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1 Introduction

Recent advances in supersymmetric field theories have led to a new era of precision hologra-

phy through AdS/CFT. It has been driven on the field theory side by the key developments

of rigid supersymmetry [1] and supersymmetric localization [2]. The former allows for a

systematic construction of supersymmetric field theories on a curved background with topo-

logical twists. The latter yields exact field theory results reliable even at strong coupling

limit. Combining these two developments, now we can compute exact field theory results

of various topologically twisted SCFTs on curved backgrounds, which can be explored in
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the holographic dual through AdS/CFT. Of particular interest are partition functions on

Sd which gives the free energy and on S1×Sd−1 which computes the supersymmetric index

as well as Wilson loop observables in various representations of the gauge group.

In particular, a three-dimensional topologically twisted index was introduced as the

supersymmetric index on S1 × S2 with a topological twist on S2 [3]. When applied to

the ABJM theory [4], it has an interesting feature. In the large-N limit, the topologically

twisted index of the ABJM theory on S1×S2 matches the entropy of the dual asymptotically

AdS4 magnetic black hole, when it is extremized with respect to the chemical potentials [5].

This is regarded as the first counting of the microstates of a supersymmetric asymptotically

AdS4 black hole.

Similarly, the four-dimensional topologically twisted index can be introduced as the

supersymmetric index on T 2 × S2 with a topological twist on S2. In particular, we can

apply this to N = 4 SU(N) super-Yang-Mills (SYM) with a similar goal in mind, namely

counting the microstates of the dual asymptotically AdS5 magnetic black string. This is

still an open problem, however, and here we review some of the unsolved issues in both the

field theory and supergravity sides of the duality.

Field theory side. The topologically twisted N = 4 SU(N) SYM on T 2 × S2 can be

constructed by equipping S2 with background gauge fields that couple to the SO(6) R-

symmetry current, satisfying the conditions categorized in [6]. The explicit computation of

the topologically twisted index in the large N limit, however, has not yet been performed

unlike in the ABJM theory case. Instead, it has been investigated in the ‘high-temperature’

limit, β → 0+, where the modular parameter of the torus is given by τ = iβ/2π [7].

Supergravity side. The holographic dual of N = 4 SU(N) SYM on T 2 × S2 has been

studied in [6, 8]. To be specific, based on the well known duality between N = 4 SU(N)

SYM on R1,3 and Type IIB supergravity in AdS5×S5 background, we may expect that the

same field theory on T 2 × S2 with topological twists is holographically dual to Type IIB

supergravity in an asymptotically AdS5 magnetic black string background with conformal

boundary T 2 × S2. The AdS3 × S2 near-horizon solution for the string is known and

numerical evidence suggests that it can be extended into a full solution [6]. However, a full

analytic supergravity solution with such asymptotic conditions has yet to be constructed.1

At this stage, we focus on the field theory side by taking a closer look at the topo-

logically twisted index of N = 4 SU(N) SYM on T 2 × S2. As demonstrated in [7], the

high-temperature limit of the index, when extremized over the chemical potentials ∆a,

matches the right-moving central charge of the N = (0, 2) SCFT associated with the AdS5

magnetic black string

< logZ

(
τ =

iβ

2π
, ∆̄a, na

)∣∣∣∣
β→0+

=
π2

6β
cr(na), (1.1)

1Asymptotically AdS5 black hole solutions with conformal boundary R × S3 have been constructed

in [9, 10]. Even in this case, however, matching its entropy with microstate counting in the large-N limit

of the dual field theory has not yet been done due to various issues.
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where {na} are integer magnetic charges satisfying
∑3

a=1 na = 2 [7], two of them being

negative [6]. In a way, this is not surprising, as (1.1) is just the expected behavior in the

Cardy limit of the SCFT. Away from this limit, however, the index must transform as

a weak Jacobi form. This can be seen by Kaluza-Klein reducing on S2, whereupon the

supersymmetric index on T 2 becomes the elliptic genus [11].

In this paper, we clarify the connection between the topologically twisted index of

N = 4, SU(N) SYM on T 2 × S2 and the elliptic genus. As constructed in [7], the index

can be computed using Jeffrey-Kirwan residues. The result is thus given in terms of a

sum over solutions to a set of algebraic equations, commonly referred to as the ‘Bethe

ansatz equations’ (BAEs). In contrast to the S2 × S1 index, where there is only a single

solution to the BAEs (up to permutations) [3, 5], here we find multiple solutions, where

the ‘eigenvalues’ are uniformly distributed over the T 2. Furthermore, the existence of these

multiple solutions is fundamental in order for the index to be an elliptic genus.

Once the index is understood as an elliptic genus, we revisit the high-temperature

limit, τ → i0+, by performing the modular transformation τ → −1/τ . Although some of

our results are left at the conjecture level, we reproduce the Cardy limit (1.1), where

cr(na) = 3(N2 − 1)
n1n2n3

1− (n1n2 + n2n3 + n3n1)
, (1.2)

in agreement with [7]. Since this expression is valid for arbitrary N , it also holds in the

large-N case with holographic dual. More generally, however, it would be interesting to

explore the large-N limit at arbitrary values of the modular parameter τ . Unfortunately,

this still appears to be a rather challenging problem, as the only expression we have for

the index at arbitrary N is given as a sum over sectors, each corresponding to a different

solution to the BAEs.

The outline of the paper is as follows. In section 2, we first review the topologically

twisted index of N = 4 SYM on T 2×S2, then demonstrate that the BAEs admit multiple

solutions. In section 3, we connect the index to the elliptic genus and in particular demon-

strate that it transforms as a weak Jacobi form. Given this understanding of its modular

properties, we then revisit the high-temperature limit in section 4. Finally, we conclude

with some comments on the large-N limit in section 5.

2 The topologically twisted index of N = 4 SYM on T 2 × S2

The topologically twisted index of N = 4 SYM with gauge group SU(N) was defined

in [3, 7] as the supersymmetric index of the theory on T 2 × S2 with a topological twist

on S2. The index depends on the modular parameter q = e2πiτ as well as flavor chemical

potentials ∆a and magnetic fluxes na, and may be written as [7]

Z(τ ; ∆a, na) = A
∑

I∈BAEs

1

detB

N∏
j 6=k

3∏
a=1

(
θ1(uj − uk; τ)

θ1(uj − uk + ∆a; τ)

)1−na
, (2.1)

where the prefactor A is given by

A = iN−1η(τ)3(N−1)
3∏

a=1

θ1(∆a; τ)−(N−1)(1−na). (2.2)
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Definitions and modular properties of the Dedekind eta function η and the Jacobi theta

function θ1 are given in appendix A.

The sum in (2.1) is over all solutions, I = {u0, u1, . . . , uN−1, v}, of the ‘Bethe ansatz

equations’ (BAEs)

eiBj = 1 (j ∈ {0, 1, · · · , N − 1}), (2.3)

where

Bj ≡ v + i

N−1∑
k=0

3∑
a=1

log

(
θ1(uk − uj + ∆a; τ)

θ1(uj − uk + ∆a; τ)

)
. (2.4)

Note that the uj ’s are also constrained to satisfy the SU(N) condition
∑N−1

j=0 uj = 0. In

terms of (2.4), the N ×N Jacobian matrix B takes the form

B ≡ ∂(B1, · · · , BN )

∂(u1, · · · , uN−1, v)
. (2.5)

While this Jacobian is explicitly constructed from N−1 of the N eigenvalues ui, it is easily

seen that it does not depend on which one is omitted because of the SU(N) condition that

the ui’s sum to zero.

According to [7], the flavor chemical potentials ∆a and the magnetic fluxes na are

constrained to satisfy

3∑
a=1

∆a = 2πZ and

3∑
a=1

na = 2. (2.6)

Here we exclude ∆a = 2πZ in order to avoid issues with the vanishing of θ1(0; τ) but we

do not necessarily assume ∆a ∈ R or 0 < <∆a < 2π. Instead, the twisted index (2.1) is

invariant under

∆a → −∆a and ∆a → ∆a + 2πZ (2.7)

up to sign and we will fix these degrees of freedom later according to our purpose.

2.1 Multiple solutions to the BAEs

A solution to the BAEs, (2.3), was obtained in the ‘high-temperature’ limit, τ → i0+, in [7]

under the condition
∑3

a=1 ∆a = 2π. It can be written as

uj = ū− 2πτ̃j, v = (N + 1)π, (2.8)

where ū is a constant chosen to enforce the SU(N) condition
∑

j uj = 0, and τ̃ = τ/N .

While this solution was obtained in the high-temperature limit, it actually satisfies the

BAEs for any τ in the upper half plane and for arbitrary ∆a’s satisfying the constraint∑3
a=1 ∆a = 2πZ.

Furthermore, we show below that (2.8) is in fact a special case of a larger set of BAE

solutions. The key observation is that the uj variables are doubly periodic, as they are

defined on T 2, with periods uj → uj + 2π and uj → uj + 2πτ . Based on this periodicity,

the solution (2.8) then corresponds to the uj ’s being evenly distributed along the thermal
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circle. This defines the torus T 2/ZN with modular parameter τ̃ = τ/N . Then modular

invariance suggests that having the uj ’s evenly distributed along the other cycle of the T 2

ought to yield another solution, this time with modular parameter τ̃ = Nτ .

