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Abstract: It was recently observed that Kerr-AdS metrics with negative mass can de-

scribe smooth spacetimes that have a region within which naked closed time-like curves

can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known

as time machines. In this paper we study the BPS limit of these metrics, and find that

the mass and angular momenta become discretised. The completeness of the spacetime

also requires that the asymptotic time coordinate be periodic, with precisely the same

period as that which arises naturally for the global AdS, viewed as a hyperboliod in one

extra dimension, in which the time machine spacetime is immersed. For the case of equal

angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show

they are consistent with the global structure. Thus in examples where the solutions can

be embedded in gauged supergravity, they will be supersymmetric. We also compare the

global structure of the BPS AdS3 time machine with the BTZ black hole, and show that

the global structure allows two different supersymmetric limits.
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1 Introduction

The Kerr metric [1] is arguably the most important exact vacuum solution in Einstein’s

theory of General Relativity. Over the years, the solution has been generalised to include

a cosmological constant and also to higher dimensions [2–7]. These metrics are asymptotic

to Minkowski, de Sitter (dS) or anti-de Sitter (AdS) spacetimes, depending on the cosmo-

logical constant. They carry mass (M) and angular momenta (Ji) as conserved quantities.

Black holes have played a very important role in elucidating the structure of string

theory and M-theory, notably in the discussion of non-perturbative effects and duality

symmetries. Among the black hole solutions the supersymmetric, or BPS, black holes

are of particular interest, since they acquire some degree of protection against quantum

corrections, and may thus give more trustworthy information about the non-perturbative

structure of the theory. Black holes in string theory or M-theory are described, at least at

leading order, as solutions in the low-energy supergravity limit of the theory in question.

Typically, the solutions can carry electromagnetic charges, or higher-degree p-form charges

too. The supersymmetric BPS solutions usually require these charges to be non-vanishing,
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as well as having non-zero mass and possibly rotation. However, one can also consider BPS

limits of rotating black hole metrics in string or M-theory that do not carry any additional

electromagnetic or p-form charges.

The BPS limit of a higher-dimensional rotating Kerr-AdS black hole corresponds to

the case where the mass M and angular momenta Ji satisfy

M =
∑
i

g |Ji| (1.1)

where 1/g is the “radius” of the asymptotic AdS spacetime in which the solution is im-

mersed [8]. This BPS condition was studied in detail in [9] for the five-dimensional Kerr-

AdS black holes, and the Killing spinors were constructed in the case where the two angular

momenta were equal. The BPS limit no longer describes a black hole, however, since the

singularity is no longer cloaked by a horizon. Similar conclusions arise in higher dimensions

also. Interestingly, if one instead Euclideanises the spacetime and takes the cosmological

constant to be positive, the Kerr-dS metrics become Einstein-Sasaki in the BPS limit. Fur-

thermore, these can smoothly extend onto complete, compact manifolds for appropriate

discretised values of the metric parameters [10, 11]. This generalises an earlier construction

of smooth Einstein-Sasaki spaces in [12].

Recently, it was observed [13] that for general odd dimensions, the Kerr and Kerr-AdS

metrics can extend onto smooth manifolds if the mass parameter is taken to be negative,

provided that all the angular momenta are non-zero. The regularity of the spacetime

manifold now requires that the asymptotic time coordinate be assigned a specific (real)

periodicity. There is also a localised region within the spacetime where an azimuthal

coordinate becomes timelike; such a situation, as we shall discuss in more detail below, is

known as a “time machine” in the literature.

The interesting point about these Kerr-AdS time-machine metrics from our standpoint

is that they continue to be smooth, non-singular, spacetimes even in the BPS limit. Thus,

these solutions are of potential interest in string theory and M-theory. They will form the

subject of our investigations in this paper.

Before describing these investigations in more detail, we shall first summarise some

known pertinent results about the rotating black holes of supergravity and string theory.

For a given set of angular momenta, provided that the mass is sufficiently large, the

metrics describe rotating black holes. Such rotating black holes contain a localised region

admitting closed time-like curves (CTCs), bounded on the outside by a velocity of light

surface (VLS), within which one or more periodic azimuthal angular coordinates become

time-like. Such a situation is commonly referred to as a time machine.1 In a rotating black

hole, the time machine is hidden inside the black hole event horizon.

If the black hole is over-rotating, the time machine can extend outside the horizon.

For example, it was demonstrated, for a supersymmetric charged black hole with equal

angular momenta in five dimensions [15], that in the over-rotating situation the boundary

of the time machine lies outside the horizon and so it becomes naked [16]. (See also [17–

19].) An examination of geodesics showed that they could not penetrate the horizon, and

1This should be distinguished from what happens in a spacetime like the Gödel universe [14], where the

normal region of the spacetime is surrounded by the VLS, outside of which lie the naked CTCs.
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hence the spacetime configuration is called a repulson [16]. (See also [20].) In fact the

“horizon” becomes a Euclidean Killing horizon that can induce a conical singularity unless

the asymptotic time coordinate itself is assigned a specific (real) period, in which case the

spacetime configuration is smooth and geodesically complete [8]. One now has a situation

where there are two different kinds of closed time-like curves; those associated with the local

“time machine region” where an azimuthal angular coordinate has become time-like, and

those associated with the global real periodicity that has been assigned to the asymptotic

time coordinate.

By convention, a situation where the asymptotic time coordinate has a real periodicity

is not usually referred to as a “time machine.” A familiar example of this type is the strict

global anti-de Sitter spacetime AdSD, defined as a hyperboloid in E2,D−1.2 For the sake of

clarity in what follows, we shall follow this convention and reserve the term “time machine”

for the situation where there is a localised region inside a VLS in which a spatial angular

coordinate has become time-like. Our purpose in this paper is not to advocate the BPS

Kerr-AdS metrics for time travel, but simply to investigate the intriguing global structures

that can arise when the mass is taken to be negative.

In this paper, we shall remain in Lorentzian signature and with a negative cosmological

constant, but now we consider the BPS Kerr-AdS metrics where the mass is taken to be

negative. As mentioned above, now, unlike the example considered in [9] where the mass

was assumed to be positive, this can yield a smooth time-machine spacetime. BPS time

machines have been constructed previously in the literature, typically having positive mass

and with additional electric charges [8, 16, 21, 22]. Our focus in this paper, however, will be

on the pure gravity BPS Kerr-AdS metrics. We shall show that these metrics extend onto

smooth spacetimes provided that the mass is negative, and that the asymptotic Lorenzian

time coordinate is periodically identified, with a period precisely equal to that of the time

coordinate in the global AdS in which the spacetime is immersed. Furthermore, in order

for the various periods requried for completeness to be comensurate, the mass and angular

momenta become discretised, in a manner analogous to the discretisation of the parameters

in the Einstein-Sasaki spaces [10, 11], even though the spacetimes we are considering here

are Lorentzian and non-compact. For Kerr-AdS metrics with equal angular momenta in

odd dimensions, we construct the Killing spinors in the BPS limit explicitly, and show

that they are compatible with the global structure required for the completeness of the

spacetime. Thus in dimensions where the solution can be embedded within a supergravity

theory, it will be superymmetric.

