplifies the computation of the relative covariance matrix, for which we find

∆(q) = Ω̃(m,q)ω(M,0)

≡



0 − qx
Eq

q2x
(Eq+m)Eq

−1 − qxqz
(Eq+m)Eq

0 0 0 0

qx
Eq

0 − qxqz
(Eq+m)Eq

1− q2x
(Eq+m)Eq

0 0 0 0
q2x

(Eq+m)Eq
−1 − qxqz

(Eq+m)Eq
0 qx

Eq
0 0 0 0

− qxqz
(Eq+m)Eq

1− q2x
(Eq+m)Eq

− qx
Eq

0 0 0 0 0

0 0 0 0 0 − qx
Eq

q2x
(Eq+m)Eq

−1 − qxqz
(Eq+m)Eq

0 0 0 0 qx
Eq

0 − qxqz
(Eq+m)Eq

1− q2x
(Eq+m)Eq

0 0 0 0
q2x

(Eq+m)Eq
−1 − qxqz

(Eq+m)Eq
0 qx

Eq

0 0 0 0 − qxqz
(Eq+m)Eq

1− q2x
(Eq+m)Eq

− qx
Eq

0


(6.41)

The eigenvalues of ∆(q) appear in two quadruples (e2iϑ̃i , e2iϑ̃i , e−2iϑ̃i , e−2iϑ̃i) given by

e±2iϑ̃1 = −

√
m2 + q2

z ± i
√
q2
x + q2

y

Eq
, e±2iϑ̃2 =

√
m2 + q2

z ± i
√
q2
x + q2

y

Eq
, (6.42)

where we reinstated qy with the substitution qx →
√
q2
x + q2

y . Thus, the two angles ϑ̃i are

given by

2ϑ̃1 = π − sin−1


√
q2
x + q2

y

Eq

 , 2ϑ̃2 = sin−1


√
q2
x + q2

y

Eq

 . (6.43)

and we plot 2ϑ̃i in figure 9. Let us observe that with qx = 0 = qy, the spin axis is aligned

with the momentum axis and the above angles coincide with those in eq. (4.36) for the
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Figure 9. This plot shows the angles 2ϑ̃i of the two eigenvalue quadruples (e2iϑ̃i , e2iϑ̃i , e−2iϑ̃i , e−2iϑ̃i)

of ∆(q) in the state ar†q b
r′†
−q|0〉 for q = (qx, 0, qz). Note that the result is identical with the plots

shown in figure 8 where qx and qz are swapped.

excited states in class (D) (since in this case, the two classes coincide). Furthermore, we can

compare these results with those for the (E) excited states. For example, the eigenvalues

in eq. (6.37) match those above in eq. (6.42) if we swap qz ↔
√
q2
x + q2

y . Again, we can

evaluate the difference in the complexities of the excited state and the Dirac vacuum with

the κ = 1, 2 measures to find the same result as in eq. (6.39), where the ϑ̃i appearing in

∆Cκ=2 are given by eq. (6.43). We note that once more that ∆Cκ=1 is precisely the same

as found in eq. (4.30) for the (A) states in eq. (4.23) — again, this result relies on the fact

that 2ϑ̃1 +2ϑ̃2 = π for the new excited states. We reiterate that the κ = 1 measure is basis

dependent and implicitly, for ∆Cκ=1, we are aligning the basis in the q sector here with

the generators which produce the above transformations.

Another interesting class of excited states is given by

(G) |ψ̃〉 = ar†q ar
′†

q br†−q b
r′†
−q |0〉 , (6.44)

where we excite every degree of freedom in q sector. Physically, this means we have two

particles with momentum q but opposite spins, and two antiparticles with momentum −q,

also with both spins. These states are similar to a special case with two pairs excited for the

same momentum q in eq. (4.32), i.e., ar̄†q a
r̄′†
q br̄†−qb

r̄′†
−q|0〉. Again, as our notation indicates, the

difference is in the orientation of the spins, but we return to this point below. In evaluating

the corresponding covariance matrix Ω̃(m,q), for this state (6.44) we are swapping all

creation operators with annihilation operators (for this momentum mode q) and this swap

will just reverse the overall sign of the covariance matrix from that in eq. (6.14), i.e.,

Ω̃(m,q) = −Ω(m,q). The reason for the sign change can be understood best by recalling

that the eigenspaces of the matrix J = Ωg correspond to the spaces spanned by creation

operators (corresponding to eigenvalues +i) and annihilation operators (eigenvalues −i).

Hence if we swap the role of the operators, we need to go from J → J̃ = −J , which implies

to Ω → Ω̃ = −Ω. We find that the eigenvalues of ∆ = Ω̃(m,q)ω(M, 0) have the opposite

sign, i.e., there are two four-fold degenerate eigenvalues,

spec(∆) = −m± i|q|
Eq

= e±2iϑ̃ , (6.45)
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which of course, is the same as in eq. (6.20) up to an overall sign change. Accordingly,

we have

Ỹ (m,q, s) = 2ϑ̃ = π − tan−1

(
|q|
m

)
, (6.46)

where as usual, we chose the angle to lie in the range 0 ≤ 2ϑ̃ ≤ π.

Clearly, in eq. (6.46), we have Ỹ (m,q, s) = π − Y (m,q, s̄) where Y (m,q, s̄) is the

complexity of the corresponding modes in the Dirac ground state given eq. (4.14). We

already plotted this function in figure 3, since the same expression appeared in evaluating

the complexity of the state ar̄†q b
r̄′†
−q|0〉 — see eq. (4.23). Hence, we will find the same

complexity here for eq. (6.44) as for the excited state ar̄†q a
r̄′†
q br̄†−qb

r̄′†
−q|0〉, which is the special

case of eq. (4.32) noted above. As mentioned above, the difference between the two states is

the orientation of the spin axes of the individual particles (and antiparticles), however, we

are finding that the complexity does not depend on these details. The reason for this is that

in both cases, the full state is a spin singlet (i.e., the net spin is zero) and so it is invariant

under rotations of the spin axis. In fact then, the two states are identical and so it is a

confirmation of our methods that we find the same complexity in either case irrespective

of the details of the construction of the state. The above discussion also provides us with

an alternative perspective on how to arrive at this same result.

Further, the same reasoning can be applied to the (B) and (C) families of states in

eq. (4.34). In either case, the pair of excited particles (or antiparticles) form a spin singlet.

Hence the states would actually be identical with the spins oriented along any axis, i.e.,

they need not be along the momentum axis as in the discussion in section 4.2. Of course

then, with an alternate choice of spin axis, the complexity would remain the same as in

eqs. (4.38) and (4.39).

We summarize our results in table 1 for the complexity of states with excitations in a

single mode q. The table includes all the states discussed in section 4.2 and the present

section. This covers all states with an even number of excitations in a single mode q where

the spin axis can be different from the momentum orientation. This could be generalized

further by allowing differently oriented spin axes for the different particle and antiparticle

excitations. Our methods readily apply to this scenario, but it will be hard to find analytical

expressions as one needs to find closed expressions for the eigenvalues of ∆. Instead, it will

be easy to evaluate the eigenvalues numerically for any specific choice of spin orientations.

