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1 Introduction

Black holes are found in the universe over a wide range of masses. There are black holes only

a few times heavier than the sun as well as supermassive black holes that are several billion

solar masses. It is possible that they are formed through different dynamical processes,

and that they behave differently as astrophysical black holes. Hence it is of interest to

explore all theoretically viable black-hole-like configurations. In this work, we present new

scenarios for black-hole formation and evaporation which were largely overlooked in the

literature.

Conventionally, it is assumed that, when a star is sufficiently compact, the gravitational

force dominates over all other forces, so the star continues to collapse until it is of Planckian

size. A theoretical basis for this assumption is the Buchdahl theorem [1]. It states that

any static configuration suffers a divergence in pressure if its radius is smaller than 9/4 of

its mass (9/8 of its Schwarzschild radius).

However, the Buchdahl theorem assumes the weak energy condition, which is typi-

cally violated by quantum effects. With the vacuum energy-momentum tensor taken into

account, there can be regular static solutions for which the Buchdahl theorem is inapplica-

ble [2, 3]. Due to the back reaction of the vacuum energy-momentum tensor, the geometry

around the Schwarzschild radius is wormhole-like [2–6], i.e., it has a local minimum in the

areal radius r, but the static solution is horizonless.1

1This is reminiscent of the fuzzball scenario [7, 8].
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The possibility of black-hole-like configurations with wormhole-like structures was pro-

posed over 10 years ago [4, 5, 9–11]. Recently, in refs. [2, 3], this idea was realized in a

static solution to the semi-classical Einstein equation, which adopted the vacuum energy-

momentum tensor derived from a 2D quantum field theory [12, 13]. A similar horizonless

wormhole-like solution was later also found for the vacuum energy-momentum tensor of a

4D quantum field theory in ref. [6]. While the wormhole-like structure might be a generic

feature for a certain class of quantum field theories, it is of interest to understand how

these wormhole-like structures are modified when the time-dependence is turned on.

In this paper, we study the dynamical solutions of the semi-classical Einstein equation.

We consider the vacuum energy-momentum tensor proposed in refs. [12, 13], so the dynam-

ical solutions can be compared with the static solutions found in refs. [2, 3]. In fact, the

black holes defined by the same equations have already been considered in refs. [12, 13],

where the Schwarzschild metric was assumed to be the 0-th order approximation. But

since the black hole eventually completely evaporates, the Schwarzschild radius must be

allowed to change with time in order for this approximation to have any chance to be valid.

However, even the time-dependent Schwarzschild metric can not be a good approximation

for the geometry close to the Schwarzschild radius. It was shown [14–18] that the time-

dependent Schwarzschild metric does not allow any infalling causal trajectory to cross the

Schwarzschild radius, assuming that the Schwarzschild radius monotonically shrinks to zero

within finite time, regardless of how slowly the Schwarzschild radius shrinks. As previous

works on the near-horizon geometry is unreliable, we shall thus focus on the geometry

around the Schwarzschild radius, and study the time-dependence of the wormhole-like ge-

ometry. We will comment on the geometry inside the Schwarzschild radius at the end of

this paper.

We will study the near-horizon geometry via two different perturbation theories. We

will first consider the approximation in which the exterior geometry of the black hole

changes very slowly with time — as it is expected since the Hawking radiation is extremely

weak — so that, at any instant of time, the static solution (with time-dependent parameters

that change extremely slowly over time) can be viewed as the 0-th order approximation.

The back reaction of the vacuum energy-momentum tensor to the space-time geometry

is included in the 0-th order solution. The second perturbative formulation is the ~-

expansion (or equivalently the expansion of Newton constant). We will show that the

vacuum energy-momentum tensor (including Hawking radiation) appears at the leading

order in the semi-classical Einstein equation when we focus on the near-horizon geometry.

In our analysis, the apparent horizon can appear when the Hawking radiation is turned

on, while the wormhole-like structure persists. The apparent horizon, unlike the horizon for

static solutions, is timelike due to the negative vacuum energy, and hence the information

can get away from the trapped region. The rate at which the minimal areal radius decreases

is proportional to the strength of the Hawking radiation, satisfying a formula resembling

its conventional-model counterpart between the Schwarzschild radius and the Hawking

radiation. The geometry near the apparent horizon resembles the conventional model for

black-hole evaporation, although the size of the space inside the apparent horizon can be

different.
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The plan of this paper is the following. We define in section 2 the semi-classical

Einstein equation that is the basis of our analysis, and review in section 3 the results

of refs. [2, 3] on the static solutions with the wormhole-like structure. In section 4, we

use the derivative expansion to define a perturbation theory to deal with the extremely

weak time dependence due to the Hawking radiation, in particular, to determine the time-

dependence of the wormhole-like structure. In section 5, we extend our result by adopting

the perturbative expansion of ~ (or equivalently the Newton constant κ) in which we zoom

into a small neighborhood of the neck of the wormhole-like structure. Finally, we comment

in section 7 on the implications of the results of our analysis.

2 Semi-classical Einstein equation

In this section, we define the semi-classical Einstein equation and review the model for the

vacuum energy-momentum tensor proposed in refs. [12, 13].

Assuming that the spacetime has spherical symmetry, the metric can be written in

the form

ds2 = −C(u, v)dudv + r2(u, v)dΩ2, (2.1)

where (u, v) are light-like coordinates and dΩ2 = dθ2 + sin2 θdφ2 is the line element of a

unit 2-sphere. We will only consider asymptotically flat spacetimes in this paper. As a

convention, we choose (u, v) such that C(u, v) → 1 as r → ∞. The Minkowski time t at

spatial infinity is related to (u, v) via u = t− r and v = t+ r.