The paper is organised as follows. In section 2, we begin by reviewing the time machine

spacetimes that were obtained in [13] from D = (2n+1)-dimensional Kerr-AdS spacetimes

with equal angular momenta, by taking the mass to be negative, and we describe their BPS

limits. We give an explicit construction of the Killing spinors in the BPS spacetimes, show-

ing how they can be obtained by making use of the gauge-covariantly constant spinors that

exist in the underlying CPn−1 spaces that form the bases of the (2n−1)-dimensional spher-

2Throughout this paper, when we speak of “global AdS” we shall mean the one with the periodic

time coordinate, arising via the hyperboloidal embedding in E2,D−1. The covering space, where time is

unwrapped to cover the entire real line, will be denoted by CAdS.
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ical surfaces in the spacetimes. We also study the restrictions on the metric parameters

that result from requiring completeness of the spacetimes, resulting from the compatibility

conditions for periodicities at the various degenerate surfaces. These restrictions imply

that the mass and angular momentum must be rational multiples of a basic unit. They

also imply that the time coordinate must be periodic, with exactly the periodicity of the

time coordinate in the global AdS spacetime in which the time machine is immersed.

In section 3 we consider the case of even-dimensional spacetimes, showing that Kerr-

AdS metrics with equal angular momenta can give rise in the BPS limit to metrics de-

scribing foliations of the previously discussed odd-dimensional time machines. In section 4

we discuss the analogous odd and even-dimensional BPS limits of Kerr-AdS metrics with

general, unequal, angular momenta. Again these give rise to time machines if the mass is

taken to be negative, and we analyse the restrictions on the metric parameters to ensure

global completeness of the spacetime manifolds. Again, the mass and the angular momenta

are discretised, in the sense that they are constrained to be certain rational multiples of a

basic unit.

In section 5 we discuss the special case of three dimensions. Here, the Kerr-AdS metric

is necessarily locally isomorphic to AdS3, and thus it is also locally isomorphic to the BTZ

black hole [23]. We study the relation between the time machine and the BTZ spacetimes,

and compare their Killing spinors in the respective BPS limits. Interestingly, the limits are

different, but in each case the Killing spinors are compatible with the global structure.

Finally, after our conclusions, we include two appendices. Appendix A gives an explicit

construction of the gauge-covariantly spinors in the complex projective spaces, employing

an iterative construction of CPn in terms of CPn−1 that was given in [26]. We use these

gauge-covariantly constant spinors in the construction of Killing spinors in section 2. Ap-

pendix B contains some results relating the various vectors and tensors that can be built

from Killing-spinor bilinears. These are relevant for the construction of the spinorial square

roots of the time-like Killing vectors in the BPS spacetimes.

2 Equal angular momenta in D = 2n + 1

2.1 Kerr black holes and time machines

We begin with the Kerr-AdS metrics in D = 2n+1 dimensions with all n angular momenta

set equal. The metric, satisfying Rµν = −(D− 1)g2gµν , contains two integration constants

(m, a), and it is given by [27]

ds2
2n+1 = −1 + g2r2

Ξ
dt2 +

Udr2

V − 2m
+
r2 + a2

Ξ

(
σ2 + dΣ2

n−1

)
+

2m

UΞ2
(dt− aσ)2 ,

σ = dψ +A , U =
(
r2 + a2

)n−1
, V =

1

r2

(
1 + g2r2

) (
r2 + a2

)n
, (2.1)

where Ξ = 1 − a2g2, and dΣ2
n−1 is the standard Fubini-Study metric on CPn−1. There is

circle, parameterised by the coordinate ψ with period 2π, which is fibred over the CPn−1

base, and σ is the 1-form on the fibres, given by σ = dψ +A with dA = 2J where J is the

Kähler form on CPn−1. The terms (σ2 + dΣ2
n−1) in the metric are nothing but the metric
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on the unit round sphere S2n−1, with Rij = (n − 1)δij . The metric (2.1) is asymptotic to

anti-de Sitter spacetime with radius ` = 1/g.

The mass and the (equal) angular momenta are given by

M =
m(2n− Ξ)A2n−1

8πΞn+1
, J =

maA2n−1

4πΞn+1
, (2.2)

where Ak is the volume of a unit round Sk, given by

Ak =
2π

1
2

(k+1)

Γ
[

1
2(k + 1)

] . (2.3)

It will be helpful to make a coordinate transformation and a redefinition of the integration

constants to replace (m, a) by (µ, ν), as follows:

r2 + a2

Ξ
→ r2 , a =

√
ν

µ
, m =

1

2
µ

(
1− ν

µ
g2

)n+1

. (2.4)

The metric (2.1) becomes [13]

ds2
2n+1 =

dr2

f
− f

W
dt2 + r2W (σ + ω)2 + r2dΣ2

n−1 ,

f =
(
1 + g2r2

)
W − µ

r2(n−1)
, W = 1 +

ν

r2n
, ω = −

√
µν

r2n + ν
dt . (2.5)

The mass and angular momenta become

M =
A2n−1

16π

(
(2n− 1)µ+ g2ν

)
, J = −A2n−1

8π

√
µν . (2.6)

The metric (2.5) describes a rotating black hole if µ and ν are both positive, and a time

machine if µ and ν are both negative [13], as we shall review later.

2.2 BPS limits

Under certain conditions the metric (2.5) will admit a Killing spinor, obeying the equation

∇µε+
1

2
g Γµε = 0 . (2.7)

A necessary condition for this to occur is that the BPS condition on the mass and angular

momentum, namely

M = ngJ , (2.8)

should hold. This implies that

µ = g2ν , or µ =
g2ν

(2n− 1)2
. (2.9)

These two conditions correspond to ag = 1 (and hence Ξ = 0) or ag = 2n − 1 respec-

tively. However, as we shall see, only the first of these cases gives a solution admitting a

Killing spinor.
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In AdS itself (i.e. µ = 0 and ν = 0), the Killing vectors

K± =
∂

∂t
± g ∂

∂ψ
, (2.10)

have the property that gµν K
µ
±K

ν
± = −1, and in fact they can each be expressed in the

form Kµ
± = ε̄±Γµε±, where each of ε± is one of the Killing spinors of the AdS spacetime.

We expect that if the BPS spacetime where µ and ν are non-zero, obeying one or other of

the conditions in (2.9), does admit a Killing spinor, then it should be such that it limits

to one of the aforementioned AdS Killing spinors in the limit where µ and ν go to zero.

