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ABSTRACT: It was recently observed that Kerr-AdS metrics with negative mass can de-
scribe smooth spacetimes that have a region within which naked closed time-like curves
can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known
as time machines. In this paper we study the BPS limit of these metrics, and find that
the mass and angular momenta become discretised. The completeness of the spacetime
also requires that the asymptotic time coordinate be periodic, with precisely the same
period as that which arises naturally for the global AdS, viewed as a hyperboliod in one
extra dimension, in which the time machine spacetime is immersed. For the case of equal
angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show
they are consistent with the global structure. Thus in examples where the solutions can
be embedded in gauged supergravity, they will be supersymmetric. We also compare the
global structure of the BPS AdS3 time machine with the BTZ black hole, and show that

the global structure allows two different supersymmetric limits.
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1 Introduction

The Kerr metric [1] is arguably the most important exact vacuum solution in Einstein’s
theory of General Relativity. Over the years, the solution has been generalised to include
a cosmological constant and also to higher dimensions [2-7]. These metrics are asymptotic
to Minkowski, de Sitter (dS) or anti-de Sitter (AdS) spacetimes, depending on the cosmo-
logical constant. They carry mass (M) and angular momenta (.J;) as conserved quantities.

Black holes have played a very important role in elucidating the structure of string
theory and M-theory, notably in the discussion of non-perturbative effects and duality
symmetries. Among the black hole solutions the supersymmetric, or BPS, black holes
are of particular interest, since they acquire some degree of protection against quantum
corrections, and may thus give more trustworthy information about the non-perturbative
structure of the theory. Black holes in string theory or M-theory are described, at least at
leading order, as solutions in the low-energy supergravity limit of the theory in question.
Typically, the solutions can carry electromagnetic charges, or higher-degree p-form charges
too. The supersymmetric BPS solutions usually require these charges to be non-vanishing,



as well as having non-zero mass and possibly rotation. However, one can also consider BPS
limits of rotating black hole metrics in string or M-theory that do not carry any additional
electromagnetic or p-form charges.

The BPS limit of a higher-dimensional rotating Kerr-AdS black hole corresponds to
the case where the mass M and angular momenta J; satisfy

M=} gl (1.1)

where 1/g is the “radius” of the asymptotic AdS spacetime in which the solution is im-
mersed [8]. This BPS condition was studied in detail in [9] for the five-dimensional Kerr-
AdS black holes, and the Killing spinors were constructed in the case where the two angular
momenta were equal. The BPS limit no longer describes a black hole, however, since the
singularity is no longer cloaked by a horizon. Similar conclusions arise in higher dimensions
also. Interestingly, if one instead Euclideanises the spacetime and takes the cosmological
constant to be positive, the Kerr-dS metrics become Einstein-Sasaki in the BPS limit. Fur-
thermore, these can smoothly extend onto complete, compact manifolds for appropriate
discretised values of the metric parameters [10, 11]. This generalises an earlier construction
of smooth Einstein-Sasaki spaces in [12].

Recently, it was observed [13] that for general odd dimensions, the Kerr and Kerr-AdS
metrics can extend onto smooth manifolds if the mass parameter is taken to be negative,
provided that all the angular momenta are non-zero. The regularity of the spacetime
manifold now requires that the asymptotic time coordinate be assigned a specific (real)
periodicity. There is also a localised region within the spacetime where an azimuthal
coordinate becomes timelike; such a situation, as we shall discuss in more detail below, is
known as a “time machine” in the literature.

The interesting point about these Kerr-AdS time-machine metrics from our standpoint
is that they continue to be smooth, non-singular, spacetimes even in the BPS limit. Thus,
these solutions are of potential interest in string theory and M-theory. They will form the
subject of our investigations in this paper.

Before describing these investigations in more detail, we shall first summarise some
known pertinent results about the rotating black holes of supergravity and string theory.

For a given set of angular momenta, provided that the mass is sufficiently large, the
metrics describe rotating black holes. Such rotating black holes contain a localised region
admitting closed time-like curves (CTCs), bounded on the outside by a velocity of light
surface (VLS), within which one or more periodic azimuthal angular coordinates become
time-like. Such a situation is commonly referred to as a time machine.! In a rotating black
hole, the time machine is hidden inside the black hole event horizon.

If the black hole is over-rotating, the time machine can extend outside the horizon.
For example, it was demonstrated, for a supersymmetric charged black hole with equal
angular momenta in five dimensions [15], that in the over-rotating situation the boundary
of the time machine lies outside the horizon and so it becomes naked [16]. (See also [17—
19].) An examination of geodesics showed that they could not penetrate the horizon, and

IThis should be distinguished from what happens in a spacetime like the Godel universe [14], where the
normal region of the spacetime is surrounded by the VLS, outside of which lie the naked CTCs.



hence the spacetime configuration is called a repulson [16]. (See also [20].) In fact the
“horizon” becomes a Euclidean Killing horizon that can induce a conical singularity unless
the asymptotic time coordinate itself is assigned a specific (real) period, in which case the
spacetime configuration is smooth and geodesically complete [8]. One now has a situation
where there are two different kinds of closed time-like curves; those associated with the local
“time machine region” where an azimuthal angular coordinate has become time-like, and
those associated with the global real periodicity that has been assigned to the asymptotic
time coordinate.

By convention, a situation where the asymptotic time coordinate has a real periodicity
is not usually referred to as a “time machine.” A familiar example of this type is the strict
global anti-de Sitter spacetime AdSp, defined as a hyperboloid in E>P~1.2 For the sake of
clarity in what follows, we shall follow this convention and reserve the term “time machine”
for the situation where there is a localised region inside a VLS in which a spatial angular
coordinate has become time-like. Our purpose in this paper is not to advocate the BPS
Kerr-AdS metrics for time travel, but simply to investigate the intriguing global structures
that can arise when the mass is taken to be negative.