The Einstein tensor for the metric (2.1) is given by

Guu =
2∂uC∂ur

Cr
− 2∂2ur

r
, (2.2)

Gvv =
2∂vC∂vr

Cr
− 2∂2vr

r
, (2.3)

Guv =
C

2r2
+

2∂ur∂vr

r2
+

2∂u∂vr

r
, (2.4)

Gθθ =
2r2 (∂uC∂vC − C∂u∂vC)

C3
− 4r∂u∂vr

C
, (2.5)

and Gφφ equals Gθθ up to an overall factor of sin2 θ.

The evaluation of the vacuum expectation value of the quantum energy-momentum

operator in an arbitrary background of spacetime is a very complicated task. We follow

refs. [12, 13] to adopt the quantum theory of 2D massless scalar fields as a dimensionally re-

duced model with spherical symmetry for the vacuum energy-momentum tensor. We focus

on the spherically symmetric configurations, and assume that the energy-momentum tensor

satisfies the 2D conservation law after integrating over the angular directions. Furthermore,

we assume that the energy-momentum tensor has the Weyl anomaly for 2D scalar fields.

This model is widely used in the literature [4, 5, 20–24]. The energy-momentum tensor

is fixed by the 2D conservation law and anomaly condition up to integration constants.

– 3 –
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Then, the 4D vacuum energy-momentum tensor is given by

〈Tuu〉 = − N

12πr2
C1/2∂2uC

−1/2 +
fu(u)

r2
, (2.6)

〈Tvv〉 = − N

12πr2
C1/2∂2vC

−1/2 +
fv(v)

r2
, (2.7)

〈Tuv〉 = − N

24πr2C2
[C∂u∂vC − ∂uC∂vC] , (2.8)

〈Tθθ〉 = 0 . (2.9)

It should be noted that 〈Tθθ〉 is zero because in this model the energy-momentum tensor

satisfies both the 2D and 4D conservation laws, but would be non-zero for more general

energy-momentum which satisfies only the 4D conservation law. The functions fu(u) and

fv(v) comes from the integration constants for the conservation law. They correspond to

the outgoing and ingoing energy fluxes at r →∞ if (u, v)-coordinates are chosen such that

C → constant in r → ∞. It should also be noted that the energy-momentum tensor is

independent of the physical state of matter fields except for fu(u) and fv(v), since the

Weyl anomaly is independent of the physical state of matters. Therefore, all information

on matters are contained in fu(u) and fv(v), and other terms have no information. Here

N is the number of 2D scalar fields contributing to the vacuum energy-momentum tensor.

For convenience, we define the parameter

α ≡ κN

24π
, (2.10)

where κ is the Newton constant times 8π. The parameter α characterizes the magnitude

of the contribution of the vacuum energy-momentum tensor to the semi-classical Einstein

equation.

We assume in this paper that the semi-classical Einstein equation

Gµν = κ〈Tµν〉 (2.11)

properly account for the back reaction of the vacuum energy-momentum tensor to the

classical geometry of spacetime when the curvature is much smaller than the Planck scale.

For this model, it is shown that static solutions have no horizon in the absence of

outgoing or ingoing energy fluxes (fu(u) = fv(v) = 0) [2]. The static configuration of

a star composed of the perfect fluid was also studied as a solution to the semi-classical

Einstein equation, by introducing the classical energy-momentum tensor of the fluid in

addition to the vacuum energy-momentum tensor above [3]. It was found that the vacuum

energy-momentum tensor of this toy model automatically regularizes the geometry such

that C(u, v) never goes to 0 and the pressure Tθθ never diverges. The Buchdahl theorem

is circumvented as the quantum energy in vacuum can violate the weak energy condition.

3 Static solution

Let us now briefly review the static solution to the semi-classical Einstein equation [2, 3],

assuming that the surface of the star is under the neck of the wormhole-like structure We

shall focus on the vacuum geometry around the neck in the static solution in this section.

– 4 –
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The static solution to the semi-classical Einstein equation is found in this form

ds2 = −C(r∗)(dt
2 − dr2∗) + r2(r∗)dΩ2 . (3.1)

For an asymptotically Minskowskian spherically symmetric static star, we expect that the

geometry is well approximated by the Schwarzschild metric, that is,

C(r∗) ' 1− a0
r(r∗)

, (3.2)

r∗ ' r + a0 log

(
r

a0
− 1

)
(3.3)

for r∗ →∞, where a0 is the Schwarzschild radius.

We will refer to r as the areal radius since the 2-sphere defined by constant r (for any

fixed t) has the area 4πr2. In a curved space, the proper distance from the origin to a point

on the 2-sphere with areal radius r is in general not the same as r. We shall refer to this

proper distance as the radial proper distance.

Defining a function F (r) by
dr

dr∗
= F (r), (3.4)

one can in principle derive the function r(r∗) for given F (r). A spherically symmetric

metric is therefore specified by two functions C(r∗) and F (r∗). Note that in general F (r∗)

is not positive-definite. It means that the areal radius r is not monotonically increasing as

we move away from the origin in the radial direction, unlike the coordinate r∗. The function

r∗(r) is thus possibly multiple-valued and should be defined separately for different branches

of r (divided by local extrema of r) on which r∗(r) is monotonic.

The event horizon for a static configuration is located where C(r∗) = 0. It was proven

analytically [2] that the model of vacuum energy described above does not admit an event

horizon. There can be no apparent horizon either because apparent horizons coincide with

the event horizon for static configurations.

What replaces the horizon at the Schwarzschild radius a0 = 2M is the “neck,” i.e.

a minimum in the areal radius r at the quantum Schwarzschild radius a whose deviation

from the classical Schwarzschild radius a0 is no larger than O(α/a). Under the neck, the

areal radius r increases as we move towards the origin, until we enter the interior space

of the star. (Inside the star, the areal radius r goes to zero at the origin.) A schematic

sectional view of the geometry of such a static configuration is given in figure 1.

