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Abstract: We study the dynamics of 2+1 dimensional theories with N = 1 supersym-

metry. In these theories the supersymmetric ground states behave discontinuously at co-

dimension one walls in the space of couplings, with new vacua coming in from infinity in

field space. We show that the dynamics near these walls is calculable: the two-loop effective

potential yields exact results about the ground states near the walls. Far away from the

walls the ground states can be inferred by decoupling arguments. In this way, we are able

to follow the ground states of N = 1 theories in 2+1 dimensions and construct the infrared

phases of these theories. We study two examples in detail: Adjoint SQCD and SQCD with

one fundamental quark. In Adjoint QCD we show that for sufficiently small Chern-Simons

level the theory has a non-perturbative metastable supersymmetry-breaking ground state.

We also briefly discuss the critical points of this theory. For SQCD with one quark we

establish an infrared duality between a U(N) gauge theory and an SU(N) gauge theory.

The duality crucially involves the vacua that appear from infinity near the walls.
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1 Introduction and summary

There has been substantial progress recently on the dynamics of 2+1 dimensional gauge

theories. Many interesting phenomena such as confining phases, symmetry breaking phases,

phases with topological order and dualities were uncovered. These results are supported

by many nontrivial consistency checks, such as the matching of various discrete anomalies

(including anomalies of space-time symmetries), consistency with renormalization group

flows, various other non-perturbative constraints (such as the Vafa-Witten theorem, the

study of counterterms, etc.) and the rigorous study of weakly coupled limits such as the

large N limit, etc. For recent work on the phases of 2+1 dimensional gauge theories

see [1–30] and references therein.
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Figure 1. New vacua can emerge from infinity in field space at a wall in parameter space where the

asymptotics of the superpotential changes (one such vacuum appears on the other side of the wall

in the figure). The new vacua can be reliably exhibited by a perturbative two-loop computation.

This combined with our proposed infrared dynamics of the vacua results in a description of the

phase diagram of N = 1 theories as a function of superpotential couplings.

Our main goal in this paper is to revisit some questions about the dynamics of su-

persymmetric gauge theories in 2+1 dimensions. We will investigate theories with N = 1

supersymmetry, that is theories with two real supercharges. Theories with N = 1 super-

symmetry in 2+1 dimensions have received relatively little attention over the years. This

is mostly because N = 1 theories do not enjoy the powerful constraints on the dynamics

implied by holomorphy. In addition, localization techniques essentially do not apply and

indeed relatively little has hitherto been known about these theories, cf. [24, 31]. In this

paper we introduce some new tools to study N = 1 supersymmetric theories.

Since the superpotential parameters reside in real superfields, the superpotential is

not protected against quantum corrections. Furthermore the number of supersymmetric

ground states can jump across walls in the space of couplings where the behaviour of the

potential at infinity in field space changes.1 This can happen at co-dimension one surfaces

in parameter space, which we refer to as walls. On one of the sides of the wall there can be

supersymmetric ground states that “appear from infinity” in field space (see figure 1). The

main point is that since these vacua appear from infinity, and since the underlying model is

typically super-renormalizable, these vacua can be reliably studied by computing radiative

corrections to the effective potential on the wall in parameter space. We show that a

two-loop computation is necessary to establish the existence of these vacua (and sufficient

for our purposes). We will see that this quantum-mechanically generated superpotential,

together with our proposed infrared dynamics of each new vacuum, precisely reproduces

the Witten index [33] of the theory farther away from the wall (where the index must

remain constant, as the asymptotics of the potential does not change away from the wall).

Together with an analysis of the physics far from these walls, one can therefore determine

the phases of N = 1 theories as a function of the superpotential parameters. In particular,

one can identify the phase transitions that take place.

1This is in contrast to N = 2 theories, where the number of supersymmetric ground states cannot jump

as a function of real masses, cf. [32].
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We will carry out this analysis explicitly in two cases which demonstrate rather different

mechanisms and principles. The methods we introduce are general and can be applied to

a wide variety of N = 1 models.

We turn now to a brief summary of the theories we analyze and outline our results

(the derivations and details are presented in the bulk of the paper). The gauge theories

we study have a Yang-Mills term and a Chern-Simons term. We label a theory by the

gauge group, the matter content and by the Chern-Simons level2 k, which henceforth we

take to be non-negative since the theory with k < 0 can be obtained by acting with time-

reversal on the theory with k > 0. The theory with k = 0 and with massless fermions is

time-reversal invariant and typically needs a separate treatment.

N = 1 SU(N)k vector multiplet. The gauge multiplet consists of an SU(N) gauge

field A, and a Majorana fermion λ. All the terms in the Lagrangian are the standard

minimal couplings with a Chern-Simons term. N = 1 supersymmetry requires that the

adjoint fermion mass is −kg2

2π , i.e. proportional to the Chern-Simons level k. The N = 1

Lagrangian is3

L = − 1

4g2
TrF 2 + iTrλ /Dλ+

k

4π
Tr

(

AdA− 2i

3
A3

)

− kg2

2π
Trλλ . (1.3)

This model has been studied in detail in [24, 31] and we review here those results as we

build on them in this paper. This model has no adjustable continuous N = 1 preserving

parameters and hence there is no wall for the Witten index to jump. For k ≫ 1, the gauge

fields and λ are both classically much heavier than the scale of interactions kg2 ≫ g2 and

hence we can simply integrate them out. What remains after we integrate them out is a

pure Chern-Simons theory. In particular, supersymmetry is unbroken. Upon integrating

out the heavy particles and by virtue of (1.2) the theory flows4 to the SU(N)k−N/2 Chern-

Simons TQFT at long distances. This analysis is reliable for k ≫ 1. It turns out that

SU(N)k−N/2 is the correct description at long distances for k ≥ N/2. In other words, for

2The level k, upon which time-reversal acts by k → −k, is given in terms of the Chern-Simons level kbare
appearing in the classical Lagrangian by

k = kbare −
1

2

∑

f

T (Rf ) , (1.1)

where the sum is over the charged Majorana fermions in the theory and T (R) is the index of the real

representation R. The shift can be thought of as the contribution from the (massless) fermion determinant.

Integrating out a massive Majorana fermion of mass m in a real representation R shifts the level k by [34–36]

k → k +
1

2
sign(m)T (R) . (1.2)

This makes manifest the action of time-reversal, which flips the sign of the mass of a fermion. For a fermion

in a complex or pseudoreal representation R the shift in (1.1)(1.2) should be multiplied by a factor of 2.

We note that while the level k ∈ Z/2, the ultraviolet and infrared levels kbare and k + 1
2
sign(m)T (R) are

always integrally quantized.
3In this paper we follow standard practice and write k in the Lagrangian, keeping in mind that it is

integer for N even and half-integer for N odd.
4We recall that T (adjoint) = N and T (fundamental) = 1/2 for SU(N).
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k ≥ N/2 supersymmetry is unbroken and the low-energy theory is the SU(N)k−N/2 TQFT.

The Witten index [31] for k ≥ N/2 agrees (possibly up to a sign) with the partition function

of the SU(N)k−N/2 TQFT on the torus.

For 0 ≤ k < N
2 the index vanishes, supersymmetry is spontaneously broken [31] and

the infrared of the theory consists of [24] a Majorana Goldstino particle Gα accompanied

by a Chern-Simons TQFT5 (the two sectors do not interact)

Gα + U

(

N

2
− k

)

N
2
+k,N

. (1.4)

The Goldstino operator G is the low energy limit of Tr(Fλ), which is defined in the mi-

croscopic theory (1.3). This is simply because Tr(Fλ) is the conserved supercurrent. It

is much harder to understand the origin of the U
(

N
2 − k

)

N
2
+k,N

Chern-Simons theory in

terms of the microscopic degrees of freedom.6 Nevertheless, this TQFT has many desir-

able properties and it passes several nontrivial checks (such as having the correct one-form

symmetry and anomaly, time-reversal anomaly for k = 0 etc.).

N = 1 SU(N)k+adjoint multiplet. The gauge multiplet consists of an SU(N) gauge

field A, and a Majorana fermion, λ. We briefly reviewed its dynamics above. The additional

adjoint multiplet includes a Majorana fermion and a real scalar (X,ψX), both in the adjoint

representation.

This theory has an interesting family of N = 1 supersymmetry-preserving deforma-

tions, namely, a general (real) superpotential

W =
∑

l

αl Tr(X
l) . (1.5)

For one particular choice α2 = −kg2

2π (and αl>2 = 0) the theory has enhanced N = 2

supersymmetry, corresponding to a pure N = 2 vector multiplet. We will study the

dynamics of the softly mass deformed N = 2 theory, namely, we only activate α2 and

denote α2 ≡ m. Therefore, we only include the superpotential mass term

W = mTr(X2) . (1.6)

We study the dynamics of the theory as a function of k, N , and m (in this notation, for

m = −kg2

2π the theory enjoys N = 2 supersymmetry).

We find surprisingly rich dynamics both for large k and for small k. For sufficiently

large |m| we can always integrate out the adjoint multiplet and the theory flows to a pure

N = 1 vector multiplet with gauge group SU(N) and level k±N/2 depending on whether

m is large and positive or large and negative, respectively (cf. (1.2)). Then, according to

what we found above, the discussion splits depending whether k ≥ N , 0 < k < N or k = 0.

5We use the standard notation

U(M)P,Q =
SU(M)P ×U(1)MQ

ZM
.

Consistency requires that Q = P mod M .
6In [24] a duality was put forward that sheds some light on the origin of this TQFT.
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Let us now summarize the different phenomena we encounter in these various cases.

A key element in our analysis is that the Witten index of N = 1 theories can jump as a

function of m unlike in theories with more supersymmetry, where holomorphy forbids the

index from jumping, cf. [32]. We find a new mechanism that allows the index to jump.

This leads to new supersymmetric vacua (and in particular, one that supports an Abelian

TQFT in the infrared) and also it leads to a mechanism for metastable supersymmetry

breaking. Let us now summarize our findings in a little bit more detail:

1. k ≥ N . Supersymmetry is unbroken for large |m| and the theory flows to the TQFTs

SU(N)k and SU(N)k−N for large positive m and large negative m, respectively. The

Witten index therefore jumps as m is varied.7 The N = 2 supersymmetric point is

at m = − g2k
2π and it flows to a supersymmetric vacuum with the SU(N)k−N TQFT, a

result that follows8 for large k from (1.2) and holds all the way down to k = N . (This

is consistent with the index [37] and the exact computation of the S3 and S2 × S1

partition function of N = 2 theories.) The transition between the two asymptotic

large mass phases happens in two steps. The wall where the index jumps is at m = 0.

At m = 0 (where there is a classical non-compact space of supersymmetric vacua) a

radiatively induced asymptotically flat (non-supersymmetric) direction with non-zero

energy density opens up.9 For infinitesimal positive m, the effective superpotential

deformed by the mass term (1.6) supports 2N−1−1 new supersymmetric vacua which

come in from infinity in field space and are described by new infrared Chern-Simons

TQFTs. The jump in the Witten index between the two asymptotic phases is now

fully accounted for by these new vacua. For infinitesimal negative m there is only one

vacuum near the origin, supporting the SU(N)k−N TQFT. As m is increased these

new vacua approach the original supersymmetric vacuum with the SU(N)k−N TQFT.

Then these vacua merge in a series of second order phase transitions. When these

transitions are completed, we get the SU(N)k TQFT in a supersymmetric vacuum

describing the asymptotic positive mass phase. See figure 2.

2. 0 < k < N . At large positive m supersymmetry is unbroken and the theory has

a vacuum supporting the SU(N)k TQFT. On the other hand, at large negative m

supersymmetry is spontaneously broken and the supersymmetry-breaking vacuum

has a Majorana Goldstino Gα accompanied by the U(N − k)k,N TQFT (cf. (1.4)).