6.2.2 Excitations in many modes

At this stage, we are essentially prepared to consider general excited states of the form

|ψ̃〉 =
∏
i,j

ar̄i†qi b
r̄j†
−qj |0〉 , (6.47)

where the only constraint is that the total number of excitations must be even to ensure that

these states lie on the connected component of the space of fermionic Gaussian states, i.e.,

imax + jmax = 2n . (6.48)

Implicitly, we also assume for simplicity that in all of the different momentum sectors, that

the spins are oriented along the momentum axis of the respective modes.
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Excited states 2ϑ̃1 2ϑ̃2 Section

(A) ar̄†q b
r̄′†
−q|0〉 π − tan−1

(
|q|
m

)
tan−1

(
|q|
m

)
4.2

(B) a1†
q a

2†
q |0〉 π 0 4.2

(C) b1†q b
2†
q |0〉 π 0 4.2

(D) ar̄†q b
r̄†
−q|0〉 π 0 4.2

(E) ar†q b
r†
−q|0〉 π − sin−1

(
q‖
Eq

)
sin−1

(
q‖
Eq

)
6.2

(F) ar†q b
r′†
−q|0〉 π − sin−1

(
q⊥
Eq

)
sin−1

(
q⊥
Eq

)
6.2

(G) a1†
q a

2†
q b

1†
−qb

2†
−q|0〉 π − tan−1

(
|q|
m

)
π − tan−1

(
|q|
m

)
6.2

Table 1. In this table, we summarize the results for the complexity of various excited states in a

single mode q. The first four cases were considered in section 4.2. The relative covariance matrix

∆(q) will have two eigenvalue quadruples (e2iϑ̃i , e2iϑ̃i , e−2iϑ̃i , e−2iϑ̃i) which encode the angles needed

to evaluate the complexity or the difference of the complexity from that of the ground state. Recall

barred spin labels r̄, s̄ denote spins aligned along the momentum axis, while unbarred labels r, s

denote spins aligned along a fixed axis in the rest frame. Given such a fixed axis, we specify the

momentum q by the magnitude of the tangential component q‖ and of the orthogonal component

q⊥. Recall that cases (A) and (D) coincide with cases (E) and (F), respectively, when q⊥ = 0.

Further, since the states in (B), (C) and (G) form spin singlets, the spins can actually be oriented

along any axis.

As in the previous examples of excited states, the above states will still be tensor

product over all modes p where only the sectors with p = qi differ from Dirac ground

state.41 This means it will be sufficient to compute the covariance matrix Ω(m,qi) for

each excited sector qi to find the change in complexity for this class of excited states. In

particular, we would first examine the state to determine the number of excitations in each

of these sectors. In many sectors, there would be an even number of excitations and for these

sectors, we can use the results in table 1 to evaluate their contribution to the complexity.

Hence only the sectors with an odd number of excitations need further consideration.

An important observation is that in each sector with an odd number of excitations, the

state will lie in the disconnected component from the reference state |Ω(M, 0)〉qi for this

momentum qi. This implies that any geodesic transforming the full reference state |0̄〉 to

the excited target state (6.47) will actually not preserve the tensor product structure over

modes. In fact, this is the reason that it only works if we have an even number of excitations,

because the generator of the geodesic will always mix two excitations intermediately along

the path, and not until the end point is reached, will the tensor product over momentum

modes be restored. Clearly, the geodesic accomplishing this transformation is not unique

and arbitrary pairings are among the even number of excited modes are allowed. However,

41We use qi here and in the following to refer to the momentum labels of both the particle or antiparticle

excitations. As in our previous discussions, we refer to a momentum sector qi as states spanned by the four

creation operators, ar̄†qi
or br̄†−qi

with r̄ = 1, 2.
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all these geodesics will have the same length, so it does not matter for the purpose of

computing complexity. Further, our approach of evaluating the length of the geodesic(s)

using the relative covariance matrix can still be applied, but clearly it does not depend on

these details since it only refers to the endpoints of the geodesic where the tensor product

structure holds.

Let us begin with the sectors with a single excitation. We can compute the relative

covariance matrix ∆(qi) = Ω̃(m,qi)ω(M, 0) for each of these excited modes qi and find its

eigenvalues. The calculations are a little tedious, but the result is rather simple and given by

spec(∆(qi)) =

(
1, 1,−1,−1,

m+ i|qi|
Eqi

,
m+ i|qi|
Eqi

,
m− i|qi|
Eqi

,
m− i|qi|
Eqi

)
. (6.49)

Hence rather than finding two identical quadruples, we find a single quadruple with the

familiar form (e2iϑ, e2iϑ, e−2iϑ, e−2iϑ) where ϑ = tan−1(|qi|/m) and two pairs (1, 1) and

(−1,−1). Note that this result is independent of the type of excitation (particle or an-

tiparticle) and of the orientation of the spin (r̄i = 1, 2). Based on our discussion in sec-

tion 5, the eigenvalue pair (−1,−1) implies that the reference and target states in the qi
sector lie on disconnected components. However, if we combine two sectors (qi,qj) with

an odd number of excitations, these additional pairs combine into two quadruples given

by (−1,−1,−1,−1) with ϑ = π and (1, 1, 1, 1) with ϑ = 0. For example, combining two

sectors with a single excitation, the complexity contributions are described by four angles

2ϑ1 = π , 2ϑ2 = 0 , 2ϑ3 = tan−1

(
|qi|
m

)
, 2ϑ4 = tan−1

(
|qj |
m

)
. (6.50)

Our discussion above implied that an unmatched eigenvalue pair (−1,−1) also ap-

pears for the sectors with three excitations. In such a situation, there must be a particle-

antiparticle pair with the same spin label, i.e., a pair of creation operators as appear in

the (A) states in eq. (4.23). This pair can be dealt with separately as in section 4.2 and

a quadruple of eigenvalues appears specified by the angle 2ϑ = π − tan−1
(
|qi|
m

)
, as in

eq. (4.27). Similarly, as in the previous case, the unpaired creation operator then yields an

eigenvalue quadruple of the form (1, 1,−1,−1). Hence we see the unmatched pair (−1,−1)

appearing here, and as discussed above, if the reference and target state are connected

within the set of Gaussian states, this pair can be matched with another such pair from

one of the other sectors with an odd number excitations.

While we have outlined the steps needed of the evaluation of the complexity of a general

state (6.47), writing out the final complexity would require a rather elaborate expression

since there are many different possibilities for the different sectors. Instead let us focus

on the special case where in each excited sector, there is only a single excitation. Then

following the analysis in section 4.2, it is straightforward to evaluate the difference in the

complexity of the excited state and that of the vacuum. With the κ = 1, 2 measures, we find

∆Cκ=2(|0̄〉 → |ψ̃〉) = nπ2 −
∑
i

[
tan−1

(
|qj |
m

)]2

(6.51)

∆Cκ=1(|0̄〉 → |ψ̃〉) = nπ −
∑
i

tan−1

(
|qj |
m

)
,
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where n is defined in eq. (6.48), i.e., n is half of the total number of excitations. We repeat

the usual caveat that implicitly, for ∆Cκ=1, we are aligning the basis in each qi sector with

the generators which produce the desired unitary transformation. In comparing to our pre-

vious results, we see that these results match ∆Cκ=2 and ∆Cκ=1 in eqs. (4.38) and (4.39),

respectively, for the states in eq. (4.34) (or the corresponding differences in for the more

general states in eq. (6.44)).

7 Discussion and outlook

As was reviewed in section 2, Nielsen’s perspective [40–42] allows one to bring the power

of differential geometry to bear on the problem of constructing optimal quantum circuits,

and also provides an objective manner in which to measure the complexity as the ‘length’

of extremal paths in this geometry. The present paper extends the study of [32], which

applied Nielsen’s geometric approach to investigate the ground state complexity of a free

scalar field theory. In particular, we examined the complexity of Gaussian states in a free

fermionic quantum field theory. Let us reiterate that some aspects of our work overlaps

with the recent studies in [36, 37]. As discussed in section 3, we can think of the Gaussian

states for N fermionic degrees of freedom, as those annihilated by a family of N destruc-

tion operators ai, and hence the transformations carrying us from one state to another can

be identified with the Bogoliubov transformations amongst the annihilation and creation

operators. This perspective readily reveals a group structure for the family of transforma-

tions of interest, namely O(2N) for free fermions. This group structure can be connected

to Nielsen’s construction of the unitary circuits which prepare these states by observing

that the operators OI in eq. (2.2) form a representation of the corresponding Lie algebra

so(2N) and the circuits are then trajectories in the corresponding group manifold.