While numerical solutions of the two functions C(r) and F (r) are calculated, analytic

expressions are obtained by using the expansion around the neck or in asymptotic regions [2,

3]. For the space-time region above the neck with a separation (proper distance) much

larger than the Planck length (which implies that r − a � α
a ), the Schwarzschild solution

is a good approximation. As one further approaches to the Schwarzschild radius, the

Schwarzschild solution no longer gives a good approximation. In the very small region

in which

r − a� α

a
(3.5)

– 5 –
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Figure 1. The schematic sectional view of the static solution to the semi-classical Einstein equation.

The neck is the local minimum of the areal radius r. The surface of the star is roughly where r has

a local maximum.

(all points in this region are within a proper distance of a Planck length or less away

from the neck), we have the following analytical expressions as a good approximation of a

solution of the semi-classical Einstein equation

C(r) ' c0 e2
√
k(r−a), F (r) '

√
4c0(r − a)

αk
'
√

2c0(r − a)

a
, (3.6)

where

k =
2(a2 − α)

αa
' 2a

α
. (3.7)

The metric here resembles that of a traversable wormhole and it is approximately given by

ds2 ' −c0e2
√
k(r−a)dt2 +

a

2(r − a)
dr2 + r2dΩ2

' −
[
c0 + 2

√
c0
α
x

] (
dt2 − dx2

)
+
[
a2 + c0x

2
]
dΩ2, (3.8)

where the radial coordinate x is related to r via2

r ' a+
c0
2a
x2 + · · · . (3.9)

Since this metric is connected to the Schwarzschild metric with C = 1 − a0/r around the

region where r − a ∼ O(α/a) above the neck, the parameter c0 must be of order

c0 = O
(
α/a2

)
. (3.10)

The coordinate x is defined such that it is a monotonic function of the radial direction.

For the space above (below) the neck, x > 0 (x < 0), the areal radius r increases as we

move away from the neck regardless of whether we are moving inward or outward. The

metric above (3.8) applies to r − a� α/a.

2In comparison with the notation used in ref. [2], x = r∗ − a∗ for some constant a∗.

– 6 –
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If the surface of the star is under the neck but is not in the region r − a � α/a, the

geometry is approximated by another asymptotic expression for the region under the neck

with r − a� α/a (but before reaching the surface of the star)

C(r) = e2ρ(r), where
d

dr
ρ(r) ' −2r

α
− 2f0r

2e−2r
2/α, (3.11)

F (r) ' − 1

f
1/2
0 r

, (3.12)

where the parameter f0 > 0 is bounded from above by the requirement that the second

term in dρ
dr is much smaller than the first term, i.e. f0e

−2a2/α � 1
αa .

The corresponding metric is approximately

ds2 ' −re−2r2/α
[
c̃0dt

2 − f0r2dr2
]

+ r2dΩ2, (3.13)

where c̃0 is of order

c̃0 ∼ O
(
e2a

2/α α

a3

)
. (3.14)

The values of the parameters f0 and c̃0 can be fixed by connecting the metric in this

region with that in other regions. The proper length of this region in the radial direction

is typically of the order of Planck scale. However, if the surface of the star is under the

neck but in the region r−a� α/a, the energy density of the star must be very large, even

beyond the Planck scale. This implies that the surface of the compact star is always very

close to the neck.

In the following, we will study the modification of the metric (3.8) around the neck

due to Hawking radiation.

4 Derivative expansion

Given the static configurations of the wormhole-like black holes, we can consider a slow

evaporation of the star which is induced by an extremely weak Hawking radiation. This

slowly changing geometry would be well approximated by a static solution at any given

moment. We can solve the semi-classical Einstein equation for this slow time-dependent

ansatz by treating the Hawking radiation perturbatively.

In this section, we consider this perturbation theory. Since the time-dependence of the

geometry is a result of the back reaction of the Hawking radiation, which is a first order

perturbation, each time derivative acting on a geometric quantity increases its order of

perturbation by one. The perturbative expansion in this theory thus involves a derivative

expansion.

Here we use the (u, x)-coordinates, where x is defined by

x ≡ 1

2
(v − u) , (4.1)

up to a constant and is an analogue of the radial coordinate x in the static solution, which

depends only on x. With the assumption of spherical symmetry, if there is no outgoing

energy flux, the static solution would still apply to the space-time outside the star during

– 7 –
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the gravitational collapse. But due to the Hawking radiation, the solution to the semi-

classical Einstein equation has a mild u-dependence.

To define the perturbation theory for the mild u-dependence, we introduce the expan-

sion parameter ε. The Hawking radiation β, which appears in Tuu as

Tuu = − 1

12πr2
C1/2∂2uC

−1/2 +
β(u)

12πr2
, (4.2)

is by definition of the first order

β(u) = O(ε) . (4.3)

It is the origin of the u-dependence of the solution. Correspondingly, the time derivatives

are of the first order:

∂u = O(ε) . (4.4)

Then we expand the semi-classical Einstein equation with respect to ε, in which C(u, x)

and r(u, x) are expansions of ε as

C(u, x) = C0(u, x) + εC1(u, x) + ε2C2(u, x) + · · · , (4.5)

r(u, x) = r0(u, x) + εr1(u, x) + ε2r2(u, x) + · · · . (4.6)

The leading order terms of the semi-classical Einstein equation give the static solution.

The Hawking radiation β and u-derivatives are of O(ε) and do not appear in the leading

order terms.

Define ρ0 by

C0(u, x) = e2ρ0(u,x) . (4.7)

The semi-classical Einstein equation at the 0-th order is equivalent to the following two

independent differential equations:

0 = r0
[
2 (∂xr0) (∂xρ0)− ∂2xr0

]
+ α

[
(∂xρ0)

2 − ∂2xρ0
]
, (4.8)

0 = e2ρ0 + (∂xr0)
2 + r0∂

2
xr0 + α∂2xρ0 . (4.9)

These differential equations have a trivial solution;

ρ0(u, x) =
1

2
logα− log (x− x0(u)) , (4.10)

r0(u, x) = a(u) . (4.11)

where x0(u) and a(u) are integration constants for x-integrals. This solution is clearly not

describing a black-hole geometry since r0 is completely independent of the radial coordi-

nate x.