Taking this one step further, we expect that any uj ’s evenly distributed over the torus

T 2 satisfy the BAEs, (2.3). In this case, the set of uj ’s defines a freely acting orbifold

T 2/Zm × Zn where {m} is the set of all positive divisors of N with N = mn. The

corresponding uj ’s can be written explicitly as

uĵk̂ = ū+ 2π

(
ĵ

m
+
k̂

n

(
τ +

r

m

))
= ū+ 2π

ĵ + k̂τ̃

m
where τ̃ ≡ mτ + r

n
. (2.9)

Note that we have introduced a double index notation

uj ≡ uĵk̂, ĵ = 0, . . . ,m− 1, k̂ = 0, . . . , n− 1, (2.10)

and r = 0, . . . , n− 1 is a constant that, along with m and n, specifies the orbifold.

In order to prove that (2.9) indeed satisfies the BAEs, we substitute it into (2.4), so

that the BAEs reduce to the claim that

eiv
!

=
3∏

a=1

m−1∏
ĵ=0

n−1∏
k̂=0

θ1

(
∆a − 2π (ĵ−ĵ0)+(k̂−k̂0)τ̃

m ; τ
)

θ1

(
∆a + 2π (ĵ−ĵ0)+(k̂−k̂0)τ̃

m ; τ
) . (2.11)

We now use the double periodicity of θ1, (A.5), to shift the product over ĵ and k̂ as

m−ĵ0−1∏
ĵ=−ĵ0

n−k̂0−1∏
k̂=−k̂0

θ1

(
∆a ± 2π

ĵ + k̂τ̃

m
; τ

)
(2.12)

= (−1)nĵ0+(r−1)k̂0e±ik̂0(m∆a±(2n−k̂0−1)πτ̃)e−iπmk̂0τ
m−1∏
ĵ=0

n−1∏
k̂=0

θ1

(
∆a ± 2π

ĵ + k̂τ̃

m
; τ

)
.

Inserting this into the r.h.s. of (2.11) and using the constraint
∑3

a=1 ∆a = 2πZ, then gives

eiv
!

=

3∏
a=1

m−1∏
ĵ=0

n−1∏
k̂=0

θ1

(
∆a − 2π ĵ+k̂τ̃m ; τ

)
θ1

(
∆a + 2π ĵ+k̂τ̃m ; τ

) . (2.13)

In particular, the r.h.s. is now manifestly independent of ĵ0 and k̂0, thus demonstrating

that the full set of BAEs reduce to a single equation that can be consistently satisfied for

an appropriately chosen v.

While this is sufficient to demonstrate that (2.9) satisfies the BAEs, we can explicitly

determine v by choosing ĵ0 = m− 1 and k̂0 = n− 1 in (2.12) with the upper sign to obtain

the identity
m−1∏
ĵ=0

n−1∏
k̂=0

θ1

(
∆a − 2π ĵ+k̂τ̃m ; τ

)
θ1

(
∆a + 2π ĵ+k̂τ̃m ; τ

) = ei[(N+1)π+(n−1)m∆a]. (2.14)

– 5 –
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Inserting this into (2.13), taking the product over a and reducing the exponent then gives

v = (N + 1)π, which is also compatible with the solution (2.8) of [7].

As a result, we have found multiple solutions to the BAEs, (2.9), labeled by three

integers m, n, and r such that N = mn and r = 0, . . . , n − 1. While we have not proven

that these are the complete set of solutions to the BAEs (up to permutations), we argue

below in section 3 that they are in fact complete based on modular covariance of the index.

2.2 The topologically twisted index

We now compute the topologically twisted index for a particular sector labeled by {m,n, r}
by inserting the solution (2.9) into (2.1). Making this substitution gives

Z{m,n,r} =
A

detB{m,n,r}

3∏
a=1

 N∏
ĵ1k̂1 6=ĵ2k̂2

θ1

(
2π (ĵ1−ĵ2)+(k̂1−k̂2)τ̃

m ; τ
)

θ1

(
∆a + 2π (ĵ1−ĵ2)+(k̂1−k̂2)τ̃

m ; τ
)
1−na

=
A

detB{m,n,r}

3∏
a=1

m−1∏
ĵ2=0

n−1∏
k̂2=0

m−ĵ2−1∏′

ĵ1=−ĵ2

n−k̂2−1∏′

k̂1=−k̂2

θ1

(
2π ĵ1+k̂1τ̃

m ; τ
)

θ1

(
∆a + 2π ĵ1+k̂1τ̃

m ; τ
)
1−na

, (2.15)

where the primes indicate that ĵ1 = k̂1 = 0 is to be omitted from the double product. The

product over ĵ1 and k̂1 can be shifted using (2.12) as follows:

m−ĵ2−1∏′

ĵ1=−ĵ2

n−k̂2−1∏′

k̂1=−k̂2

θ1

(
2π ĵ1+k̂1τ̃

m ; τ
)

θ1

(
∆a + 2π ĵ1+k̂1τ̃

m ; τ
) = e−imk̂2∆a

m−1∏′

ĵ1=0

n−1∏′

k̂1=0

θ1

(
2π ĵ1+k̂1τ̃

m ; τ
)

θ1

(
∆a + 2π ĵ1+k̂1τ̃

m ; τ
) . (2.16)

As a result, we have

Z{m,n,r} =
A

detB{m,n,r,s}

3∏
a=1

e−im(n−1)
2

∆a

m−1∏′

ĵ1=0

n−1∏′

k̂1=0

θ1

(
2π ĵ1+k̂1τ̃

m ; τ
)

θ1

(
∆a + 2π ĵ1+k̂1τ̃

m ; τ
)
N(1−na)

.

(2.17)

The product of the theta functions can be simplified by using the product form of θ1(u; τ)

given in (A.2). We find

m−1∏′

ĵ=0

n−1∏′

k̂=0

θ1

(
u+ 2π ĵ+k̂τ̃m ; τ

)
η(τ)

= ei
n−1

2
πe−

iπnr
6 e−i

m(n−1)
2

uq̃−
(n−1)(n−1/2)

6
η(τ)

θ1(u; τ)

θ1(mu; τ̃)

η(τ̃)
,

(2.18)

where q̃ = e2πiτ̃ . Moreover, taking the limit u→ 0 and using θ′1(0; τ) = η(τ)3 gives

m−1∏′

ĵ=0

n−1∏′

k̂=0

θ1(2π ĵ+k̂τ̃m ; τ)

η(τ)
= ei

n−1
2
πe−

iπnr
6 q̃−

(n−1)(n−1/2)
6

mη(τ̃)2

η(τ)2
. (2.19)

Substituting these expressions and (2.2) into (2.17) then gives

Z{m,n,r} =
iN−1

detB{m,n,r}

3∏
a=1

[(
θ1(∆a; τ)

η(τ)3

)(
mη(τ̃)3

θ1(m∆a; τ̃)

)N]1−na

. (2.20)
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We now turn to the Jacobian matrix B{m,n,r} given in (2.5). For the moment, we find

it is convenient to maintain the original single index notation for the uj ’s. Noting that (2.5)

singles out u0 as the constrained variable, the entries of the matrix are

Bµ,ν ≡
∂Bµ
∂uν

= δµν

(N−1∑
j=0

g(uµ−uj ;∆a, τ)

)
−g(uµ−uν ;∆a, τ)+g(uµ−u0;∆a, τ), (2.21a)

B0,ν ≡
∂B0

∂uν
=−

(N−1∑
j=0

g(u0−uj ;∆a, τ)

)
−g(u0−uν ;∆a, τ)+g(0;∆a, τ), (2.21b)

Bµ,0≡
∂Bµ
∂v

= 1, (2.21c)

B0,0≡
∂B0

∂v
= 1, (2.21d)

where µ, ν ∈ {1, 2, . . . , N − 1}. Here we have defined

g(u; ∆a, τ) ≡ i
3∑

a=1

∂

∂∆a
log
[
θ1(∆a + u; τ)θ1(∆a − u; τ)

]
. (2.22)

Since g(u; ∆a, τ) is an even function of u, we can derive the identities

N−1∑
j=0

Bj,ν = 0 and

N−1∑
j=0

Bj,0 = N. (2.23)

Consequently, we have

detB = N det

[
∂(B1, · · · , BN−1)

∂(u1, · · · , uN−1)

]
. (2.24)

Therefore it is enough to study the determinant of the (N − 1) × (N − 1)-square matrix

whose entries are given by (2.21a).