The N = 2 theory at m = −g2k
2π is likewise in this phase, i.e. it breaks N = 2

supersymmetry and the Majorana Goldstino fermion is joined by another Majorana

fermion so that the low energy theory is a Dirac Goldstino particle with a decoupled

U(N − k)k,N TQFT. (This is consistent with the vanishing of the Witten index [37]

7The Witten index coincides (up to a sign) with the torus partition functions of the TQFTs.
8The two Majorana fermions in the N = 2 massive vector multiplet have spin 1/2 and since in 2+1d

the sign of the spin of a fermion is determined by the sign of its mass, the fermions in the N = 2 vector

multiplet shift the Chern-Simons level additively, cf. (1.2).
9The point m = 0 does not have new symmetries. But it is still a special point — it is where the

superpotential is asymptotically linear rather than quadratic.
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N = 1 theories with fundamental matter. The study of theories with fundamental

matter will be carried out systematically elsewhere. Here we study just two examples

with a single matter multiplet, demonstrating how the tools we have introduced allow to

determine the phases of these theories and infer N = 1 dualities. We will see that the

dynamics near the walls is necessary to understand these N = 1 dualities.

Our first example is an N = 1 SU(N) gauge theory coupled to a matter multiplet in

the fundamental representation. The matter multiplet consists of a complex scalar and a

Dirac fermion (Ψ, ψΨ) in the fundamental representation of SU(N).

The theory has an N = 1 supersymmetry-preserving mass deformation by the super-

potential

W = m|Ψ|2 . (1.7)

We solve for the infrared dynamics of this model as a function of k and m.

For large |m| the matter multiplet can be integrated out and we are left with a pure

N = 1 vector multiplet with SU(N) gauge group and level k± 1/2, depending on whether

the mass is large and positive or large and negative. At m = 0 the theory has a classical

moduli space of vacua that is lifted by a radiatively induced two-loop superpotential. For

infinitesimal small positivem the theory has a new supersymmetric vacuum state coming in

from infinity in field space. This vacuum supports at low energies a pure N = 1 SU(N−1)k
vector multiplet. For infinitesimal negative m there is only the vacuum near the origin,

continuously connected to the vacuum that we see at large negative mass. Therefore, the

phase diagram depends on whether k ≥ N+1
2 , k = N−1

2 or k < N−1
2 .

1. k ≥ N+1
2 . There is a supersymmetric vacuum at large negative and large positive

mass described by the TQFTs SU(N)k−N+1
2

and SU(N)k−N−1
2

respectively. Atm = 0

the theory has a classical moduli space of vacua that is lifted by a radiatively induced

two-loop superpotential. The supersymmetric vacuum state coming in from infinity

for infinitesimal small positive m flows in the infrared to a supersymmetric vacuum

with the SU(N − 1)k−N−1
2

TQFT. As the mass is increased this TQFT merges with

the SU(N)k−N+1
2

TQFT at a second order transition, at the other side of which is

the asymptotic positive mass SU(N)k−N−1
2

TQFT. The new supersymmetric vacuum

near m = 0 accounts for the jump in the Witten index between the asymptotic large

mass phases.

2. k = N−1
2 . At large positive mass there is a trivial (i.e no TQFT) supersymmetric

vacuum. At large negative mass supersymmetry is spontaneously broken and the

supersymmetry breaking vacuum has a Majorana Goldstino accompanied by the

U(1)N TQFT (cf. (1.4)). The vacuum state that appears from infinity for infinitesimal

small positive m is a trivial (i.e no TQFT) supersymmetric vacuum. As the mass

is increased the vacuum that has appeared from infinity may be identified with the

vacuum that we have found at very large positive mass. No transition is therefore

necessary in this model. The new supersymmetric vacuum near m = 0 accounts for

the jump in the Witten index between the asymptotic large mass phases.

– 8 –
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the fixed point, which can be studied analytically in the ’t Hooft limit. Our main new

results concern with finding the supersymmetric vacua in the full theory (not necessarily

in the ’t Hooft limit or near the fixed point). It is a nontrivial consistency check that in

the regime where the techniques can be both applied, they lead to the same results about

the space of vacua of the theory.

Unlike in many of the non-supersymmetric dualities in the literature, where it is gen-

erally hard to establish that the transitions are second order, here it follows from the

properties of the superpotential. Intuitively, since these are transitions involving (zero en-

ergy) supersymmetric vacua, a first-order transition is impossible. Hence the transitions

have to be at least second order.

Similar methods can be employed to study many additional N = 1 models. It is clearly

of great interest to study models with more than one flavour multiplet, models with non-

minimal charges and representations and so on. These studies are interesting in their own

right, but they also naturally connect to questions about non-supersymmetric dynamics as

well as to questions about theories with larger supersymmetry algebras.

The outline of the paper is as follows. In section 2 we review the pure N = 1 vector

multiplet dynamics. In section 3 we study the N = 1 SU(N) theory with a Chern-Simons

term and an additional adjoint multiplet. We consider the large k and small k dynamics,

explaining how the Witten index jumps and establishing the existence of a metastable

supersymmetry-breaking state for small k. In section 4 we consider SU(N) and U(N) gauge

theories with a Chern-Simons term and fundamental matter representations, emphasizing

duality and the important role played by the walls in establishing these dualities. Some

details appear in three appendices.

2 N = 1 vector multiplet — a review [24]

We consider Yang-Mills theory with SU(N) gauge group and a Chern-Simons term at level

k ≥ 0.15 The vector multiplet consists of the gauge field A as well as a Majorana fermion

λ in the adjoint representation. The most general renormalizable Lagrangian is

− 1

4g2
TrF 2 + iTrλ /Dλ+

k

4π
Tr

(

AdA− 2i

3
A3

)

+mTrλλ . (2.1)

The level k is integral for N even and half-integral for N odd.

The Lagrangian (2.1) has N = 1 supersymmetry for m = −kg2

2π (cf. (1.3)). We denote

this theory as the N = 1 SU(N)k vector multiplet. Witten found that the Witten index

of this theory is [31]

I =

(

k + N
2 − 1

)

!

(N − 1)!
(

k − N
2

)

!
. (2.2)

By writing the index as

I =
1

(N − 1)!

(

k − N

2
+ 1

)(

k − N

2
+ 2

)

· · ·
(

k +
N

2
− 1

)

, (2.3)

15Recall that k < 0 is obtained by acting with time-reversal on the k > 0 theory, which also reverses the

sign of the fermion mass terms. We can therefore choose k ≥ 0 without loss of generality.
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one finds that the index vanishes for 0 ≤ k < N/2 and it does not vanish for k ≥ N/2. This

holds for all the admissible values of k, namely integral values if N is even and half-integral

values if N is odd.

Therefore supersymmetry is unbroken for k ≥ N/2 and the number of states on T
2

as counted by the Witten index is precisely consistent with the low energy theory in the

supersymmetric vacuum being the topological SU(N)k−N/2 Chern-Simons theory. For large

k the theory is weakly coupled and we can integrate out the fermion at one loop, obtaining

at long distances the SU(N)k−N/2 TQFT (cf. (1.2)). It is worth noting that for k = N/2

the SU(N)k−N/2 TQFT trivializes, and indeed in that case the Witten index is 1, and there

is a single trivial supersymmetric ground state.16

For 0 ≤ k < N/2 the Witten index vanishes. The standard interpretation is that

supersymmety is spontaneously broken and there is a massless Majorana Goldstino par-

ticle in the vacuum. However, this cannot be the whole story because a single massless

Majorana particle cannot match various discrete anomalies in the system. In particular,

the system has (for generic k) an anomaly in the one-form symmetry which precludes the

supersymmetry breaking vacuum from being trivial. In addition, for k = 0 there is a time-

reversal anomaly which again would be sufficient to rule out a single Goldstino particle

in the vacuum. In [24] a scenario that matches all the anomalies and passes a number of

additional nontrivial tests was proposed. The proposal is that the infrared consists of the

Majorana Goldstino particle, Gα, accompanied by the TQFT17 (cf. (1.4))

U

(

N

2
− k

)

N
2
+k,N

. (2.4)

In this paper we build on this recent understanding of the dynamics of the N = 1

vector multiplet and study N = 1 theories with matter multiplets.

3 N = 1 vector multiplet with an adjoint matter multiplet

We consider the N = 1 supersymmetric theory with gauge group SU(N) and an adjoint

matter multiplet. Therefore, the theory consists of a gauge field A, two Majorana fermions

λ, ψX and a real scalar field X, all in the adjoint representation.

The Lagrangian includes the kinetic terms

− 1

4g2
TrF 2 + iTrλ /Dλ+ iTrψX /DψX +Tr(DX)2 , (3.1)

the N = 1 Chern-Simons term

k

4π
Tr

(

AdA− 2i

3
A3

)

− kg2

2π
Trλλ , (3.2)

and the Yukawa coupling √
2igTr[λ,X]ψX . (3.3)

16The N = 1 SU(N)k vector multiplet at k = N/2 has a holographic dual [43] (see also [44]).
17This TQFT is level/rank dual as spin TQFT to U

(

N
2
+ k

)

−N
2
+k,−N

.

– 11 –
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This theory enjoys N = 1 supersymmetry and admits an N = 1 preserving mass

deformation, which can be written as a real superpotential term W = mTrX2. This

superpotential leads to the additional terms in the Lagrangian

Tr
(

m2X2 +mψXψX

)

. (3.4)

This N = 1 theory has a global Z2 symmetry which acts as (X,ψX) → (−X,−ψX). In

addition, for k = 0, m = 0 the theory is time-reversal invariant. For the value of the mass

m = −kg2

2π
(3.5)

the theory has N = 2 supersymmetry and the Lagrangian is that of the pure N = 2 vector

multiplet model with an N = 2 Chern-Simons term. In order to reflect the enhanced

N = 2 symmetry, we sometimes use the notation msoft, defined as

m = −kg2

2π
+msoft . (3.6)

We use msoft when it is particularly natural to think about the N = 1 theory as a soft

deformation of the N = 2 theory. The N = 2 theory has an SO(2)R global symmetry

rotating the two fermions but leaving the real adjoint boson invariant. Our goal is to

determine the infrared phases of this theory as a function of k and m.18

3.1 Large mass asymptotic phases

The infrared dynamics in the large mass region can be solved for using semiclassical rea-

soning in conjunction with the results of the previous section.

We can take the mass m to be large and positive or large and negative. In this regime,

the scalar X and the fermion ψX are very heavy classically, so that X is pinned at X = 0

and quantum effects cannot change that. Integrating out the (X,ψX) multiplet we obtain

a theory of an N = 1 pure vector multiplet. Using (1.2) we find that for positive m this

leads to the SU(N)k+N/2 N = 1 vector multiplet while for negative m to the SU(N)k−N/2

N = 1 vector multiplet.

Using the results in the previous section, the dynamics of these theories strongly de-

pends on whether or not the effective N = 1 level of the infrared pure vector multiplet is

larger than N/2. Therefore, the discussion of the asymptotic phases splits into three cases

depending on the value of k:

1. k ≥ N . Since in this range k±N/2 ≥ N/2 the physics is that of the “large k” phase

described in the previous section. Supersymmetry is unbroken for both large positive

m and large negative m. In the first case the theory flows to the SU(N)k Chern-

Simons TQFT and in the second case to the SU(N)k−N TQFT. The Witten index

18Note that this adjoint theory appears naturally in the context of brane and domain wall dynamics [45].

More generally, N = 1 supersymmetric theories in 2+1 dimensions should arise naturally on BPS domain

walls and branes of N = 1 theories in 3+1 dimensions. For some such constructions see [46–50] and therein

for additional references on these matters.
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in each phase is given (up to a sign) by the partition function of the corresponding

TQFT on the torus. We therefore see that the non-vanishing Witten index jumps

between the two asymptotic phases.

2. 0 < k < N . Since in this range |k − N/2| < N/2, supersymmetry is spontaneously

broken for large negative m, but remains unbroken for large positive m. For large

negative m the long distance theory consists of a Majorana Goldstino accompanied

by the TQFT (cf. (2.4))

U (N − k)k,N . (3.7)

For large positive m supersymmetry is unbroken and there is a supersymmetric vac-

uum supporting the SU(N)k TQFT. We observe once again that the Witten index

jumps between the asymptotic phases, but now it is zero for large negative m and

nonzero for large positive m.

3. k = 0. Since |k−N/2| = N/2 supersymmetry is unbroken for large negative m as well

as for large positive m. Furthermore, the supersymmetric vacuum in both phases is

trivial and gapped. Therefore, the Witten index at large positive m agrees with the

Witten index at large negative m. The dynamics in this case is the simplest and does

not require new tools unlike the k 6= 0 cases.

In summary, we have determined the asymptotic large positive and large negative mass

phases for all values of k. There is a qualitative difference between 0 < k < N and k ≥ N .