This means that if the BPS spacetime admits a Killing spinor, the norm KµKµ should be

manifestly negative (see [8] for a discussion of this). For the two cases in (2.9) we find

µ = g2ν : gµν K
µ
+K

ν
+ = −1 , (2.11)

µ =
g2ν

(2n− 1)2
: gµν K

µ
+K

ν
+ = −1 +

n2g2ν

(2n− 1)2r2n−2
, (2.12)

where K+ is defined in (2.10). This indicates that (2.11) gives rise to a true BPS limit, in

the sense that the K+ Killing vector (but not K−) admits a spinorial square root, whereas

for (2.12) it does not (nor does K−).

For positive µ = g2ν, the metric has a curvature power-law naked singularity at r = 0.

We shall thus focus on the case when µ = g2ν is negative. Defining ν = −α, the metric

becomes

ds2 = − f

W
dt2 +

dr2

f
+ r2W (dψ +A+ ωdt)2 + r2 dΣ2

n−1 , (2.13)

f = g2r2 +W , W = 1− α

r2n
, ω =

αg

Wr2n
,

We have made the specific choice for the sign of
√
µν →

√
ν2g2 = νg = −αg when sending

µ = νg negative, and with this choice, the Killing vector admitting the spinorial square

root is again given by (2.10) with the plus sign choice, for which we now define

K =
∂

∂t
+ g

∂

∂ψ
. (2.14)

The mass and angular momentum are given by

M = −ng
2α

8π
A2n−1 , J =

gα

8π
A2n−1 (2.15)

(recall that we have made the sign choice that
√
µν → −αg when sending µ and ν negative).

The metric has a power-law curvature singularity at r = 0, but there is a Euclidean Killing

horizon at r = r0 > 0 for which f(r0) = 0. Thus we have

α =
(
1 + g2r2

0

)
r2n

0 . (2.16)

The absence of a conical singularity at r = r0 requires that the degenerate Killing vector

` =
1

n+ (n+ 1)g2r2
0

(
gr2

0

∂

∂t
+
(
1 + g2r2

0

) ∂

∂ψ

)
, (2.17)
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must generate a 2π period. As we shall discuss later, this implies that the t coordinate

must be periodically identified. Note that we have scaled the Killing vector so that the

corresponding Euclidean surface gravity is precisely unity.

Defining a radius r∗ ≡ α
1
2n , we see that gψψ < 0 in the region

r0 < r < r∗ , (2.18)

and thus ψ is the time coordinate in this region. (The VLS is located at r = r∗ where

gψψ = 0.) Since ψ is periodic, with period ψ as stated earlier, it follows that there are

closed timelike curves in the region defined by (2.18). This situation is commonly described

as a time machine (see [8] for a more detailed discussion).

Finally, it is worth pointing out that in the case µ = g2 ν, for which there is a Killing

spinor, the corresponding metric (2.13) can be expressed, after we make a coordinate change

ψ → ψ − g t, as a time bundle over a D = 2n dimensional space:

ds2
2n+1 = −

(
dt+ gr2(dψ +A)

)2
+
dr2

f
+ r2

(
f (dψ +A)2 + dΣ2

n−1

)
. (2.19)

The length of the time fibre is constant, and the base is a 2n-dimensional Einstein-Kähler

metric. In fact this is Lorentzian version of the situation in an Einstein-Sasaki space,

which can be written, at least locally, as a constant-length circle fibration over an Einstein-

Kähler base space.

2.3 Killing spinors

Here, we construct the Killing spinor η in the (2n+1)-dimensional BPS time machine with

equal angular momenta, whose metric is given by (2.13), obeying

∇aη +
1

2
gΓaη = 0 . (2.20)

We shall make use of the fact that CPn−1 admits a gauge-covariantly constant spinor ξ

satisfying

D̃i ξ +
in

2
Ai ξ = 0 , (2.21)

where D̃ = d̃ + 1
4 ω̃

ij Γ̃ij is the spinor-covariant exterior derivative and D̃ = ẽiD̃i, with Γ̃i
being the Dirac matrices and ẽi denoting a vielbein basis for CPn−1.3 With an appropriate

choice of basis for the Dirac matrices one can easily establish that ξ obeys

J ijΓ̃ij ξ = −2i (n− 1)ξ , Γ̃∗ ξ = ξ , (2.22)

where Γ̃∗ denotes the chirality operator on CPn−1. (We give an iterative construction of

the gauge-covariantly constant spinor ξ in appendix A.)

We introduce the vielbein basis ea for (2.13), with

e0 = udt , e1 =
dr

v
, e2 = h(dψ +A+ ωdt) , ei = rẽi , (2.23)

3We use d̃ to denote the standard exterior derivative in the (2n− 2)-dimensional CPn−1 space in order

to distinguish it from d which is the exterior derivative in the full (2n+ 1)-dimensional space-time.
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where

u =

√
f

W
, v =

√
f , h = r

√
W . (2.24)

The inverse vielbein Ea is given by

E0 =
1

u

(
∂

∂t
− ω ∂

∂ψ

)
, E1 = v

∂

∂r
, E2 =

1

h

∂

∂ψ
, Ei =

1

r

(
Ẽi −Ai

∂

∂ψ

)
, (2.25)

where Ẽi is the inverse vielbein for CPn−1. The torsion-free spin connection ωab for the

vielbein (2.23) is easily calculated, leading to the spinor-covariant exterior derivative D =

d+ 1
4ω

ab Γab given by

D = d+ e0

(
u′v

2u
Γ01 −

hω′v

4u
Γ12

)
− e1 hω

′v

4u
Γ02 − e2

(
h′v

2h
Γ12 +

hω′v

4u
Γ01 +

h

4r2
J ij Γij

)
−ei

(
v

2r
Γ1i +

h

2r2
Ji
j Γ2j

)
+

1

4
ω̃ijΓij . (2.26)

Writing the (2n+ 1)-dimensional Lorentz indices as a = (α, i) with α = 0, 1, 2, we may

decompose the (2n+ 1)-dimensional Dirac matrices in the form

Γα = γα ⊗ Γ̃∗ , Γi = 1l⊗ Γ̃i , (2.27)

where γα are 2× 2 Dirac matrices, which we take to be

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
. (2.28)

It then follows that the spinor-covariant exterior derivative (2.26) is given by

D = d̂⊗ 1l + 1l⊗ D̃ + e0

(
u′v

2u
γ01 −

hω′v

4u
γ12

)
⊗ 1l− e1 hω

′v

4u
γ02 ⊗ 1l

−e2

(
h′v

2h
γ12 ⊗ 1l +

hω′v

4u
γ01 ⊗ 1l +

h

4r2
J ij 1l⊗ Γ̃ij

)
−ei

(
v

2r
γ1 ⊗ Γ̃∗Γ̃i +

h

2r2
Ji
j γ2 ⊗ Γ̃∗Γ̃j

)
, (2.29)

where D̃ is the spinor-covariant exterior derivative on CPn−1 that we introduced earlier,

and d̂ denotes the standard exterior derivative in the three directions orthogonal to CPn−1,

i.e. d = d̂+ d̃ = eaEa with

d̂ = eαEα = e0

(
1

u

∂

∂t
− ω

u

∂

∂ψ

)
+ e1 v

∂

∂r
+ e2 1

h

∂

∂ψ
, (2.30)

d̃ = eiEi = ei
1

r

(
Ẽi −Ai

∂

∂ψ

)
. (2.31)