In contrast, with e.g., [32, 36, 37], our approach was to emphasize this group structure

and in doing so the precise representation appearing in the construction of the circuits be-

comes less important. Rather we focused on the action of the group transformation on the

covariance matrix (3.1), which can be used to completely characterize the Gaussian states

for either fermionic or bosonic degrees of freedom. With this representation, we were able

to equip the group with a natural positive definite right-invariant metric, which allowed

us to find all geodesics and their path lengths analytically by exploiting the underlying

U(N) symmetry of this metric, as explained in appendix B. We found this more abstract

group theoretic perspective yields an extremely powerful approach to apply Nielsen’s con-

struction to this problem. In particular, we were able to prove that our unitary circuits

in fact correspond to minimal geodesics in the corresponding geometry on the space of

states.42 Further, we evaluated the complexity of the ground state for a variety of different

disentangled reference states, and we also evaluated the complexity of various families of

excited states.

42We might point out that such a proof was not provided in [37], which studied the same problem.

However, we emphasize that where our work overlapped with the latter paper, e.g., the complexity of the

ground state for a free Dirac fermion in four dimensions in section 4.1, our results agreed.
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In evaluating the complexity, one must choose a cost function (2.5) and in our analysis,

we focused on three choices, the F2 measure and the κ = 1 and κ = 2 measures. Of course,

the F2 measure can be recognized as the proper distance in the Riemannian geometry,

which we defined for the SO(2N) group manifold. With a physicist’s perspective, we can

regard the κ = 2 measure as a ‘standard’ test particle action on the same geometry and of

course, it yields the same optimal trajectories as the F2 measure. Given the interpretation

of the Y I functions in eq. (2.2) as indicating when particular gates appear in the circuit,

the κ = 1 measure comes the closest amongst the examples in eq. (2.5) to the original

definition of simply counting the number of gates in the circuit. Unfortunately, in the

practical situation where the relevant trajectories are constructed by many orthogonal

generators, this measure defines a ‘Manhattan metric’ on the relevant submanifold and

does not provide the most useful measure to distinguish different circuits, e.g., [32, 40].

Furthermore, as discussed in [32], the precise value of the complexity depends on the

precise choice of the generators OI appearing in the construction. An advantage of the

previous two measures is that they do not suffer from this basis dependence,43 and of

course, our analysis of the geodesics, e.g., in appendices A and B, made reference to the

F2 measure (but as noted above, the κ = 2 measure yields identical geodesics). Implicitly,

our results for the κ = 1 measure assume that the basis of generators is aligned with the

generators producing the desired transformation. For higher values of κ, i.e., κ > 2, one

finds a similar basis dependence [32], which is unfortunate because the κ cost functions were

introduced because of the close parallels between the resulting complexity for free fields

and the results found for holographic complexity [32, 33]. However, at least for κ = 1, this

situation can be remedied by making use of the Schatten norm (e.g., see [60, 61, section

1.1]). This norm actually provides a family of measures based on computing the singular

value decomposition of the desired transformation and in the present case, it reduces to

(
∑

I |2ϑI |p)1/p, where p is a positive integer and the ϑI are precisely the eigenvalues of the

generator producing the desired transformation. With p = 2, this reduces to the standard

Frobenius-Hilbert-Schmidt norm, and we recover the F2 measure which we were studying

in the main text. More importantly with p = 1, we will recover our results for the κ = 1

measure, however, they are now basis independent when framed in terms of the Schatten

norm. We return to discuss this issue in more detail in [62, 63].

As discussed in section 3.2, we chose a natural metric (3.37) defined by the group

structure of the present problem, namely one proportional to the Killing form on the

O(2N) group manifold. This choice simplified the calculation of the geodesics and their

lengths, as explained in appendix B. Alternatively, one may wish to use a different right-

invariant metric which involves “penalty factors”, e.g., as in the F1p measure in (2.5) or

in an elaboration of the F2 cost function of the form F̃2(U, ~Y ) =
√∑

I,J gIJ Y
I Y J . With

such a penalized metric, one favours certain directions in the circuit space over others, i.e.,

43Strictly speaking, this statement applies for any orthonormal basis of generators, however, a completely

basis independent framework is produced by extending these measures to F̃2(U, ~Y ) =
√∑

I,J gIJ Y
I Y J and

F̃κ=2(U, ~Y ) =
∑
I,J gIJ Y

I Y J where gIJ is a frame metric on the space of generators — see the discussion

of penalty factors below.
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a higher cost is given to certain classes of gates (i.e., Lie algebra generators). For example,

in [32], it was suggested that such an approach could be used to restore a notion of locality

for circuit complexity in quantum field theories by increasing the cost of gates that correlate

degrees of freedom separated by larger distances.44 However, in the initial exploration of

the latter for the scalar field theory, the shortest paths were dramatically changed and in

general, evaluating the geodesics relied on numerical computations. We expect a similar

situation will arise for the present fermionic systems, especially if the penalty factors break

the U(N) symmetry of the present metric. We leave the study of such penalized metrics

for a future project.

An alternative approach was introduced in [33] to compute circuit complexity by as-

signing a geometry to the space of states rather than the space of unitaries. In particular,

this approach is based on the fact that the set of normalized vectors in a Hilbert space45

form a Riemannian manifold whose metric is inherited from the positive definite inner

product of the Hilbert space, i.e., the Fubini-Study metric [65, 66]. As it turns out, the

minimal geodesic between two states |ψR〉 and |ψT〉 is just given by the arc of a circle

that connects the two states in the two-dimensional plane spanned by them. The geodesic

length is therefore trivially given by the angle ϑ between the two state vectors which can be

computed as cosϑ = 〈ψR|ψT〉. However, as stressed in [2, 43, 44], this geometry alone is in-

appropriate to define a notion of circuit complexity for states in quantum field theory since

the maximum separation of any two states is only π. Instead, it was proposed in [33] to

restrict the manifold of states to a subset, in particular to the set of Gaussian states in the

context of free field theories. In this case, the geodesics are forced to lie on a submanifold

with a more intricate geometry. In the case of a free scalar field, the complexity determined

with this alternative approach was actually found to agree with that determined with the

Nielsen approach in [32]. Similarly, for a free fermionic field, one can show that the length

of the minimal geodesics found in the present paper agrees with the lengths found with the

Fubini-Study metric restricted to the submanifold of Gaussian states. We believe that this

is a general feature which relates minimal Lie group geodesics with respect to a “natural

metric” with the Fubini-Study geodesics on the quotient manifold where we divide the Lie

group Sp(2N,R) or O(2N) by their subgroup U(N) [62, 63].

A primary motivation to develop techniques to evaluate complexity in simple quan-

tum field theories is to better understand holographic complexity. Of course, there is no a

priori reason to expect the results for free field theories to agree with those in holography,

which necessarily describes strongly coupled quantum field theories with a large number

of degrees of freedom. Nevertheless, it was found that if the cost function is chosen appro-

priately, the scalar field complexity exhibits some remarkable similarities with holographic

complexity [32, 33]. In particular, the leading divergences in both the CV and CA propos-

als are extensive, i.e., they are proportional to the volume of the time slice on which the

boundary state is evaluated, as shown in [12]. Just as for the scalar field in [32], we found

44Let us note however that ref. [64] recently argued that the microscopic model underlying holographic

complexity must be nonlocal.
45More precisely, we also divide by the complex phase to get a representation of the “space of rays” in

the Hilbert space.
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here that complexity of a fermionic field yields an analogous leading divergence with the κ

cost functions, in particular, with κ = 2 and κ = 1 as shown in eqs. (4.22) and (4.19), re-

spectively. In contrast, the F2 cost function gives a result proportional to V 1/2 which does

not match the holographic results.46 Hence, our fermionic results reinforce the previous

insights provided by the complexity calculations for a free scalar field with regards to the

form of the cost functions that implicitly underly holographic complexity.