In the former case there is spontaneous supersymmetry breaking at large negative mass

and in the latter case the large |m| physics always has a supersymmetric ground state. We

have also noted that for k 6= 0 the Witten index jumps in absolute value between the two

asymptotic phases.

The next subsections will tackle the infrared dynamics of the theory for small m (i.e.

not parametrically large), including the N = 2 supersymmetric point (3.5). One central

question will be to understand how the Witten index jumps between asymptotic phases.

Our analysis in conjunction with general considerations [33] imply that the Witten index

can only jump at m = 0, as this is the only point where the classical asymptotics of the

superpotential changes. We therefore turn next to the classical analysis of the point m = 0

in preparation to analyzing the full quantum theory at m = 0.

3.2 Classical moduli space of vacua at m = 0

Since for m = 0 the adjoint scalar field X is classically massless, the theory has a classical

moduli space of N = 1 supersymmetry preserving vacua parametrized by the eigenvalues

of X

X =















X1 0 0 . . . 0

0 X2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . XN−1 0

0 0 0 . . . XN















, (3.8)
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where theXi are real and obey the SU(N) invariant constraint
∑N

i=1Xi = 0.19 The residual

gauge symmetry leftover after diagonalizing X implies that the classical moduli space of

vacua of the theory at m = 0 is

R
N−1/SN , (3.9)

where SN is Weyl group of SU(N), which acts on the eigenvalues Xi by permuting them. In

a generic vacuum the gauge symmetry is Higgsed down to U(1)N−1. When some eigenvalues

coincide, corresponding to singular loci in the moduli space (3.9), the unbroken gauge

symmetry has at least one non-Abelian factor. We now turn to a discussion of these

various vacua.

3.2.1 Classical Abelian vacua

We want to determine the classical low energy theory around a generic vacuum, where

the gauge symmetry is Higgsed down to U(1)N−1. The off-diagonal W -bosons and their

fermionic massive partners in the N = 1 massive vector multiplet acquire a mass from

the Higgs mechanism, as well as from the Chern-Simons term. The remaining U(1)N−1

gauge bosons and fermions in the N = 1 vector multiplet only pick up a mass from the

Chern-Simons term.20 The contribution to the mass of the off-diagonal gauge bosons Wij

from the Higgs mechanism depends on g2X2
ij , where

Xij ≡ Xi −Xj . (3.10)

The very low energy theory therefore consists of theN−1 masslessN = 1 moduli multiplets

(Xi, ψXi), along with a topological theory that is associated with the unbroken U(1)N−1

gauge symmetry.21

The massless N = 1 moduli multiplets (Xi, ψXi) are trivial free fields. Let us now turn

to determining the precise low energy Chern-Simons theory. The infrared Chern-Simons

theory for the unbroken U(1)N−1 gauge fields is induced from the original Chern-Simons

term (3.2). Hence, there is a nontrivial matrix of Chern-Simons terms for the unbroken

U(1)N−1 gauge theory. This matrix can be found by simply plugging the matrix of unbroken

gauge fields

A =















A1 0 0 . . . 0

0 A2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . AN−1 0

0 0 0 . . . −(A1 + · · ·+AN−1)















(3.11)

19This constraint does not really matter since the overall U(1) part of X and its fermionic partner ψX

are decoupled free fields.
20The off-diagonal components of X are eaten by the longitudinal components of the massive gauge fields.
21If |Xij | ≫ gk we can write an effective field theory which includes the propagating U(1)N−1 massive

photons, since their mass scales like g2k which is much smaller than the mass of the off-diagonal W -bosons,

which scales like g|Xij | in this limit. However, this would be unnecessary for our present purposes.
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into the Chern-Simons action (3.2). We can then immediately read off the (N−1)×(N−1)

matrix k

k = k











2 1 . . . 1

1 2 . . . 1

. . . .

1 1 . . . 2











(3.12)

of Chern-Simons terms for the unbroken U(1)N−1 gauge symmetry. One can perform a

change of basis with an SL(N,Z) transformation

k → AkAT , A ∈ SL(N,Z) (3.13)

in order to bring this theory to a more familiar form:22

k = k











2 −1 0 . . . 0

−1 2 −1 0 . . . 0

. . . . .

0 0 . . . −1 2











. (3.14)

Upon this change of basis the matrix k becomes the Cartan matrix of SU(N) times k. It

is easy to see that detk = kN−1N , which is the number of ground states of this U(1)N−1

Chern-Simons theory on the torus.

This Abelian TQFT has a dual description for k = 1: it is dual to U(1)−N Chern-

Simons theory [51]. This will be very useful for us below. We can think about this duality

as a level/rank duality

∑

i,j=1...N−1

kij
4π

Ai ∧ dAj ←→ −N

4π
Ã ∧ dÃ , (3.15)

with kij being the entries of the matrix k in (3.14) for k = 1.

In summary, classically, everywhere on the moduli space (3.9) except at singular loci

where some Xij = 0, the theory flows to N − 1 free, massless N = 1 real multiplets

accompanied by the U(1)N−1 Chern-Simons theory with the k-matrix (3.14).

We investigate later how quantum effects modify this classical analysis. We will find

that quantum corrections generate a (super)-potential on the classical space of vacua (3.9).

This is a new phenomenon that occurs in N = 1 theories which is not present in theories

with more supersymmetry, where the superpotential does not receive any perturbative

corrections. We shall see, however, that the infrared Chern-Simons theory with the k

matrix (3.14) will be an exact ground state for some range of parameters.

3.2.2 Classical non-Abelian vacua

We now turn to the classical analysis of the non-generic vacua where some Xij = 0. Such

vacua will play a crucial role in unraveling the phase diagram of the theory.

22It is easy to prove using (3.13) that one cannot bring k to a diagonal form. Indeed, in a diagonal form

all the entries on the diagonal have to be even (to avoid a dependence on the spin structure) and nonzero,

and this is impossible for N > 2 because 2N−1 > N for all N > 2.
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We divide the matrix X into L blocks such that the eigenvalue in each block is XI and

the size of the corresponding block is SI × SI , such that

L
∑

I=1

SI = N ,
L
∑

I=1

SIXI = 0 .

These are not to be confused with partitions of N . Indeed, because of the Weyl group

the eigenvalues can be without loss of generality ordered. Thus, the order in which the

summands SI appear is important. Those are called “compositions” of N . There are 2N−1

compositions of N .

Assuming that all the XI (I = 1, . . . , L) are distinct, all the gauge fields (and fermionic

superpartners) away from these blocks acquire mass from the Higgs mechanism. The

unbroken gauge symmetry in such a vacuum is thus

S[U(S1)×U(S2) · · ·U(SL)] .

Let us now mention a useful way to think about the effective low energy N = 1 gauge

theory in the infrared. We first extend the SU(N) gauge symmetry to a U(N) gauge

symmetry. That does not change the dynamics because the matter fields are in the adjoint

representation. In that case the low energy N = 1 Chern-Simons couplings are simply

those of the product theory

U(S1)k,k ×U(S2)k,k · · ·U(SL)k,k . (3.16)

In order to go back to the SU(N) theory, we add another U(1) gauge field B which sets

the overall trace to zero via the coupling

1

2π
B ∧

L
∑

I=1

SI TrAI . (3.17)

At energies below the massive W-boson multiplets, we are left with an N = 1 vec-

tor multiplet with gauge group and Chern-Simons levels (3.16) with the additional con-

straint (3.17), accompanied by massless N = 1 matter multiplets (XI , ψI) in the adjoint

representation of the unbroken non-Abelian gauge group.

In the vacua with Abelian gauge symmetry discussed above (i.e. SI = 1), there were

no light charged particles and therefore the theory at long distances (if such vacua indeed

exist in the full quantum theory) could be determined right away, as it is free. For non-

Abelian vacua, the low energy theory just described is still interacting, and the ultimate

fate of these vacua necessitates further discussion. This will require us to understand the

perturbative (and ultimately also non-perturbative) corrections to the classical analysis

described here.

3.3 Semiclassical moduli space of vacua

After the discussion of the moduli space of vacua at m = 0 and of the low energy theories

that appear in each vacuum, we now turn to the important question of how quantum effects

modify the classical analysis.
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In 2+1 dimensional theories with N = 1 supersymmetry there is no obstruction to the

existence of perturbative corrections to the superpotential, in contrast with more super-

symmetric theories. Therefore, there may be a nontrivial superpotential which depends on

the N − 1 coordinates parametrizing the moduli space (3.9)

W (Xi) ,

with
∑N

i=1Xi = 0. This can drastically change the classical picture (as we shall see,

classical vacua get lifted).

Consider the classical vacua where the eigenvalues Xi are distinct and very well sep-

arated so that the off-diagonal degrees of freedom are very heavy. This allows to analyze

what happens far away on the N − 1 dimensional classical moduli space (3.9). Clearly,

near the singular loci in (3.9), when some of the eigenvalues are close by, this expansion

breaks down, and we postpone the discussion of the quantum behaviour of these vacua

with non-Abelian gauge symmetry until later.

In order to understand how the radiatively induced superpotential ought to behave,

let us first appeal to dimensional analysis arguments. We consider for simplicity expanding

around large Xij and let us assume that they scale uniformly Xij ∼ X. It is useful

to canonically normalize the fields such that we have the following types of interactions:

cubic interactions proportional to g, quartic interactions proportional to g2 and we choose

a gauge such that the Chern-Simons cubic vertex vanishes (e.g. A0 = 0). The terms

containing k therefore appear only in quadratic fermionic and gauge field terms. These

quadratic terms are proportional to kg2. The mass of the heavy particles that run in the

loops scales like M ∼ gX. This estimate is correct far away on the moduli space, i.e. as

long as X ≫ gk. Since we are interested in the structure of the effective superpotential far

away on the moduli space, this estimate suffices.

Consider now a vacuum L loop diagram contributing to the quantum effective potential

(i.e. the Coleman-Weinberg potential [52]). Such a diagram is weighted by a factor of g2L−2.

Then, if we do not insert the quadratic vertices depending on k, the sum over diagrams

must vanish because a superpotential cannot be generated in N = 2 theories (recall that

the theory with m = k = 0 has enhanced N = 2 supersymmetry). If we expand the

effective scalar potential in this manner, only even powers of k can appear by virtue of

parity. We therefore have at L loops a perturbative series of the form

V (L)(X) = g2L−2
∑

n>0

dn;L
(kg2)2n

(gX)L+2n−4
, (3.18)

with some coefficients dn;L. This is derived by imagining insertions of k on the various

edges of the diagrams. As we have explained, this representation of the effective potential

is useful far away on the moduli space, and, more precisely, for X ≫ gk. The full scalar

potential is of course given by summing over all loops

V =
∑

L

V (L)(X) . (3.19)

– 17 –



J
H
E
P
0
7
(
2
0
1
8
)
1
2
3

It turns out that the one-loop contribution vanishes

V (1) = 0 .

This follows from the fact that the spectrum of heavy particles is supersymmetric at tree

level and the one-loop potential is sensitive only to the supertrace of the classical spectrum23

STr|M|3 ≡ Tr|mB|3 − Tr|mF |3 = 0 . (3.20)

As is well-known, integrating massive fermions at one loop can induce a shift in the

Chern-Simons levels (cf. (1.2)). A quick inspection of the mass matrix for the off-diagonal

Majorana fermions in N = 1 vector and matter multiplets around the generic vacuum

with non-degenerate eigenvalues shows that for each off-diagonal massive charged fermion

there is a massive charged fermion with a mass of opposite sign.24 Therefore, integrating

the N = 1 massive vector multiplets does not shift the levels of the k matrix (3.14).25

Furthermore, the Coleman-Hill theorem [54] guarantees that the low energy Chern-Simons

theory is not modified by higher loop corrections.

In summary, at one loop the N−1 N = 1 matter multiplets remain massless and to all

orders the infrared Chern-Simons theory is U(1)N−1 with the k matrix (3.14). Therefore,

in order to unravel the leading quantum corrections to the classical moduli space we will

need to go to two loops.

Equipped with this, the scalar potential (3.19) can be recast in terms of a super-

potential

W (X) = kg3
∑

L>1

gL
∑

n>0

cn;L
(kg2)2n−2

g2nXL+2n−5
, (3.22)

with some coefficients cn;L which can be, in principle, computed. From (3.22) we can see

the utility of the semiclassical large X expansion: any given term in the 1/X expansion

only receives contributions from finitely many loop orders in perturbation theory. The

leading term in the large X expansion is at L = 2, n = 1, and it scales linearly W (X) ∼ X.