At this stage, we return to index pair notation given in (2.9) by

unĵ+k̂ → uĵk̂ = ū+ 2π
ĵ + k̂τ̃

m
, (2.25)

which maps {uj : j = 0, · · · , N − 1} onto {uĵk̂ : ĵ = 0, · · · ,m − 1, k̂ = 0, · · · , n − 1}. We

then define the G-function as

G{m,n,r}(ĵ, k̂; ∆a, τ) ≡ i
3∑

a=1

∂

∂∆a
log

[
θ1

(
∆a + 2π

ĵ + k̂τ̃

m
; τ

)
θ1

(
∆a − 2π

ĵ + k̂τ̃

m
; τ

)]
,

(2.26)

which yields

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; ∆a, τ) = g(uĵk̂ − uĵ0k̂0
; ∆a, τ). (2.27)

Accordingly, the sum in (2.21a) can be written in terms of index pair notation as

N−1∑
j=0

g(uj − uµ; ∆a, τ) →
m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ − ĵµ, k̂ − k̂µ; ∆a, τ) (2.28)

– 7 –
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where µ = nĵµ + k̂µ. Now changing the summation over ĵ and k̂ into a product within the

log and inserting (2.12) then gives

m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ − ĵµ, k̂ − k̂µ; ∆a, τ) =

m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ, k̂; ∆a, τ) (2.29)

so that the sum in (2.21a) is in fact independent of which entry µ is being considered.

Simplifying the product of theta functions within the log using (2.18), we get

m−1∑
ĵ=0

n−1∑
k̂=0

G{m,n,r}(ĵ, k̂; ∆a, τ) = 2i

3∑
a=1

∂∆a log θ1(m∆a; τ̃) (2.30)

where the prime denotes differentiation with respect to the first argument of θ1. Finally,

inserting (2.30) into (2.21a), we can rewrite (2.21a) as

[B{m,n,r}]µ,ν =

(
2i

3∑
a=1

∂∆a log θ1 (m∆a; τ̃)

)[
IN−1 + B̃{m,n,r}

]
µ,ν

(2.31)

where B̃{m,n,r} is an (N − 1)× (N − 1) square matrix with entries

[B̃{m,n,r}]µ,ν =
G{m,n,r}(ĵµ, k̂µ; ∆a, τ)− G{m,n,r}(ĵµ − ĵν , k̂µ − k̂ν ; ∆a, τ)

2i
∑3

a=1 ∂∆a log θ1 (m∆a; τ̃)
. (2.32)

Then (2.24) leads to

detB{m,n,r} = N

(
2i

3∑
a=1

∂∆a log θ1 (m∆a; τ̃)

)N−1

det(1 + B̃{m,n,r}). (2.33)

Finally, the contribution to the topologically twisted index from the sector labeled by

{m,n, r} is given by combining (2.20) with (2.33),

Z{m,n,r}(τ ; ∆a, na) =

3∏
a=1

[(
θ1(∆a; τ)

η(τ)3

)(
mη(τ̃)3

θ1 (m∆a; τ̃)

)N]1−na

N det(1 + B̃{m,n,r})

[
2

3∑
a=1

∂∆a log θ1 (m∆a; τ̃)

]N−1
. (2.34)

3 The index as an elliptic genus

As we have seen above, there are multiple solutions to the BAEs, each labeled by a set of

integers {m,n, r}, corresponding to the modding out of the original T 2 by a freely acting

Zm × Zn action. The sum over these multiple solutions I ∈ BAEs in (2.1) is non-trivial,

and explicitly takes the form

Z(τ ; ∆a, na) =
∑
n|N

n−1∑
r=0

Z{N/n,n,r}(τ ; ∆a, na), (3.1)
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where Z{m,n,r} is given in (2.34). In this section, we study this expression further for

arbitrary τ and N . In particular, we show explicitly that the index is an elliptic genus,

which can be seen based on reduction over the S2 [11]. Here the sum in (3.1) is crucial to

ensure proper modular behavior of the index, since modular transformations permute the

individual sectors labeled by {m,n, r}.
For example, consider the case N = 6, where the index (3.1) is a sum over the twelve

sectors

{m,n, r} = {1, 6, 0}, {1, 6, 1}, {1, 6, 2}, {1, 6, 3}, {1, 6, 4}, {1, 6, 5},
{2, 3, 0}, {2, 3, 1}, {2, 3, 2}, {3, 2, 0}, {3, 2, 1}, {6, 1, 0}, (3.2)

with corresponding modular parameters

τ̃ =
τ

6
,
τ + 1

6
,
τ + 2

6
,
τ + 3

6
,
τ + 4

6
,
τ + 5

6
,

2τ

3
,
2τ + 1

3
,

2τ + 2

3
,

3τ

2
,

3τ + 1

2
, 6τ. (3.3)

These modular parameters are closed under T : τ → τ + 1 according to(
τ

6
,
τ + 1

6
,
τ + 2

6
,
τ + 3

6
,
τ + 4

6
,
τ + 5

6

)(
2τ

3
,
2τ + 2

3
,
2τ + 1

3

)(
3τ

2
,

3τ + 1

2

)
(6τ) , (3.4)

and under S: τ → −1/τ according to(τ
6
, 6τ
)(τ + 1

6
,
τ + 5

6

)(
τ + 2

6
,

2τ + 2

3

)(
τ + 3

6
,
3τ + 1

2

)(
τ + 4

6
,
2τ + 1

3

)(
2τ

3
,

3τ

2

)
.

(3.5)

Obtaining the orbit under T is straightforward, while obtaining that under S is somewhat

more involved. Consider, for example, the action of S on the {1, 6, 2} sector, with τ̃ = (τ +

2)/6. We first take S: τ̃ → τ̃ ′ = (2τ − 1)/6τ , and then perform a SL(2;Z) transformation

τ̃ ′ → (2τ̃ ′ − 1)/(3τ̃ ′ − 1) to bring this into the form (2τ + 2)/3, corresponding to the

{2, 3, 2} sector. Of course, the detailed modular properties of the topologically twisted

index depends on how precisely the various building blocks of Z{m,n,r} transform.

Before considering the general case, we gain additional insight from the example of

N = 2. In this case, there are only three sectors, denoted by {1, 2, 0}, {1, 2, 1} and {2, 1, 0}.
The topologically twisted index is then given by the sum

ZN=2(τ ; ∆a, na) =

4∑
i=2

 1

8
∑

a ∂∆a log θi(∆a; τ)

∏
a

[
η(τ)3

θ1(∆a; τ)

(
θi(0; τ)

θi(∆a; τ)

)2
]1−na

 ,

(3.6)

where i = 2, 3, 4 correspond to the {2, 1, 0}, {1, 2, 1} and {1, 2, 0} sectors, respectively.

Then the modular properties of the index can be derived from those of the elliptic theta

functions, θi.

Turning to the general case, for the index to be an elliptic genus, it must transform

as a weak Jacobi form of weight zero. Here it is worth recalling that, for a single chemical

potential, a Jacobi form of weight k and index m transforms according to

φ(τ, u+ 2π(λτ + µ)) = (−1)2m(λ+µ)q−mλ
2
e−2imλuφ(τ, u), (3.7a)

φ

(
aτ + b

cτ + d
,

u

cτ + d

)
= (cτ + d)ke

imcu2

2π(cτ+d)φ(τ, u). (3.7b)
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It is straightforward to generalize this to the case of three chemical potentials, and we

verify below that the index (3.1) indeed transforms as a weak Jacobi form of weight zero

and indices

ma = −N
2 − 1

2
(1− na), (3.8)

under the constraint
∑

a ∆a = 0. To do so, we first consider the periodic shifts ∆a →
∆a + 2π and ∆a → ∆a + 2πτ for (3.7a), and next consider the modular transformations

T : τ → τ + 1 and S : τ → −1/τ for (3.7b). Note that the index ma is a half-integer when

both N and na are even, and an integer otherwise.

3.1 Periodic shifts of ∆a

We first consider the shift ∆â → ∆â + 2π for a single ∆â. Since θ1 picks up a minus sign

for every 2π shift, the numerator of (2.20) picks up a sign (−1)(1−mN)(1−nâ), while the

denominator is unchanged since the logarithmic derivatives of θ1 are not sensitive to the

sign. As a result, we find

Z{m,n,r} → (−1)(1−mN)(1−nâ)Z{m,n,r} = (−1)2mâ(−1)N(N−m)(1−nâ)Z{m,n,r}, (3.9)

where we substituted in the index mâ from (3.8). Writing N = mn then gives N(N−m) =

m2n(n− 1), which is an even integer. Thus the second factor above is simply +1, and we

are left with Z{m,n,r} → (−1)2mâZ{m,n,r}, in agreement with (3.7a). Note that this result

is valid even if we only shift a single ∆â.

For the shift ∆â → ∆â + 2πτ , we first consider the numerator factors in (2.34) us-

ing (A.5). For θ1(∆â, τ), we find simply

θ1(∆â + 2πτ, τ) = −q−1/2y−1
â θ1(∆â, τ), (3.10)

where yâ = ei∆â . For θ1(m∆â, τ̃), we first write

θ1(m(∆â + 2πτ), τ̃) = θ1(m∆â + 2π(nτ̃ − r), τ̃) = (−1)r+nq̃−n
2/2y−Nâ θ1(m∆â, τ̃), (3.11)

and use the relation q̃n = e2πinτ̃ = e2πirqm to obtain

θ1(m(∆â + 2πτ), τ̃) = (−1)n+r(n+1)q−N/2y−Nâ θ1(m∆â, τ̃). (3.12)

This demonstrates that the numerator picks up an overall factor[
(−1)1−N(n+r(n+1))q(N2−1)/2yN

2−1
â

]1−nâ
, (3.13)

under a shift of ∆â by 2πτ . As above, the sign factor can be rewritten as

1−N(n+ r(n+ 1)) = −(N2 − 1) +N(n(m− 1)− r(n+ 1))

= −(N2 − 1) + n2m(m− 1)− rmn(n+ 1). (3.14)

Since the last two terms in the final expression are even, they do not contribute to the

overall sign, and we are left with

Znumer
{m,n,r} → (−1)2mâq−mây−2mâ

â Znumer
{m,n,r}, (3.15)
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which is the expected result for a Jacobi form of index mâ given by (3.8).