Now we look for solutions other than the trivial solution. Since it is difficult to solve

the semi-classical Einstein equations (4.8) and (4.9) exactly, we consider the x-expansion

around the Schwarzschild radius. Notice that the differential equations (4.8) and (4.9)

contain second order derivatives of x only through the combination of (r0∂
2
xr0 + α∂2xρ0),

hence the solution in general has only 3, rather than 4, integration constants. (They are

integration constants for x-integrals so they have u-dependence.)

– 8 –
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We expand ρ0 and r0 around x = 0 in powers of x as

ρ0(u, x) =
1

2
log c0(u) + ρ01(u)x+ ρ02(u)x2 + · · · , (4.12)

r0(u, x) = a(u) + r01(u)x+ r02(u)x2 + · · · . (4.13)

The functions c0(u) and a(u) in these expansions are expected to be two of the integration

constants mentioned above. In principle, they can be fixed by the asymptotic behavior of

the solution.

The third integration constant can be identified with a shift in x, which is a symmetry

of the differential equations (4.8), (4.9). Since it is already known [2] that there is a local

minimum of r at the quantum Schwarzschild radius, we choose to fix the third integration

constant such that x = 0 at the local minimum of r, namely,

r01(u) = 0 . (4.14)

The solution to the differential equations (4.8) and (4.9) can now be solved as expan-

sions in powers of x as

ρ0(u, x) =
1

2
log c0(u) + α−1/2c

1/2
0 (u)x− c0(u)

2 (a2(u)− α)
x2 +O

(
x3
)
, (4.15)

r0(u, x) = a(u) +
a(u)c0(u)

2 (a2(u)− α)
x2 +O

(
x3
)
. (4.16)

This is essentially a promotion of the static solution around the neck to allow u-dependence

in the coefficients. The parametric functions a(u) and c0(u) are expected to change very

slowly with time. Over a relatively short period of time and within a relatively small region

of space, the geometry is well approximated by the static solution.

Let us now consider the semi-classical Einstein equation at the next-to-leading order

in the perturbation theory of the ε-expansion. At this order, the semi-classical Einstein

equation leads to 3 independent differential equations. They can be organized such that

two of them are the differential equations for the next-to-leading order terms C1 and r1 in

the expansions (4.5), (4.6), with the third equation involveing only β and the 0-th order

terms a(u) and c0(u), but not C1 nor r1. The 3rd equation serves as a constraint on the

parameters — the Hawking radiation parameter β and the integration constants c0(u) and

a(u). This is the equation we are most interested in.

This constraint equation can be derived by taking the difference between the O(ε) terms

in the (u, u)-component and those in the (v, v)-component of the semi-classical Einstein

equation. It is

0 = 2r0 [(∂ur0) (∂xρ0) + (∂xr0) (∂uρ0)− ∂x∂ur0] + α

[
1

2
β + (∂uρ0) (∂xρ0)− ∂x∂uρ0

]
.

(4.17)

This constraint relates the Hawking radiation parameter β to the first time derivative of

the quantum Schwarzschild radius ȧ. Substituting the solution (4.15) and (4.16) at the

leading order in this constraint equation, we obtain

ȧ(u) = − α3/2β(u)

2c
1/2
0 (u)a(u)

. (4.18)

– 9 –
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In order for the 0-th order solution to be continued to the asymptotic time-dependent

Schwarzschild solution (more precisely, the outgoing Vaidya solution) at large distances,

we find3

c0(u) ∼ O
(

α

a2(u)

)
, (4.19)

and thus

ȧ(u) ∼ −O (αβ(u)) . (4.20)

Since the Hawking radiation determines the loss of energy at large distances, and the

space-time geometry far from the collapsing sphere is approximated by the Schwarzschild

metric, the classical Schwarzschild radius a0 decreases at the rate

ȧ0(u) ' −αβ . (4.21)

While a(u) and a0(u) differ only by O(α1/2), i.e. Planck-length scale, our result eq.(4.18)

should agree with (4.21) at the leading order of α-expansion. Therefore, we would have

c0(u) ' α

4a2(u)
, (4.22)

as an improvement of the estimate (4.19).

5 The geometry around the neck

In the previous section, we considered the derivative expansion of the semi-classical Einstein

equations. While this perturbation theory is applicable to the whole space outside the star,

we have assumed that the Hawking radiation is smaller than the other quantum effects

in the energy-momentum tensor. This assumption in fact is not very realistic since the

Hawking radiation is sometimes comparable to the vacuum energy of the static solution

near the Schwarzschild radius. In this section, we shall develop another perturbation theory

that is only applicable to the small neighborhood of the neck of the wormhole-like structure.

But instead of the ε-expansion (i.e. the Hawking radiation is much smaller than the static

vacuum energy) in the previous section, we consider the expansion in the parameter α

(or equivalently κ). As we are still focusing on the region outside the collapsing star, the

only contribution to the energy-momentum tensor is the vacuum expectation value of the

quantum energy-momentum operator. Hence the expansion in α is also equivalent to the

expansion in the parameter ~ for the quantum effect.

The region we are interested in is the small neighborhood within Planck-length distance

from the neck at the quantum Schwarzchild radius a. That is, we consider the semi-classical

Einstein equation near the quantum Schwarzschild radius for4

r(u, x) = a(u) +O(α) , (5.1)

where the quantum Schwarzschild radius a(u) depends on u due to the Hawking radiation,

and the spatial coordinate x is defined in eq.(4.1).