In this paper, we shall remain in Lorentzian signature and with a negative cosmological
constant, but now we consider the BPS Kerr-AdS metrics where the mass is taken to be
negative. As mentioned above, now, unlike the example considered in [9] where the mass
was assumed to be positive, this can yield a smooth time-machine spacetime. BPS time
machines have been constructed previously in the literature, typically having positive mass
and with additional electric charges [8, 16, 21, 22]. Our focus in this paper, however, will be
on the pure gravity BPS Kerr-AdS metrics. We shall show that these metrics extend onto
smooth spacetimes provided that the mass is negative, and that the asymptotic Lorenzian
time coordinate is periodically identified, with a period precisely equal to that of the time
coordinate in the global AdS in which the spacetime is immersed. Furthermore, in order
for the various periods requried for completeness to be comensurate, the mass and angular
momenta become discretised, in a manner analogous to the discretisation of the parameters
in the Einstein-Sasaki spaces [10, 11], even though the spacetimes we are considering here
are Lorentzian and non-compact. For Kerr-AdS metrics with equal angular momenta in
odd dimensions, we construct the Killing spinors in the BPS limit explicitly, and show
that they are compatible with the global structure required for the completeness of the
spacetime. Thus in dimensions where the solution can be embedded within a supergravity
theory, it will be superymmetric.

The paper is organised as follows. In section 2, we begin by reviewing the time machine
spacetimes that were obtained in [13] from D = (2n+ 1)-dimensional Kerr-AdS spacetimes
with equal angular momenta, by taking the mass to be negative, and we describe their BPS
limits. We give an explicit construction of the Killing spinors in the BPS spacetimes, show-
ing how they can be obtained by making use of the gauge-covariantly constant spinors that
exist in the underlying CP" ! spaces that form the bases of the (2n — 1)-dimensional spher-

2Throughout this paper, when we speak of “global AdS” we shall mean the one with the periodic
time coordinate, arising via the hyperboloidal embedding in E*P~!. The covering space, where time is
unwrapped to cover the entire real line, will be denoted by CAdS.



ical surfaces in the spacetimes. We also study the restrictions on the metric parameters
that result from requiring completeness of the spacetimes, resulting from the compatibility
conditions for periodicities at the various degenerate surfaces. These restrictions imply
that the mass and angular momentum must be rational multiples of a basic unit. They
also imply that the time coordinate must be periodic, with exactly the periodicity of the
time coordinate in the global AdS spacetime in which the time machine is immersed.

In section 3 we consider the case of even-dimensional spacetimes, showing that Kerr-
AdS metrics with equal angular momenta can give rise in the BPS limit to metrics de-
scribing foliations of the previously discussed odd-dimensional time machines. In section 4
we discuss the analogous odd and even-dimensional BPS limits of Kerr-AdS metrics with
general, unequal, angular momenta. Again these give rise to time machines if the mass is
taken to be negative, and we analyse the restrictions on the metric parameters to ensure
global completeness of the spacetime manifolds. Again, the mass and the angular momenta
are discretised, in the sense that they are constrained to be certain rational multiples of a
basic unit.

In section 5 we discuss the special case of three dimensions. Here, the Kerr-AdS metric
is necessarily locally isomorphic to AdS3, and thus it is also locally isomorphic to the BTZ
black hole [23]. We study the relation between the time machine and the BTZ spacetimes,
and compare their Killing spinors in the respective BPS limits. Interestingly, the limits are
different, but in each case the Killing spinors are compatible with the global structure.

Finally, after our conclusions, we include two appendices. Appendix A gives an explicit
construction of the gauge-covariantly spinors in the complex projective spaces, employing
an iterative construction of CP" in terms of CP"~! that was given in [26]. We use these
gauge-covariantly constant spinors in the construction of Killing spinors in section 2. Ap-
pendix B contains some results relating the various vectors and tensors that can be built
from Killing-spinor bilinears. These are relevant for the construction of the spinorial square
roots of the time-like Killing vectors in the BPS spacetimes.

2 Equal angular momenta in D = 2n + 1

2.1 Kerr black holes and time machines

We begin with the Kerr-AdS metrics in D = 2n+1 dimensions with all n angular momenta
set equal. The metric, satisfying R, = —(D — 1)gzgw, contains two integration constants
(m,a), and it is given by [27]

14 g%r? Udr? r? + a? 2m

ds3,1 = = dt* + VAT T (o +dS2_)) + TP (dt — ao)?,
- 1
c=dyp+ A, U:(r2—i—a2)n ! ) V:T—2(1+g2r2) (r2+a2)n, (2.1)
where = = 1 — ag?, and d¥2_, is the standard Fubini-Study metric on CP"~!. There is

circle, parameterised by the coordinate 1) with period 2, which is fibred over the CP"~!
base, and o is the 1-form on the fibres, given by o = di) + A with dA = 2J where J is the
Kihler form on CP"~!. The terms (02 + d¥2_,) in the metric are nothing but the metric



on the unit round sphere S?"~! with R; = (n— 1)5}. The metric (2.1) is asymptotic to
anti-de Sitter spacetime with radius ¢ =1/g.

The mass and the (equal) angular momenta are given by

m(2n — E)Agnfl maAgn,1
M=—"%mm = e (22)
where A}, is the volume of a unit round S¥, given by
1
Ap= (2.3)

D[Sk +1)]°

It will be helpful to make a coordinate transformation and a redefinition of the integration
constants to replace (m,a) by (u,v), as follows:

2, 2 1 n+1
r i—a — 72, a:\/j, mzu(lyg2> . (2.4)
= I 2 "

The metric (2.1) becomes [13]

ds2 _ dr? [ o 2 2 2 752
SQ”H_T_Wdt +r*W(o 4+ w)* +rd3;_,,
— 2,.2 M _ v - %
f—(1+gr)W—T2(n_l), W=1l+5, w=—go o, d (2.5)
The mass and angular momenta become
Aop_1 9 Aap—1
M = 2n —1 J=— NI 2.6

The metric (2.5) describes a rotating black hole if © and v are both positive, and a time
machine if ¢ and v are both negative [13], as we shall review later.