Since the numerator by itself transforms properly under the shift of ∆â by 2πτ , we see

that the denominator must be inert under this shift. This is not entirely obvious, though,

as the logarithmic derivatives of θ1 transform as

∂∆â
log θ1(∆â + 2πτ, τ) = ∂∆â

log θ1(∆â, τ)− i,
∂∆â

log θ1(m(∆â + 2πτ), τ̃) = ∂∆â
log θ1(m∆â, τ̃)− iN, (3.16)

as can be seen directly from (3.10) and (3.12). The sum of logarithmic derivatives, however,

is invariant so long as we simultaneously shift another chemical potential, say ∆b̂, by −2πτ ,

since then these additional factors will cancel. Therefore the denominator is invariant under

this combined shift, and hence (3.13) extends to Z{m,n,r} itself. Note that this simultaneous

shift is in fact required to maintain the condition that the ∆â’s sum to 2πZ.

3.2 Modular transformations

We now turn to the properties of the topologically twisted index under modular transfor-

mations. Since a general transformation can be generated by a combination of T and S, it

is sufficient for us to demonstrate the following properties:

T : Z(τ + 1; ∆a, na) = Z(τ ; ∆a, na), (3.17a)

S : Z(−1/τ ; ∆a/τ, na) = e
i

2πτ

∑3
a=1 ma∆2

aZ(τ ; ∆a, na). (3.17b)

These follow from the definition (3.7b) for a Jacobi form of weight zero and indices ma for

the chemical potentials ∆a.

3.2.1 T transformation

We begin with the T transformation. As indicated in (3.17a), we expect the partition

function to be invariant under T . Nevertheless, the individual sectors labeled by {m,n, r}
will get permuted, as in the N = 6 example shown in (3.4). We thus work one sector at a

time, and in particular consider the T transformation of Z{m,n,r}.

To proceed, we consider the expression (2.20), and observe that the numerator is built

from the combination

ψ(u; τ) ≡ θ1(u; τ)

η(τ)3
, (3.18)

which transforms as a weak Jacobi form of weight −1 and index 1/2, as can be seen

from (A.4). For ψ(∆a; τ), we have simply

T : ψ(∆a; τ)→ ψ(∆a; τ). (3.19)

However, the transformation is not as direct for ψ(m∆a; τ̃), since T : τ̃ → τ̃ +m/n, which

is not a SL(2,Z) transformation on τ̃ . In this case, it is more useful to note that

T :
mτ + r

n
→ mτ + (r +m)

n
=
mτ + r′

n
+

⌊
r +m

n

⌋
, (3.20)
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where r′ = r + m (mod n). Since ψ is invariant under integer shifts of the modular

parameter, we end up with

T : ψ(m∆a; τ̃)→ ψ(m′∆a; τ̃
′), (3.21)

where

τ̃ ′ ≡ m′τ + r′

n′
, {m′, n′, r′} = {m,n, r +m (mod n)}. (3.22)

The combination of (3.19) and (3.21) then demonstrates the simple transformation

T : Znumer
{m,n,r} → Znumer

{m′,n′,r′}, (3.23)

as anticipated in (3.4).

To be complete, we must also investigate the T transformation on the denominator

of (2.20), which comes from the determinant of B{m,n,r}. Here we use the double periodic-

ity (A.5) and the modular property (A.3b), to obtain the map

G{m,n,r}(ĵ, k̂; ∆a, τ + 1) = G{m′,n′,r′}(ĵ′, k̂′; ∆a, τ), (3.24)

with

ĵ′ = ĵ + k̂

⌊
r +m

n

⌋
(mod m), k̂′ = k̂. (3.25)

Then since the above (ĵ, k̂)→ (ĵ′, k̂′) is a bijective map from Zm×Zn to Zm′ ×Zn′ , we get

(see appendix B)

T : detB{m,n,r} → detB{m′,n′,r′}, (3.26)

and hence the denominator transforms in the expected manner as well. As a result, T

permutes the sectors without any additional factors, T : Z{m,n,r} → Z{m′,n′,r′}. Finally,

since {m,n, r} → {m′, n′, r′} is bijective, it is clear that the full partition function (3.1) is

indeed invariant under T transformations, (3.17a).

3.2.2 S transformation

We now turn to the S transformation, which takes ∆a → ∆a/τ along with τ → −1/τ .

Once again, we start with the numerator. Since ψ(u; τ) defined in (3.18) is a weak Jacobi

form of weight −1 and index 1/2, we immediately have

S : ψ(∆a; τ)→ 1

τ
e
i∆2
a

4πτ ψ(∆a, τ). (3.27)

For ψ(m∆a; τ̃), it is important to realize that S does not simply take τ̃ to −1/τ̃ . Instead,

we want to map τ̃ into a new τ̃ ′, at least up to a SL(2;Z) transformation. In particular,

we demand

S :
mτ + r

n
→ rτ −m

nτ
=
aτ̃ ′ + b

cτ̃ ′ + d
, (3.28)

where τ̃ ′ = (m′τ + r′)/n′. The resulting SL(2;Z) transformation is given by

a =
r

g
, c =

n

g
, ad− bc = 1, g ≡ gcd(n, r), (3.29)
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and τ̃ ′ takes the form

τ̃ ′ =
m′τ + r′

n′
, {m′, n′, r′} = {g,N/g,−dm}. (3.30)

Here b and d are uniquely determined as the solution to (3.29) under the constraint for r′,

0 ≤ r′ < n′. Also note that we can make use of the simple relation cτ̃ ′+d = m′τ/m, which

can be derived without explicit knowledge of b and d. Given (3.28), we then find

S : ψ(m∆a; τ̃)→ ψ

(
m∆a

τ
;
rτ −m
nτ

)
= ψ

(
m′∆a

cτ̃ ′ + d
;
aτ̃ ′ + b

cτ̃ ′ + d

)
=

m

m′τ
e
iN∆2

a
4πτ ψ(m′∆a, τ̃

′).

(3.31)

Inserting this expression along with (3.27) into (2.20) then gives

S : Znumer
{m,n,r} → τN−1e

i
2πτ

∑
ama∆2

aZnumer
{m′,n′,r′}, (3.32)

with ma given in (3.8).

The extra factor of τN−1 is canceled by a similar factor arising from detB in the

denominator. For this determinant, we use the double periodicity (A.5) and the modular

property (A.3b), along with the requirement
∑

a ∆a = 0 to obtain the map

G{m,n,r}(ĵ, k̂; ∆a/τ,−1/τ) = τG{m′,n′,r′}(ĵ′, k̂′; ∆a, τ) (3.33)

with

ĵ′ = − g
n

(k̂ + dk̂′) mod g, (3.34a)

k̂′ =
n

g
ĵ +

r

g
k̂ mod

N

g
. (3.34b)

In appendix C, we show that the above (ĵ, k̂) → (ĵ′, k̂′) is a bijective map from Zm × Zn
to Zm′ × Zn′ . Therefore, we get (see appendix B)

S : detB{m,n,r} → τN−1 detB{m′,n′,r′}, (3.35)

which cancels the extra factor of τN−1 in the numerator. As a result, S permutes the sectors

with a common factor, S : Z{m,n,r} → e
i

2πτ

∑
ama∆2

aZ{m′,n′,r′}. Then since {m,n, r} →
{m′, n′, r′} is self-inverse and therefore bijective, the full partition function (3.1) transforms

under S transformation as (3.17b).

Finally, we wish to explain why the chemical potentials must sum to zero in order for

the index to be a proper modular form, in particular under the S-transformation: since S

takes ∆a to ∆a/τ , we must demand the simultaneous conditions

3∑
a=1

∆a = 2πZ and
3∑

a=1

∆a = 2πτZ (3.36)

to satisfy the first constraint given in (2.6) for both Z(τ ; ∆a, na) and Z(−1/τ ; ∆a/τ, na),

which only makes sense when
∑3

a=1 ∆a = 0. Of course, we can always use the second type

of the degrees of freedom introduced in (2.7), ∆a → ∆a+ 2πZ, to set
∑3

a=1 ∆a = 0, so this

is not a serious restriction on the index.
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4 The topologically twisted index in the ‘high-temperature’ limit

Given the construction of the index as a sum over sectors, (3.1), we now revisit the ‘high-

temperature’ limit, β → 0+ with τ = iβ/2π, first investigated in [7] for the single sector

Z{1,N,0}. Note that, in what follows, we restrict to purely imaginary τ , corresponding to a

square torus, and real chemical potentials ∆a. In order to explore this limit, it is natural

to perform an S transformation (3.17b) assuming
∑

a ∆a = 0 so that the transformed

modular parameter has large imaginary part. In particular, we write

Z(τ ; ∆a, na) = e
i

2πτ ′
∑
ama∆′2a Z(τ ′; ∆′a, na), (4.1)

where

τ ′ = −1

τ
=

2πi

β
, ∆′a =

∆a

τ
= −2πi∆a

β
. (4.2)

The partition function Z(τ ′; ∆′a, na) receives contributions from individual sectors

Z{m′,n′,r′} as we have seen in (3.1), and we generically expect only one or a handful of

sectors to dominate. To see this, we first work on the expression for a fixed sector, and

then look for the dominant contribution to the sum over sectors.