3The derivation of eq.(4.19) is essentially the same as that of eq.(3.10).
4To be more precise, (5.1) should be expressed as r(u, x) = a(u) + O

(
α
a

)
. But here, we focus on the

power of α and the power of a can easily be figure out by dimensional analysis.
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Since the metric is approximated by the Schwarzschild solution

C(u, x) ' 1− a(u)

r(u, x)
(5.2)

for r(u, x)− a(u)� O(α), C is expected to be of O(α) for r = a(u) +O(α). Hence, in the

neighborhood of interest (5.1), we expand C(u, x) and r(u, x) as

C(u, x) = αC0(u, x) + α2C1(u, x) +O
(
α3
)
, (5.3)

r(u, x) = a(u) + αξ0(u, x) + α2ξ1(u, x) +O
(
α3
)
, (5.4)

where C0, C1, C2, · · · and a, ξ0, ξ1, · · · are the coefficients of the α-expansion, which are

of O(α0).

The Hawking radiation can be expanded as

β(u) = β0(u) + αβ1(u) +O
(
α2
)
, (5.5)

where β0(u), β1(u), · · · are of O(1). In the semi-classical Einstein equation, the Hawking

radiation contributes a term of the same order as the rest of the vacuum energy-momentum

tensor.

If the Hawking radiation is absent, there would be a static solution depending on x

only (independent of u). The solution becomes u-dependent when the Hawking radiation

is turned on. Therefore, the u-derivatives are expected to be of O(α), namely,

∂u ∼ O(α) . (5.6)

Despite the derivative expansion suggested by eq.(5.6), the analysis in this section is

different from the previous section because, as a result of zooming into the region (5.1)

at the same time, the Hawking radiation β enters the lowest order terms in the Einstein

equation as we will see below. This explains why the geometry is modified in the region

where r − a ∼ O(α) due to a modification of the energy-momentum tensor of O(α).

5.1 Leading order

It is straightforward to show that the semi-classical Einstein equation at the leading order

in the α-expansion is equivalent to the following three equations:

0 = 3 (∂xC0)
2 + 4aC0 (∂xC0) (∂xξ0)− 2C0∂

2
xC0 − 4aC2

0∂
2
xξ0

− 8β0C
2
0 − 8α−1aȧC0∂xC0 , (5.7)

0 = 3 (∂xC0)
2 + 4aC0 (∂xC0) (∂xξ0)− 2C0∂

2
xC0 − 4aC2

0∂
2
xξ0 , (5.8)

0 = 2C3
0 + (∂xC0)

2 − C0∂
2
xC0 − 2aC2

0∂
2
xξ0 , (5.9)

where ȧ = ∂ua ∼ O(α). These are clearly the equations for a perturbation theory different

from the previous section, as we see the Hawking radiation β0 appearing at the leading

order. They also demonstrate the fact that the Hawking radiation, albeit extremely weak,

can have potentially important back reaction to the spacetime geometry when we zoom

into a sufficiently small neighborhood of the horizon.

– 11 –



J
H
E
P
0
7
(
2
0
1
8
)
0
4
7

By subtracting 2 times eq.(5.9) from eq.(5.8), we find

∂xξ0 =
4C3

0 − (∂xC0)
2

4aC0∂xC0
. (5.10)

Substituting this back into (5.8) (or (5.9)), we obtain

0 =
[
4C3

0 − (∂xC0)
2
] [
C0∂

2
xC0 − (∂xC0)

2
]
. (5.11)

The solutions of this differential equation satisfy either

0 = 4C3
0 − (∂xC0)

2 (5.12)

or

0 = C0∂
2
xC0 − (∂xC0)

2 . (5.13)

The first possibility (5.12) implies ∂xξ0 = 0 through eq.(5.10), giving the trivial solution.

We should therefore focus on the second possibility (5.13).

The solution of eq.(5.13) is given by

C0 = ĉ0(u)eλ0(u)x , (5.14)

where ĉ0(u) and λ0(u) are integration constants associated with the integrals with respect

to x. As we are assuming that the u-derivatives are of O(α), it leads to breakdown of the

assumption if their u-derivatives are larger than O(α). However, it is natural to assume

that ĉ0(u) and λ0(u) are determined by a(u) so that their derivatives are also of O(α),

just like ȧ(u). In comparison with the static solution in section 3, the function ĉ0(u)

here corresponds to c0/α, and λ0(u) here to 2
√
kc0/(2a) ' 2

√
c0/α there. According to

eq.(4.22), ĉ0 ' 1/(4a2) and λ0 ' 1/a.

Plugging it back into eq.(5.10), we solve ξ0 as

ξ0 = R0(u) +
4ĉ0(u)eλ0(u)x − λ30(u)x

4a(u)λ20(u)
, (5.15)

where R0(u) is an integration constant.

The solution (5.15) of ξ0 can be expanded around x = 0 as

ξ0 = R0 +
ĉ0
aλ20

+
4ĉ0 − λ20

4aλ0
x+

ĉ0
2a
x2 +O

(
x3
)

= R′0 +
ĉ0
2a

(
x+

4ĉ0 − λ20
4ĉ0λ0

)2

+O
(
x3
)
, (5.16)

where

R′0 ≡ R0 +
16ĉ20 + 8ĉ0λ

2
0 − λ40

32ĉ0aλ20
. (5.17)

The x-independent part R′0 of ξ0(u, x) can be absorbed by a redefinition of a (see

eq.(5.4)). We shall adopt the convention that a is the minimal value of ξ0. This means that

R0(u) = −16ĉ20 + 8ĉ0λ
2
0 − λ40

32ĉ0aλ20
(5.18)

such that R′0 = 0.
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Furthermore, under the coordinate transformation

x→ x+ f(u), (5.19)

with

f(u) ≡ −4ĉ0 − λ20
4ĉ0λ0

= − 1

λ0
+
λ0
4ĉ0

, (5.20)

eq.(5.16) becomes

ξ0(u, x) =
ĉ0(u)

2a(u)
x2 +O

(
x3
)
. (5.21)

Therefore, by a redefinition of x, the local minimum of ξ0 appears at x = 0 for all u. This

is equivalent to say that we can choose the coordinate system such that the coefficient

functions ĉ0(u) and λ0(u) satisfy the condition

ĉ0(u) =
1

4
λ20(u) . (5.22)

While the static solution can be viewed as a special case of the dynamical solution for

β = 0, eq.(5.22) is automatically satisfied by the static solution.