This term can only receive contributions from two-loop diagrams and determining whether

this term is present or not, is absolutely crucial in order to understand the dynamics of

these N = 1 theories.

23The cubic and linear ultraviolet divergences vanish as they are proportional to STr(1) and STr|M|

respectively.

24Consider for simplicity the gauge group SU(2), broken to U(1) by the expectation value X =

(

x 0

0 −x

)

.

From the two adjoint Majorana fermions in the full theory we obtain two complex fermions, λ(+2), ψ(+2) of

charge 2 under the unbroken U(1) gauge symmetry. Their mass matrix is proportional to

M ∼

(

−kg2 igx

−igx 0

)

. (3.21)

Clearly, there is one positive and one negative eigenvalue.
25In some places in the literature it is claimed that the Chern-Simons levels can also be shifted by

integrating out heavy W -bosons. See for example [53]. This stems from a confusion between the Wilsonian

and 1PI effective actions.
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Fortunately, for rather different reasons, the full two-loop superpotential has been

computed in [55, 56].26 The result is27

W = −
∑

ij

g3k
√

g2k2 +X2
ij , (3.23)

expressed in terms of the eigenvalue differences Xij ≡ Xi −Xj defined above.

First, note that (3.23) vanishes for k = 0, as it should, since then the theory has N = 2

supersymmetry and the superpotential has no perturbative corrections. Second, note that

if we rewrite (3.23) in an expansion around large Xij then it agrees with the general

structure (3.22) derived earlier. Finally, note that the superpotential appears to be regular

even when the Xij go to zero, and where, classically, gauge symmetry would be enhanced.

Usually, we expect the effective theory on the moduli space to indicate that it is breaking

down on such loci due to the existence of new massless particles. But here the two-loop

effective superpotential behaves perfectly regularly everywhere on the moduli space in spite

of the fact that there are new massless particles when some of the eigenvalues coincide.

Understanding the regime of validity of (3.23) is of great importance in what follows.

Very far on the moduli space, in the “far zone” X ≫ gk, as we have shown in (3.22),

there may be contributions from three loops that scale like X0 (i.e. it could be logX) and

contributions from four loops that scale like 1/X. Therefore, far out in the moduli space

X ≫ gk, the only reliable information captured by (3.23) is the linear term

X ≫ gk : W = −g3k
∑

ij

|Xij | . (3.24)

We will return to the “near zone” of the moduli space where X is not large compared to

gk later.

In summary, we see that the classical moduli space of supersymmetric vacua is lifted

starting at two loops (3.23) and that there is a radiatively induced asymptotically flat

(non-supersymmetric) direction with non-zero energy density (cf. (3.24)). Next we analyze

the consequences of the two-loop superpotential for the phases of the theory around m = 0.

3.4 Semiclassical Abelian vacuum near m = 0

We now proceed to study the fate of the semiclassical Abelian vacua just described when

the theory is deformed by a small mass term (3.4)

δW = mTrX2 + λTrX , (3.25)

26In fact, [55, 56] computed the scalar potential and we are inferring the superpotential from that. But

there is an ambiguity in doing this, aside from the overall constant in W (X) which cannot be determined

and is insignificant. The sign of W is very important as soon as we add back the mass perturbation (3.4)

W = mTrX2 since the sign of the superpotential affects the interference between these two terms. The

sign can be computed in principle by studying diagrams with external fermions. Here we simply assume

that W has a certain sign so that our overall picture for the dynamics is consistent.
27To simplify notation, we have redefined the couplings in W in order to absorb several unimportant

factors.
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where we have also added a Lagrange multiplier λ to enforce that X is a traceless matrix.

Then, for infinitesimal m, by combining (3.25) and (3.23), we find that the superpotential

on the moduli space takes the form28

W = −
∑

ij

g3k
√

g2k2 +X2
ij +m

∑

i

X2
i + λ

∑

i

Xi , (3.26)

with i, j ranging over 1, . . . , N . In the perturbative “far zone” regime Xij ≫ gk we can

self-consistently approximate the superpotential by

W = −g3k
∑

ij

|Xij |+m
∑

i

X2
i + λ

∑

i

Xi . (3.27)

Supersymmetric vacua (i.e zero energy states) of the deformed theory correspond to

solutions of the equations ∂W
∂Xi

= 0. The explicit equations are (we define sgn(0) = 0)

−g3k
∑

j

sgn(Xij) +mXi +
1

2
λ = 0 , (3.28)

∑

i

Xi = 0 . (3.29)

Summing over all i in the first equation we find λ = 0. Therefore the equations can be

simplified to

−g3k
∑

j

sgn(Xij) +mXi = 0 , (3.30)

∑

i

Xi = 0 . (3.31)

The last equation implies that at least one of the Xi has to be positive. We can now use

the residual SN group to order the eigenvalues from the most positive one, X1, to the

most negative one, XN . Then, the first equation with i = 1 in (3.30) shows that all the

terms in the first term are negative and the second term is also negative for sgn(m) < 0,

and hence there is no solution for sgn(m) < 0. Therefore, we conclude that there are no

supersymmetric vacua far on the moduli space for negative mass. We will discuss later the

physics of the vacuum at “X = 0,” as it depends crucially on whether k is large or small.

For small positive m a supersymmetric solution exists, and it is given up to the action

of the Weyl group by29

Xi =
g3k

m
(N + 1− 2i) . (3.32)

The eigenvalue differences Xij are all parametrically large (compared to gk) for m ≪ g2,

and hence the existence of this supersymmetric vacuum is rigorously established in the

full theory, that is, it is not an artefact of the two-loop approximation because as we

28This formula is valid to leading order in m since the two-loop effective potential (3.23) was computed

in the massless theory.
29Note that this obeys (3.31).
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proved around (3.22) the higher-order corrections cannot compete far on the moduli space.

Therefore, we find that for m small and positive there is an N = 1 supersymmetric massive

vacuum (all N −1 N = 1 matter multiplets are massive) described by the U(1)N−1 Chern-

Simons theory with k matrix (3.14).

In summary, we have established that for small positive m there is a new supersym-

metric gapped vacuum that comes in from infinity in field space that supports the U(1)N−1

Chern-Simons theory with k matrix (3.14). Instead, for small negative m, there is no such

Abelian vacuum. Intuitively, for small negative m, the potential grows everywhere at large

X, at m = 0 it becomes asymptotically flat, and as we make m slightly positive, a new

supersymmetric Abelian vacuum comes in from infinity.

We will use these facts to determine the different phases of the theory at finite m,

connecting them to the asymptotic phases that we found in section 3.1. We will also

establish by a different semiclassical analysis at large k that the Abelian vacuum above

is not the only one that appears from infinity in field space. We will find additional

supersymmetric vacua with degenerate eigenvalues that approach from infinity.

We now discuss in turn the complete phase diagram of the theory for k ≥ N and

0 < k < N , and k = 0.

3.5 Phases of the theory with k ≥ N

Above we studied the vacuum state of the theory with an Abelian gauge symmetry that

can be reliably established for arbitrary k by analyzing the theory far away in the space

of vacua (i.e. large X). We now turn to the study of quantum vacua where some of the

eigenvalues coincide. The low energy theory in such a vacuum has non-Abelian gauge

symmetry and the theory is interacting.

Despite that the low energy theory is non-trivial around a non-Abelian vacuum, the

infrared dynamics can be determined for k sufficiently large, that is for k ≥ N .

3.5.1 Critical points of the superpotential

At sufficiently large k the physics is weakly coupled, and unlike in section 3.4, we do

not exclude vacua with degenerate eigenvalues. Indeed, for k ≥ N we can analyze them

explicitly since the theory is “semiclassical” and we can handle these interacting effective

theories at these loci. The critical point equations are

1

2
λ+mXi = g3k

∑

j

Xij
√

g2k2 +X2
ij

, (3.33)

∑

Xi = 0 . (3.34)

Summing over i in the first equation we find λ = 0. Therefore the two equations can be

simplified to

mXi = g3k
∑

j

Xij
√

g2k2 +X2
ij

. (3.35)
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For the sake of analyzing this equation it is useful to rescale gkX̃ = X such that the

equation takes the form
m

g2
X̃i =

∑

j

X̃ij
√

1 + X̃2
ij

. (3.36)

There is clearly the solution Xi = 0.

Let us now look for solutions with at least one non-vanishing Xi. First let us make a

general observation. There are solutions with some nonzero Xi only for m
g2

∈ (0,N). To

prove that, assume that at least one X̃i does not vanish, so let X̃1 be the largest positive

eigenvalue. Then, X̃1j ≥ 0 for all j and since

∑

j

X̃1j
√

1 + X̃2
1j

≤
∑

j

X̃1j =
∑

j

X̃1 −
∑

j

X̃j = NX̃1

so that
m

g2
X̃1 ≤ NX̃1 ,

and therefore we conclude that nontrivial solutions exist only if m
g2

∈ (0,N). The exact

location where vacua with X̃i 6= 0 disappear can get modified by higher loop corrections.

The estimate above is reliable for asymptotically large k, i.e. k ≫ 1.

It is rather easy to write down all the solutions explicitly when the difference of eigen-

values in each distinct block are large. These equations for small m were written in (3.30),

and the solutions are labeled by choosing blocks of sizes SI × SI and ordered eigenvalues

XI , I = 1, . . . , L

X1 > X2 > . . . > XL .

Using (3.30) we find that at very small positive m

XI =
g3k

m
[(SI+1 + · · ·SL)− (S1 + · · ·SI−1)] . (3.37)

We conclude that the vacua correspond to ordered partitions of N (a.k.a compositions of

N). There are 2N−1 vacua in total, including the one at the origin. The only supersym-

metric vacuum with small negative m is the one at the origin.

In summary, for m < 0 we have one supersymmetric vacuum with TQFT SU(N)k−N

and for (roughly) m > g2N we have one supersymmetric vacuum with TQFT SU(N)k.

The index jumps at m = 0 and at small m > 0 we have 2N−1 vacua with various TQFTs.

As we increase m the vacua gradually merge via second order transitions but the Witten

index does not jump anymore. The transitions must be second order because these vacua

correspond to zeroes of W ′ with nontrivial Witten index. They cannot disappear without

merging with other zeroes as we increase m.

How exactly these 2N−1 vacua merge into one vacuum is an interesting question. We

find a complicated pattern where these 2N−1 vacua merge via a sequence of conformal field

theories that appear away from the origin on the moduli space as we crank up m from zero

to g2N . By the time we crank the mass up to g2N they will have all merged into a single
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vacuum and for m > g2N we have only the SU(N)k TQFT.30 We will discuss in detail

only one representative simple example of this phenomenon later.

Now we would like to analyze the vacua at small m and show that in fact these

2N−1 vacua precisely account for the required jump in the Witten index. To simplify the

computation we now take the original gauge group to be U(N) rather than SU(N). This

would simplify the combinatorics while not making any difference for the physics since the

U(1) factor is anyway decoupled. Let us consider the superpotential (3.23) but now we

omit the Lagrange multiplier term

W = −
∑

ij

g3k
√

g2k2 +X2
ij +m

∑

X2
i . (3.38)

Let us expand around the critical point (3.37). We take Xi = X0
i + δXi and X0

i is given

by (3.37). Expanding the superpotential to second order in δXi (and dropping the constant

piece) we find

W = −1

2

∑

ij

g3k
√

g2k2 + (X0
ij)

2





2X0
ijδXij + δX2

ij

g2k2 + (X0
ij)

2
−
(

X0
ijδXij

g2k2 + (X0
ij)

2

)2




+ 2m
∑

X0
i δXi +m

∑

δX2
i . (3.39)

Omitting the linear piece in δXi which vanishes by virtue of the equations (3.35) we find

after some simplifications

W = −1

2

∑

ij

g5k3δX2
ij

(

g2k2 + (X0
ij)

2
)3/2

+m
∑

δX2
i . (3.40)

Now we restrict to infinitesimal m, where the solutions are given by (3.37). Considering

the first term in (3.40) we see that there are two cases — if we consider i, j to lie in the

same block then X0
ij = 0 and the coefficient of δX2

ij in the first term scales like g2, which

is much larger than m. If we consider i, j to lie in different blocks, the coefficient of δX2
ij

scales like m3/g4, which is much smaller than m. The conclusion is that for i, j in the same

block we should take into account the first term in (3.40) while for i, j in different blocks

we can neglect it. The mass matrix for the fermions ψi (which are the partners of Xi) thus

takes the form

M = m1ISI×SI
+ g2















−SI + 1 1 1 . . . 1

1 −SI + 1 1 . . . 1

1 1 −SI + 1 . . . 1

. . . . . . .