Another interesting feature of the complexity results for the free scalar [32] was that

the leading contribution with the κ measures contained an extra logarithmic factor pro-

portional to logκ(Λ/ω0), where ω0 was the frequency specifying the unentangled reference

state. Surprisingly, a similar logarithmic factor was found in the leading divergence in the

holographic complexity [12] for the complexity=action proposal. In the latter case, the

logarithmic factor came from joint terms [9] in the gravitational action, and the argument

of the logarithm was ambiguous because of the freedom in the normalization of the null

normals on the boundary of the WDW patch. Whereas this ambiguity had originally been

seen as problematic for the CA conjecture, the scalar field results indicated that it is a

perfectly natural feature in the complexity of QFT states.

However, we find that no such logarithmic factors appear in the leading divergences of

the complexities evaluated here for a fermionic field, e.g., see eqs. (4.22) and (4.19). This

motivated our study of alternative reference states in section 6.1. However, we found that

for any reference state which was translationally invariant and spatially unentangled, the

leading singularity in the ground state complexity takes the same form. That is, with the

κ = 1 measure, the leading divergence is precisely the same for all such reference states, i.e.,

it is independent of q̂ = q/M , as shown in eq. (6.34). On the other hand, eq. (6.33) shows

that while the numerical coefficient varies with the reference state, i.e., with q̂, the leading

singularity is still proportional to V Λ3 in all cases. Of course, this is not in contradiction

with holographic complexity. Typically, holography involves a supersymmetric boundary

theories and so there will be both bosonic and fermionic degrees of freedom. Further, as

explained in [32], if one were to choose the reference scale to be proportional to the cut-

off, i.e., ω0 = e−σΛ, then the logarithmic factor would simply appear as some numercal

factor, i.e., σκ, multiplying the usual V Λd−1 divergence.47 However, with regards to su-

persymmetry, it may be interesting to investigate if the relative strength of the logarithmic

factor in the leading divergence found with complexity=action changes as the amount of

supersymmetry in the boundary theory changes.

As noted above, while there was no reference frequency that appeared in the ground

state complexity of a fermionic field, we were able parametrize a whole family of reference

states (all of which were spatially unentangled and translationally invariant). These states

were characterized by a momentum q and a mass scale M , although we found that the

complexity only depended on the dimensionless vector q̂ = q/M . We can make a parallel

46An alternative approach [44] would be to assign the cost (V Λd−1)1/2 to each gate in the F2 measure.

However, this choice would be problematic, e.g., in comparing complexities for different UV cutoffs.
47With this observation, we can also see that no obvious tension between the different structure of

the UV divergences found with complexity=action and complexity=volume proposals for holographic

complexity [12].
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with these reference states in the free scalar field theory as follows: in notation analogous

to eq. (6.13), the ground state of scalar is given by

|0〉 = ⊗p |m,p〉p . (7.1)

Here, the state |M,q〉p indicates the ground state of the Hamiltonian of a single degree of

freedom (in the mode p)

Hp(M,q) =
1

2

(
π2
p + (M2 + |q|2)φ2

p

)
. (7.2)

Now we can choose our reference state, the state where we put every mode p into the

ground state of Hp(M,q) with the same M and q. The resulting reference state,

|ψR〉 = ⊗p|M,q〉p , (7.3)

is both spatially unentangled and translationally invariant, as desired. Now in the scalar

theory, it just so happens that the only relevant quantity is the frequency ω0 = ω(M,q) =√
M2 + |q|2 and eq. (7.3) is precisely the family of reference states considered in [32]. Here,

we are constructing them in a way that parallels our construction of the fermionic reference

states in section 6.1.

However, let us note that it is straightfoward to extend this family of reference states

for the scalar field as follows: we can choose any fixed Gaussian state |G〉p to construct

a reference state analogous to that in eq. (7.3). Hence for a scalar field, with a single

bosonic degree of freedom at each spatial point (or in each momentum mode), we can form

a two-dimensional family of reference states corresponding to Mb,1 = Sp(2,R)/U(1) by

performing Bogoliubov transformations to a fixed |G0〉p (e.g., with G0 = 1), as discussed

in section 3.1. In terms of the language used in the previous paragraph, we can say that

the most general |G〉p can be labeled by a reference frequency ω0 and an angle θ0. The

corresponding state |ω0, θ0〉p is the ground state of the following Hamiltonian,

Hp(ω0, θ0) =
1

2

[
(cos(θ0)πp + sin(θ0)φp)2 + ω2

0(cos(θ0)φp − sin(θ0)πp)2
]
. (7.4)

This general family of reference states extends the coefficient matrix Aab of [32] to have

complex values. Further, with this extension, it would not suffice to construct the uni-

tary circuit with only entangling gates. That is, one would have to extend the analysis

of geodesics on the group GL(N,R) in [32] to geodesics on the full Sp(2N,R) group of

Bogoliubov transformations discussed in section 3.1.48 It would be interesting to study the

effect of this generalization on the complexity of the ground state. Further, it is amusing

to note that in considering a theory of n scalar fields, the general family of reference states

would be n(n+1)-dimensional, i.e., the full family corresponds toMb,n = Sp(2n,R)/U(n).

Of course, the above generalization can also be applied to a fermionic field. In partic-

ular, given a system with n fermionic degrees of freedom at each spatial point or in each

momentum mode, the corresponding space of Gaussian states is n(n− 1)-dimensional, i.e.,

48Of course, here N denotes the total number of degrees of freedom in the (regulated) scalar field theory.
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recallMf,n = O(2n)/U(n) as discussed in section 3.2. Again, we can choose any of the cor-

responding Gaussian states to define Ω0 in constructing the reference state |ΩR〉 = ⊗p|Ω0〉p,

as described in section 6.1. For example, with the four-dimensional Dirac field studied in

the main text, we have n = 4 degrees of freedom at each spatial point and in principle,

we can construct a twelve-dimensional family of spatially unentangled and translationally

invariant reference states. In section 6.1, in fact, we only considered the three-dimensional

subspace labeled by the vector q̂ = q/M . It would be interesting to study the effect of

choosing reference states throughout this full family on the ground state complexity of the

Dirac field.

In sections 4.2 and 6.2, we were also able to study the complexity of a broad variety

of excited states. This study was facilitated by the fact that in a free fermionic theory,

acting with products of creation operators ar†q transforms the vacuum to another Gaussian

state, which allowed us to apply the general framework developed in section 5. While the

complexity depended on the details of which modes were excited (e.g., see table 1), a general

feature was that when using the κ cost functions, the difference between the complexities

of the excited state and the vacuum state was finite,49 e.g., see eqs. (4.33) or (6.51). This

result is perhaps not unexpected but we note that it is in keeping with our expectations

for holographic conjecture. That is, low energy excitations in the bulk will not effect

the structure of the UV divergences, which is determined by contributions coming from

the asymptotic regions of the bulk spacetime. One explicit example of this behaviour is

provided with the complexity of formation in [11, 13]. However, our new results for excited

states in the free fermionic field theory provide some additional motivation to study the

complexity of excited states in a holographic framework more carefully. In any event, the

finite difference in the complexities of the excited states and the vacuum reinforces the

suggestion that the cost functions which are implicit in the microscopic rules governing

holographic complexity are similar to the κ cost functions used in our free field studies.

We should note that while we considered a broad family of excited states in our com-

plexity calculations, these only represent discrete points in the full N(N − 1)-dimensional

space of Gaussian states.50 While our excited states form a physically interesting case,

where one considers states with an arbitrary (but even) number of particles (and an-

tiparticles) that have well-defined momentum, Gaussian states are far more complicated

in general, e.g., (1 + αar̄†q br̄†−q)|0〉 is a Gaussian state without a definite particle number.

However, we want to emphasize that our framework also applies to these more complicated,

coherent excitations. For instance, we can consider a set of coherent creation operators

A†i =

∫
d3p

(2π)2

∑
s

(
fi(p, s) a

s†
p + gi(p, s) b

s†
p

)
, (7.5)

with smearing functions fi and gi, such that {Ai, A†j} = δij . In this case, each excited state

|ψ̃〉 =
∏
i

A†i |0〉 , (7.6)

49Assuming that we are only exciting a finite number of momentum modes.
50Hence in terms of the UV cutoff, the dimension of this space is of the order (V Λ3)2.