With these preliminaries, it is now straightforward to obtain the equations for the

Killing spinor η in the (2n+ 1)-dimensional spacetime, satisfying (2.20). It takes the form

η = ε⊗ ξ , (2.32)
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where ξ is the gauge-covariantly constant spinor on CPn−1 that we introduced earlier. After

further straightforward computations, we find that the 2-component spinor ε is given by

ε =
1√
2
W−

1
4 exp

(
−1

2
i gt− 1

2
inψ

) 
(
gr + i

√
W
) 1

2

−
(
gr − i

√
W
) 1

2

 . (2.33)

We may now straightforwardly verify that the Killing vector (2.14) may be written in

terms of the Killing spinor η as

Ka = η̄Γaη . (2.34)

2.4 Global considerations and discretisation of parameters

The discussion in this section is closely analogous to that in [10, 11], where the global

structure of Einstein-Sasaki spaces was studied. We begin by defining the Killing vectors

`0 =
1

g

∂

∂t
, `1 =

∂

∂ψ
, (2.35)

where we have included a 1/g in the definition of `0 in order to make it dimensionless. `1
generates a 2π period. It follows from (2.17) that

g2r2
0 `0 =

[
n+ (n+ 1) g2r2

0

]
`−

(
1 + g2r2

0

)
`1 . (2.36)

Since ` and `1 both generate periodic translations by 2π, the ratio of their coefficients

must be rational, since otherwise one there would be identifications in the time direction,

generated by `0, of arbitrarily close points in the spacetime manifold. Hence g2r2
0 must

be rational, which we shall write as g2r2
0 = p/q̃, for coprime integers p and q̃. Conse-

quently (2.36) can be written as

p`0 = q `+ q1 `1 , (2.37)

where the integers q and q1 are given by

q = (n+ 1)p+ nq̃ , q1 = − (p+ q̃) . (2.38)

Note that the set of integers {p, q, q1} are necessarily coprime, since p and q̃ are coprime.

It is straightforward also to see from (2.38) that since p and q̃ are coprime, it must

also be the case that q and q1 are coprime. It then follows from (2.37) that `0 generates

a smallest translation period of 2π, and hence that gt has period 2π. Interestingly, this

is precisely the same as the period of the time coordinate in a global AdS with radius

g−1. Thus the periodicity of t that is required in order to eliminate the conical singularity

at the Euclidean Killing horizon at r = r0 is exactly the same as the time periodicity of

the embedding AdS spacetime itself. Consequently, the Killing spinor (2.33) is consistent

with the global structure of the time machine spacetime, and hence the solution would be

supersymmetric if it can be embedded in a gauged supergravity.

The fact that g2r2
0 = p/q̃ is rational implies that the possible masses (and angular

momenta) for the BPS time-machine spacetimes are discretised. From (2.15) and (2.16),

we have

M = −nJ = − nAn−1

8π g2n−2

(
1 +

p

q̃

)(
p

q̃

)n
. (2.39)
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3 Equal angular momenta in D = 2n

The Kerr-AdS metrics in even D = 2n dimensions with all equal angular momenta can be

expressed as [27]

ds2 = −∆θ(1 + g2r2)

Ξ
dt2 +

Udr2

V − 2m
+
ρ2dθ2

∆θ
+
r2 + a2

Ξ
sin2 θ[(dψ +A)2 + dΣ2

n−2]

+
2m

UΞ2

[
∆θ dt− a sin2 θ(dψ +A)

]2
, (3.1)

where

U =
ρ2
(
r2 + a2

)n−2

r
, V =

1

r

(
1 + g2r2

) (
r2 + a2

)n−1

∆θ = 1− a2g2 cos2 θ , ρ2 = r2 + a2 cos2 θ , Ξ = 1− a2g2 . (3.2)

The mass and the (equal) angular momenta are [27]

M =
nmAD−2

4πΞn
, J =

maAD−2

4πΞn
. (3.3)

The BPS limit M = ngJ implies that ag = 1 and hence Ξ→ 0. This requires that

m ∼ Ξn → 0 , (3.4)

so that M and J remain finite. In this limit, for the metric to be real and the coordinate

θ to be spacelike, we need make the coordinate transformation

θ → 1

2
π − iθ r2 + a2 → Ξr2 → 0 . (3.5)

After some algebra we end up

ds2
2n = g−2dθ2 + cosh2 θ ds2

2n−1 . (3.6)

where ds2
2n−1 is the time machine metric obtained earlier for odd dimensions with all equal

angular momenta. In deriving this, we need to further redefine the scaled m as

m→ i
m

g
. (3.7)

The origin of this is that in the (V − 2m) factor, there is a term of 2mr.

4 General non-equal angular momenta

In this section, we consider the BPS limit of general Kerr-AdS black holes with general

angular momenta.
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4.1 D = 5

The Kerr-AdS metric in five dimensions was constructed in [5], given by

ds2
5 = −∆r

ρ2

[
dt− a sin2 θ

Ξa
dφ1 −

b cos2 θ

Ξb
dφ2

]2

+
∆θ sin2 θ

ρ2

[
adt− r2 + a2

Ξa
dφ1

]2

+
∆θ cos2 θ

ρ2

[
b dt− r2 + b2

Ξb
dφ2

]2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ

+
1 + g2r2

r2ρ2

[
a b dt−

b
(
r2 + a2

)
sin2 θ

Ξa
dφ1 −

a
(
r2 + b2

)
cos2 θ

Ξb
dφ2

]2

, (4.1)

where

∆r =
1

r2

(
r2 + a2

) (
r2 + b2

) (
1 + g2r2

)
− 2m, ∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ ,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ , Ξa = 1− a2g2 , Ξb ≡ 1− b2g2 . (4.2)

The metric satisfies Rµν = −4g2gµν . The mass and angular momenta are [27]:

M =
πm(2Ξa + 2Ξb − ΞaΞb)

4Ξ2
aΞ

2
b

, Ja =
πma

2Ξ2
aΞb

, Jb =
πmb

2ΞaΞ2
b

, (4.3)

And Riemann tensor squared is

Riem2 = 40g4 +
96m2

(
3ρ2 − 4r2

) (
ρ2 − 4r2

)
ρ12

. (4.4)