1 1 1 . . . −SI + 1















(3.41)

in each SI × SI block and is otherwise vanishing. Even though m ≪ g2, we have

not neglected the first term on the right hand side of (3.41) since it lifts the zero mode

30We recall that the exact location where vacua away from origin disappear can be modified by higher

loop corrections.
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(1, 1, . . . , 1). The eigenvalues of this matrix are

(−g2SI +m,−g2SI +m, . . . ,−g2SI +m,m) . (3.42)

Therefore, we can now complete the exercise that we have embarked on in (3.16) and

compute the TQFT. For sufficiently small m, the eigenvalues are all negative other than the

one that corresponds to the decoupled field (1, 1, . . . , 1). Therefore, the charged fermions

under the unbroken

U(S1)×U(S2) · · ·U(SL) (3.43)

gauge symmetry all have a negative mass (we recall that the gauginos in the N = 1 vector

multiplet also have a negative mass). Since we are in the “large k” phase for each of the

subgroups in (3.43), the long-distance theory can be read out by simply integrating out

the fermions (matter fermions and gauginos) at one loop and supersymmetry is unbroken.

Therefore the TQFT is given by

U(S1)k−S1,k ×U(S2)k−S2,k · · ·U(SL)k−SL,k . (3.44)

The contribution of this vacuum to the Witten index is given by the number of states of

this TQFT, which is simply
∏

I

k!

SI !(k − SI)!
.

The contribution of each such vacuum (which corresponds to a composition of N) to the

Witten index has to be weighted with the correct sign. The sign is simply given by counting

how many fermions have a negative eigenvalue for any such given composition, and the

answer is that, as we have seen above, in each block there are SI − 1 fermions with a

negative eigenvalue. Therefore, the weight of this vacua in the Witten index is

(−1)
∑

I(SI−1) = (−1)N−L ,

where L is the length of the partition. Therefore the Witten index at small positive m is

finally given by a sum over compositions P , N =
∑L(P )

I=1 SI , where the length of each such

composition is L(P ). We find that the Witten index is

I =
∑

P

(−1)N−L
L
∏

I=1

k!

SI !(k − SI)!
. (3.45)

(Remember that this analysis is valid for k ≥ N .) Now we observe that there is an

interesting combinatorial identity (proven in the appendix C) for such compositions of N

∑

P

(−1)N−L
L
∏

I=1

k!

SI !(k − SI)!
=

(N + k − 1)!

N !(k − 1)!
. (3.46)

The right hand side is the torus partition function of the TQFT U(N)k,k, which is exactly

the ground state of the theory at large positive m. This therefore nicely shows that the

index jumps at m = 0 by having 2N−1 − 1 vacua come from infinity, exactly reproducing
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the index of the large m phase. Therefore, the total index no longer changes as we continue

to increase m. Instead, these 2N−1 vacua coalesce (not necessarily all at the same time,

there could be multiple second order phase transitions) until eventually they combine to

the form the U(N)k,k ground state, which is visible semiclassically.

We will now study the case of SU(2) in more detail for concreteness and also because

it is the simplest nontrivial case.

3.5.2 SU(2)k

The most general adjoint matrix X can be brought to the form

X = gk

(

x 0

0 −x

)

(3.47)

and we can plug this into (3.36) to obtain

m

g2
x =

2x√
1 + 4x2

. (3.48)

The solution x = 0 always exists. For m < 0 this is the only supersymmetric vacuum,

namely the vacuum at the “origin” supporting the SU(2)k−2 TQFT. For small positive

m we have two vacua. One is the one we just saw at x = 0, supporting the SU(2)k−2

TQFT. The other supersymmetric vacuum is the Abelian TQFT described in section 3.4,

i.e. the U(1)2k pure Chern-Simons theory. Note that for small positive m we have two more

solutions, related by x → −x. But x → −x is the generator of the Weyl group and hence

these two solutions should be deemed equivalent.

As we increase m these two vacua eventually meet at a second order phase transition

(according to (3.48) this happens at m = 2g2, an estimate that is reliable at asymptotically

large k). Then, past this transition, there is again only one supersymmetric vacuum with

an SU(2)k TQFT.

Note that we can rigorously prove that the transition is second order. Indeed, for small

positive m we see two vacua (SU(2)k−2 TQFT and U(1)2k TQFT). They correspond to

two zeroes of W ′. At large positive m there is only one vacuum with a SU(2)k TQFT.

The only way that this transition can occur is by the two vacua meeting. This is because

the sign of W ′′ in the SU(2)k−2 vacuum must change and this cannot happen without the

zeroes meeting.

Therefore, the conformal field theory at (approximately) m = 2g2 describes a phase

transition (as we change the mass) between two isolated vacua carrying the SU(2)k and

U(1)2k TQFTs and, on the other side of the transition, one isolated vacuum with SU(2)k
TQFT. At large k this conformal field theory can be studied systematically (and in that

limit the Yang-Mills term and gaugino kinetic term can be dropped).

Strictly at m = 0 there is an asymptotically flat direction and one supersymmetric

ground state with SU(2)k−2 TQFT near the origin. At small positive m the vacuum at the

origin contributes to the Witten index −(k − 1) and the new Abelian vacuum contributes

2k. Together they combine to k + 1, which is precisely the Witten index of the vacuum at

asymptotically large positive mass.
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In the SU(2) gauge theory there is therefore just one vacuum that appears from infinity

for small positive mass m. And correspondingly, there is only one phase transition at

positive m. The properties of this N = 1 SCFT can be systematically computed in

perturbation theory in 1/k. Past this conformal field theory, the physics is smoothly

connected to the large positive mass phase.

3.6 Phases of the theory with 0 < k < N

We now discuss the dynamics of the N = 1 supersymmetric model SU(N)k with an adjoint

multiplet and superpotential

W = mTr(X2)

in the regime of “small” Chern-Simons level 0 < k < N . In this regime non-perturbative

effects dominate and the dynamics is quite rich.

First, we recall the basic facts about what happens at large |m|. At very large negative

mass, integrating out the adjoint matter multiplet we get a pure N = 1 vector multiplet

with gauge group SU(N) and Chern-Simons level k − N/2. Since 0 < k < N then |k −
N/2| < N/2 and hence this theory breaks supersymmetry spontaneously, leading to a

massless Majorana Goldstino and a TQFT (according to (2.4))

U(N − k)k,N ↔ U(k)−N+k,−N . (3.49)

We will see that it follows from our analysis that this continues to be true all the way tom =

0, i.e. msoft =
kg2

2π . In particular, the N = 2 supersymmetric point has the TQFT (3.49)

as well as a Dirac Goldstino particle (one Majorana fermion is lifted for nonzero msoft and

thus we remain with one massless Majorana fermion away from msoft = 0). At very large

positive m we get a pure N = 1 vector multiplet with gauge group SU(N) and Chern-

Simons level k + N/2. Since for all non-negative k, k + N/2 ≥ N/2, the dynamics of the

vector multiplet leads to a supersymmetric vacuum with the TQFT

SU(N)k ≃ U(k)−N,−N . (3.50)

We therefore see that for 0 < k < N at very large negative mass we have a Majorana

Goldstino and TQFT (3.49) while for very large positive mass we have a supersymmetric

vacuum with a (generally) different TQFT (3.50). Clearly, the Witten index jumps and

we have to understand how that comes about.

In (3.37) we have found that at small positive m many new critical points of the

superpotential appear. Those critical points are obtained by analyzing the two-loop+tree-

level superpotential (3.38). These critical points correspond to compositions of the integer

N , with unbroken gauge symmetry (3.43) (after the center-of-mass U(1) is removed). The

effective field theory consists of the gauge group with bare Chern-Simons terms

S[U(S1)k,k ×U(S2)k,k · · ·U(SL)k,k] , (3.51)

and we also have an adjoint matter multiplet for this gauge group. The mass terms for the

adjoint multiplet around this critical point have negative eigenvalues (3.42).
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For large enough k, i.e. as long as k ≥ SI for all I, these supersymmetric critical points

are not lifted and because the mass eigenvalues are negative we can simply integrate out

these adjoint multiplets and arrive at (3.51). It is guaranteed that k ≥ SI for all I for any

composition {SI} as long as k ≥ N .

However, when k < N , in some of the vacua we will have at least one SI > k and

therefore these vacua would be lifted. Namely, they are no longer critical points of the full

quantum superpotential due to non-perturbative effects. The vacua that remain correspond

to compositions of N with all the SI ≤ k

N =
∑

I

SI , SI ≤ k . (3.52)

In order to count the supersymmetric vacua that remain and their Witten index, it is again

useful to imagine that the gauge group is U(N) instead of SU(N), which of course makes

no difference for the dynamics. Therefore, those critical points that remain flow as before

(since they are effectively in the “large k” phase and the mass term for the adjoint multiplet

fermion and gaugino have a negative sign) to the TQFT

U(S1)k−S1,k ×U(S2)k−S2,k · · ·U(SL)k−SL,k . (3.53)

The number of such compositions of N is obtained from the coefficient of xN of the gener-

ating function,
x(1− xk)

1− 2x+ xk+1
.

It is easy to see that summing over these restricted compositions the total Witten index

still matches that of the single supersymmetric round state at large positive m. A simple

way to see that is to consider the identity (3.46) as an identity between two polynomials

in k of degree N . The terms on the left hand side that correspond to a composition P for

which at least one of the SI satisfies SI > k vanish. Therefore, the identity (3.46) remains

true for k < N if we restrict the left hand side to compositions that satisfy (3.52).

We can now summarize that for m ≤ 0 there are no supersymmetric ground states,

but at m = 0 an asymptotically flat direction with nonzero energy density opens and

supersymmetric ground states appear. The supersymmetric ground states that appear at

small positive m correspond to compositions of N restricted by (3.52). As we increase m

these supersymmetric ground states coalesce and for sufficiently large m there is only one

supersymmetric ground state, which is visible semiclassically, with TQFT SU(N)k. The

Witten index at small positive m therefore matches the Witten index at large positive m,

as it should, since the asymptotic form of the potential does not change in this domain.

An interesting special case to consider is SU(N)1. In that situation there is only one

composition that remains of (3.52), i.e there is only one supersymmetric ground state at

small positive m, corresponding to the composition

N = 1 + 1 + · · ·+ 1 .

The TQFT in that vacuum is Abelian and given by the k-matrix (3.14) with k = 1.

We have shown in (3.15) that this theory has a dual description in terms of the TQFT
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U(1)−N . But now, using level/rank duality, we can also rewrite that model as SU(N)1.

Therefore, the supersymmetric ground state at small positive m supports the SU(N)1
TQFT. Fortunately, this is precisely the TQFT in the supersymmetric ground state at

large positive m and hence in this particular case no phase transitions at positive m are

necessary at all. This is a nice consistency check since indeed there is only one gapped

supersymmetric vacuum in this case and it has no other supersymmetric vacua to merge

with. In other words, the deep infrared physics at small positive m and large positive m is

essentially identical.

In summary, for negative m we have a supersymmetry breaking vacuum with a

U(1)−N ≃ SU(N)1 TQFT accompanied by a Majorana Goldstino particle, and for pos-

itive m we have the SU(N)1 TQFT in a supersymmetric vacuum. This example will be

important below in our discussion of metastable supersymmetry breaking. In appendix A

we discuss some further consistency checks of this particular dynamics of N = 1 SU(N)1
with an adjoint multiplet connecting our scenario to the “duality appetizer.”

3.7 Dynamical metastable supersymmetry breaking at 0 < k < N

Here we consider the physics of the theory with 0 < k < N at small |m|, i.e. near the wall

(point) where the Witten index jumps. We have seen that for small negative m there is no

supersymmetric ground state and we proposed a single supersymmetry-breaking ground

state (which corresponds to the global minimum of the potential) carrying (as explained

in (3.49)) the TQFT U(N − k)k,N and a Majorana Goldstino. Let us denote the energy

density in this minimum by f(m), defined for negative m. We can define the limit

f(0) ≡ lim
m→0−

f(m) .