– 57 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

will still be Gaussian (since as before, they are annihilated by the A†i themselves). As long as

the number of such excitations is even, |ψ̃〉 will live on the same connected component as the

Dirac vacuum (and appropriate choices of the reference state), such that the complexity can

be computed. In general, |ψ̃〉 will not be a tensor product over momentum modes implying

that it is not translationally invariant and it will have not just spatial, but also momentum

entanglement. Computing the complexity of such states will thus require more work in

the continuum than the energy eigenstates considered in this paper, because one needs to

find a generalized normal mode basis, such that both |ψ̃〉 and the reference state are tensor

products with respect to this basis. A simple solution for such examples in practice will

be to put the field theory onto a finite lattice and compute the circuit complexity from the

eigenvalues of ∆, which will be a large but finite matrix.

The techniques introduced in this paper are quite general. One could easily extend the

present discussion to Dirac fields in higher (or lower) spacetime dimensions. It may also

be interesting to study circuit complexity for states in a theory of chiral fermions. A more

challenging extension of the present work would be to evaluate the complexity of Gaussian

states with odd fermion number. As noted before, the corresponding geodesics could not

remain within the space of Gaussian states because they must reach the disconnected

component of Mf,N = O(2N)/U(N). Hence, it may be just as simple to consider the

complexity of more general states, i.e., non-Gaussian states. Another possibility would be

to analytically continue our formula for length of the minimal geodesics by just defining the

circuit complexity to be computed in the same way from the relative covariance matrix ∆.

This would be an analytical continuation where we allow paths in the complexification of

O(2N) which is a connected Lie group. However, it is not clear how such a path could be

related to a sequence of intermediate quantum states between reference and target state.

Another interesting direction would be connect the present model for the complexity

for fermionic states (as well as in [36, 37]) to previous discussions of simulating fermionic

systems on a universal quantum computer, e.g., [67–69]. In particular, ref. [69] bounded

the complexity of quantum algorithms computing scattering amplitudes in interacting

fermionic field theories. In particular, they studied the two-dimensional Gross-Neveu

model [70] describing N species of fermions with quartic interactions. The first step in

this process is to prepare the vacuum of the free theory (using adiabatic state prepara-

tion) and the upper bound on the number of gates required for this step is proportional

to V 3Λ6/m3. Of course, the complexity of preparing the vacuum of a free fermion is a

central question in the present paper but our result for a two-dimensional theory would

be of order V Λ, e.g., see explicit calculations for d = 2 in [37]. The latter is dramatically

smaller than the bound found by [69] and hence it would be interesting to investigate if

the present construction based on Nielsen’s geometric approach [40–42] can be adapted to

provide practical quantum algorithms.
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A Geodesics on Lie groups

We show under which conditions, the one-parameter subgroup esA is a geodesics on a

Lie group G. In particular, this allows us to prove that any such subgroup is geodesic if

we equip SO(2N) with the unpenalized right-invariant metric that we use in the body of

this paper. These results are standard material from Lie group geometry and the study

of symmetric spaces [50], but we will review them here for completeness and to match

our conventions.

A.1 Geodesics for right-invariant metric

We consider the setting of a general Lie group G with Lie algebra g and positive definite

metric 〈·, ·〉1 : g× g→ R. We can extend this metric to all tangent spaces of the Lie group

by requiring right-invariance, which means at the point M ∈ G (we think of M as a matrix

in the fundamental representation of the group), we have the inner product

〈X,Y 〉M = 〈XM−1, Y M−1〉1 , (A.1)

where X,Y ∈ TMG and XM−1, Y M−1 ∈ T1G = g. In this context, we can ask the question

for which A ∈ g is the trajectory esA a geodesic.

Given a Lie group G with right-invariant metric 〈·, ·〉M and a Lie algebra element A ∈ g,

the path

γ : R→ G : s 7→ esA (A.2)

in the one-parameter subgroup generated by A is a geodesic if and only if the generator

A is a critical point of the norm function ‖A‖ =
√
〈A,A〉1 under the adjoint action of the

group. This can be derived in the following three steps:
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1. Left-invariant vector fields are Killing vector fields.

A Lie group with right-invariant metric has automatically its left-invariant vector

fields as Killing vector fields. A left-invariant vector field X on G is completely

determined by its value X1 = B ∈ T1G = g at the identity, while at any other point

M ∈ G, the vector field will have the value XM = MB ∈ TMG. Left-invariant

vector fields are the infinitesimal generators of right translations in the group, so

that a group with right-invariant metric is invariant under those. As generators of a

diffeomorphism that leaves the metric invariant, left-invariant vector fields are Killing

vector fields.

2. Left-invariant vector fields give rise to conserved charges.

For every Lie algebra element B ∈ g, the left-invariant vector field XM = MB gives

rise to conserved quantities along any geodesic γ(s). Namely, we have the conserved

charge

QB(s) = 〈γ̇(s), Xγ(s)〉γ(s) = 〈γ̇(s), γ(s)B〉γ(s) (A.3)

with d
dsQB(s) = 0. Due to the fact that we have as many linearly independent Killing

vector fields XB as we have generators B ∈ g, the combination of conserved quantities

and initial point γ(0) characterize the geodesic uniquely. Put differently, if we know

γ(0) and γ̇(0), we can use the dim g linearly independent charges QBi to rewrite the

geodesics equation as a first order-equation with a unique solution. In particular, if

we find trajectory γ(s) that preserves all charges QB(s), we can be certain that we

found a geodesic.

3. Critical points on the adjoint orbits generate geodesics.

Based on our previous considerations, we can check what the conditions on A ∈ g

are, so that γ(s) = esA is a geodesic. We can compute for γ(s), the charges

QB(s) = 〈γ̇(s), Xγ(s)〉γ(s) = 〈esAA, esAB〉esA = 〈A, esABe−sA〉1 , (A.4)

where we used right-invariance of the metric to compute the inner product at the

identity. From this equation we can prove that 〈A, [A,B]〉1 = 0 for all B ∈ g is a

necessary and sufficient condition for all charges being conserved:

• Necessary. We just evaluate d
dsQB(s)|s=0 = 〈A, [A,B]〉1. All charges will be

conserved if this equation vanishes for all B ∈ g.

• Sufficient. Baker-Campbell-Hausdorff implies d
dsQB(s)=〈A,[A,

∑∞
n=0

sn

n! [A,B](n)]〉1
where [A,B](n) = [A, [A,B](n−1)] with [A,B](0) = B. Clearly, the charge is

conserved if 〈A, [A,C]〉1 = 0 holds for all C ∈ g.

The condition 〈A, [A,B]〉1 = 0 for all B ∈ g has an elegant geometric interpretation.

The adjoint action of B on A can be written as AdjesBA = esBA−AesB. How does

the norm of A change under the adjoint action? We need to compute

d

ds
‖AdjesBA‖2|s=0 =

d

ds
〈AdjesBA,AdjesBA〉1|s=0 = −〈A, [A,B]〉1 . (A.5)
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This reproduces above condition, but provides a geometrical interpretation of it. If we

start to move the Lie algebra element around under the adjoint action of an arbitrary

B, its norm should not change to linear order. This means the point A is a critical

point of the norm function on its adjoint orbit.

A.2 Geodesics for bi-invariant metric

A metric is bi-invariant, if we can compute the inner product 〈X,Y 〉M by either left- or

right-translation to the identity. This implies

〈X,Y 〉M = 〈M−1X,M−1Y 〉1 = 〈XM−1, Y M−1〉1 . (A.6)

Given a bi-invariant inner product 〈A,B〉1 at the identity, we can first right-translate it to

M and then left-translate it back, which must agree with the original product:

〈A,B〉1 = 〈MAM−1,MBM−1〉1 . (A.7)

From this, we see that the requirement of bi-invariance is equivalent to the condition that

the metric 〈·, ·〉1 is invariant under the adjoint action AdjMA = MAM−1 of any group

element M . If we have a Lie group G with a right-invariant metric that satisfies this

condition, the metric is bi-invariant. Moreover, invariance under the adjoint action of any

group element M includes M = esB and thus implies

d

ds
‖AdjesBA‖2|s=0 = −〈A, [A,B]〉1 = 0 (A.8)

for all B ∈ g. This means every path γ(s) = esA is a geodesic.