We can take the BPS limit by setting

a =
1

g

(
1− 1

2
α2g2ε

)
, b =

1

g

(
1− 1

2
β2g2ε

)
,

r2 = − 1

g2

(
1− r̃2g2ε

)
, m = g2m̃ε3 , (4.5)

and sending ε→ 0. The metric becomes

ds2
5 = −

[
dt+

(
α2 − r̃2

)
sin2 θ

α2g
dφ1 +

(
β2 − r̃2

)
cos2 θ

β2g
dφ2

]2

+
ρ̃2

∆̃θ

dθ2 +
ρ̃2

∆̃r

dr̃2

+
∆̃rr̃

2

ρ̃2

(
sin2 θ

α2g2
dφ1 +

cos2 θ

β2g2
dφ2

)2

+
∆̃θ sin2 θ cos2 θ

ρ̃2

(
α2 − r̃2

α2g2
dφ1 −

β2 − r̃2

β2g2
dφ2

)2

,

(4.6)

where

∆̃r =
g2r̃2

(
α2 − r̃2

) (
β2 − r̃2

)
+ 2m̃

r̃2
,

∆̃θ = g2
(
α2 cos2 θ + β2 sin2 θ

)
,

ρ̃2 = r̃2 − α2 cos2 θ − β2 sin2 θ , (4.7)

(An analogous scaling procedure was used for five-dimensional Kerr-AdS with equal angular

momenta in [9].) The metric is a constant time bundle over a four-dimensional Einstein-

Kähler space. The mass and angular momenta become

M̃ =
π m̃

(
α2 + β2

)
2g4α4β4

, J̃a =
π m̃

2g5α4β2
, J̃b =

π m̃

2g5α2β4
, (4.8)
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satisfying the BPS condition

M̃ = gJ̃a + gJ̃b . (4.9)

The Riemann tensor squared is

Riem2 = 40g4 +
1536m̃2

ρ̃12
. (4.10)

The metric has a power-law curvature singularity at ρ̃ = 0. For positive m̃, the singularity

is naked. However, when m̃ is negative, there exist a Euclidean Killing horizon at r = r0

where ∆̃r(r0) = 0. The absence of the conic singularity associated with the degenerate

cycles at r̃ = r0, θ = 0 and θ = π/2 requires that the Killing vectors

θ = 0 : `1 =
∂

∂φ1
,

θ =
π

2
: `2 =

∂

∂φ2
,

r̃ = r0 : ` =
1

κ

(
∂

∂t
+

gα2

r2
0 − α2

∂

∂φ1
+

gβ2

r2
0 − β2

∂

∂φ2

)
, (4.11)

must all generate 2π period. Here the Euclidean surface gravity κ on the Killing horizon is

κ =
g
(
3r4

0 − 2
(
α2 + β2

)
r2

0 + α2β2
)(

α2 − r2
0

) (
β2 − r2

0

) . (4.12)

It is worth pointing out that the metric (4.7) is written in the asymptotically rotating

frame. We can make a coordinate transformation φi → φi + gt such that the metric

becomes non-rotating asymptotically. This implies that

`→ ` =
1

κ

(
∂

∂t
+

gr2
0

r2
0 − α2

∂

∂φ1
+

gr2
0

r2
0 − β2

∂

∂φ2

)
. (4.13)

Defining `0 = g−1∂t, we see that the Killing vectors must satisfy the linear relation

p`0 = q`+ q1`1 + q2`2 , (4.14)

with

p = q + q1 + q2 . (4.15)

Consistency requires that (p, q, q1, q2) are coprime integers, and consequently ∆t = 2π.

The integration constants can expressed in terms of two rational numbers (p/q1, p/q2):

α2 =

(
1 +

p

q1

)
r2

0 , β2 =

(
1 +

p

q2

)
r2

0 . (4.16)

The mass and angular momenta are completely discretised, given by

M = −πp
2 (pq1 + pq2 + 2q2q1)

4g2 (p+ q1) 2 (p+ q2) 2
,

Ja = − πp2q1

4g3 (p+ q1) 2 (p+ q2)
, Jb = − πp2q2

4g3 (p+ q1) (p+ q2) 2
. (4.17)
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4.2 D = 2n+ 1

The Kerr-AdS metric in D = 2n+ 1 dimensions is given by [6, 7]

ds2
D = −W

(
1 + g2r2

)
dt2 +

2m

U

(
Wdt−

n∑
i=1

aiµ
2
i

Ξi
dϕi

)2

+

n∑
i=1

r2 + a2
i

Ξi
µ2
i dϕ

2
i

+
U

V − 2m
dr2 +

n∑
i=1

r2 + a2
i

Ξi
dµ2

i −
g2

W (1 + g2r2)

(
n∑
i=1

r2 + a2
i

Ξi
µidµi

)2

, (4.18)

where

W ≡
n∑
i=1

µ2
i

Ξi
, U ≡

n∑
i=1

mu2
i

r2 + a2
i

n∏
j=1

(
r2 + a2

j

)
,

V ≡ r−2
(
1 + g2r2

) n∏
j=1

(
r2 + a2

j

)
, Ξi ≡ 1− a2

i g
2 ,

n∑
i=1

µ2
i = 1 . (4.19)

They satisfy Rµν = −(D − 1)g2gµν . The mass and angular momenta are [27]

M =
mAD−2

4π
(∏

j Ξj

) ( n∑
i=1

1

Ξi
− 1

2

)
, Ji =

maiAD−2

4πΞi

(∏
j Ξj

) , (4.20)

The metric is non-rotating at asymptotic infinity. We take the following transformation,

ψi = ϕi − aig2t , (4.21)

so that gtt → −1 at asymptotic infinity. We now take the BPS limit by setting

ai =
1

g

(
1− 1

2
b2i g

2ε

)
, r2 = − 1

g2

(
1− y2g2ε

)
, m = g2m̃εn+1 , (4.22)

and sending ε→ 0. The metric becomes

ds2
d = −

(
dt− 1

g

n∑
i=1

y2 − b2i
b2i

µ2
i dψi

)2

+
∆ψy

2dy2

∆y
+

m̃

g4∆ψ

(
n∑
i=1

µ2
i

b2i
dψi

)2

+
1

g2

( n∑
i=1

y2 − b2i
b2i

µ2
i dψi

)2

+
n∑
i=1

y2 − b2i
b2i

µ2
i dψ

2
i


+

n∑
i=1

y2 − b2i
b2i g

2
dµ2

i −
1

g2∆µ

(
n∑
i=1

y2 − b2i
b2i

µidµi

)2

, (4.23)

where

∆µ = y2
n∑
i=1

µ2
i

b2i
, ∆ψ =

(
n∑
i=1

µ2
i

y2 − b2i

)
n∏
j=1

(
y2 − b2j

)
,

∆y = m̃+ g2y2
n∏
i=1

(
y2 − b2i

)
. (4.24)
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The metric is again constant time bundle over D = 2n space, indicating that the solution

admits a Killing spinor. The mass and angular momenta become

M̃ =
m̃AD−2

4πg2n
(∏

j b
2
j

) n∑
i=1

1

b2i
, J̃i =

m̃AD−2

4πg2n+1
(∏

j b
2
j

) · 1

b2i
. (4.25)

satisfying the BPS condition

M̃ = g
n∑
i=1

J̃i . (4.26)