2.2 BPS limits

Under certain conditions the metric (2.5) will admit a Killing spinor, obeying the equation
1
V€ + 3 gTle=0. (2.7)

A necessary condition for this to occur is that the BPS condition on the mass and angular
momentum, namely
M =ngJ, (2.8)

should hold. This implies that

2
p=gv, or = e (2.9)

2n —1)2°
These two conditions correspond to ag = 1 (and hence = = 0) or ag = 2n — 1 respec-
tively. However, as we shall see, only the first of these cases gives a solution admitting a
Killing spinor.



In AdS itself (i.e. =0 and v = 0), the Killing vectors

0 0

a7 t 955 (2.10)

Ky =
have the property that g, KYKY! = —1, and in fact they can each be expressed in the
form K! = €4T" ey, where each of e+ is one of the Killing spinors of the AdS spacetime.
We expect that if the BPS spacetime where p and v are non-zero, obeying one or other of
the conditions in (2.9), does admit a Killing spinor, then it should be such that it limits
to one of the aforementioned AdS Killing spinors in the limit where p and v go to zero.
This means that if the BPS spacetime admits a Killing spinor, the norm K* K, should be
manifestly negative (see [8] for a discussion of this). For the two cases in (2.9) we find

w=g’v: guw KKY = -1, (2.11)

__ 9
F=Tn 12"

nzg2y

g KK = =1+ (2n — 12202

(2.12)
where K is defined in (2.10). This indicates that (2.11) gives rise to a true BPS limit, in
the sense that the K Killing vector (but not K_) admits a spinorial square root, whereas
for (2.12) it does not (nor does K_).

For positive u = ¢, the metric has a curvature power-law naked singularity at r = 0.

We shall thus focus on the case when i = g?v is negative. Defining v = —a, the metric
becomes
2 foa, dr? 2 2,2 32
ds :_Wdt +7+T W (dy + A+ wdt)” +r*dS; (2.13)
_ 2.2 _ o _ a9
f=9r+W, W—l—ﬁa W= e

We have made the specific choice for the sign of /v — \/v2g% = vg = —ag when sending
1 = vg negative, and with this choice, the Killing vector admitting the spinorial square
root is again given by (2.10) with the plus sign choice, for which we now define

0 0

K=— —. 2.14
ot 9oy (2:14)
The mass and angular momentum are given by
2
ng-o go
M=— _ J=2=Ag,_ 2.15
ST -AQn 1, Ry A2n 1 ( )

(recall that we have made the sign choice that \/ur — —ag when sending p and v negative).
The metric has a power-law curvature singularity at » = 0, but there is a Euclidean Killing
horizon at r = rg > 0 for which f(r9) = 0. Thus we have

a=(1+g*F)rg". (2.16)
The absence of a conical singularity at r = ry requires that the degenerate Killing vector

1 2 0 2 9y 0
- 2in 9 1
¢ n+ (n+1)grd (gro ot +(1+49°r) 6¢> ’ (2.17)




must generate a 27 period. As we shall discuss later, this implies that the ¢ coordinate
must be periodically identified. Note that we have scaled the Killing vector so that the
corresponding Euclidean surface gravity is precisely unity.

Defining a radius r, = aﬁ, we see that gy, < 0 in the region

ro <1 < Ty, (2.18)

and thus 1 is the time coordinate in this region. (The VLS is located at r = r. where
gy = 0.) Since 1 is periodic, with period ¢ as stated earlier, it follows that there are
closed timelike curves in the region defined by (2.18). This situation is commonly described
as a time machine (see [8] for a more detailed discussion).

Finally, it is worth pointing out that in the case yu = g2 v, for which there is a Killing
spinor, the corresponding metric (2.13) can be expressed, after we make a coordinate change
¥ — 1 — gt, as a time bundle over a D = 2n dimensional space:

2
ds3, 1 = — (dt + gr¥(dy + A))2 + d; + 72 (f (dyp + A)? + dzi,l) . (2.19)

The length of the time fibre is constant, and the base is a 2n-dimensional Einstein-Kéhler
metric. In fact this is Lorentzian version of the situation in an Einstein-Sasaki space,
which can be written, at least locally, as a constant-length circle fibration over an Einstein-
Kahler base space.

2.3 Killing spinors

Here, we construct the Killing spinor 7 in the (2n+ 1)-dimensional BPS time machine with
equal angular momenta, whose metric is given by (2.13), obeying

1
Van + 59lan = 0. (2.20)

We shall make use of the fact that CP"~! admits a gauge-covariantly constant spinor &
satisfying .
~ in

where D = d + %d}ij fij is the spinor-covariant exterior derivative and D= éif)i, with fl
being the Dirac matrices and é denoting a vielbein basis for CP"~!.3 With an appropriate
choice of basis for the Dirac matrices one can easily establish that £ obeys

JIT 6=-2i(n—1)¢, T.&=¢, (2.22)

where I, denotes the chirality operator on CP"~!. (We give an iterative construction of
the gauge-covariantly constant spinor £ in appendix A.)
We introduce the vielbein basis e for (2.13), with
0 1 dr 2 i ~i
e’ = udt, e =—, e’ = h(dyp + A+ wdt), e'=re', (2.23)

v

3We use d to denote the standard exterior derivative in the (2n — 2)-dimensional CP" ™! space in order
to distinguish it from d which is the exterior derivative in the full (2n + 1)-dimensional space-time.



where

_ ]S _ _
U= v=1/f, h=rVW. (2.24)