Strictly speaking, a coordinate transformation (5.19) implies a change in the meaning

of ∂u|x, and hence it can in principle lead to the breakdown of the assumption (5.6), if

ḟ(u) is larger than O(α). However, it is expected that ḟ(u) is of O(α) as for the derivatives

of ĉ0(u) and λ0(u). In addition, even the definition of x by (4.1) can be preserved by a

simultaneous redefinition of the coordinate u as

u→ u− f(u), (5.23)

since f(u) is a function of u only. The semi-classical Einstein equations in terms of the

coordinates (u, x) thus remain exactly the same under the simultaneous coordinate trans-

formation of eqs.(5.19) and (5.23).

Finally, the difference between (5.7) and (5.8) implies that

ȧ(u) = − αβ0(u)

a(u)λ0(u)
. (5.24)

If x is chosen such that x = 0 is the local minimum of r, eq.(5.22) can be used to rewrite

it as

ȧ(u) = − αβ0(u)

2ĉ
1/2
0 (u)a(u)

. (5.25)

This equation is in agreement with eq.(4.18) in the previous section.

5.2 Next-to-leading order

Now, we consider the next-to-leading order terms, which is of O(α2) in the semi-classical

Einstein equation. Carrying out calculations in a similar fashion as we did at the leading
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order in the previous subsection, we first solve for C1(u, x) and ξ1(u, x) as

C1 = eλ0(u)x

(
ĉ1(u) + ĉ0(u)λ1(u)x− 2ĉ20(u)eλ0(u)x

λ20(u)a2(u)
+ α−1ĉ0(u)λ̇0(u)x2

)
, (5.26)

ξ1 = R1(u) +
ĉ1(u)eλ0(u)x

λ20(u)a(u)
− λ1(u)

[
x

4a(u)
+
ĉ0(u)eλ0(u)x (2− λ0(u)x)

λ30(u)a(u)

]

− 1

a3(u)

[
ĉ20(u)

λ40(u)
e2λ0(u)x − ĉ0(u)eλ0(u)x (4 + λ0(u)x)

4λ20(u)
+
λ0(u)x

16
− λ20(u)x2

32

]

+
2 ˙̂c0(u)eλ0(u)x

αλ30(u)a(u)
+
λ̇0(u)x (λ0(u)x− 2)

4αλ30(u)a(u)

(
4ĉ0(u)eλ0(u)x − λ20(u)

)
. (5.27)

Here R1(u), ĉ1(u) and λ1(u) are integration constants.

Again, we absorb R1(u) by a definition of a(u) and impose the condition that r has

the local minimum at x = 0 by a simultaneous shift of x and u by a function of u. While

this implies eqs.(5.18) and (5.22) at the leading order, at the next-to-leading order the

analogous conditions are

ĉ1(u) =
1

2
λ0(u)λ1(u)− λ20(u)

8a2(u)
− α−1λ̇0(u) , (5.28)

R1(u) = − 1

8a3(u)
. (5.29)

Furthermore, since the integration constant λ1(u) can be absorbed by redefining λ0(u), we

can simply take λ1(u) = 0.5

The relation (5.24) between the Hawking radiation β(u) and the time dependence of the

quantum Schwarzschild radius a(u) can now be improved to including the next-to-leading

order terms. It can be written as

β(u) = −α−1λ0(u)a(u)ȧ(u) +
λ0(u)ȧ(u)

2a(u)
− 2a(u)

αλ0(u)

(
λ0(u)ä(u)− 2λ̇0(u)ȧ(u)

)
+O

(
α2
)
.

(5.31)

Recall that u-derivatives are of O(α), while a(u) and λ0(u) are of O(α0). Hence the first

term on the right hand side is of O(α0) and the remaining terms are of O(α).

In principle, β(u) is given by a fixed formula for the Hawking radiation that depends on

how the initial quantum state evolves in a time-dependent background, following the choice

of a quantum field theoretic model of the vacuum. Eq.(5.31) is the evolution equations for

a(u), and determines the u-dependence of a(u) for a given Hawking radiation.

5.3 Apparent horizon

Let us now study the apparent horizon of the geometry. The apparent horizon is the

boundary of the trapped region in which both inward- and outward-pointing null vectors

5When ĉ1(u) is also absorbed by ĉ0(u), the condition (5.22) is modified by O(α) terms as

ĉ0(u) =
1

4
λ2
0(u)− αλ2

0(u)

8a2(u)
− λ̇0(u) +O

(
α2) . (5.30)
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are converging. That is,(
∂r

∂v

)
u

< 0 and

(
∂r

∂u

)
v

< 0 , (5.32)

where the subscripts u and v outside the parentheses refer to the variables fixed for the

partial derivatives. Using eqs.(5.4), (5.15), (5.18) and (5.22), we can expand r as

r(u, x) = a(u) + α
eλ0(u)x − (1 + λ0(u)x)

4a(u)
+O

(
α2
)
. (5.33)

Then the conditions (5.32) become(
∂r

∂v

)
u

=
αλ0(u)

(
eλ0(u)x − 1

)
8a(u)

+O
(
α2
)
< 0 (5.34)

and (
∂r

∂u

)
v

= ȧ(u)−
αλ0(u)

(
eλ0(u)x − 1

)
8a(u)

+O
(
α2
)
< 0 . (5.35)

The boundary of this region is given by(
∂r

∂v

)
u

= 0 or

(
∂r

∂u

)
v

= 0 , (5.36)

which are solved to give the x-coordinates of the outer and inner boundaries as

xO = 0 +O(α) , (5.37)

and

xI =
1

λ0(u)
log

(
1 +

8a(u)ȧ(u)

αλ0(u)

)
+O(α) =

1

λ0(u)
log

(
1− 8β(u)

λ20(u)

)
+O(α) , (5.38)

respectively. Since ȧ is negative, or equivalently, β is positive, (5.38) implies that xI < 0.