4.1 Expanding Z{m′,n′,r′} in the ‘high-temperature’ limit

In order to expand Z{m′,n′,r′}, we rewrite (2.34) as

Z{m′,n′,r′}(τ
′; ∆′a, na) =

∏
a

[
ψ(∆′a; τ

′)ψ(m′∆′a; τ̃
′)−N

]1−na
n′ det

(
1 + B̃{m′,n′,r′}

) [
2
∑

a
ψ′(m′∆′a;τ̃ ′)
ψ(m′∆′a;τ̃ ′)

]N−1
. (4.3)

The numerator can be easily treated using the asymptotic expression for ψ, (A.9), as

ψ(∆′a; τ
′) = −i(−1)Da exp

[
i∆2

a

4πτ
+
iπ

τ
da(1− da)

](
1 +O(e

− 2π
τ2

min(da,1−da)
)
)
, (4.4a)

ψ(m′∆′a; τ̃
′) = −i(−1)Xaeiπ

r′
n′Xa(Xa+1) exp

[
iN∆2

a

4πτ
+
iπm′

n′τ
xa(1− xa)

]
×
(

1 +O(e
− 2π
τ2

m′
n′ min(xa,1−xa)

)

)
, (4.4b)

where

da ≡
∆a

2π
(mod 1), Da ≡

⌊
∆a

2π

⌋
, (4.5a)

xa ≡
n′∆a

2π
(mod 1), Xa ≡

⌊
n′∆a

2π

⌋
. (4.5b)

Note that these expressions break down if da = 0 or xa = 0, so from now on we assume

da’s are not integer multiples of 1/n′ where this does not occur.

For the denominator, we first examine the logarithmic derivative term in (4.3). So

long as we avoid the special cases xa = 0, the asymptotic expression (4.4b) is differentiable

with respect to its first argument, and we obtain

2
∑
a

ψ′(m′∆′a; τ̃
′)

ψ(m′∆′a; τ̃
′)

= i
3∑

a=1

(1 + 2Xa) +O(e
− 2π
τ2

m′
n′ min(xa,1−xa)

). (4.6)

– 14 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
8

Since
∑

a ∆a = 0 and we avoid special cases, we see that Xa must generically sum to either

−1 or −2. Therefore (4.6) is in fact just ±i.
The remaining term, namely det(1+ B̃{m′,n′,r′}), is more difficult to analyze. So for the

moment we leave it implicit. In this case, combining the numerator terms (4.4) with (4.6)

and taking into account the prefactor in (4.1) gives

logZ{m,n,r}(τ ; ∆a, na) =
2π2

β

3∑
a=1

(1− na)
(
da(1− da)−m′2xa(1− xa)

)
− log n′

− log det(1 + B̃{m′,n′,r′}) + iϕ

+O(e
− 4π2

β
min(da,1−da)

, e
− 4π2

β
m′
n′ min(xa,1−xa)

), (4.7)

where ϕ is a phase independent of τ , and the transformed quantities {m′, n′, r′} are given

by (3.29) and (3.30).

4.2 Examination of the determinant factor

The asymptotic expression for the index, (4.7), is now complete up to the expansion of the

determinant. Unfortunately, its structure is rather intricate, and we have been unable to

find a simple universal formula describing its asymptotics. The main issue is the observation

that the high temperature limit of log det(1 + B̃{m′,n′,r′}) can be of either O(1) or O(1/β).

This term is relatively unimportant in the former case, but will contribute to the leading

order behavior in (4.7) in the latter case. However, which case the determinant factor is in

depends in a non-obvious manner on the chemical potentials ∆a and is not easily obtained.

We now proceed with a closer look at the matrix B̃{m′,n′,r′} defined in (2.32). To avoid

unnecessary notation, we will omit the universal arguments (∆′a, τ
′) = (∆a/τ,−1/τ) and

occasionally the sector labels {m′, n′, r′}, in what follows. In this case, the B̃ matrix entries

can be simply written as

[B̃{m′,n′,r′}]µ,ν =
G{m′,n′,r′}(ĵ′µ, k̂′µ)− G{m′,n′,r′}(ĵ′µ − ĵ′ν , k̂′µ − k̂′ν)∑m′−1

ĵ′=0

∑n′−1

k̂′=0
G{m′,n′,r′}(ĵ′, k̂′)

, (4.8)

where we have the index pair associations µ→ (ĵ′µ, k̂
′
µ) and ν → (ĵ′ν , k̂

′
ν). At this stage it is

convenient to note that while this is originally an (N − 1)× (N − 1) square matrix, it can

be extended to an N × N square matrix by including the µ = 0 and ν = 0 entries. This

is equivalent to allowing ĵ′ and k̂′ to independently run over 0 . . .m′ − 1 and 0 . . . n′ − 1

without removing the (0, 0) pair. Since the first column of B̃ with entries [B̃]µ,0 vanishes

identically, however, the determinant det(1+B̃) can be viewed either as an (N−1)×(N−1)

or an N ×N determinant.

Taking the logarithmic derivative of ψ(u; τ) and using the asymptotic expansion (A.9)

gives the high-temperature expansion of G, which is necessary to study the high-

temperature limit of the matrix B̃{m′,n′,r′} with entries (4.8). We keep the O(1) and the
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first subexponential term, G(ĵ′, k̂′) = G0(ĵ′, k̂′) + Gexp(ĵ′, k̂′) + · · · , where

G0(ĵ′, k̂′) = −
3∑

a=1

(
1 +Da(k̂

′/n′) +Da(−k̂′/n′)
)
, (4.9a)

Gexp(ĵ′, k̂′) =

3∑
a=1

∑
σ=±

(
e−

2πiσ
N

(ĵ′n′+k̂′r′)e
− 2π
τ2

(1−da(σk̂′/n′)) − e
2πiσ
N

(ĵ′n′+k̂′r′)e
− 2π
τ2
da(σk̂′/n′)

)
,

(4.9b)

and we have defined

da(x) ≡ ∆a

2π
+ x (mod 1), Da(x) ≡

⌊
∆a

2π
+ x

⌋
. (4.10)

Note that, while Gexp is a sum of twelve exponentially small terms, generically only a single

one will dominate, depending on the relative magnitudes of da(σk̂
′/n′).

Given the asymptotic form of G(ĵ′, k̂′), the B̃ matrix can be expanded into the sum

of an O(1) matrix and a subexponential one, B̃ = B̃0 + B̃exp. If det(1 + B̃0) 6= 0, then we

are essentially done, as it will not contribute at the O(1/β) order in the high-temperature

limit. However, if this vanishes, the subexponential contribution becomes important. We

thus consider the O(1) order determinant first, before turning to the subexponential one.

4.2.1 O(1) order determinant

For the B̃0 matrix, we note that its entries are built from G0
{m′,n′,r′}(ĵ

′, k̂′), where here we

have restored the sector labels {m′, n′, r′}. However, examination of (4.9a) demonstrates

that it is actually independent of m′ and r′ as well as the index ĵ′. As a result, we can

write the matrix expression

B̃0
{m′,n′,r′} =

1

m′
U ⊗ B̃0

{1,n′,0}, (4.11)

where U is the m′ ×m′ square matrix whose entries are all unity. Since U has only one

non-vanishing eigenvalue equal to m′, we then see that

det(1 + B̃0
{m′,n′,r′}) = det(1 + B̃0

{1,n′,0}), (4.12)

where the determinant on the left is that of an N ×N matrix, while that on the right is of

an n′ × n′ matrix.

At this point, we are still left with the n′×n′ determinant to evaluate. However, there

is an important special case corresponding to {m′, n′, r′} = {N, 1, 0}. This case is trivial

since B̃0
{1,1,0} = 0, so that

det(1 + B̃0
{N,1,0}) = 1. (4.13)

The situation is more complicated when n′ 6= 1. While we do not have a proof, numer-

ical evidence indicates that the O(1) order determinant only takes on two possibilities,

depending on the chemical potentials:

det(1 + B̃0
{m′,n′,r′}) = 0 or n′2. (4.14)
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Figure 1. Regions of vanishing determinant for n′ = 2, . . . , 7. The black regions correspond to 1 +

B̃0 = 0, while the gray regions correspond to non-trivial 1+B̃0, but still with vanishing determinant.

The determinant evaluates to n′2 in the unshaded regions. The yellow triange corresponds to the

region 0 < d1 ≤ d2 ≤ d3 < 1.