The inverse vielbein E, is given by

1/0 o o
0= <8t “’aw) LT Vg 2

9
o

where EZ is the inverse vielbein for CP" . The torsion-free spin connection w® for the

10 1 /<~
h g’ Ei—r<Ei_Ai ), (2.25)

vielbein (2.23) is easily calculated, leading to the spinor-covariant exterior derivative D =

d+ iwab ITyp given by

u'v hw'v hw'v h'v hw'v h
D =d+¢° <2ur01 ™ F12>—€1 ™" Tge — €2 <%F12+ ™ F01+ JZ >

(v h - 1 .
—e <27“ 'y + 22 Ji? FQJ’) + Zw Ty (2.26)

Writing the (2n + 1)-dimensional Lorentz indices as a = (a, i) with a = 0, 1,2, we may
decompose the (2n + 1)-dimensional Dirac matrices in the form

Fa=7®TLk, =17y, (2.27)

where 7, are 2 x 2 Dirac matrices, which we take to be

we(N) w=(0a) (0 h) e

It then follows that the spinor-covariant exterior derivative (2.26) is given by

R ~ ! ho' ho'
D=d®1+12D+¢€° ﬂ’Y01— wvm ®1—e wv702®]1
2u 4u 4u
h'v hw'v h
—® (2@ 1+ ’Yo1®]1+ J”]1®F7,j
2h 4u
A h
- 2—71®FF+ S il e @I (2.29)

where D is the spinor-covariant exterior derivative on CP"~! that we introduced earlier,
and d denotes the standard exterior derivative in the three directions orthogonal to CP"~!,
ie.d=d+d=e*E, with

. 10 w o 0 1 0

_ _o0(to w 1 2 L

d=eBa=e <u ot u 8¢> e vy Te h oy’ (2:30)
~ i B 21 =~ 8

d=¢e¢E;=¢ " (EZ A; 8¢> . (2.31)

With these preliminaries, it is now straightforward to obtain the equations for the
Killing spinor 7 in the (2n + 1)-dimensional spacetime, satisfying (2.20). It takes the form

n=ex¢, (2.32)



where ¢ is the gauge-covariantly constant spinor on CP" ! that we introduced earlier. After
further straightforward computations, we find that the 2-component spinor € is given by

(gr—i—i\/W)é
)

We may now straightforwardly verify that the Killing vector (2.14) may be written in

1 1
e= Wi exp <—zigt — 2inw> (2.33)

terms of the Killing spinor 7 as
K% =ql". (2.34)

2.4 Global considerations and discretisation of parameters

The discussion in this section is closely analogous to that in [10, 11], where the global

structure of Einstein-Sasaki spaces was studied. We begin by defining the Killing vectors
10 0

= T gl = a
g Ot oY

where we have included a 1/g in the definition of ¢y in order to make it dimensionless. ¢;

o (2.35)

generates a 27 period. It follows from (2.17) that
g*réty = [n+(n+1) g2r8} (- (1+ 927‘8) l. (2.36)

Since ¢ and ¢; both generate periodic translations by 2w, the ratio of their coefficients
must be rational, since otherwise one there would be identifications in the time direction,
generated by /, of arbitrarily close points in the spacetime manifold. Hence g?rZ must
be rational, which we shall write as 927“3 = p/q, for coprime integers p and ¢. Conse-
quently (2.36) can be written as

plo=ql+q b1, (2.37)
where the integers ¢ and g¢; are given by

g=Mm+1p+ng, q=—-(@+q. (2.38)

Note that the set of integers {p, ¢, q1} are necessarily coprime, since p and ¢ are coprime.

It is straightforward also to see from (2.38) that since p and ¢ are coprime, it must
also be the case that ¢ and ¢; are coprime. It then follows from (2.37) that ¢y generates
a smallest translation period of 27, and hence that gt has period 2w. Interestingly, this
is precisely the same as the period of the time coordinate in a global AdS with radius
g~ '. Thus the periodicity of ¢ that is required in order to eliminate the conical singularity
at the Euclidean Killing horizon at r» = rq is exactly the same as the time periodicity of
the embedding AdS spacetime itself. Consequently, the Killing spinor (2.33) is consistent
with the global structure of the time machine spacetime, and hence the solution would be
supersymmetric if it can be embedded in a gauged supergravity.

The fact that gzrg = p/q is rational implies that the possible masses (and angular
momenta) for the BPS time-machine spacetimes are discretised. From (2.15) and (2.16),

nAn—1 p\ (P\"
M=-nJ=——————[14+= = . 2.39
T g ( +q~> (q) (2.39)

we have



3 Equal angular momenta in D = 2n

The Kerr-AdS metrics in even D = 2n dimensions with all equal angular momenta can be
expressed as [27]

ANg(1 4 g%r?) Udr? p*do*  r*+a®
ds? = — = dt* + v —om + A, + = sin? 0[(dip + A)? + d¥2_,]
2m . 2
+ 7z (Ao dt = asin®0(dy + A)]”, (3.1)
where
2 (2 2\7—2
+ 1 n—
vy L) ety
Ag=1—a%g?cos? 0, p* =12 +a%cos’ 0, =Z=1-ad*¢*. (3.2

The mass and the (equal) angular momenta are [27]

nmAp_o maAp_2
M= —""-"= J=—"" 3.3
dr=n 4r=n (3:3)
The BPS limit M = ngJ implies that ag = 1 and hence = — 0. This requires that
m~E"—0, (3.4)

so that M and J remain finite. In this limit, for the metric to be real and the coordinate
f to be spacelike, we need make the coordinate transformation

1
9—)571'—10 2 +a? = Zr? = 0. (3.5)
After some algebra we end up
ds3, = g~ 2dh? + cosh® 0 ds3,, . (3.6)

where ds3, _; is the time machine metric obtained earlier for odd dimensions with all equal
angular momenta. In deriving this, we need to further redefine the scaled m as

m
m— i— . 3.7
g (3.7)

The origin of this is that in the (V' — 2m) factor, there is a term of 2mr.