The metric has a power-law curvature singularity at ∆ψ = 0. The singularity is naked for

positive m̃, but outside the Euclidean Killing horizon y0 with ∆y = 0. The Killing vectors

associated with the degenerated null surfaces are

` =
1

κ

(
∂

∂t
+

n∑
i=1

gb2i
y2

0 − b2i
∂

∂ψi

)
, (y = y0)

`k =
∂

∂ψk
, (µk = 0 , k = 1 · · ·n) . (4.27)

Here the surface gravity κ on the horizon is

κ = g

(
1 +

n∑
i=1

y2
0

y2
0 − b2i

)
. (4.28)

Making a coordinate transformation φi → φi+gt, we find that the Killing vector ` becomes

`→ ` =
1

κ

(
∂

∂t
+

n∑
i=1

gy2
0

y2
0 − b2i

∂

∂ψi

)
. (4.29)

It follows that the Killing vectors satisfy

p`0 = q`+

n∑
i=1

qi`i , with p = q +

n∑
i=1

qi . (4.30)

As in the previous D = 5 case, consistency requires that ∆t = 2π.

We can now expressed the n integration constant bi as

b2i =

(
1 +

p

qi

)
r2

0 . (4.31)

The mass and angular momenta are completely discretised, given by

M = − A2n−1

4πg2n−2

(∏
i

p

p+ qi

)∑
i

qi
p+ qi

,

Ji = − A2n−1

4πg2n−1

∏
j

p

p+ qj

 qi
p+ qi

. (4.32)
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4.3 D = 2n+ 2

The Kerr-AdS metric in D = 2n+ 2 dimensions is given by [6, 7]

ds2
D = −W

(
1 + g2r2

)
dt2 +

2m

U

(
Wdt−

n∑
i=1

aiµ
2
i

Ξi
dϕi

)2

+
n∑
i=1

r2 + a2
i

Ξi
µ2
i dϕ

2
i

+
U

V − 2m
dr2 +

n∑
i=0

r2 + a2
i

Ξi
dµ2

i −
g2

W (1 + g2r2)

(
n∑
i=0

r2 + a2
i

Ξi
µidµi

)2

, (4.33)

where a0 = 0 and

W ≡
n∑
i=0

µ2
i

Ξi
, U ≡

n∑
i=0

µ2
i

r2 + a2
i

n∏
j=1

(
r2 + a2

j

)
,

V ≡ r−2
(
1 + g2r2

) n∏
j=1

(
r2 + a2

j

)
, Ξi ≡ 1− a2

i g
2 ,

n∑
i=0

µ2
i = 1 . (4.34)

They satisfy Rµν = −(D − 1)g2gµν . The mass and angular momenta are

M =
mAD−2

4π
(∏

j Ξj

) n∑
i=1

1

Ξi
, Ji =

maiAD−2

4πΞi

(∏
j Ξj

) . (4.35)

As in the odd-dimensional case, we first make the coordinate transformation

ψi = ϕi − aig2t . (4.36)

The BPS condition M = g
∑

i Ji can be satisfied by setting

ai =
1

g

(
1− 1

2
b2i g

2ε

)
, r2 = − 1

g2

(
1− y2g2ε

)
, m = g2m̃εn+1 , (4.37)

and sending ε→ 0. We then make the further transformations

θ = iθ̃ , µ0 = sin θ , µi = cos θ µ̃i , (i = 1, · · · , n) , (4.38)

with
∑
µ̃2
i = 1. The (2n+ 2)-dimensional metric can now be expressed as a foliation of a

(2n+ 1)-dimensional BPS time machine

ds2
2n+2 = g−2dθ̃2 + cosh2 θ̃ ds2

2n+1 . (4.39)

So far, we have considered the general class of BPS Kerr-AdS time machines in both

odd and even dimensions, with generic but non-vanishing angular momenta. When some

subset of the angular momenta vanish, the BPS limits also exist. For a general Kerr-AdS

black hole in D dimensions, if there are p non-vanishing angular momenta, the resulting

BPS time machine metric takes the form

ds2
D = g−2dθ̃2 + cosh2 θ̃ ds2

2p+1 + sinh2 θ̃ dΩ2
D−2p−2 , (4.40)

where ds2
2p+1 is the metric for the BPS time machine in (2p+ 1) dimensions.
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5 Further comments in D = 3

The solutions we gave in section 2 specialise to D = 3 dimensions if we set n = 1. It is

instructive to compare this with the BTZ black hole solution [23] since they are, of course,

necessarily locally equivalent, both being locally just AdS3.

The BTZ black hole is given by the metric [23]

ds2 = −N2dt2 +
dρ2

N2
+ ρ2

(
dφ− J

2ρ2
dt

)2

,

N2 = −M + g2ρ2 +
J2

4ρ2
, (5.1)

and the mass and angular momentum are

MBTZ = g2
(
ρ2

+ + ρ2
−
)
, JBTZ = 2gρ+ρ− , (5.2)

where ρ+ and ρ− are the radii of the outer and inner horizons. The BPS limit MBTZ =

gJBTZ implies that ρ+ = ρ− = ρ0, and then

ds2 = −N2dt2 +
dρ2

N2
+ ρ2

(
dφ− gρ2

0

ρ2
dt

)2

,

N2 =
g2
(
ρ2 − ρ2

0

)2
ρ2

. (5.3)

The rotating D = 3 black hole following from (2.5) by setting n = 1 is

ds2
3 =

dr2

f
− f

W
dt2 + r2W

(
dφ−

√
µν

r2 + ν
dt

)2

,

f =
(
1 + g2r2

)
W − µ , W = 1 +

ν

r2
. (5.4)

Making the coordinate redefinition

r2 = ρ2 − ν , (5.5)

we see that (5.4) becomes

ds2 = −hdt2 +
dρ2

h
+ ρ2

(
dφ−

√
µν

ρ2
dt

)2

,

h = g2ρ2 + 1−
(
g2ν + µ

)
+
µν

ρ2
. (5.6)

According to our general formulae (2.6), the mass and angular momentum are given by

M = µ+ g2ν , J = 2
√
µν . (5.7)

Comparing (5.6) with the BTZ black hole metric (5.1), we see that they match com-

pletely, with

MBTZ = M − 1 , JBTZ = J . (5.8)
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The above relations between the mass and angular momentum however give very dif-

ferent physical interpretations of the seemingly equivalent solution. In particular, they lead

to very different BPS conditions

M = gJ , or MBTZ = gJBTZ . (5.9)

At the first sight, it would seem surprising if both conditions were to lead to well-defined

Killing spinors.