One can check that the conditions (5.32) are satisfied in the region where xI < x < xO.

Hence (5.37) is the outer apparent horizon and (5.38) is the inner apparent horizon. The

outer apparent horizon coincides with the local minimum of r on u = const. surfaces, which

can be chosen to be located at x = 0 to all orders by a shift of x (5.19).

The inner apparent horizon coincides with the outer apparent horizon when there is

no Hawking radiation (β = 0). In this case there is no trapped region and therefore strictly

speaking no apparent horizon. This is consistent with the claim [2] that there is no apparent

horizon for the static solution.

It should be noted that the geometry described above includes the quantum effect of the

vacuum energy-momentum tensor but does not have the effects of the collapsing matters,

as we are focusing on the space-time region outside the collapsing star. In general, in order

to consider the apparent horizon for the physical process of black-hole evaporation, the

geometry inside the collapsing matter should be taken into account.

The simplest model of a collapsing star is a spherically symmetric thin shell. The

curved geometry outside the shell meets the interior flat spacetime on the shell. From both
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the viewpoints of the interior and exterior space-time, the radius r of the shell decreases

with time, due to the junction condition on the shell.

For a thin shell collapsing at the speed of light, its trajectory is a constant-v curve.

Since the condition (
∂r

∂u

)
v

< 0 (5.39)

should be satisfied on the shell collapsing at the speed of light, the shell must be outside

of the inner apparent horizon (5.38) in the exterior geometry above, or equivalently,

xS > xI '
1

λ0(u)
log

(
1− 8β(u)

λ20(u)

)
(5.40)

for the x-coordinate of the shell denoted by xS . If xS > xO, i.e. the x-coordinate of the shell

is larger than the x-coordinate of the outer apparent horizon, it would mean that there is

no apparent horizon. If, on the other hand, xS < xO, the outer horizon does exist at xO.

The region with x ∈ (xS , xO) is then part of the trapped region, while the internal space

of the shell (x < xS) is not part of the trapped region since it is flat. The inner apparent

horizon, which is the inner boundary of the trapped region, must therefore coincide with

the shell.

For a thin shell collapsing at a speed slower than light, however, it is possible that

there is an inner apparent horizon outside the collapsing shell.

6 Geometry of evaporating black holes

Through the calculation above, one can deduce the geometry of the dynamical process

of black-hole evaporation for the model of vacuum energy-momentum tensor given in

eqs.(2.6)–(2.9). A salient feature of the evaporation process is the presence of a wormhole-

like structure near the Schwarzschild radius. This feature is in fact robust whenever there

is ingoing negative energy flux. We claim that, in any model of vacuum energy-momentum

tensor, whenever there is a negative energy flux so that

T (hor)
vv ≡ 〈Tvv〉|v=v0(u) < 0 (6.1)

at the apparent horizon, the apparent horizon must also be a local minimum of the areal

radius. Here v0(u) is the v-coordinate of the apparent horizon.

This statement can be easily proved as follows. The semi-classical Einstein equation

Gvv = κ〈Tvv〉 says that
2∂vC∂vr

Cr
− 2∂2vr

r
= κTvv. (6.2)

When the collapsing matter is under the apparent horizon, Tvv is given by that of the

vacuum 〈Tvv〉. At the apparent horizon, ∂vr = 0, it reduces to6

∂2vr = −2κa(u)T (hor)
vv > 0, (6.3)

6An exception is when C = 0 at the apparent horizon. This happens for the Schwarzschild solution in

which the apparent horizon is also an event horizon. In a more realistic solution, we have C 6= 0 at the

apparent horizon.
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where a(u) is the value of r at the apparent horizon. This implies that the areal radius r

can be expanded as

r(u, v) = a(u) + κa(u)
∣∣∣T (hor)
vv

∣∣∣ (v − v0(u))2 + · · ·

= a(u) + 4κa(u)
∣∣∣T (hor)
vv

∣∣∣ (x− x0(u))2 + · · · , (6.4)

where x0(u) ≡ 2v0(u)−u
2 , around the apparent horizon at v = v0(u). It is thus clear that

the apparent horizon is a local minimum of r.

This simple calculation also shows when and where the apparent horizon first appears.

Before the apparent horizon appears, there is no trapped region, and the energy-momentum

tensor includes not only the energy-momentum tensor 〈Tvv〉 of the vacuum but also that

of the collapsing matter. If there is a trapped region at later times, the boundary of the

trapped region is the apparent horizon. Let us now look for the point on the apparent

horizon that has the minimal value of u, say, u = u0. This is the point where the apparent

horizon first appears. Assuming that the apparent horizon is a smooth subspace, we have

∂vr = ∂2vr = 0 (6.5)

at this point (u = u0, v = v0(u0)). Hence eq.(6.2) implies that

Tvv|v=v0 = 0. (6.6)

This happens when the ingoing negative energy flux 〈Tvv〉 of the vacuum happens to cancel

the positive energy of the collapsing matter. Typically, the collapsing matter has a density

distribution that decays to zero at the surface of the collapsing star, and the exact cancel-

lation happens very close to the surface of the star (but inside the star) where the classical

energy flux is as weak as the quantum vacuum energy flux in magnitude.

As the matter continues to collapse under the neck of the wormhole-like structure, the

total energy of the star decreases with time due to Hawking radiation. The Schwarzschild

radius a0 (and a) eventually approaches to the Planck scale where the low-energy effective

description is no longer valid.

When the neck shrinks to the Planck scale, the size of the internal space under the

neck can be either of macroscopic scale or of Planck scale. In ref. [22], it was found that,

for a theory of massless scalar field, the internal space is still large when the neck shrinks to

a Planckian size. The evolution history of this scenario is shown schematically in figure 2.

The final state of a large internal space under a small neck resembles the geometry of the

so-called Wheeler’s bag of gold [25].