4 General non-equal angular momenta

In this section, we consider the BPS limit of general Kerr-AdS black holes with general

angular momenta.

~10 -



4.1 D=5

The Kerr-AdS metric in five dimensions was constructed in [5], given by

A, 29 beo > Agsin20 2
ds? = - [d - "’Sin doy — cos” d@} + % [adt r :ra d¢1]

Agcos® T +b2 2 p2dr?  p*df?
072 T lbadt — d

" p? [ =b 2| + A, * Ag ,
1 2.2 b 2 2\ o 20 2 b2 29

+;inzT [abdt— (2t a)sin®0 , _alt P01

Za =p

where

A, = %2 (7‘2 + az) (7‘2 + b2) (1 + g2r2) —2m, Ap=1—a%g?cos?f —b’g?sin 6,

0> =712+ a%cos® 0 + b?sin? 0, . =1—d%¢%, Ey=1-0b%%. (4.2)
The metric satisfies R, = —4¢%g,,. The mass and angular momenta are [27]:
™ (22, + 25, — E4Ep) Tma Tmb
M= —=2=2 ) Jo = == Jy = o= o0 =2 (43)
=a=p Za=b ZSaZy

And Riemann tensor squared is

96m? (3p2 — 47’2) (,02 — 4r2)

Riem? = 40g* + e (4.4)
We can take the BPS limit by setting
1 1 1
a=- <1 a2926> ) b= - ( 52926> ,
g 2 g
1 -
r? = —? (1 — T‘2926) , m = g2me3, (4.5)
and sending € — 0. The metric becomes
2
a? —72) sin? 0 2 _72) cos? 6 52 52
a2 = — |ar+ L 2) a5, + 2) dgo| +L-a0® + L-ai
asg ﬁ g 6 T
A, 72 [sin? 6 cos? 6 2 Agsin®0cos?6 (a2 — 7"2 B2 — 2
+ [32 ( 2 2 d¢ ,62 2 d¢2> + pz ( ¢1 52 2 d¢2 )
(4.6)
where
A O -7) (82— 7) + 20
r = T'2 I
Ay = ¢ (042 cos? 0 + (2 sin? 0) ,
02 =72 —a?cos? 0 — B%sin? 0, (4.7)

(An analogous scaling procedure was used for five-dimensional Kerr-AdS with equal angular
momenta in [9].) The metric is a constant time bundle over a four-dimensional Einstein-
Kahler space. The mass and angular momenta become

- nm(a2+52) = mm = Tm

M = = Jp =~ 4.8
2g%atpt ¢ 245a4p2 b7 9450251 (4.8)
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satisfying the BPS condition
M=gJd,+gJp. (4.9)

The Riemann tensor squared is

: 1536m>

Riem? = 40g% + i (4.10)
The metric has a power-law curvature singularity at p = 0. For positive m, the singularity
is naked. However, when m is negative, there exist a Euclidean Killing horizon at r = rg
where A, (r9) = 0. The absence of the conic singularity associated with the degenerate

cycles at 7 =g, # = 0 and § = 7/2 requires that the Killing vectors

0
0=0: €1—%,
T 0
9—5- €2—%7
~ 1/0 ga® 0 gB?> 0
= . (== — 4.11
r="ro m(8t+r%—a23¢1+7’%—528¢2 7 ®1n

must all generate 2w period. Here the Euclidean surface gravity « on the Killing horizon is
g (37"8‘ -2 (a2 + 52) r3 + 04262)
@)@

It is worth pointing out that the metric (4.7) is written in the asymptotically rotating
frame. We can make a coordinate transformation ¢; — ¢; + gt such that the metric

(4.12)

becomes non-rotating asymptotically. This implies that

170 gréd 0 grég 0
L ~ 420 ) 4.1
b=t /ﬁ<8t+r8—a28¢1+r%—ﬂ25¢)2 (4.13)

Defining £y = ¢~ '0;, we see that the Killing vectors must satisfy the linear relation
plo = ql + @1ty + q2lo, (4.14)
with
P=q+q+q. (4.15)

Consistency requires that (p,q,q1,¢2) are coprime integers, and consequently At = 27.
The integration constants can expressed in terms of two rational numbers (p/q1,p/q2):

a2:<1+p>r3, 52:<1+p> re. (4.16)
a1 q2

The mass and angular momenta are completely discretised, given by

m” (pg1 + pg2 + 2¢2q1)

A4 (p+@)* (p+a2)?’

W o= — W (4.17)
142 p+q)2(p+q2)’ 493 (p+q1) (p+ q2) 2

M=—

Jo=—

- 12 —



4.2 D=2n+1
The Kerr-AdS metric in D = 2n + 1 dimensions is given by [6, 7]

2
2 iy ~r’ ;
ds? = =W (14 g*r?) di® + é,n (Wdt - Z a:’fzclapi> T R

=i
=1

2

2 noo9., 9

+ a;
d Zd2 9 " Lpid; 4.18
+Z W1+ ¢2r2) (ZZ = H “) , (4.18)

where
n n
W=y L (7).
i=1 " j=1
n
V=r?(1+g7°) [](*+a)) , = =1-d2g, ZMEZL (4.19)
J=1 j=

They satisfy R, = —(D — 1)g?g,. The mass and angular momenta are [27]

n
_ 1 1 Ap_
M- <Z: B 2) S _Maidp2 ; (4.20)
4m (H] E]) i=1 " 4=, (H] EJ)
The metric is non-rotating at asymptotic infinity. We take the following transformation,
Vi = i — aig’t, (4.21)

so that g — —1 at asymptotic infinity. We now take the BPS limit by setting
N Y ST o L 99 2~ ntl
a; = 1 bige | , = 2(1 yge), m = g°me"" ", (4.22)
g

and sending € — 0. The metric becomes
I ~y%—0? ’ Awy2dy ’
dsj=—(dt— =3 “—tuidy; | +="5 Z dwl
9 i=1 7 )
2
noo2 2 n_ 2
y - b y* — b7
(o s ) 322
=1 i -1 i