At m = 0 we have an asymptotically flat direction with nonzero energy density (3.27)

that is given by

Vasymp=4g6k2
∑

i





∑

j

sgn(Xij)





2

=4g6k2
N
∑

i=1

(N+1−2i)2=
4

3
g6k2N(N2−1) . (3.54)

(We used the fact that the kinetic terms are asymptotically approximately canonical and

we evaluated the energy for a generic direction far out on the moduli space. We also relaxed

the traceless-ness condition on X for simplicity.) The scaling g6N3k2 can be understood

from general large N considerations. Every insertion of k corresponds to a factor of kλ/N ,

with λ the usual ’t Hooft coupling λ = g2N . A generic planar two-loop contribution to the

vacuum energy scales like λN2 and hence with two insertions of k we find

Vasymp ∼ k2λ3 , λ = g2N . (3.55)

This agrees with (3.54).

The question now is how does the energy density of the supersymmetry-breaking

ground state at small negative m compare to the energy density that opens up at infinity.
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There are a priori three options

f(0) > Vasymp

f(0) < Vasymp

f(0) = Vasymp . (3.56)

We will now discuss these options in turn. First, let us consider the large N scaling

of f(0). It is especially easy to estimate f(0) if k ∼ N , i.e. when N/k is held fixed in the

large N limit. Then, the action is given by N(· · · ) and the only dimensionful parameter

in the action is λ = g2N . Therefore, we should expect that f(0) ∼ λ3N2. This is the same

scaling as would be obtained from (3.55) if k scales like N . Hence, large N considerations

by themselves are not sufficient to decide among the options in (3.56).

First, let us argue that f(0) > Vasymp is impossible. For small negative m, the super-

potential has already a large region

g ≪ X ≪ g3k

m
, (3.57)

where it is well approximated by W = −g3k
∑

ij |Xij | and therefore it cannot be true that

f(0) > Vasymp.

Next we consider the possibility that f(0) < Vasymp. In this case, as we increase m the

supersymmetric vacua that come in from infinity must be separated by a potential barrier

from the supersymmetry-breaking minimum. The distance between these vacua must scale

as ∼ 1/m and hence the supersymmetry-breaking vacuum is arbitrarily long lived.

Finally, there is the most subtle case to consider f(0) = Vasymp. One way in which this

can happen is that the supersymmetry-breaking vacuum in fact remains near the origin

and the fact that the energy density coincides with what we computed asymptotically is an

accident. In this case there would have to be a potential barrier between the supersymmetry

breaking state and the far region and hence the state will be metastable at small positive

mass. This case is morally similar to the case of f(0) < Vasymp.

However, it could also be that as we tune m to zero from the left, the supersymmetry-

breaking vacuum just slides to infinity and the equality f(0) = Vasymp simply reflects the

fact that the supersymmetry breaking vacuum now resides in the far zone. In particular, the

supersymmetry breaking vacuum would be in the weakly coupled region (3.57). To rule this

out we need to use a new element: that the TQFT in the supersymmetry breaking vacuum,

U(N − k)k,N , cannot be obtained in the semiclassical regime. Indeed, there is no weakly

coupled description in the original degrees of freedom of a ground state with this TQFT.

We therefore see that to establish the existence of a long-lived supersymmetry-breaking

ground state in this theory, continuity arguments near the point where the index jumped

were not quite sufficient, and we had to allude also to the topological degrees of freedom in

the supersymmetry-breaking ground state. Because of that, our general argument may fail

in some special cases where the TQFT in the supersymmetry-breaking vacuum does acci-

dentally coincide with the theory far out on the Coulomb branch. For example, for k = 1,

k = 1 : U(N − k)k,N ↔ U(1)−N ,
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and because of the duality (3.15) this in fact coincides with the topological theory far out

on the moduli space where no eigenvalues coincide. Another way to think about this special

case is that if our gauge group was U(N), then for k = 1 the vacuum far out on the moduli

space with generic eigenvalues would be trivial but also the TQFT in the supersymmetry-

breaking vacuum is trivial. Therefore, in the case of k = 1 we essentially do not have the

topology of the ground state that we used to protect the supersymmetry-breaking ground

state from slipping to the weakly coupled region.

The proof that we gave here for the existence of a metastable supersymmetry-breaking

state depends on the assumption that indeed our phase diagram is correct and for all

negativem there is a single supersymmetry-breaking state with the properties we discussed.

This assumption is motivated by the fact that the phase diagram we proposed is the

simplest that is consistent with our detailed analysis of the ground states and with the ’t

Hooft anomalies.

In N = 1 theories, jumps in the Witten index are generic on co-dimension one hy-

persurfaces. If on one side of the hypersurface the ground state breaks supersymmetry

spontaneously and on the other side new supersymmetric vacua come in from infinity, it is

expected that supersymmetry breaking states would be metastable at least close enough

to the hypersurface. The only way in which this conclusion can be avoided is if the super-

symmetry breaking ground states slip to infinity as we get near the hypersurface. But as

we saw, this can be in some cases ruled out by using the properties of the supersymmetry-

breaking ground state.

3.8 Phases of the theory with k = 0

The N = 1 theory with an adjoint matter multiplet at k = m = 0 has N = 2 super-

symmetry. This implies that the superpotential on the moduli space of vacua (3.9) does

not receive any perturbative corrections, and in particular, the two-loop effective poten-

tial (3.38) vanishes. As a consequence of this, the phase diagram of this theory is much

simpler than for the theory with k 6= 0.

We recall that in section 3.1 we showed that the theory with large positive and large

negative mass flows to a trivial, gapped supersymmetric vacuum (i.e. with no TQFT). Our

goal here is to fill in what happens between these asymptotic phases.

Let us start at the N = 2 supersymmetric point m = msoft = 0. While the su-

perpotential is not renormalized in perturbation theory, it is well known [38] that non-

perturbative effects due to monopole-instantons lead to a runaway superpotential (i.e.

there is no stable vacuum).

We now proceed to show that m = 0 is the only singular point in the phase diagram.

We will demonstrate that immediately to the left and to the right of the m = 0 point there

is a trivial vacuum with unbroken supersymmetry. Therefore, the phases infinitesimally

away from m = 0 are identical to the asymptotic phases at large positive and negative m,

and hence the phase diagram is particularly simple.

Let us first review some relevant parts of the derivation of the runaway behaviour for

SU(2) for simplicity. This theory has because of the enhanced N = 2 supersymmetry at

m = 0 an SO(2)R R-symmetry, and a classical flat direction with unbroken U(1) gauge
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symmetry parametrized by the eigenvalues of the scalar fieldX = diag(x,−x). The Yukawa

interaction (3.3) along this flat direction induces a coupling between x and the charge two

fermions ψ(+2), λ(+2) and their complex conjugates, as in (3.21) (with k = 0)

igxψ(+2)λ(+2) + c.c. .

The SO(2)R symmetry acts naturally on the linear combinations Ψ(+2) = ψ(+2) + iλ(+2)

and Θ(+2) = ψ(+2) − iλ(+2).

Integrating out Ψ(+2),Θ(+2) does not generate a Chern-Simons term for the U(1) gauge

field, but it does generate a mixed Chern-Simons term coupling SO(2)R to the unbroken

U(1) gauge symmetry. The mixed Chern-Simons term is (remembering that integrating

out one fermion with charges (1,1) gives 1
4πBdA)

2

2π
BdA , (3.58)

where B is the SO(2)R background gauge field and A the unbroken U(1) gauge field. As

a result, the minimal monopole operator picks up charge −2 under SO(2)R. Denoting the

corresponding chiral superfield by

Y = ex+iã = eu ,

we have that ã, which is the scalar dual to the U(1) gauge field, is 2π periodic and transforms

under SO(2)R rotations as ã → ã+ 2α with α a 2π periodic parameter.

Therefore, the following superpotential gets generated non-pertubatively31

W =
1

Y
= e−u . (3.59)

The kinetic terms are approximately linear in terms of x and ã far out in the moduli space,

where it is approximately true that

K ∼ (log Y + log Y )2 .

Therefore there is a runaway potential, scaling like V ∼ 1
|Y |2 ∼ e−2x.

Let us now turn on a small mass deformation (3.4) for the N = 1 matter multiplet

and determine where the theory flows to. This can be done by writing the deformation

in the ultraviolet using an N = 2 spurion superfield M . In terms of this, the mass

deformation (3.4) preserving N = 1 takes the form (Σ is the N = 2 chiral superfield

constructed out of the N = 2 vector multiplet, i.e. the field strength multiplet)

δL =
1

2

∫

d4θM Tr
(

Σ2
)

,

with

M = m(θ − θ)2 .

31For SU(N) an AN−1 Toda superpotential is generated, see appendix B.
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This choice of M preserves N = 1 supersymmetry. This choice is of course non-unique; we

could have used the R-symmetry to relate any two such choices of M .

In the presence of M the standard transformation from Σ to the chiral superfield u is

modified
1

2

∫

d4θ (−1 +M)Σ2 +Σ(u+ u) .

Integrating out Σ leads to the effective action in terms of u

1

2

∫

d4θ(1−M)−1(u+ u)2 =

∫

d4θ

(

uu+
1

2
M(u+ u)2 + · · ·

)

,

where on the right hand side we have only kept terms to linear order in M . Expanding

this action in components, and including the non-perturbative superpotential (3.59), we

find (ignoring terms with derivatives)

e−uFu + c.c.− (e−uψuψu + c.c.) + |Fu|2 −m(u+ u)(Fu + F u)−
1

2
m(ψu + ψu)

2 .

Solving for the auxiliary field we find the potential

|e−u − (u+ u)m|2 . (3.60)

This can be viewed as arising from the N = 1 superpotential

WN=1 = e−Reu cos(Imu) +m(Reu)2 .

For small positive m, the minimum is at u ∼ − log 2m with u real, while for small negative

m it is at u ∼ − log 2|m|+ iπ. The scalar fields are massive in these vacua, and since the

vacua are N = 1 supersymmetric, so are the fermions. Therefore we have shown that the

theory flows to a trivial phase for both positive and negative small m, leading to a very

simple phase diagram, with a trivial massive vacuum everywhere except at m = 0, where

there is no stable vacuum.

The analysis here straightforwardly generalizes to the case of SU(N) gauge group, with

identical conclusions. Some details are in appendix B.

4 N = 1 SU(N)k and U(N)k,k′ with fundamental matter

We now discuss the phase diagram of N = 1 gauge theories with matter multiplets in the

fundamental representation. We study in turn N = 1 gauge theories with U(1), SU(N)

and U(N) gauge groups. Based on this we put forward infrared dualities relating different

N = 1 theories.

4.1 A U(1)k warm up

We take a U(1) N = 1 gauge multiplet and couple it to matter multiplets with charges

qi ∈ Z. The vector multiplet consists of Aµ, λ (λ is neutral and Majorana) and the matter

multiplets consist of (Φi,Ψi), carrying charge qi under the gauge symmetry, with i =
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1, . . . , Nf . The Lagrangian with (classically) vanishing superpotential W = 0 and with a

Chern-Simons term with level k is given by

L = − 1

4g2
F 2+iλ/∂λ+

k

4π
AdA−kg2

2π
λλ+

∑

i

|DµΦi|2+i
∑

i

Ψi /DΨi+
∑

i

(√
2iΦiΨiλ+ c.c.

)

.

(4.1)

Consistency requires that

k +
1

2

∑

i

q2i ∈ Z ,

a condition which is equivalent to

k +
1

2

∑

i

qi ∈ Z .

Let us now consider the symmetry group of the model. If we assume that the qi are

arbitrary integers the symmetry group consists of U(1)i factors acting on the multiplets

(Φi,Ψi) along with U(1)T which leads to a conserved magnetic charge, with conserved

topological current 1
2π ⋆ F . One linear combination of the U(1)i and U(1)T is coupled to

the dynamical gauge field Aµ and therefore the symmetry group is32

K =

∏Nf

j=1U(1)j ×U(1)T

U(1)
. (4.2)

If some of the charges coincide then the symmetry group K in (4.2) is enhanced to a

non-Abelian group.