Before solving the Killing spinor equations, we note that the vacuum for the BTZ

metric with MBTZ = 0 = JBTZ is AdS3 in planar coordinates, whilst the vacuum for our

metric, defined by M = 0 = J , yields AdS3 in global coordinates:

MBTZ = 0 = JBTZ : ds2 = −g2ρ2dt2 +
dρ2

g2ρ2
+ ρ2dφ2 ,

M = 0 = J : ds2 = −
(
g2ρ2 + 1

)
dt2 +

dρ2

g2ρ2 + 1
+ ρ2dφ2 . (5.10)

To derive the Killing spinors, it is convenient to choose the vielbein basis

e0 = −Ndt , e1 =
dρ

N
, e2 = ρ(dφ− Ωdt) , with Ω =

J

2ρ2
. (5.11)

Note that we use (0, 1, 2) to denote tangent indices and (t, ρ, ψ) to denote spacetime indices.

The spinor-covariant exterior derivative D = d+ 1
4ω

abγab is

D = d⊗ 1l + e0

(
N ′

2
γ01 +

ρΩ′

4
γ12

)
+ e1 ρΩ′

4
γ02 − e2

(
N

2ρ
γ12 −

ρΩ′

4
γ01

)
,

d = e0

(
1

N

∂

∂t
+

Ω

N

∂

∂φ

)
+ e1N

∂

∂ρ
+ e2 1

ρ

∂

∂φ
, (5.12)

where the Dirac matrices are defined in (2.28). We find that the two-component Killing

spinor is given by

ζ = e
1
2

∆(gt+φ)

(
ζ+(ρ)

ζ−(ρ)

)
. (5.13)

where (ζ+, ζ−) satisfy the constraints

0 = 2ρ (J ± 2ρ∆− gρ) ζ ′± +
(
J + 2gρ2

)
ζ± ,

ζ+

ζ−
= − J2 − 4Mρ2 + 4g2ρ4

2ρ (2ρ∆ + 2gρ2 − J)
, (5.14)

and the exponent ∆ is given by

∆ =
√
MBTZ − gJBTZ , or equivalently, ∆ =

√
M − gJ − 1 . (5.15)

The situation becomes clear now with the explicit Killing spinor solutions. Owing to

the fact that the three-dimensional metric is locally AdS3, the Killing spinors exist locally

for all mass and charge, regardless whether they satisfy the BPS conditions or not. For the

BTZ black holes MBTZ > gJBTZ, the local Killing spinor has real exponential dependence
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on the φ coordinate. However, since φ must be periodic in order for the solution to

describe a black hole, as opposed to AdS3, the Killing spinor can only be well defined when

MBTZ = gJBTZ, implying that ∆ becomes zero and so the Killing spinor no longer depends

on φ. Note that for the Killing vector K = ∂t + g∂φ, we have

g(K,K) = ∆2 ≥ 0 . (5.16)

Thus, the Killing vector associated with the Killing spinor is null for the supersymmetric

BTZ black hole, corresponding to ∆ = 0.

This is not the only way to achieve the supersymmetry, however. We can instead

impose M = gJ , corresponding to MBTZ − gJBTZ = −1, in which case, we have

∆ =
√
−1 = i , g(K,K) = ∆2 = −1 . (5.17)

In this case, the Killing vector is time-like, and the Killing spinor now has periodic depen-

dence on φ, with the same period as that in the global AdS3. The resulting metric with

negative mass then leads to the BPS time machine.

Killing spinors of BTZ black holes were also studied in [24, 25].

6 Conclusions

In this paper, we studied the global structure of the Kerr-AdS metrics in general dimensions,

when the mass and angular momenta satisfy the BPS condition (1.1). In odd dimensions

with equal angular momenta, we constructed explicitly the Killing spinors.

For positive mass, the solutions have naked power-law curvature singularities with no

horizon to cloak them. For negative mass, the BPS solutions can describe smooth space-

time configurations that are called time machines. These smooth spacetime configurations

are purely gravitational and there is no matter energy-momentum tensor source at all.

The completeness of the spacetime requires that the asymptotic Lorentzian time coordi-

nate be periodically identified, with precisely the same time period as that of the global

AdS spacetime in which the solutions are immersed. Furthermore, the mass and angular

momenta become discretised. The Killing spinors are periodic in time, with a period that

is consistent with the global structure of the time machines. Thus in cases where they

solutions can be embedded in gauged supergravities, they are supersymmetric.

In the AdS/CFT correspondence, the time coordinate in both the global or the planar

AdS spacetime is taken to lie on the real line, describing the infinite covering CAdS of

AdS in the global case. In this case, the BPS time machines constructed in this paper

would all have a conical singularity at the Euclidean Killing horizon. However, if we

consider the asymptotic AdSD as being the strict hyperboloid in E2,D−1, then the time

machines described in this paper are precisely consistent with the boundary conditions. The

breaking of the time translational R symmetry in our BPS and the general non-BPS [13]

Kerr-AdS time machines is reminiscent of the time crystals proposed by Wilczek [28].

Although it lies beyond the scope of the present paper, it would be interesting to investigate

the implications of a periodic global AdS time coordinate within the framework of the

AdS/CFT correspondence, and also to see what consequences result from the closed time-

like curves associated with the time machine region of the bulk spacetime.
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A CPn and gauge-covariantly constant spinor

Here we make use of the iterative construction of CPn in terms of CPn−1 that was obtained

in [26], in order to give an explicit iterative construction of the gauge-covariantly constant

spinor that we employed in the construction of the Killng spinor in the previous section.

As was shown in [26], the Fubini-Study metric dΣ2
n on CPn can be written in terms of the

Fubini-Study metric dΣ2
n−1 on CPn−1 as follows:

dΣ2
n = dχ2 + sin2 χ cos2 χ

(
dψ + Ã

)2
+ sin2 χdΣ2

n−1 , (A.1)

where J̃ = 1
2dÃ is the Kähler form of CPn−1. The Kähler form of CPn is given by J = 1

2dA,

where

A = sin2 χ
(
dψ + Ã

)
. (A.2)

We define the vielbein ea for CPn, with4

e0 = dχ , e1 = sinχ cosχ
(
dψ + Ã

)
, ei = sinχ ẽi , (A.3)

where ẽi is a vielbein for CPn−1. The inverse vielbein is then given by

E0 =
∂

∂χ
, E1 =

1

sinχ cosχ

∂

∂ψ
, Ei =

1

sinχ

(
Ẽi − Ãi

∂

∂ψ

)
. (A.4)

A straightforward calculation shows that the spinor-covariant exterior derivative D = d+
1
4ω

ab Γab on CPn is given by

D = d++
1

4
ω̃ij Γij−e1

(
cot 2χΓ01 +

1

4
cotχ J̃ ij Γij

)
−1

2
ei cotχ

(
Γ0i + J̃i

j Γ1j

)
. (A.5)