2
n 2 2 n 2 2
y" b o 1 Yy~ —b;
Ydu; — L idpy; , 4.23
=1 ? i=1 4
where
2 g - T - 2 72
Au=y Z%’ Ay = Z 21b2 H(y _by)’
i=1 & i=1 Y i) =1
Ay =i+ g T (62 - 1) . (4.24)
i=1
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The metric is again constant time bundle over D = 2n space, indicating that the solution
admits a Killing spinor. The mass and angular momenta become

M= dmg2n (H ) = drrg2ntl (Hj b§> 2 (429)

satisfying the BPS condition

~ mAp_s 1 ~ mAp_s 1
§ :7
i=1 z

M=y Z Ji. (4.26)

The metric has a power-law curvature singularity at A, = 0. The singularity is naked for
positive m, but outside the Euclidean Killing horizon yg with A, = 0. The Killing vectors
associated with the degenerated null surfaces are

1[0 K g 0 B
0
Ek—aT/}k» (g =0, k=1---n). (4.27)

Here the surface gravity x on the horizon is

v
= ) (429

Making a coordinate transformation ¢; — ¢; + gt, we find that the Killing vector £ becomes

1(0 - gy 0
=—| = E . 4.2
o H<at+i:1y3_b2a¢i (4.29)

It follows that the Killing vectors satisfy

plo=ql+> qili,  with p=q+> q. (4.30)
=1 i

As in the previous D = 5 case, consistency requires that At = 2.
We can now expressed the n integration constant b; as

b = (1 + é’) r2. (4.31)

The mass and angular momenta are completely discretised, given by

-Aanl b qi
M=— ,
Amg?n—2 1:[ Pt+ai) —p+ta

Aon—1 D ‘G
Ji = — . 4.32
b dmg! 1:[ ptai| pta (432)
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4.3 D=2n+2
The Kerr-AdS metric in D = 2n + 2 dimensions is given by [6, 7]

n

2
5 2 n 24 g2
dsh = ~W (L+g%%) de* + - (Wdt -3 j“;’fldapi> T PR
—1

i=1 i=1
2
U 2 ~r? +a? 2 g* "2 4 a2
=0 i=0

where ag = 0 and

Wzélj U

)
—1

(R
;ﬂ—{—afn J

j=1

n n
V=72 (1+ 927“2) H (r* + %2.) , =2 =1—a2g%, ZM? =1. (4.34)

j=1 1=0

They satisfy Ry, = —(D — 1)g?g,. The mass and angular momenta are
n
_ 1 i Ap_

M= _TAD=2 = di= maiAp-2 (4.35)

1 (I,5) =5 = 172, (11, &))
As in the odd-dimensional case, we first make the coordinate transformation
Vi = i — a;g*t. (4.36)

The BPS condition M = ¢ ), J; can be satisfied by setting

1 1 1
ai—g(l_zbgg%), ool m=gtaet (4T

and sending ¢ — 0. We then make the further transformations
0 =106, [o = sinf, pi =cosOp;,(i=1,---,n), (4.38)

with Y° i = 1. The (2n + 2)-dimensional metric can now be expressed as a foliation of a
(2n + 1)-dimensional BPS time machine

ds3, 40 = g~ 2d6? + cosh? § ds3,41 - (4.39)

So far, we have considered the general class of BPS Kerr-AdS time machines in both
odd and even dimensions, with generic but non-vanishing angular momenta. When some
subset of the angular momenta vanish, the BPS limits also exist. For a general Kerr-AdS
black hole in D dimensions, if there are p non-vanishing angular momenta, the resulting
BPS time machine metric takes the form

ds? = g~2dh* + cosh® éds%pﬂ + sinh? édQQD_zp_z , (4.40)

where ds3 .| is the metric for the BPS time machine in (2p + 1) dimensions.
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5 Further comments in D = 3

The solutions we gave in section 2 specialise to D = 3 dimensions if we set n = 1. It is
instructive to compare this with the BTZ black hole solution [23] since they are, of course,
necessarily locally equivalent, both being locally just AdSs.
The BTZ black hole is given by the metric [23]
dp? J \?
2 2 1,2 2
2

J
N2 = —M + ¢*p*> + — 1
+9p+4p2, (5.1)

and the mass and angular momentum are

Mgrz = g* (03 +02) , JBTZ = 29p4 P, (5.2)

where p; and p_ are the radii of the outer and inner horizons. The BPS limit Mpryz =

gJpTz implies that p, = p_ = pp, and then

dp? 9t \’
2 _ 2 7,2 2 0

2(.2  2\2

N2 = M' (5.3)
p
The rotating D = 3 black hole following from (2.5) by setting n =1 is
ar® f N7 2
ds3 = — — =—dt* + r*W ( d¢ — dt
°3 f W r ¢ r2+v ’
v

f:(1+92r2)W—u, W:1+T—2. (5.4)

Making the coordinate redefinition
r2=p*—v, (5.5)
we see that (5.4) becomes
dp? VEr - \?
ds* = —hdt* + —— + p? (d¢ — pzdt) ,

h
1%
h:g2p2+1—(g2v+u)+l;—2. (5.6)

According to our general formulae (2.6), the mass and angular momentum are given by

M =p+ g%, J =2/ uv. (5.7)

Comparing (5.6) with the BTZ black hole metric (5.1), we see that they match com-
pletely, with
Mgtz =M —1, Jrz =J. (58)
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The above relations between the mass and angular momentum however give very dif-
ferent physical interpretations of the seemingly equivalent solution. In particular, they lead
to very different BPS conditions

M =gJ, or Mgtz = 9JT7Z - (5.9)

At the first sight, it would seem surprising if both conditions were to lead to well-defined
Killing spinors.