There is a superpotential deformation that preserves all the symmetries

W =
∑

i

miΦiΦ
†
i ,

and again if some of the charges coincide then one can preserve the non-Abelian flavour

symmetry by taking likewise some of the mi to coincide.

If we assume that the mi are large we can integrate out the superfields Φi and obtain

a pure U(1) vector multiplet with an integer Chern-Simons level

kIR = k +
1

2

∑

i

q2i sgn(mi) . (4.3)

The long distance theory is therefore a U(1)kIR TQFT. The neutral gaugino is massive and

at tree level its mass is proportional to g2kIR.

32Let (eis1 , . . . , e
isNf , eit) be an element of

∏Nf

j=1 U(1)j × U(1)T . The identification by the U(1) in the

denominator corresponds to

sj → sj + qjα , t → t+ αkbare

for all α. Above we have defined

kbare = k +
1

2

∑

i

q2i .
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We can compute the Witten index as a function of these mi, but we have to be careful

about the sign of the index. We can take it to be positive (without loss of generality) when

all the mi are positive and then if some mi crosses the origin we do not pick up a minus

sign since the fermion Ψi has two degrees of freedom. But if the sign of the gaugino λ mass

term changes its sign then we have to account for the change in fermion number. Hence,

the Witten index of this theory is

I(mi) = sgn(kIR)|kIR| = kIR . (4.4)

Clearly, the Witten index jumps as we change the mi.

In order to understand how this comes about it is useful to first study the theory with

one charged multiplet Φ of charge q. Now the model has one mass parameter appearing

in the superpotential W = mΦΦ†. At very large positive m we get the U(1)k+q2/2 TQFT

and at very large negative m we find the U(1)k−q2/2 TQFT. At m = 0 there is a classical

flat direction. There is once again a two-loop effective potential that would lift this flat

direction [57].

At small positive m we should have, due to the two-loop potential, another vacuum

coming in from infinity with a condensed Φ. In this vacuum there are no massless particles.

It is crucial to understand that the gauge symmetry is Higgsed down to a Zq subgroup.

However, the effective theory is not just a Zq gauge theory as we have a Chern-Simons

term for the original gauge field, which becomes a Dijkgraaf-Witten-like term [58] for the

Zq gauge theory. The infrared effective theory can be written as

q

2π
A ∧ dB +

kbare
4π

A ∧ dA (4.5)

with A,B standard U(1) gauge fields. The contribution of (4.5) to the Witten index is

∆I = q2 ,

since this is the number of lines in this Dijkgraaf-Witten Zq gauge theory.

At small positive m therefore we have two supersymmetric vacua. One near the origin

with the U(1)k−q2/2 TQFT and one very far out in the moduli space with the TQFT as

in (4.5). The Witten index at small positive m is thus

I = k − q2

2
+ q2 = k +

q2

2
,

which exactly coincides with the index at large positive m (4.4)(4.3).

For generic k the theory thus has a second order phase transition where the deformed

Zq gauge theory merges with a U(1)k−q2/2 TQFT and we get the U(1)k+q2/2 TQFT on the

other side of the transition. A special treatment is necessary for k = q2/2, in which case

for negative m we have a vector multiplet with no Chern-Simons term. We dualize the

vector multiplet to a real multiplet

(A, λ) −→ (φ̃, ψ̃) ,
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with φ̃ a pseudo-scalar and ψ̃ a Majorana fermion. The superpotential W (φ̃) vanishes

because of the U(1)T symmetry. Therefore for negative m we have an S1 of vacua param-

eterized by the dual photon φ̃. This vacuum contributes zero to the Witten index since ψ̃

is massless.33

Let us now specialize to q = 1, in which case the situation is simpler as the Zq gauge

theories do not appear. In the case of q = 1, a trivial vacuum merges with the U(1)k−1/2

TQFT to become the U(1)k+1/2 TQFT. (The exceptional case of k = 1
2 will be discussed

in more detail soon.)

It is interesting to note that34 the phase transition mentioned above U(1)k−1/2 TQFT+

trivial vacuum to U(1)k+1/2 TQFT for k > 1/2 is similar to the one that appears in N = 2

supersymmetry [32]. In fact, for large enough k, the fixed point must have emergent N = 2

supersymmetry in the infrared. This is not the case generically, but it is the case for U(1)

gauge theories [59, 60]. For k = 1/2 the transition involves a circle of supersymmetric

vacua that have to disappear on the other side of the transition. By contrast, in N = 2

supersymmetric theories the supersymmetric ground states are always complex manifolds.

We will discuss this example more below.

4.2 SU(N)k and U(N)k,k′ with fundamental matter

We will now consider briefly a slightly different model: N = 1 SU(N)k vector multiplet

with a fundamental matter multiplet (Nf = 1). The logic is quite similar. Imagine that we

integrate out the matter multiplet with a large negative mass. Then we have a SU(N)k−1/2

pure vector multiplet. For k − 1/2 ≥ N/2 this flows to the SU(N)k−1/2−N/2 TQFT and

otherwise it breaks supersymmetry. At large positive m supersymmetry is unbroken if

k + 1/2 ≥ N/2 and we have a SU(N)k+1/2−N/2 TQFT at long distances. For infinitesi-

mal positive m one finds [57] a new vacuum that is incoming from infinity, in which the

fundamental matter field condenses. At low energies we remain with an SU(N − 1)k pure

vector multiplet. For k ≥ N/2 − 1/2 again supersymmetry is unbroken and we have a

SU(N − 1)k−N/2+1/2 TQFT at long distances.

The Witten indices match as follows for k − 1/2 ≥ N/2:

(

N/2 + k − 3/2

N − 1

)

+

(

N/2 + k − 3/2

N − 2

)

=

(

N/2 + k − 1/2

N − 1

)

.

This is nothing but the standard Pascal identity for binomial coefficients. The extension to

0 < k − 1/2 < N/2 is obvious: when the coefficients above vanish (written as polynomials

in k) then the corresponding vacua break supersymmetry dynamically (but the formula

continues to hold formally).

The U(N)k+N/2,k vector multiplet with a fundamental matter multiplet (Nf = 1)

behaves in a rather analogous fashion except for one additional small subtlety that

needs to be taken into account. At large negative mass we get a pure vector multiplet

U(N)k+N/2−1/2,k−1/2, which (for k ≥ 1/2) flows to the TQFT U(N)k−1/2,k−1/2. At large

33Alternatively, since the Euler number of the circle is zero, the index vanishes.
34We thank D. Gaiotto for discussions on this and some related topics.
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positive mass we get the infrared TQFT U(N)k+1/2,k+1/2. The vacuum that comes from

infinity at infinitesimal positive m is a little more subtle. The vacuum expectation value of

the scalar field in the fundamental representation breaks the gauge symmetry to U(N −1).

The effective theory in this Higgsed vacuum is that of an U(N − 1) vector multiplet with

a Chern-Simons term at level U(N − 1)k+N/2,k+1/2. The shift of the U(1) level by +1/2

requires an explanation. The point is that the Lagrangian of a U(M)P,Q Chern-Simons

theory is
P

4π
TrA ∧ dA+

Q− P

4πM
TrA ∧ Tr dA .

Therefore, if the U(M) gauge symmetry is Higgsed to U(M − 1), we would find a

U(M − 1)P,Q+(P−Q)/M

Chern-Simons theory. This is why we get the theory of an N = 1 vector multiplet

U(N − 1)k+N/2,k+1/2 which in the infrared flows to the TQFT U(N − 1)k+1/2,k+1/2.

Using level/rank duality

U(M)P,P ↔ SU(P )−M ,

we can relate all the phases that we found above in the dynamics of the SU gauge theory

to the phases of the U theory. This leads us to the following duality

U (N)k+N/2+1/2,k+1/2 +Φ ←→ SU(k + 1)−N−k/2 +Ψ . (4.6)

The duality map of deformations is ΦΦ† ←→ −ΨΨ†.

It is important to note that in this duality transformation the vacuum that comes

from infinity in the SU theory is exchanged with a vacuum that is visible at large mass in

the U theory and vice versa. This is allowed since the duality is valid near the conformal

field theory (which occurs at finite distance away from the wall at m = 0) where these

vacua merge. We would like to mention that, for instance, if we take k to be very large

on the left-hand side of (4.6), the conformal field theory is weakly coupled and can be

analyzed explicitly [59, 60] (both sides of (4.6) can be furthermore explicitly analyzed in

the ’t Hooft limit [2, 42]). There are typically several close-by fixed points, and one of

them has emergent N = 2 supersymmetry (and a U(1)R symmetry).35 To understand the

duality (4.6) in more detail, it is thus crucial to go beyond the analysis of the phases of

the theory that we have undertaken here and study the precise mapping of the quartic

operators on the two sides. This can be carried out along the lines of [2, 42], where the

same duality was studied in the ’t Hooft limit. The duality (4.6) was summarized in figure 5

in the introduction.

The duality (4.6) is very similar to non-supersymmetric boson/fermion dualities and

to N = 2 Giveon-Kutasov dualities [61]. It is not surprising that such a duality holds. We

have arrived at this duality by studying in detail the walls in parameter space where the

Witten index jumps. That we find the correct space of ground states and phase transitions

is a nontrivial consistency check of our methods. It would be very interesting to extend

35If the gauge group is U(1) and the Chern-Simons level is large enough, there is only one fixed point

with emergent N = 2 supersymmetry.
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the analysis to a general collection of matter multiplets. The dynamics near the walls is

then more complicated, as typically more than one new ground state appears from infinity

in field space.

We would like to say a few words about the special case N = 1, k = 0. The duality

reduces then to

U (1)1/2 +Φ ←→ Ψ . (4.7)

This appears to be a natural generalization of the non-supersymmetric duality between

U(1)1/2 + fermion and the O(2) model [7, 39, 40].

The phases of the model on the left hand side are a circle of vacua for negativem, a new

trivial vacuum incoming from infinity at small positive m, and a trivial supersymmetric

vacuum at large positive m. The Witten index for negative m therefore vanishes and the

Witten index for positive m is one. On the other side of the duality we should interpret Ψ

as a complex superfield, namely two real N = 1 multiplets.

The transition of the theory on the left hand side occurs at some finite positive m,

where we have a circle and a trivial vacuum on one side of the conformal field theory and

a trivial vacuum on the other side of the conformal field theory. Since the Witten index

of the circle vanishes, it can be that the circle disappears without merging with the trivial

supersymmetric vacuum. The conformal field theory then would not involve the trivial

vacuum in any essential way.36 Let us however consider the possibility that the circle

merges with the trivial vacuum. This then leads to a very natural interpretation of the

duality (4.7). Indeed, let us add a quartic term in Ψ, namely

W = −mΨΨ† +
1

2
(ΨΨ†)2 .

The critical point equation is mΨ = Ψ2Ψ† and for negative m we see clearly that there is

only one solution Ψ = 0, while for positive m we have two kinds of solutions

m > 0 : Ψ = 0,Ψ = eiφ̃
√
m,

with arbitrary φ̃, parameterizing a circle. Therefore, the phase transition precisely agrees

with what we have discussed for the U(1)1/2 + Φ theory, once we flip the sign of m in

the dictionary and include the term |Ψ|4 in the superpotential. From the point of view of

the renormalization group, the theory W = |Ψ|4 can be viewed as a marginally irrelevant

deformation of the free N = 1 theory of two real multiplets. Therefore, in the very

deep infrared at the critical point we have emergent N = 2 supersymmetry as in the

other U(1) gauge theories we discussed in the previous subsection. But here the quartic

interaction is an important N = 1 marginally irrelevant deformation that allows for a circle

of supersymmetric vacua to exist on one side of the transition but not on the other.

36We thank D. Gaiotto for useful discussions of this point.
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A Relation to N = 2 duality

We now relate our proposed small k behaviour of N = 2 SU(N)k vector multiplet in

section 3.6 with consequences that stem from N = 2 dualities that have appeared in the

literature. This gives nontrivial evidence for our picture.

Consider the duality in [62]37

N = 2 SU(2)1 + adjoint X ←→ free N = 2 chiral multiplet u+U(1)2 TQFT , (A.1)

and its generalization38 to arbitrary N [63]

N = 2 SU(N)1 + adjoint X ←→ N = 2 free chirals u1, . . . , uN +U(1)−N TQFT . (A.2)

We like to stress that these dualities hold only after the TQFT on the right hand side is

added. This will be crucial for us in what follows.