We recall that the natural metric that we chose on SO(2N) was given by

〈A,B〉1 = Tr(AGBᵀg) = AabG
bc(Bᵀ)c

dgda , (A.9)

where G and g refer to the metric governing the anticommutation relations {ξa, ξb} = Gab.

This metric is positive definite, but it is also invariant under the adjoint action, which we

can check by computing

〈MAM−1,MBM−1〉1 = Tr
(
MAM−1G(MBM−1)ᵀg

)
(A.10)

= Tr
(
AM−1G(M−1)ᵀ︸ ︷︷ ︸

=G

BᵀMᵀgM︸ ︷︷ ︸
=g

)
= 〈A,B〉1 , (A.11)

where we used cyclicity of the trace to move M from the front to the end. With this in

hand, we know that extending 〈·, ·〉1 to a right-invariant metric gives actually rise to a

bi-invariant metric. In particular, all geodesics departing from the identity are given by

one-parameter subgroups γ(s) = esA.

B Minimal geodesics in SO(2N)

We will give a general proof on which geodesics are the minimal ones connecting the

identity with an equivalent class of unitaries that prepare the same state. In particular,
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π

SO(2N)

SO(2N)/U(N)

U(N)

Asym(N)

esA

CσeAU(N)

γ
1

eAu

eA

πγ
|GR〉 |GT 〉

asym(N) =⊥u(N)

A

u(N)

so(2N)

(a) Lie algebra (b) Lie group

1

Figure 10. This sketch illustrates the geometry of the Lie algebra so(2N) and the Lie group

SO(2N). (a) The Lie algebra can be decomposed as so(2N) = u(N)⊕asym(N), such that asym(N)

is the orthogonal complement ⊥u(N) of u(N). In particular, we can choose a vector A ∈ asym(N)

to find the path esA that connects 1 with eA ∈ Asym(N) ⊂ SO(2N). (b) The Lie group can be

represented as fiber bundle over its quotient given by the symmetric space SO(2N)/U(N). This base

manifold can be interpreted as the space of Gaussian quantum states. The fiber over the reference

state |GR〉 is given by the subgroup U(N) ⊂ SO(2N), while the fiber eAU(N) over any target state

|GT 〉 is not a subgroup. We consider a path γ in the group that connects 1 to some other group

element M = eAu. Such a point lies on the cylinder Cσ for σ = ‖A‖. Every curve γ in the group

can be projected down to a curve πγ in the manifold of Gaussian states. The vertical submanifold

Asym(N) = exp
(
asym(N)

)
is generated by exponentiating asym(N) and it plays an important role

because it contains the minimal geodesics. Note that the Asym(N) has a complicated topology and

intersects the fibers several times, but we only sketched a single layer corresponding to the region of

Asym(N) near the identity. In particular, the straight line esA connecting 1 with eA will turn out

to be the minimal geodesic between 1 and the fiber eAU(N). Note that we do not show the vector

field R consisting of radially outwards pointing unit vectors on the cylindric surfaces Cσ, such that

the curves esAu are its integral curves.

we show that any such geodesic is nothing else than a collection of fermionic two-mode

squeezing operations in fermionic normal modes. These results are the fermionic analogues

to the derivation for bosons presented in the appendix of [39]. The geometry discussed

in the following for the Lie algebra so(2N) and for the Lie group SO(2N) is illustrated

in figure 10.
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B.1 Lie group geometry

In the Nielsen approach to complexity, we equip the Lie group SO(2N) with right-invariant

and positive metric. Such a metric is completely characterized by its value at the identity

where we identity the tangent space T1SO(2N) with its Lie algebra so(2N). We represent

a generator A ∈ so(2N) as matrices, namely linear maps Aab.

A natural choice for the invariant metric on so(2N) is given by

〈A,B〉1 = AabG
bc(Bᵀ)c

d(g)da = Tr (AGBᵀg) = −Tr(AB) , (B.1)

where we used GBᵀg = −B to find the r.h.s. , which makes explicit that our natural inner

product is just minus the Killing form on SO(2N). In particular, extending this metric to

a right-invariant metric over the whole group will give rise to a bi-invariant metric. Given

two tangent vectors X,Y ∈ TMSp(2N,R) represented as matrices at point M ∈ SO(2N),

we can compute their inner product by multiplying with M−1 from the right, leading to

〈X,Y 〉M = 〈XM−1, Y M−1〉1 = −Tr(XM−1YM−1) . (B.2)

B.2 Fiber bundle structure

The choice of the reference state |ΩR〉 equips the Lie group SO(2N) with a fiber bundle

structure. There exist group elements M that leave the reference state invariant, such

that ΩR = MΩRM
ᵀ. Such group elements are both orthogonal (with respect to G) and

symplectic (with respect to ΩR), so that they form the subgroup

U(N) = SO(2N) ∩ Sp(2N,R) . (B.3)

The different choices of subgroups are in one-to-one correspondence to the different choices

of metrics GR.

We define the equivalence relation M ∼ M̃ if and only if MΩRM
ᵀ = M̃ΩRM̃

ᵀ. This

means acting with M and M̃ on ΩR will give the same target state. In particular, the

subgroup U(N) is equal to the equivalence class [1] of the identity. Moreover, for every

pair M ∼ M̃ , there exists a u ∈ U(N), such that Mu = M̃ . Therefore, SO(2N) becomes a

fiber bundle where the fibers correspond to the different equivalence classes diffeomorphic

to U(N) and the base manifold is given by the quotient

M = SO(2N)/∼= SO(2N)/U(N) . (B.4)

For general N , this space has some non-trivial topology and is generally referred to as

symmetric space of type DIII. We will refer to it as M, the space of pure Gaussian states,

and identify a point [M ] ∈ M with the Gaussian state |MΩRM
ᵀ〉 up to an overall com-

plex phase.

B.3 Cartan decomposition

Identifying the Lie algebra so(2N) with the tangent space at the identity, we have a natural

“vertical” subalgebra u(N) ⊂ so(2N) that is tangential to the fiber [1] = U(N). A priori,
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there is no natural “horizontal” complement to write the Lie algebra as a direct sum of

a vertical and a horizontal part. However, by equipping the Lie algebra with the inner

product 〈·, ·〉1, we can choose the orthogonal complement

asym(N) :=
{
A ∈ so(2N)

∣∣〈A,B〉1 = 0 ∀B ∈ u(N)
}

(B.5)

In contrast to u(N), asym(N) is not a subalgebra. Its name stems from the fact that the

decomposition

so(2N) = asym(N)⊕ u(N) (B.6)

is equivalent to splitting the set of generators into symmetric and antisymmetric matrices

with respect to the symplectic form ΩR of the reference state:

• Vertical subspace u(N).

A generator B in the subspace u(N) must generate transformations that preserve the

reference state |ΩR〉. It must therefore be both orthogonal (e.g., BG = GBᵀ) and

symplectic with respect ΩR

BΩR = Ωᵀ
RB

ᵀ , (B.7)

which is equivalent to BΩR being a symmetric matrix in a basis where ΩR takes the

standard form from eq. (3.2).

• Horizontal subspace asym(N) =⊥u(N).