In order to investigate where the determinant vanishes, we take da = ∆a/2π (mod 1) and

assume none of them are integer multiples of 1/n′ as in (4.5a). Furthermore, without loss

of generality, we let
∑

a da = 1, which follows from the requirement
∑

a ∆a = 0. (The other

possible case,
∑

a da = 2, can be mapped to this one by taking into account the invariance

of the index under ∆a → −∆a discussed in (2.7).)

For small values of n′, the regions in (d1, d2) parameter space where the determinant

vanishes are shown in figure 1. Here the (n′ − 1) × (n′ − 1) matrix 1 + B̃0
{1,n′,0} vanishes

identically in the black regions. For prime n′, this appears to be the only places where the

determinant vanishes, while for composite n′ there are additional regions with vanishing

determinant but with non-trivial 1 + B̃0, represented by the gray regions.

For general n′, consider that the B̃0 matrix is obtained from

G0(ĵ′, k̂′) =


−1, da2 > min(k̂′) and (da1 −min(k̂′))(da3 −max(k̂′)) < 0;

0, da1 < min(k̂′) and (da2 −min(k̂′))(da3 −max(k̂′)) < 0;

1, da2 < min(k̂′) < da3 < max(k̂′);

2, da3 < min(k̂′),

(4.15)

which is a direct consequence of (4.9a). Here da’s are ordered as 0 < da1 ≤ da2 ≤ da3 <

1 and we have defined min(k̂′) and max(k̂′) as the min and max of {k̂′/n′, 1 − k̂′/n′},
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respectively. In particular, note that G0(ĵ′, k̂′) = −δ0,k̂′ where

l′

n′
< da2 < da1 + da2 <

l′ + 1

n′
, with l′ = 0, 1, · · · ,

⌊
n′ − 1

2

⌋
, (4.16)

which corresponds to the black regions in figure 1. Inserting G0(ĵ′, k̂′) = −δ0,k̂′ into (4.8)

then explains why 1 + B̃0 vanishes identically in these regions. However, the resulting B̃0

matrix outside of the black regions is rather difficult to work with. Nevertheless, for prime

n′, we conjecture based on numerical evidence that det(1+ B̃0) = n′2 everywhere outside of

the black regions specified by (4.16). The case for composite n′ is clearly more complicated,

as can be seen from the figure.

4.2.2 First subexponential order determinant

Whenever the O(1) order determinant vanishes, it becomes necessary to examine the ex-

ponentially suppressed contributions to B̃. For prime n′, we can derive

1 + B̃{1,n′,r′} = exp

[
2πi

(
γ{1,n′,r′}(da)

n′
r′ −

α{1,n′,r′}(da)

τ

)]
C(γ{1,n′,r′}(da)), (4.17)

at leading order whenever we are in the black regions specified by (4.16). Here C(γ) is an

(n′ − 1)× (n′ − 1)-square matrix defined by

[C(γ)]µ,ν = 2δµ,ν + δµ,γ + δµ,n′−γ − δµ−ν,γ − δµ−ν,n′−γ − δµ−ν,−γ − δµ−ν,−(n′−γ), (4.18)

and α{1,n′,r′}(da) and γ{1,n′,r′}(da) are given by

α{1,n′,r′}(da) =

da3 − n′−1
n′ , l′ = 0;

min
{
da2 − l′

n′ , da3 − n′−l′−1
n′

}
, l′ 6= 0,

(4.19a)

γ{1,n′,r′}(da) =

{
n′ − l′, α{1,n′,r′}(da) = da2 − l′

n′ ;

l′ + 1, α{1,n′,r′}(da) = da3 − n′−l′−1
n′ .

(4.19b)

Note that here we are excluding the special case da2 − l′

n′ = da3 − n′−l′−1
n′ .

For prime n′, we can prove detC(γ) = n′2 for any γ = 1, . . . , n′ − 1. In particular, we

can first show detC(1) = n′2 by mathematical induction. Then since

C(γ) = σ̃−1
γ C(1)σ̃γ , (4.20)

with a permutation σγ(µ) = γµ (mod n′) and the corresponding permutation matrix

[σ̃γ ]µ,ν = δσγ(µ),ν , (4.21)

we have detC(γ) = n′2 for any γ = 1, · · · , n′−1. Combining this result with the conjecture

for the O(1) behavior made above, we find for prime n′ (excluding the special case)

det(1 + B̃{1,n′,r′}) = n′2 exp

[
2πi(n′ − 1)

(
γ{1,n′,r′}(da)

n′
r′ −

α{1,n′,r′}(da)

τ

)]
, (4.22)
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at leading order, where we set α{1,n′,r′}(da) and γ{1,n′,r′}(da) to vanish outside of the black

regions specified by (4.16).

We now have all the components needed to work out the high temperature expansion

of the index in the {m,n, r} sector provided the corresponding m′ is unity and n′ is prime.

For such a sector, substituting (4.22) into (4.7) yields

logZ{m,n,r}(τ ; ∆a, na) =
2π2

β

[ 3∑
a=1

(1− na)
(
da(1− da)−m′2xa(1− xa)

)
+ 2(n′ − 1)α{m′,n′,r′}(da)

]
− 3 log n′ + iϕ+O(e−c{m′,n′,r′}(da)/β), (4.23)

where ϕ is a phase independent of τ and c{1,n′,r′}(da) > 0 is a positive function away from

special values of the chemical potentials da. We expect that this expression continues to

hold for arbitrary values of {m,n, r}, although we have been unable to obtain a general

expression for the determinant factor α{m′,n′,r′}(da) apart from the above case.

4.2.3 The N = 2 and 3 cases

We now give a couple of examples supporting the results (4.22) and (4.23). For notational

convenience, here we set 0 < d1 ≤ d2 ≤ d3 < 1 without loss of generality and therefore the

domain in (d1, d2) parameter space shrinks down to the yellow triangle in figure 1.

For the N = 2 case, we have a total of three sectors, labeled by {m′, n′, r′} = {2, 1, 0},
{1, 2, 0} and {1, 2, 1}. The determinant in the {2, 1, 0} sector is trivial as seen in (4.13), so

we focus on the {1, 2, r′} case. From (4.8) and (4.9a), we have

det(1 + B̃{1,2,r′}) =
4
∑3

a=1Da(1/2)− 2Gexp
{1,2,r′}(0, 1)

1 + 2
∑3

a=1Da(1/2)− Gexp
{1,2,r′}(0, 1)− Gexp

{1,2,r′}(0, 0)
, (4.24)

up to higher order terms. Due to the constraint
∑

aDa = −1, the sum
∑

aDa(1/2) is

restricted as
3∑

a=1

Da(1/2) =

{
−1, d3 < 1/2;

0, d3 > 1/2,
(4.25)

and therefore (4.24) leads to (“∼” denotes the non-vanishing leading order)

det(1 + B̃{1,2,r′}) ∼

4, d3 < 1/2;

−2Gexp
{1,2,r′}(0, 1), d3 > 1/2.

(4.26)

When d3 > 1/2, we use the expansion (4.9b) to obtain

Gexp
{1,2,r′}(0, 1) ∼ −2 exp

[
2πi

(
r′

2
− d3 − 1/2

τ

)]
(d3 > 1/2), (4.27)

where we used the fact that

min{da(1/2), 1− da(1/2)} = d3(1/2) = d3 −
1

2
, (4.28)
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which is valid for d3 > 1/2. Consequently, we have

det(1 + B̃{1,2,r′}) ∼ 4×

1, d3 < 1/2;

(−1)r
′
exp

(
−2πid3−1/2

τ

)
, d3 > 1/2,

(4.29)

which is consistent with (4.22). As a result, the N = 2 index is given by (4.23) with

α{2,1,0} = 0, α{1,2,0} = α{1,2,1} = max(0, d3 − 1/2). (4.30)

We now turn to the N = 3 index. Here there are four sectors, given by {m′, n′, r′} =

{3, 1, 0} and {1, 3, r′} with r′ = 0, 1, 2. Since the determinant in the {3, 1, 0} sector is trivial

as seen in (4.13), we focus on the {1, 3, r′} case. From (4.8) and (4.9a), we have

det(1 + B̃{1,3,r′}) =

(
3
∑

a(Da(1/3) +Da(2/3))− 2Gexp(0, 1)− Gexp(0, 2)

1 + 2
∑

a(Da(1/3) +Da(2/3))− Gexp(0, 0)− Gexp(0, 1)− Gexp(0, 2)

)
×
(
Gexp(0, 1)↔ Gexp(0, 2)

)
, (4.31)

up to higher order terms, where we have suppressed the {1, 3, r′} subscript from G(ĵ′, k̂′).

Due to the constraint
∑

aDa = −1, the sum
∑

a(Da(1/3) +Da(2/3)) is restricted as

3∑
a=1

(Da(1/3) +Da(2/3)) =

{
−1, d2 < 1/3 < d3 < 2/3;

0, otherwise,
(4.32)

and therefore we have

det(1 + B̃{1,3,r′}) ∼

{
9, d2 < 1/3 < d3 < 2/3;

2Gexp(0, 1)2 + 5Gexp(0, 1)Gexp(0, 2) + 2Gexp(0, 2)2, otherwise.