Before solving the Killing spinor equations, we note that the vacuum for the BTZ
metric with Mgz = 0 = Jgryz is AdS3 in planar coordinates, whilst the vacuum for our
metric, defined by M = 0 = J, yields AdSs in global coordinates:

dp?

Mgtz = 0= Jprz : ds* = —g?p*dt? + 7 + p2de?,
M=0=J: dsQ:—(92p2+1)dt2+d7p2+p2d¢2 (5.10)
. g2p2 _'_ 1 . .

To derive the Killing spinors, it is convenient to choose the vielbein basis

e = p(dp — Qdt), with Q= 222. (5.11)

1_dp

0
— _Ndt
¢ S TN

Note that we use (0, 1, 2) to denote tangent indices and (¢, p, 1) to denote spacetime indices.
The spinor-covariant exterior derivative D = d + %w“b’yab is

/

N’ Q Q/ N Q/
D=d®1+¢ (701 + p’m) + €1L702 —é? (’712 - p’Ym) ;

2 4 4 2p 4
_ 0 (LO L 20N a2 210
d_e<N8t+Na¢> +€N8p+6p8¢’ (5.12)

where the Dirac matrices are defined in (2.28). We find that the two-component Killing
spinor is given by

¢ = e3D(t+0) (2}%) _ (5.13)

where ({4, (_) satisfy the constraints

0 =2p(J +2pA —gp) (s + (J +29p°) (s,
[ J? —4Mp? + 4¢%p* (5.14)
- 2p (2pA +2gp? — J)’ ‘

and the exponent A is given by

A = +/Mpryz — gJT7 , or equivalently, A=+/M-gJ—1. (5.15)

The situation becomes clear now with the explicit Killing spinor solutions. Owing to
the fact that the three-dimensional metric is locally AdSs, the Killing spinors exist locally
for all mass and charge, regardless whether they satisfy the BPS conditions or not. For the
BTZ black holes Mgty > gJgTyz, the local Killing spinor has real exponential dependence
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on the ¢ coordinate. However, since ¢ must be periodic in order for the solution to
describe a black hole, as opposed to AdSs, the Killing spinor can only be well defined when
Mgtz = gJBTZ, implying that A becomes zero and so the Killing spinor no longer depends
on ¢. Note that for the Killing vector K = 0; + g0y, we have

g(K,K)=A%>0. (5.16)

Thus, the Killing vector associated with the Killing spinor is null for the supersymmetric
BTZ black hole, corresponding to A = 0.

This is not the only way to achieve the supersymmetry, however. We can instead
impose M = gJ, corresponding to Mgtz — gJTz = —1, in which case, we have

A=vV-1=i, g(KK)=A*=-1. (5.17)

In this case, the Killing vector is time-like, and the Killing spinor now has periodic depen-
dence on ¢, with the same period as that in the global AdSs. The resulting metric with
negative mass then leads to the BPS time machine.

Killing spinors of BTZ black holes were also studied in [24, 25].

6 Conclusions

In this paper, we studied the global structure of the Kerr-AdS metrics in general dimensions,
when the mass and angular momenta satisfy the BPS condition (1.1). In odd dimensions
with equal angular momenta, we constructed explicitly the Killing spinors.

For positive mass, the solutions have naked power-law curvature singularities with no
horizon to cloak them. For negative mass, the BPS solutions can describe smooth space-
time configurations that are called time machines. These smooth spacetime configurations
are purely gravitational and there is no matter energy-momentum tensor source at all.
The completeness of the spacetime requires that the asymptotic Lorentzian time coordi-
nate be periodically identified, with precisely the same time period as that of the global
AdS spacetime in which the solutions are immersed. Furthermore, the mass and angular
momenta become discretised. The Killing spinors are periodic in time, with a period that
is consistent with the global structure of the time machines. Thus in cases where they
solutions can be embedded in gauged supergravities, they are supersymmetric.

In the AdS/CFT correspondence, the time coordinate in both the global or the planar
AdS spacetime is taken to lie on the real line, describing the infinite covering CAdS of
AdS in the global case. In this case, the BPS time machines constructed in this paper
would all have a conical singularity at the Euclidean Killing horizon. However, if we
consider the asymptotic AdSp as being the strict hyperboloid in E?P~1, then the time
machines described in this paper are precisely consistent with the boundary conditions. The
breaking of the time translational R symmetry in our BPS and the general non-BPS [13]
Kerr-AdS time machines is reminiscent of the time crystals proposed by Wilczek [28].
Although it lies beyond the scope of the present paper, it would be interesting to investigate
the implications of a periodic global AdS time coordinate within the framework of the
AdS/CFT correspondence, and also to see what consequences result from the closed time-
like curves associated with the time machine region of the bulk spacetime.
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A CP"™ and gauge-covariantly constant spinor

Here we make use of the iterative construction of CP" in terms of CP" ! that was obtained
in [26], in order to give an explicit iterative construction of the gauge-covariantly constant
spinor that we employed in the construction of the Killng spinor in the previous section.
As was shown in [26], the Fubini-Study metric d¥2 on CP" can be written in terms of the
Fubini-Study metric d>2_; on CP"! as follows:

2
dx? = dx? +sin? y cos® x (dd) + A) +sin® yd¥2_;, (A.1)

where J = %dﬁ is the Kéhler form of CP"~!. The Kahler form of CP" is given by J = %dA,
where