A generator A that is orthogonal to all elements B ∈ u(N) satisfies

0 = 〈A,B〉1 = Tr(AGBᵀg) . (B.8)

Using GBᵀg = −A, we can rewrite this expression as −Tr(AB). We will go a step

further by inserting 1 = ΩRωR, leading to

0 = 〈A,B〉1 = −Tr(AΩRωRB) = −(AΩR)ab(ωRB)ba . (B.9)

In this expression, (ωRB)ba is symmetric as a consequence of BΩR = Ωᵀ
RB

ᵀ. The fact

that the inner product vanishes is therefore equivalent to (AΩR) being antisymmetric

with respect ΩR, namely

AΩR = −Ωᵀ
RA

ᵀ . (B.10)

We can refer to asym(N) as orthogonal complement ⊥u(N) of u(N).

Exponentiating asym(N) defines the N(N − 1)-dimensional submanifold

Asym(N) = exp (asym(N)) =
{
eA
∣∣A ∈ asym(N)

}
(B.11)

consisting of all special-orthogonal group elements that are antisymmetric with respect

to ΩR.
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The Cartan decomposition of a orthogonal group element M is given by

M = Tu with T =
√
MΩRMᵀωR ∈ Asym(N) and u = T−1M ∈ U(N) . (B.12)

It is unique and provides locally (around the identity) a diffeomorphism between the special

orthogonal group and the Cartesian product Asym(N)× U(N). In particular, it provides

a local trivialization of the fiber bundle SO(2N) where the base manifold is identified with

the surface Asym(N) from which we can move up and down along the fiber by multiplying

with group elements u ∈ U(N). Due to the fact that Asym(N) is locally diffeomorphic to

asym(N), we can use the pair (A, u) as generalized coordinates for group elements M(A, u)

in a neighborhood around the identity:

M(A, u) = eAu with A ∈ asym(N) and u ∈ U(N) . (B.13)

B.4 Cylindrical foliation

We can foliate the symplectic group by generalized cylinders defined as

Cσ =
{
eAu

∣∣A ∈ asym(N), ‖A‖ = σ, u ∈ U(N)
}

(B.14)

with the topology SN(N−1)−1 × U(N). Moreover, we will define the radial vector field R

at point M(A, u) ∈ SO(2N) given by

RM(A,u) =
eAAu

‖A‖
. (B.15)

We will prove that this vector fields points radially outwards and is everywhere orthogonal

to the cylindrical surfaces Cσ. Therefore, we need to show that R is indeed orthogonal

to the surfaces Cσ. We will prove this individually for different directions. Note that the

normalization 1/‖A‖ is irrelevant here.

• Orthogonality to the U(N) fiber.

We show that R is orthogonal to any vector pointing along the U(N) fiber. Let

X ∈ u(N), so that eAuX points in the direction of the U(N) fiber at point M(A, u).

We can compute the inner product

〈RM(A,u), e
AuX〉 =

1

‖A‖
〈eAAu, eAuX〉eAu (B.16)

We define Y = uXu−1 which lies in u(N) because u(N) is a subgroup. This implies

uX = Y u. We can therefore compute

〈eAuX, eAAu〉eAu = 〈eAY u, eAAu〉eAu = 〈eAY, eAA〉eA = 〈eAY e−A, A〉1 . (B.17)

At this point, we can use the explicit form of the metric at the identity given by

〈eAY e−A, A〉1 = Tr
(
eAY e−AGAᵀg

)
= −Tr

(
eAY e−AA

)
= Tr (Y A) = 0 , (B.18)

where we used GAᵀg = −A for all A ∈ so(2N). The vanishing trace
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• Orthogonality to a generator A ∈ asym(N) preserving Cσ.

This second computation is slightly more involved. Let us look at a point M = eAu

and ask what are the directions in TMSO(2N) that are tangential to the surface Cσ,

but also to the surface exp
(
asym(N)

)
u. We can describe such elements by choosing

a second generator B ∈ asym(N) that is orthogonal to A with ‖A‖ = ‖B‖. The circle

γ(t) = e(cos (t)A+sin(t)B)u (B.19)

lies in Asym(N) and on Cσ with σ = ‖A‖ = ‖B‖. This gives rise to the tangent vector

γ̇(0) =
d

dt
e(A+tB)|t=0 . (B.20)

We can compute the inner product with RM(A,u) using 〈A,B〉1 = −Tr(AB):

〈RM(A,u), γ̇(0)〉eAu =
1

‖A‖
〈A, γ̇(0)u−1e−A〉1 = − d

dt
Tr(Ae(A+tB)e−A) . (B.21)

At this point, we can write out the full exponential as

∞∑
n,m=0

d

dt

Tr[A (A+ tB)n(−A)m]t=0

n!m!
= Tr

AB ∞∑
n=1,m=0

(A)n−1(−A)m

(n− 1)!m!

 (B.22)

= Tr(AB) = 0 , (B.23)

where we used the fact that trace is cyclic and that B was chosen orthogonal to A.

Note that the sum just gives the identity.

This proves that we have indeed a vector field R that is everywhere orthogonal to the

cylindrical surfaces Cσ. Furthermore, we can quickly confirm that this vector field has

indeed constant length equal to 1, by computing

〈RM(A,u), RM(A,u)〉M(A,u) =
〈eAAu, eAAu〉eAu

‖A‖2
=
〈A,A〉1
‖A‖2

= 1 . (B.24)

Given a trajectory γ : [0, 1] → SO(2N) : t 7→ γ(t), we can compute how the coordinate

σ(γ) changes. Due to the fact that the vector field R is orthogonal to the surface Cσ of

constant σ and correctly normalized, we have

dσ = 〈Rγ(t), γ̇(t)〉γ(t) . (B.25)

B.5 Inequality for the geodesic length

We will now use the cylindrical structure to bound the geodesic length from below. Given

an arbitrary point M(A, u) = eAu on the cylinder Cσ, let us assume that we have already

found the shortest path connecting the identity 1 with M(A, u). This path may be given

by γ(s) with γ(0) = 1 and γ(1) = M(A, u). We can compute the change dσ as the

inner product

dσ(s) = ds 〈γ̇(s), Rγ(s)〉γ(s) . (B.26)
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Clearly, if we integrate this inner product we find how far we move in the σ-direction. This

follows directly from the fact that moving in the direction of R increases σ with a constant

rate, while moving along any orthogonal direction does not change σ. Therefore, we have

σ =

∫ 1

0
dσ(s) =

∫ 1

0
ds 〈γ̇(s), Rγ(s)〉γ(s) . (B.27)

We can compare this with the actual length of the geodesic given by

‖γ‖ :=

∫ 1

0
ds ‖γ̇(s)‖ . (B.28)

At this point, we should note that 〈γ̇(s), Rγ(s)〉γ(s) ≤ ‖γ̇(s)‖ for all s. This follows from

the fact that we are projecting onto the unit vector R, so this projection is at most the

length of γ̇(s). We can combine these two equations to find the important inequality

σ ≤ ‖γ‖ , (B.29)

stating compactly that any path connecting 1 with M ∈ Cσ must have a length of σ

or more.

At this point, we have not proven that for every M ∈ Cσ ⊂ SO(2N) there exists a path

with length σ connecting 1 with M and there certainly are points M where we cannot find

such a shortest path. However, we are interested in the minimal geodesic that connects

the identity 1 with an arbitrary point in the fiber [M ]. This means if we find a single path

that does this with length σ, we have proven that this is indeed the optimal path and there

is no shorter one.

B.6 Shortest path to a fiber eAU(N)

We will now show explicitly that for every fiber eAU(N) with σ = ‖A‖, there exists a path

of length σ that connects the identity with the point eA on this fiber. This path is given by

γ(s) = esA (B.30)

and reaches the representative eA at s = 1. This path has length ‖γ‖ = ‖A‖ = σ. At this

point, we have proven that for our chosen inner product 〈A,B〉1 = −Tr(AB), the shortest

path is indeed always given by esA with A ∈ asym(N).