(4.33)

We can pull out the leading order behavior of Gexp(0, k̂′) with k̂′ = 1, 2 from (4.9b). The

result is independent of k̂′, and is given by

Gexp
{1,3,r′}(0, k̂

′) ∼

− exp
[
2πi

(
r′

3 −
d3−2/3

τ

)]
, d2 <

1
3 , d3 >

2
3 ;

− exp
[
2πi

(
2r′

3 −
d2−1/3

τ

)]
, d2 >

1
3 , d3 <

2
3 ,

(4.34)

where we made use of

min{da(1/3), 1− da(1/3), da(−1/3), 1− da(−1/3)}

=

{
d3(1/3) = d3 − 2

3 , d2 < 1/3, d3 > 2/3;

d2(−1/3) = d2 − 1
3 , d2 > 1/3, d3 < 2/3.

(4.35)

Consequently, we have

det(1 + B̃{1,3,r′}) ∼ 9×


1, d2 < 1/3, d3 < 2/3;

exp
[
4πi

(
r′

3 −
d3−2/3

τ

)]
, d2 < 1/3, d3 > 2/3;

exp
[
4πi

(
2r′

3 −
d2−1/3

τ

)]
, d2 > 1/3, d3 < 2/3,

(4.36)

which is consistent with (4.22). As a result, the N = 3 index is given by (4.23) with

α{3,1,0} = 0, α{1,3,r′} = max(0, d2 − 1/3, d3 − 2/3). (4.37)
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4.3 The full index in the ‘high-temperature’ limit

After the above examination of the individual {m,n, r} sectors, we now return to the full

index, (3.1), in the high temperature limit. From (4.23), we expect the leading behavior

of each individual sector Z{m,n,r} to scale exponentially in 1/β. Thus, the sectors with the

largest positive coefficient of 1/β will dominate the full index, and the other sectors will

be exponentially suppressed. As a result, we are left with identifying the dominant sectors

and their contribution to the index. Note that the degeneracy, if any, of the dominant

sectors does not contribute to the leading order expansion of the full index.

The high temperature limit was investigated in [7], where the BAE were solved in the

{1, N, 0} sector. Substituting the corresponding {m′, n′, r′} = {N, 1, 0} into (4.23) gives

logZ{1,N,0} = −2π2

β
(N2 − 1)

∑
a

(1− na)da(1− da) +O(1). (4.38)

As discussed in [7], this is to be extremized with respect to the potentials, da under the

constraint
∑3

a=1 da = 1. This can be performed by the method of Lagrange multipliers,

and the result is

logZ{1,N,0}
∣∣
d̄a

=
π2

6β
cr(na) + · · · , (4.39)

where the extremum values, d̄a, are given by

d̄a =
na(na − 1)

2Θ
, Θ ≡ 1− (n1n2 + n2n3 + n3n1), (4.40)

and cr(na) is the right-moving central charge of the 2d N = (0, 2) SCFT arising from the

KK compactification of the topologically twisted N = 4 SYM over S2 [7]. Here we have

assumed that two of na’s are negative so cr(na) given in (1.2) is positive.

Note that the left-hand side of (4.40) only corresponds to a single sector of the full

index. Nevertheless, this connection to the right-moving central charge suggests that the

{1, N, 0} sector is a dominant one, so that

logZ
∣∣
d̄a

=
π2

6β
cr(na) + · · · , (4.41)

where Z is the full index, and is indeed the only physically relevant quantity to connect

to the central charge. Note that, if logZ is truly dominated by logZ{1,N,0}, then d̄a can

be considered not just an extremum of logZ{1,N,0}, but the full index as well. Hence the

identification of the central charge with the extremized index in the ‘high-temperature’

limit [7] remains valid in the presence of multiple BAE solutions.

Of course, it is still necessary to demonstrate that the {1, N, 0} sector is a dominant

one. To do so, we must show that

< log

(
Z{1,N,0}

Z{m,n,r}

)∣∣∣∣
d̄a

≥ 0, (4.42)
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at leading order in 1/β for any {m,n, r}. This inequality can be written explicitly by

inserting (4.40) into (4.23):

3∑
a=1

(1− na)

(
x̄a(1− x̄a)

n′2
− d̄a(1− d̄a)

)
≥ 2(n′ − 1)

N2
α{m′,n′,r′}(d̄a), (4.43)

for any {m′, n′, r′}. The difficulty in proving this inequality lies in the α{m′,n′,r′}(d̄a) factors

which originate from the determinant of 1 + B̃.

4.3.1 The case of vanishing α{m′,n′,r′}(d̄a)

As we have noted, the α{m′,n′,r′}(d̄a) factors depend in a complicated manner on the ex-

tremized potentials d̄a. However, they are always non-negative and in fact vanish in the

white regions of figure 1. In this case the claim (4.43) reduces to

3∑
a=1

(1− na)

(
x̄a(1− x̄a)

n′2
− d̄a(1− d̄a)

)
≥ 0, (4.44)

for any integers na with the constraints
∑

a na = 2 and two of them being negative. Note

that the latter is necessary for the 2d SCFT arising from the KK compactification to have a

positive right-moving central charge [6]. Here we prove this reduced claim under the same

constraints, but without the integer condition. To begin with, note that the map (4.40) is

in fact invertible between

{na :
∑
a

na = 2, two of them are negative} ↔ {d̄a :
∑
a

d̄a = 1, (1/2−d̄1−d̄2)2 > d̄1d̄2},

(4.45)

with the inverse map

na =
2d̄a(2d̄a − 1)

1− 4(d̄1d̄2 + d̄2d̄3 + d̄3d̄1)
. (4.46)

Hence, using

(1− na)(1− 2d̄a) = −
∏3
a=1(1− na)

Θ
> 0, (4.47)

the above claim can be rewritten equivalently as

3∑
a=1

1

1− 2d̄a

(
x̄a(1− x̄a)

n′2
− d̄a(1− d̄a)

)
≥ 0, (4.48)

for any d̄a within the domain given in (4.45). Now we define f(d̄1, d̄2) as the l.h.s. of the

above inequality. Then within the subdomain of fixed bn′d̄ac, where ∂d̄af is well defined,

we can consider the extremum of f which satisfies

∂d̄1
f = ∂d̄2

f = 0

⇒ 2

(1− d̄a)2

(
x̄a(1− x̄a)

n′2
− d̄a(1− d̄a)

)
+

1

1− 2d̄a

(
1− 2x̄a
n′

− (1− 2d̄a)

)
= k, (4.49)

– 22 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
8

where k is some constant independent of a. At this extremum, the determinant of the

Hessian is given by∣∣∣∣∣ ∂2
d̄1
f ∂d̄1

∂d̄2
f

∂d̄2
∂d̄1

f ∂2
d̄2
f

∣∣∣∣∣ =
16k2

(1− 2d̄1)(1− 2d̄2)(1− 2d̄3)
< 0, (4.50)

so it is in fact a saddle point. Note that we have used d̄a1 ≤ d̄a2 < 1/2 < d̄a3 , ordered as

before, which is valid in the domain given in (4.45). This implies the minimum of f within

the subdomain of fixed bn′d̄ac must stay on its boundary. If one investigates the values of f

on this boundary, it is straightforward (though tedious) to check that f is minimized where

x̄a1 → 0+, x̄a2 → 0+, x̄a3 → 1− for
3∑

a=1

bn′d̄ac = n′ − 1, (4.51)

x̄a1 → 0+, x̄a2 → 1−, x̄a3 → 1− for
3∑

a=1

bn′d̄ac = n′ − 2. (4.52)

For both cases, we have

f →
3∑

a=1

−d̄a(1− d̄a)
1− 2d̄a

= −1

4

3∏
a=1

na
1− na

≥ 0, (4.53)

which proves (4.48) and thereby the claim (4.43) in the white regions of figure 1 where

α{m′,n′,r′}(d̄a) vanishes.

4.3.2 The N = 2 and 3 cases

Of course, we are left to deal with the regions where α{m′,n′,r′}(d̄a) is strictly positive. In

this case, the inequality (4.43) is stronger than the reduced claim (4.44), and the above

proof no longer applies. In the absence of a general expression for α{m′,n′,r′}(d̄a), we only

verify (4.43) for N = 2 and 3, and leave the general case for N ≥ 4 as a conjecture. Here

we set 0 < d̄1 ≤ d̄2 ≤ d̄3 < 1 without loss of generality as in 4.2.3.

For N = 2, it suffices to prove the inequality (4.43) for {m′, n′, r′} = {1, 2, r′}. Inserting

{x̄1, x̄2, x̄3} = {2d̄1, 2d̄2, 2d̄3 − 1} and α{1,2,r′}(d̄a) = d̄3 − 1/2 into (4.43) then reduces the

claim to
(n3 − 1)(n1n2 − 1)

Θ
≥ 0, (4.54)

which is true since n2 ≤ n1 ≤ −1 and n3 ≥ 4. Hence the claim is proven for N = 2.