Decomposing the 2n-dimensional Dirac matrices Γa for CPn as

Γ0 = σ2 ⊗ Γ̃∗ , Γ1 = σ1 ⊗ Γ̃∗ , Γi = 1l⊗ Γ̃i , (A.6)

4Note that although we are using a 0 index here, in this section it refers to a Euclidean direction not a

time direction. This section is intended to be self-contained, and not all notation or symbols used here are

the same as in the previous section.
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where Γ̃i are the (2n − 2)-dimensional Dirac matrices for CPn−1, it can be seen that the

spinor-covariant exterior derivative (A.5) can be written as

D = 1l⊗ D̃ + e0 ∂

∂χ
+ e1 1

sinχ cosχ

∂

∂ψ
− ei 1

sinχ
Ãi

∂

∂ψ
+ i e1 cot 2χσ3 ⊗ 1l

−1

4
e1 cotχ J̃ ij 1l⊗ Γij −

1

2
ei cotχ

(
σ2 ⊗ Γ̃∗Γ̃i + J̃i

j σ1 ⊗ Γ̃∗Γ̃j

)
, (A.7)

where D̃ = d̃+ 1
4 ω̃

ij Γ̃ij is the spinor-covariant exterior derivative on CPn−1.

Assuming that the CPn−1 admits a gauge-covariantly constant spinor ξ̃ satisfying

D̃ +
i

2
n Ã ξ̃ = 0 , J̃ij Γ̃j ξ̃ = −i Γ̃j ξ̃ , Γ̃∗ ξ̃ = ξ̃ (A.8)

(the middle equation also implies J̃ ij Γ̃ij ξ̃ = −2i (n−1) ξ̃), it then follows that CPn admits

a gauge-covariantly constant spinor ξ = ν ⊗ ξ̃ satisfying

Dξ +
i

2
(n+ 1)Aξ = 0 , Jab Γab ξ = −i Γa ξ , Γ∗ ξ = ξ , (A.9)

where Γ∗ = σ3 ⊗ Γ̃∗ is the chirality operator on CPn, and where the 2-component spinor ν

has ψ dependence e−
i
2
nψ, it depends on no other coordinates, and it obeys σ3 ν = ν. In

other words, the gauge-covariantly constant spinor on CPn can be taken to be

ξ = e−
i
2
nψ

(
1

0

)
⊗ ξ̃ . (A.10)

It also follows that ξ obeys Jab Γab ξ = −2i n ξ.

If we denote the fibre coordinate ψ in the construction (A.1) of CPn from CPn−1 by

ψn we therefore have an iterative construction of the gauge-covariantly constant spinor:

ξ(CPn) = e−
i
2
nψn

(
1

0

)
⊗ ξ

(
CPn−1

)
. (A.11)

An almost trivial calculation confirms that for n = 1 the spinor

ξ
(
CP1

)
= e−

i
2
ψ1

(
1

0

)
(A.12)

indeed satisfies all the properties assumed above, and so by induction we arrive at the

expression

ξ(CPn) = exp

− i

2

n∑
p=1

pψp

 (1

0

)
⊗

(
1

0

)
⊗ · · · ⊗

(
1

0

)
︸ ︷︷ ︸

n factors

(A.13)

for the gauge-covariantly constant spinor on CPn. (Note that for n = 1, writing χ = 1
2θ

and ψ1 = φ puts the metric (A.1) in the standard form dΣ2
1 = 1

4(dθ2 + sin2 θ dφ2).)
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B Identities for spinorial square roots

In this appendix, we record some basic results for spinors in odd dimensions, which are

related to our discussion about the Killing vector (2.14) in the time-machine spacetimes.

In the odd dimension D = 2n+ 1, the Fierz identity can be written in the form

χχ̄ =
n∑
p=0

(−1)
1
2
p(p−1)

2n p!
χ̄Γµ1···µpχΓµ1···µp , (B.1)

where χ is any commuting spinor. A useful identity is

Γν1···νq Γµ1···µp Γν1···νq = c(q, p) Γµ1···µp , (B.2)

where [29]

c(q, p) = (−1)
1
2
q(q−1) (−1)pq q!

min(q,p)∑
i=0

(
p

i

)(
2n+ 1− q
q − i

)
(−1)i , . (B.3)

If we define the tensors

Tµ1···µp = χ̄Γµ1···µpχ , (B.4)

and their norms

N(p) = Tµ1···µp Tµ1···µp , (B.5)

then it is straightforward to see from (B.1) and (B.2) that these satisfy the set of linear

relations

N(q) =

n∑
p=0

(−1)
1
2
p(p−1)

2n p!
c(q, p)N(p) , 0 ≤ q ≤ n . (B.6)

(One does not need to consider q > n, since Γµ1···µp is proportional to Γµ1···µ2n+1−p .) The

equations (B.6) are not, in fact, all linearly independent. For example, for the first few

cases we find the relations imply:

D = 3 : N(1) = N(0) ,

D = 5 : N(1) = N(0) , N(2) = −4N(0) ,

D = 7 : N(2) = −6N(1) , N(3) = −42N(0) + 24N(1) , (B.7)

D = 9 : N(3) = −36N(0) + 36N(1) + 3N(2) , N(4) = 216N(0) + 120N(1) + 24N(2) ,

D = 11 : N(3) = −30N(0) + 30N(1) + 3N(2) , N(4) = 240N(0) + 120N(1) + 12N(2) ,

N(5) = 1920N(0) − 120N(1) + 60N(2) .

Only in the first two cases, in D = 3 and D = 5 dimensions, we see that N(1) is simply

equal to N(0). This means that in these two cases, and only in these cases, one has the

relation

(χ̄Γµχ) (χ̄Γµχ) = (χ̄χ)2 , (B.8)

where χ is any commuting spinor.5

5We emphasise that the spinor χ here is completely arbitrary, and need not be Majorana. If one does

require χ to be Majorana, then (B.8) will hold in D = 9 also, since CΓµν and CΓµνρ are antisymmetric in

D = 9, so then N(2) = 0 and N(3) = 0.
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The fact that (B.8) holds for any commuting spinor in D = 3 or D = 5 implies in

particular that in these dimensions, any Killing vector Kµ that has a spinorial square

root, meaning that it can be written as in terms of a Killing spinor η as Kµ = η̄Γµη, will

necessarily have constant (negative) norm.

The Killing vector (2.14) in the BPS time-machine spacetime has constant and negative

norm KµKµ = −1 in any odd dimension, and we saw in section 2.3 that it always has a

spinorial square root, as in (2.34). In odd dimensions D ≥ 7, the fact that the norm is

constant therefore depends upon special additional properties of the Killing spinor η that

would, a priori, not necessarily hold for an arbitrary Killing spinor.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[8] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged

supergravities: Thermodynamics, supersymmetric limits, topological solitons and time

machines, hep-th/0504080 [INSPIRE].
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