We can now ask how A is related to the target state |ΩT〉. We must have

ΩT = eAΩRe
Aᵀ
. (B.31)

Now requiring that A ∈ asym(N) implies that MΩR = eAΩR is antisymmetric. In an

invariant language, we have equivalently

ωRM = MᵀωR . (B.32)

With this in hand, we can claim that the linear map M =
√

ΩTωR will do the job. Impor-

tantly, M satisfies MΩR = ΩRM
ᵀ. We can check explicitly√

ΩTgRΩR

√
ΩTωR

ᵀ
=
√

ΩTωR

√
ΩTωRΩR = ΩTωRΩR = ΩT . (B.33)
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The algebra element that generates M is given by A = logM = (log ΩTωR)/2. We have

σ = ‖A‖ = ‖log ΩTωR‖/2. Let us note at this point that all expressions, such as log ΩTωR

and
√

ΩTωR are well defined, because ΩTωR is an orthogonal matrix. This fact implies that

ΩTωR is (a) diagonalizable and (b) has conjugate complex eigenvalues ±eiϕ.51 The linear

map ΩTωR encodes the invariant information about the relation between the reference state

|ΩR〉 and the target state |ΩT〉, which we can refer to as

∆a
b = (ΩT)ac(ωR)cb . (B.34)

The eigenvalues of ∆ come in conjugate pairs (eiri , e−iri). We can compute the geodesic

distance, which is equal to the norm ‖A‖, directly from ∆:

‖A‖ =

√
Tr(i log ∆)2

2
. (B.35)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

44 [arXiv:1403.5695] [INSPIRE].

[2] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823

[INSPIRE].

[3] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690]

[INSPIRE].

[4] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90

(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[5] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[6] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[7] M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614]

[INSPIRE].

[8] R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black

holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].

[9] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null

boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

51Note that the definition of square root involves a small subtlety: if we describe the conjugate eigen-

values (eiri , e−iri) using ri ∈ [0, π], the square root
√

ΩTωR has the same eigenvectors, but eigenvalues

(eiri/2, e−iri/2) which defines
√

ΩTωR uniquely for ri 6= π. For ri = π, the square root
√

ΩTωR has eigenval-

ues (eiri/2, e−iri/2), but the assignment to the eigenvectors could be interchanged. However, either choice

will lead to a valid definition for the square root
√

ΩTωR for the purpose here.

– 68 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/prop.201500093
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5695
https://arxiv.org/abs/1408.2823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2823
https://doi.org/10.1002/prop.201500095
https://arxiv.org/abs/1411.0690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0690
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2678
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04993
https://doi.org/10.1103/PhysRevD.92.126009
https://arxiv.org/abs/1509.06614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06614
https://doi.org/10.1007/JHEP09(2016)161
https://arxiv.org/abs/1606.08307
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08307
https://doi.org/10.1103/PhysRevD.94.084046
https://arxiv.org/abs/1609.00207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00207


J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

[10] R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev.

D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].

[11] S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP

01 (2017) 062 [arXiv:1610.08063] [INSPIRE].

[12] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017)

118 [arXiv:1612.00433] [INSPIRE].

[13] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time

Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

[14] A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34

(2017) 105004 [arXiv:1612.05439] [INSPIRE].

[15] Y. Zhao, Complexity, boost symmetry and firewalls, arXiv:1702.03957 [INSPIRE].

[16] A. Reynolds and S.F. Ross, Complexity in de Sitter Space, Class. Quant. Grav. 34 (2017)

175013 [arXiv:1706.03788] [INSPIRE].

[17] J. Couch, S. Eccles, W. Fischler and M.-L. Xiao, Holographic complexity and

noncommutative gauge theory, JHEP 03 (2018) 108 [arXiv:1710.07833] [INSPIRE].

[18] B. Swingle and Y. Wang, Holographic Complexity of Einstein-Maxwell-Dilaton Gravity,

arXiv:1712.09826 [INSPIRE].

[19] Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal,

JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].

[20] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[21] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[22] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,

JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[23] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories,

Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].

[24] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar

Quantum Field Theories, arXiv:1112.4833 [INSPIRE].

[25] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field

Theories, arXiv:1404.7115 [INSPIRE].

[26] S.P. Jordan, H. Krovi, K.S.M. Lee and J. Preskill, BQP-completeness of Scattering in Scalar

Quantum Field Theory, arXiv:1703.00454 [INSPIRE].

[27] T.J. Osborne, Hamiltonian complexity, Rept. Prog. Phys. 75 (2012) 022001.

[28] S. Gharibian et al., Quantum hamiltonian complexity, Found. Trends Theor. Comput. Sci. 10

(2015) 159 [arXiv:1401.3916].

[29] R. Orus, A Practical Introduction to Tensor Networks: Matrix Product States and Projected

Entangled Pair States, Annals Phys. 349 (2014) 117 [arXiv:1306.2164] [INSPIRE].

[30] G. Vidal, Entanglement Renormalization: an introduction, in Understanding Quantum Phase

Transitions, L.D. Carr ed., CRC Press (2010) [arXiv:0912.1651].

– 69 –

https://doi.org/10.1103/PhysRevD.95.086017
https://doi.org/10.1103/PhysRevD.95.086017
https://arxiv.org/abs/1610.05090
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05090
https://doi.org/10.1007/JHEP01(2017)062
https://doi.org/10.1007/JHEP01(2017)062
https://arxiv.org/abs/1610.08063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08063
https://doi.org/10.1007/JHEP03(2017)118
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00433
https://doi.org/10.1007/JHEP11(2017)188
https://arxiv.org/abs/1709.10184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.10184
https://doi.org/10.1088/1361-6382/aa6925
https://doi.org/10.1088/1361-6382/aa6925
https://arxiv.org/abs/1612.05439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05439
https://arxiv.org/abs/1702.03957
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.03957
https://doi.org/10.1088/1361-6382/aa8122
https://doi.org/10.1088/1361-6382/aa8122
https://arxiv.org/abs/1706.03788
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03788
https://doi.org/10.1007/JHEP03(2018)108
https://arxiv.org/abs/1710.07833
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07833
https://arxiv.org/abs/1712.09826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09826
https://doi.org/10.1007/JHEP02(2018)072
https://arxiv.org/abs/1801.01137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01137
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07506
https://doi.org/10.1126/science.1217069
https://arxiv.org/abs/1111.3633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3633
https://arxiv.org/abs/1112.4833
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4833
https://arxiv.org/abs/1404.7115
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7115
https://arxiv.org/abs/1703.00454
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00454
http://dx.doi.org/10.1088/0034-4885/75/2/022001
http://dx.doi.org/10.1561/0400000066
http://dx.doi.org/10.1561/0400000066
https://arxiv.org/abs/1401.3916
https://doi.org/10.1016/j.aop.2014.06.013
https://arxiv.org/abs/1306.2164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2164
https://arxiv.org/abs/0912.1651


J
H
E
P
0
7
(
2
0
1
8
)
1
3
9

[31] K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge

theories, Phys. Rev. D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].

[32] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017)

107 [arXiv:1707.08570] [INSPIRE].

[33] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of

Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602

[arXiv:1707.08582] [INSPIRE].

[34] R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield

double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].

[35] R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field

theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082

[arXiv:1710.00600] [INSPIRE].

[36] A.P. Reynolds and S.F. Ross, Complexity of the AdS Soliton, Class. Quant. Grav. 35 (2018)

095006 [arXiv:1712.03732] [INSPIRE].

[37] R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory,

arXiv:1801.07620 [INSPIRE].

[38] R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Axiomatic complexity in

quantum field theory and its applications, arXiv:1803.01797 [INSPIRE].

[39] S. Chapman et al., Circuit Complexity for Thermofield Double States, to appear (2018).

[40] M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.

[41] M.A. Nielsen, M.R. Dowling, M. Gu and A.M. Doherty, Quantum Computation as

Geometry, Science 311 (2006) 1133 [quant-ph/0603161].

[42] M.A. Nielsen and M.R. Dowling, The geometry of quantum computation, quant-ph/0701004.

[43] A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys.

Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].

[44] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018)

086015 [arXiv:1701.01107] [INSPIRE].
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