The other scenario in which the neck and the internal space shrink to zero can be

realized as follows. Take the static solution in refs. [2, 3] and tune the mass parameter

adiabatically to zero. The size of the internal space is thus correlated with the size of the

neck, and the scale of the black hole shrinks to a Planckian size as a whole. This is shown

schematically in figure 3.

7 Discussions

In this work, we study the geometry of the collapse of compact stars with the back reaction

of the vacuum energy-momentum tensor included. The vacuum energy-momentum tensor is
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Figure 2. The schematic diagrams for an evaporating black hole that ends up with a Planckian

neck and a large internal space, from left to right in time sequence. Note that the notion of distance

is distorted in the diagrams because this geometry does not admit an embedding in 3D flat space.

Figure 3. The schematic diagrams for an evaporating black hole that ends up with a Planck-scale

internal space, from left to right in time sequence. Note that the notion of distance is distorted in

the diagrams.

assumed to be qualitatively approximated by a simple 2D quantum field theory proposed in

refs. [12, 13]. A crucial feature of this model is the presence of the negative vacuum energy.

The conclusion of this work therefore cannot apply to models in which the vacuum energy

is non-negative. For instance, the black-hole models considered in refs. [14]–[18, 26, 27]

demonstrate a different nature.

The static geometry for this model as non-perturbative solutions to the semi-classical

Einstein equations was previously obtained in refs. [2, 3]. At large distances outside the

Schwarzschild radius, the Schwarzschild solution is a very good approximation. But when

one gets very close to the Schwarzschild radius (when the separation is of the Planck scale),

non-perturbative effects are found to result in crucial deviations from the Schwarzschild

solution. The exact static solution has no horizon and Buchdahl’s theorem is circumvented,

with the horizon replaced by a wormhole-like geometry, i.e. a local minimum of the areal

radius r. In this paper, we turn on Hawking radiation and study the time-dependent

perturbation theory to describe the gravitational collapse of a black-hole-like object in

this model.

In the dynamical case, the Schwarschild solution with a time-dependent parameter

a0(u) is still expected to be a good approximation at large distances. We focus our at-

tention on the geometry around the neck of the wormhole-like structure, assuming that

the collapsing matter is already under the neck. We found a time-dependent solution in

which the neck coincides with an apparent horizon a(u), which is approximately equal to

the (classical) Schwarzschild radius a0(u) = 2M(u).

Due to Hawking radiation, the radius of the neck a(u) decreases with time, and the

wormhole-like structure is found to persist. There are two possible scenarios depicted in

figure 2 and figure 3, depending on whether the size of the interior space under the neck

shrinks together with the neck.
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Numerical simulation [22] showed that the scenario depicted in figure 2 is realized

for a fast collapse in which the energy-momentum tensor is approximated by that for 2D

massless scalar fields including the collapsing matter. On the other hand, the scenario

depicted in figure 3 can be realized by an extremely slow collapse as an adiabatic process

defined by slowly tuning the mass of the static solution of refs. [2, 3].

When the radius a(u) of the neck approaches to the Planck size, the low-energy descrip-

tion is no longer valid, there are two possibilities for the fate of the black hole depending

on the UV physics. One possibility is that the neck remains finite a(u) > 0 so that the

interior space under the neck remains attached to the exterior space. All the information

inside the bag remains accessible to exterior observers. There is no event horizon in this

case. The other (more dramatic) possibility is that, through a quantum transition, the

interior space is detached from the exterior spacetime, and the singularity of detachment,

although it is expected to modified by the UV physics of gravity, marks the boundary of

an event horizon.

Let us now comment on the information loss paradox [28–30]. The vacuum energy-

momentum tensor adopted in this model has negative energy flowing into the Schwarzschild

radius from the outside, and that is why the total energy under the neck appears to decrease

over time. This is the same as the conventional model of black holes, but it does not

immediately imply that it is impossible for the Hawking radiation to carry information

of the collapsing matter. The outgoing energy flux Tuu (4.2) consists of two parts. The

first part is an outgoing negative energy flow. This is a part of the negative vacuum

energy and is balanced with an ingoing negative energy flow Tvv, in the static case. The

second part involving β(u) is the Hawking radiation. For 2D scalar fields, the energy-

momentum tensor is calculated by using the conservation equation and Weyl anomaly.

The first part corresponds to a special solution of the conservation equation. It is directly

related to the Weyl anomaly and can be chosen such that it is independent from the

physical states of matter fields. Therefore, the first part has no contribution to entropy.

The second part comes from the integration constants for the conservation equation, and

should be determined by the initial condition. It depends on physical states of matters and

can contribute to entropy. Therefore, Hawking radiation can carry information from the

collapsing star. In fact, β is non-zero at the collapsing star even when Tuu is zero there.

However, the Hawking radiation cannot carry all information about the collapsing

matter, unless it has direct interaction with the collapsing matter. It is determined by the

initial state of the quantum field of Hawking radiation as well as the geometry of space-time

in its evolution history. While the space-time geometry is sourced by the collapsing matter,

the former is only sensitive to the energy-momentum tensor, but not to other details of the

latter. In fact, even when there is direct interaction between the quantum field of Hawking

radiation and the collapsing matter, there cannot be complete information transfer in a low

energy effective theory. (This is easy to see when there is a global symmetry.) For Hawking

radiation to carry all information about the collapsing matter, we need something to occur

at the Planck-scale to invalidate the low energy effective theory (i.e., a violation of a certain

“niceness condition” [29], such as the firewall [31]7), so that a UV theory such as string the-

7See [32, 33] for a similar prediction from different assumptions.
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ory is a necessity. When the collapse can be described as a small perturbation of the static

configuration, there is indeed a Planck-scale energy density and pressure under the surface

of the collapsing matter, which is only a Planck-scale distance away from the neck [2, 3].

The information loss paradox is thus no longer a low-energy effective theoretical problem.
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