A=sin?y (dw + Z) . (A.2)
We define the vielbein e® for CP", with?
eV =dy, el =siny cosy (dw + j) , ¢! =sinyé, (A.3)
where & is a vielbein for CP"~!. The inverse vielbein is then given by
EO:;X, El:sinxlcosxa?p’ Ei:sirllx <E¢_L86w>' (A.4)

A straightforward calculation shows that the spinor-covariant exterior derivative D = d +
%wab 'y on CP" is given by

1 .. 1 . 1. .
D= d—i——i—Z{Z)l] Fij—el <C0t 2x To1 + Z cot x JY Fij) —562 cot x <F0i + JJ F1j> . (A5)
Decomposing the 2n-dimensional Dirac matrices I', for CP" as

F0202®f*, F1:O'1®f*, F1:]1®f1, (AG)

4Note that although we are using a 0 index here, in this section it refers to a Euclidean direction not a
time direction. This section is intended to be self-contained, and not all notation or symbols used here are
the same as in the previous section.
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where T are the (2n — 2)-dimensional Dirac matrices for CP"~!, it can be seen that the
spinor-covariant exterior derivative (A.5) can be written as

~ 0 1 0 1~ 0
D=1®D+¢" — L = e A, — +ielcot?2 1
wote 8X+e sin y cosy OY € sin Z@z/f—He cotxos @
1 . 1 . -~ o~ -~
—16’1 cot x J71® Ty — 561 cot x (02 QI +J7 01 ® F*Fj) , (A.7)

where D = d + %Jﬂj fij is the spinor-covariant exterior derivative on CP"~1!.
Assuming that the CP"~! admits a gauge-covariantly constant spinor & satisfying

~ 1

D+5-nAé=0, JjT;é=—-iT;¢, T.{=¢ (A.8)

N |

(the middle equation also implies J* fij £ = —2i (n—1)§), it then follows that CP™ admits
a gauge-covariantly constant spinor £ = v ® é satisfying

i .
D§+§(n+1)A§:0, JapTanéE = —1T.¢&, r.¢=¢, (A.9)
where I'y = 03 ® T, is the chirality operator on CP", and where the 2-component spinor v

has 1 dependence e_limp, it depends on no other coordinates, and it obeys oz3v = v. In
other words, the gauge-covariantly constant spinor on CP" can be taken to be

£=e3n¥ (é) ®E. (A.10)

It also follows that & obeys J® 'y, & = —2i n&.
If we denote the fibre coordinate v in the construction (A.1) of CP" from CP"~! by
1, we therefore have an iterative construction of the gauge-covariantly constant spinor:

£(CP") = e~3m¥n (é) ®&(CP ) . (A.11)

An almost trivial calculation confirms that for n = 1 the spinor

£(CPY) = ez ¥ (é) (A.12)

indeed satisfies all the properties assumed above, and so by induction we arrive at the

§(CP™) = exp —% > piy (é) ® <(1)> ®--® (é) (A.13)
p=1

~~

expression

n factors

for the gauge-covariantly constant spinor on CP". (Note that for n = 1, writing x = %0
and 11 = ¢ puts the metric (A.1) in the standard form d¥} = 1(d6? + sin® 6 d¢?).)
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B Identities for spinorial square roots

In this appendix, we record some basic results for spinors in odd dimensions, which are
related to our discussion about the Killing vector (2.14) in the time-machine spacetimes.
In the odd dimension D = 2n + 1, the Fierz identity can be written in the form

(71)%17(17*1)

n
XX = Z ol XL gy x THYHP (B.1)
p=0 )

where x is any commuting spinor. A useful identity is

Flll---l/q Ful"'ﬂp I‘V1~~~Vq = C(Q7p) F,Ul"'/lp ’ (B2)
where [29]
min(g,p)
La(g— P\ (2n+1—¢q A
o) = (0be 0 caprg S (P (T .
i=0
If we define the tensors
Ty = XLy ooy X s (B.4)
and their norms
N(p) = TH1Hp TMl"'Mp , <B5)

then it is straightforward to see from (B.1) and (B.2) that these satisfy the set of linear
relations L)

n Lp(p—1

(-

0= il @) Ny, O<qgsn. (B-6)
(One does not need to consider ¢ > n, since I'y,...,,, is proportional to I';...p, ., ,-) The
equations (B.6) are not, in fact, all linearly independent. For example, for the first few
cases we find the relations imply:

D:3Z N(l):N(O)J

D=5: N(l):N(O)a N(Q):_4N(O)v
D=9: Ng =-36Ng +36Nu) +3Ng,  Nu = 216N + 120N + 24N ,

D =11: Ngy=—=30Nq) +30N)+ 3Nz, Ny = 240Ny + 120N(qy + 12N(y) ,
N5y = 1920N(g) — 120Ny + 60N (o) .

Only in the first two cases, in D = 3 and D = 5 dimensions, we see that N(j) is simply
equal to N(g). This means that in these two cases, and only in these cases, one has the
relation

(Xx) (XTux) = (xx)° (B.8)

where Y is any commuting spinor.®

5We emphasise that the spinor x here is completely arbitrary, and need not be Majorana. If one does
require x to be Majorana, then (B.8) will hold in D =9 also, since CT',,, and CT ., are antisymmetric in
D =9, so then N3y =0 and N3y = 0.
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The fact that (B.8) holds for any commuting spinor in D = 3 or D = 5 implies in
particular that in these dimensions, any Killing vector K# that has a spinorial square
root, meaning that it can be written as in terms of a Killing spinor n as K#* = fl'*n, will
necessarily have constant (negative) norm.

The Killing vector (2.14) in the BPS time-machine spacetime has constant and negative
norm K*K, = —1 in any odd dimension, and we saw in section 2.3 that it always has a
spinorial square root, as in (2.34). In odd dimensions D > 7, the fact that the norm is
constant therefore depends upon special additional properties of the Killing spinor 7 that
would, a priori, not necessarily hold for an arbitrary Killing spinor.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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