Assuming (A.1) then the following immediately follows: adding a superpotential mass

for the adjoint chiral on the left hand side, we find that the left hand side flows to the

N = 2 SU(2)1 vector multiplet. On the right hand side, this deformation amounts to adding

a linear superpotential W ∝ u. This breaks N = 2 supersymmetry spontaneously, leading

to a Dirac goldstino. Thus the right hand side flows to U(1)2 TQFT+Dirac Goldstino.

Analogously, adding a superpotential mass for the adjoint chiral on the left hand side

of (A.2) we get the N = 2 SU(N)1 vector multiplet. This is realized on the right hand side

of (A.2) by the linear superpotential W ∝ u1. This breaks supersymmetry,39 and the right

hand side flows to U(1)−N TQFT+Dirac Goldstino.

37The S3 partition function of both sides agree once a factor of 2 that was missing in [62] is added, and

that corresponds to the contribution of the U(1)2 TQFT on the right hand side.
38We extend the duality from U(N) to SU(N) gauge group.
39The rest of the chiral multiplets become massive by virtue of having a nontrivial Kähler potential.
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This should be contrasted with our general proposal for 0 < k < N/2

N = 2 SU(N)k ←→ U(k)k−N,−N +Dirac goldstino .

Setting k = 1 we indeed obtain

N = 2 SU(N)1 ←→ U(1)−N +Dirac goldstino , (A.3)

and our proposal for k = 1 is precisely what we obtained from the dualities (A.1) and (A.2)

by adding a superpotential deformation on both sides.

B The general case with k = 0

For SU(N) we have that the non-perturbative superpotential along the Coulomb branch is

W (U) ∼
∑

i

e−(Ui−Ui+1) .

This can be combined with the mass deformation of the N = 1 adjoint multiplet to the

following N = 1 superpotential

W ∼
∑

i

e−(Φi−Φi+1) cos(Γi − Γi+1) +m
∑

i

Φ2
i ,

where we have used that Ui = Φi+ iΓi. From the supersymmetric vacua equations we find

that Γi = 0 and

eΦi−1−φi − eΦi−φi+1 +mΦi = 0.

It is not difficult to prove that the system above can have only one solution and there is a

unique massive supersymmetric vacuum for both signs of m.

C Proof of identity (3.46).

We give an elementary proof of

∑

P

(−1)N−L
L
∏

I=1

k!

SI !(k − SI)!
=

(N + k − 1)!

N !(k − 1)!
. (C.1)

We start with the generating function F (k) = −∑k
SI=1

(

k

SI

)

xSI . We next consider

the function

Gk = Fk + F 2
k + . . . (C.2)

Next, we expand

Gk =
∑

m

dmk xm .

It is easy to observe that

dNk =
∑

P

(−1)L
L
∏

I=1

(

k

SI

)

.
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Indeed, considering (C.2), we see that the first term on the right hand side would correspond

to a partition of N into one term, the term F 2
k would correspond to a partition of N into

two terms, etc. The coefficient (−1)L comes from the minus sign in the definition of Fk.

Now let us compute Gk explicitly. We start from the binomial formula, which leads to

Fk(x) = −(1 + x)k + 1 and hence

Gk =
Fk

1− Fk
=

−(1 + x)k + 1

(1 + x)k
= −1 + (1 + x)−k

We then use the standard result

(1 + x)−k =
∑ 1

j!
(−k)(−k − 1) · · · (−k − j + 1)xj =

∑

j

(−1)j

(

k + j − 1

j

)

xj

to infer that

dNk = (−1)N

(

k +N − 1

N

)

,

which finishes the proof.
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[30] C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies and Dualities

in (2 + 1)d, arXiv:1712.08639 [INSPIRE].

[31] E. Witten, Supersymmetric index of three-dimensional gauge theory, in The many faces of

the superworld, M.A. Shifman ed., pp. 156–184 [hep-th/9903005] [INSPIRE].

[32] K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-Matter Theories,

JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].

[33] E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253

[INSPIRE].

[34] A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and

Effective Gauge Theory Actions in Odd Dimensional Space-Times,

Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].

[35] A.N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions,

Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].

[36] A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action

in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].

[37] K. Ohta, Supersymmetric index and s rule for type IIB branes, JHEP 10 (1999) 006

[hep-th/9908120] [INSPIRE].

[38] I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in

(2 + 1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].

[39] W. Chen, M.P.A. Fisher and Y.-S. Wu, Mott transition in an anyon gas,

Phys. Rev. B 48 (1993) 13749 [cond-mat/9301037] [INSPIRE].

[40] M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and

superfluid states, Phys. Rev. B 89 (2014) 235116 [arXiv:1201.4393] [INSPIRE].

[41] S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons Theories

with Vector Matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].

[42] O. Aharony, S. Jain and S. Minwalla, Flows, Fixed Points and Duality in

Chern-Simons-matter theories, to appear.

[43] J.M. Maldacena and H.S. Nastase, The Supergravity dual of a theory with dynamical

supersymmetry breaking, JHEP 09 (2001) 024 [hep-th/0105049] [INSPIRE].

[44] J. Gomis, On SUSY breaking and χSB from string duals, Nucl. Phys. B 624 (2002) 181

[hep-th/0111060] [INSPIRE].

[45] B.S. Acharya and C. Vafa, On domain walls of N=1 supersymmetric Yang-Mills in

four-dimensions, hep-th/0103011 [INSPIRE].

[46] A. Armoni, A. Giveon, D. Israel and V. Niarchos, Brane Dynamics and 3D Seiberg Duality on

the Domain Walls of 4D N = 1 SYM, JHEP 07 (2009) 061 [arXiv:0905.3195] [INSPIRE].

[47] M. Dierigl and A. Pritzel, Topological Model for Domain Walls in (Super-)Yang-Mills

Theories, Phys. Rev. D 90 (2014) 105008 [arXiv:1405.4291] [INSPIRE].

[48] A. Armoni and V. Niarchos, Defects in Chern-Simons theory, gauged WZW models on the

brane and level-rank duality, JHEP 07 (2015) 062 [arXiv:1505.02916] [INSPIRE].

[49] Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1d topological phases,

PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].

– 42 –

https://arxiv.org/abs/1712.08639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.08639
https://arxiv.org/abs/hep-th/9903005
https://inspirehep.net/search?p=find+IRN+3981053
https://doi.org/10.1007/JHEP07(2013)079
https://arxiv.org/abs/1305.1633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1633
https://doi.org/10.1016/0550-3213(82)90071-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B202,253%22
https://doi.org/10.1103/PhysRevLett.51.2077
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,51,2077%22
https://doi.org/10.1103/PhysRevLett.52.18
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,52,18%22
https://doi.org/10.1103/PhysRevD.29.2366
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D29,2366%22
https://doi.org/10.1088/1126-6708/1999/10/006
https://arxiv.org/abs/hep-th/9908120
https://inspirehep.net/search?p=find+J+%22JHEP,9910,006%22
https://doi.org/10.1016/0550-3213(82)90277-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B206,413%22
https://doi.org/10.1103/PhysRevB.48.13749
https://arxiv.org/abs/cond-mat/9301037
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,B48,13749%22
https://doi.org/10.1103/PhysRevB.89.235116
https://arxiv.org/abs/1201.4393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4393
https://doi.org/10.1007/JHEP10(2012)194
https://arxiv.org/abs/1207.4750
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4750
https://doi.org/10.1088/1126-6708/2001/09/024
https://arxiv.org/abs/hep-th/0105049
https://inspirehep.net/search?p=find+J+%22JHEP,0109,024%22
https://doi.org/10.1016/S0550-3213(01)00658-7
https://arxiv.org/abs/hep-th/0111060
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B624,181%22
https://arxiv.org/abs/hep-th/0103011
https://inspirehep.net/search?p=find+IRN+4580168
https://doi.org/10.1088/1126-6708/2009/07/061
https://arxiv.org/abs/0905.3195
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3195
https://doi.org/10.1103/PhysRevD.90.105008
https://arxiv.org/abs/1405.4291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4291
https://doi.org/10.1007/JHEP07(2015)062
https://arxiv.org/abs/1505.02916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02916
https://doi.org/10.1093/ptep/ptx010
https://arxiv.org/abs/1610.07010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.07010


J
H
E
P
0
7
(
2
0
1
8
)
1
2
3

[50] P. Draper, Domain Walls and the CP Anomaly in Softly Broken Supersymmetric QCD,

Phys. Rev. D 97 (2018) 085003 [arXiv:1801.05477] [INSPIRE].

[51] J. Frohlich and E. Thiran, Integral quadratic forms, Kac-Moody algebras, and fractional

quantum Hall effect: An ADE-O classification, J. Stat. Phys. 76 (1994) 209.

[52] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous

Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[53] G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].

[54] S.R. Coleman and B.R. Hill, No More Corrections to the Topological Mass Term in QED in

Three-Dimensions, Phys. Lett. B 159 (1985) 184 [INSPIRE].

[55] A. Armoni and T.J. Hollowood, Interactions of domain walls of SUSY Yang-Mills as

D-branes, JHEP 02 (2006) 072 [hep-th/0601150] [INSPIRE].

[56] A. Armoni and T.J. Hollowood, Sitting on the domain walls of N = 1 super Yang-Mills,

JHEP 07 (2005) 043 [hep-th/0505213] [INSPIRE].

[57] C. Choi, M. Roĉek and A. Sharon, Dualities and Phases of 3d N = 1 SQCD, to appear.

[58] R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology,

Commun. Math. Phys. 129 (1990) 393 [INSPIRE].

[59] L.V. Avdeev, G.V. Grigorev and D.I. Kazakov, Renormalizations in Abelian Chern-Simons

field theories with matter, Nucl. Phys. B 382 (1992) 561 [INSPIRE].

[60] L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Renormalizations in supersymmetric and

nonsupersymmetric nonAbelian Chern-Simons field theories with matter,

Nucl. Phys. B 391 (1993) 333 [INSPIRE].

[61] A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory,

Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

[62] D. Jafferis and X. Yin, A Duality Appetizer, arXiv:1103.5700 [INSPIRE].

[63] A. Kapustin, H. Kim and J. Park, Dualities for 3d Theories with Tensor Matter,

JHEP 12 (2011) 087 [arXiv:1110.2547] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.97.085003
https://arxiv.org/abs/1801.05477
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.05477
http://dx.doi.org/10.1007/BF02188661
https://doi.org/10.1103/PhysRevD.7.1888
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,1888%22
https://arxiv.org/abs/hep-th/9902115
https://inspirehep.net/search?p=find+IRN+3966470
https://doi.org/10.1016/0370-2693(85)90883-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B159,184%22
https://doi.org/10.1088/1126-6708/2006/02/072
https://arxiv.org/abs/hep-th/0601150
https://inspirehep.net/search?p=find+J+%22JHEP,0602,072%22
https://doi.org/10.1088/1126-6708/2005/07/043
https://arxiv.org/abs/hep-th/0505213
https://inspirehep.net/search?p=find+J+%22JHEP,0507,043%22
https://doi.org/10.1007/BF02096988
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,129,393%22
https://doi.org/10.1016/0550-3213(92)90659-Y
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B382,561%22
https://doi.org/10.1016/0550-3213(93)90151-E
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B391,333%22
https://doi.org/10.1016/j.nuclphysb.2008.09.045
https://arxiv.org/abs/0808.0360
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0360
https://arxiv.org/abs/1103.5700
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5700
https://doi.org/10.1007/JHEP12(2011)087
https://arxiv.org/abs/1110.2547
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2547

	Introduction and summary
	N=1 vector multiplet — a review [24]
	N=1 vector multiplet with an adjoint matter multiplet
	Large mass asymptotic phases
	Classical moduli space of vacua at m=0
	Classical Abelian vacua
	Classical non-Abelian vacua

	Semiclassical moduli space of vacua
	Semiclassical Abelian vacuum near m=0
	Phases of the theory with k>=N
	Critical points of the superpotential
	SU(2)(k)

	Phases of the theory with 0<k<N
	Dynamical metastable supersymmetry breaking at 0<k<N
	Phases of the theory with k=0

	N=1 SU(N)(k) and U(N)(k,k') with fundamental matter
	A U(1)(k) warm up
	SU(N)(k) and U(N)(k,k') with fundamental matter

	Relation to N=2 duality
	The general case with k=0
	Proof of identity (3.46).