For N = 3, it suffices to prove the inequality (4.43) for {m′, n′, r′} = {1, 3, r′}. Inserting

{x̄1, x̄2, x̄3} =


{3d̄1, 3d̄2, 3d̄a − 1}, (d̄2 < 1/3, d̄3 < 2/3);

{3d̄1, 3d̄2, 3d̄a − 2}, (d̄2 < 1/3, d̄3 > 2/3);

{3d̄1, 3d̄2 − 1, 3d̄a − 1}, (d̄2 > 1/3, d̄3 < 2/3),

(4.55a)

α{1,3,r′}(d̄a) =

{
d̄3 − 2

3 , (d̄2 < 1/3, d̄3 > 2/3);

d̄2 − 1
3 , (d̄2 > 1/3, d̄3 < 2/3),

(4.55b)

into (4.43) and examining the resulting expression then proves the claim for N = 3.
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5 Discussion

Our main observation is that the BAEs for the topologically twisted index for N = 4,

SU(N) SYM on T 2×S2 have multiple solutions labeled by three integers m, n, and r such

that N = mn and r = 0, . . . , n− 1. Modular covariance of the index is only achieved after

summing over a complete set of these solutions. Taking this into account, we verified that

the index gives the elliptic genus of the (0, 2) theory [11, 12], which transforms as a weak

Jacobi form of weight zero. Based on this observation, we expect that the BAEs for general

supersymmetric indices where there is a T 2 factor will similarly admit multiple solutions.

This is equivalent to having multiple saddle points in the matrix integrals that arise from

localization of the path integral.

Multiple solutions of the BAEs, however, make it rather difficult to compute the index

explicitly. This is because we have to sum over all possible contributions to get the full

index (3.1). We conjecture that the contribution from a single sector, namely Z{1,N,0},

will dominate in the ‘high-temperature’ limit when extremized with respect to the flavor

chemical potentials ∆a, giving the result (4.41), which connects the index to the central

charge of the (0,2) theory. However, we have been unable to demonstrate this in full

generality because of the difficulty in computing detB{m′,n′,r′} in this limit.

This connection between the high-temperature limit of the topologically twisted index

and the right-moving central charge, (1.2), was derived with the assumption that cr(na) > 0.

On the holographic side, positivity of the central charge is necessary for a good AdS3×S2

supergravity solution to exist. However, it may be interesting to explore the case when

a single magnetic charge na is negative, corresponding to cr(na) < 0 after extremization.

While the holographic dual is not obviously well-defined, the field theory may still be

interesting on its own. In this situation, the {1, N, 0} sector may no longer dominate, and

additional sectors will have to be considered as well.

We were initially drawn to the topologically twisted T 2 × S2 index because of our

interest in its large-N limit. This limit, however, is somewhat delicate, as the sum over

sectors involves the modular parameter τ̃ = (mτ + r)/n with N = mn. The different

sectors then have =τ̃ ranging from (=τ)/N → 0 to N=τ → ∞ for fixed τ in the large-N

limit. Similar to the high-temperature limit, we may expect O(N2) contributions to arise

from the =τ̃ → 0 sectors, and in particular the {1, N, 0} sector. However, for finite modular

parameter τ , the final result ought to remain a weak Jacobi form of weight zero, as the

Cardy limit would not yet have been taken.

Assuming progress can be made with the large-N limit, this would allow us to inves-

tigate the partition function for microstate counting of the dual magnetic black string, in

analogy with the AdS4 black hole story of [5]. However, an analytic supergravity solution

has not yet been constructed. (See [13] for a singular magnetic string and [6] for a nu-

merical solution.) So in order to complete the picture, it would be worth obtaining such a

solution that interpolates from an AdS3×S2 near-horizon geometry [6] to asymptotic AdS5

with conformal boundary T 2×S2. If such an analytic solution can be found, an interesting

follow up would be to compare the logN term in the index with the corresponding one-

loop supergravity result. (See [14–16] for recent work on the topologically twisted index
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for ABJM theory.) This would, however, require a more careful computation of log det B
than what we considered above, and hence may remain an open challenge.
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A Elliptic functions

Let q = e2πiτ and x = eiu. Then the Dedekind eta function is given by

η(q) = η(τ) = q
1
24

∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nq

3
2

(n− 1
6

)2
. (A.1)

The Jacobi theta function θ1 is given by

θ1(x; q) = θ1(u; τ) = −iq
1
8 (x

1
2 − x−

1
2 )
∞∏
n=1

(1− qn)(1− xqn)(1− x−1qn)

= −i
∞∑

n=−∞
(−1)nxn+ 1

2 q
1
2

(n+ 1
2

)2
. (A.2)

These elliptic functions satisfy the following modular properties

η(τ + 1) = eiπ/12η(τ), η(−1/τ) =
√
−iτη(τ), (A.3a)

θ1(u; τ + 1) = eiπ/4θ1(u; τ), θ1(u/τ ;−1/τ) = −i
√
−iτeiu2/4πτθ1(u; τ). (A.3b)

These modular properties, (A.3), can be extended to general SL(2;Z) transformations

η

(
aτ + b

cτ + d

)
= ξ
√
cτ + d η(τ), (A.4a)

θ1

(
u

cτ + d
,
aτ + b

cτ + d

)
= ξ3
√
cτ + d e

icu2

4π(cτ+d) θ1(u, τ), (A.4b)

where ξ is a 24-th root of unity.

In addition, θ1 is quasi-doubly periodic with (p, q ∈ Z)

θ1(u+ 2π(p+ qτ); τ) = (−1)p+qe−ique−iπq
2τθ1(u; τ). (A.5)

In the text, we have introduced the weak Jacobi form of weight −1 and index 1/2,

ψ(u; τ) ≡ θ1(u; τ)

η(τ)3
. (A.6)
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(This is the square-root of the unique weak Jacobi form of weight −2 and integer index 1,

sometimes denoted ϕ−2,1.) This can be expanded for =τ � 1 (ie |q| � 1), with the result

ψ(u; τ) ∼ i(−1)`e
u2

2
4πτ2 |q|−

1
2
δ(1−δ)ei(π`(`+1)τ1−(`+ 1

2
)u1)

×
(

1− e−i(2π`τ1−u1)|q|δ − ei(2π(`+1)τ1−u1)|q|1−δ +O(|q|)
)
, (A.7)

where

δ =
u2

2πτ2
(mod 1), ` =

⌊
u2

2πτ2

⌋
. (A.8)

Note that this expansion breaks down for integer `. We can also rewrite this expansion as

ψ(u; τ) ∼ −i(−1)`
′
e

u2
2

4πτ2 |q|−
1
2
δ′(1−δ′)ei(π`

′(`′+1)τ1+(`′+ 1
2

)u1)

×
(

1− e−i(2π`′τ1+u1)|q|δ′ − ei(2π(`′+1)τ1+u1)|q|1−δ′ +O(|q|)
)
, (A.9)

where

δ′ = − u2

2πτ2
(mod 1) = 1− δ, `′ =

⌊
− u2

2πτ2

⌋
= −`− 1. (A.10)

B Invariance of detB under T and S transformations

Here we demonstrate that detB transforms according to (3.26) and (3.35) under T and S

transformations, respectively. We first note that the eigenvalues for the BAE solution de-

noted by {m,n, r} are canonically ordered according to (2.25). The key step here is then to

order the eigenvalues for the BAE solution denoted by {m′, n′, r′} differently, according to

{m,n, r} sector : unĵ+k̂ → uĵk̂, (B.1a)

{m′, n′, r′} sector : unĵ+k̂ → uĵ′k̂′ . (B.1b)

Note that (ĵ, k̂) → (ĵ′, k̂′) is a bijective map from Zm × Zn to Zm′ × Zn′ for both T and

S transformation cases so the above ordering for {m′, n′, r′} sector is valid. Furthermore,

it does not affect the determinant of the B matrix as the determinant does not depend on

eigenvalue ordering.

Now we prove, with respect to the above ordering,

B{m,n,r}(∆a; τ + 1) = B{m′,n′,r′}(∆a; τ), (B.2a)

B{m,n,r}(∆a/τ ;−1/τ) = τN−1B{m′,n′,r′}(∆a; τ), (B.2b)

which automatically yields (3.26) and (3.35) respectively. Note that {m′, n′, r′} are different

for T and S cases. From (2.21), the (l, N) entries of the l.h.s. and the r.h.s. are the same

as unity for l ∈ {1, · · · , N}. In order to prove that the remaining entries also match, it

suffices to show

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; ∆a, τ + 1) = G{m′,n′,r′}(ĵ′ − ĵ′0, k̂′ − k̂′0; ∆a, τ), (B.3a)

G{m,n,r}(ĵ − ĵ0, k̂ − k̂0; ∆a/τ,−1/τ) = τG{m′,n′,r′}(ĵ′ − ĵ′0, k̂′ − k̂′0; ∆a, τ), (B.3b)
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for any ĵ, ĵ0 ∈ Zm and k̂, k̂0 ∈ Zn. Note that these are not trivial from (3.24) or (3.33) but

can be proved based on those relations and the following properties of the G-function:

G{m,n,r}(ĵ +m, k̂; ∆a, τ) = G{m,n,r}(ĵ, k̂; ∆a, τ), (B.4a)

G{m,n,r}(ĵ, k̂ + n; ∆a, τ) = G{m,n,r}(ĵ + r, k̂; ∆a, τ). (B.4b)

Proof of (B.3a).

l.h.s. = G{m,n,r}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
,m

}
, {k̂ − k̂0, n}; ∆a, τ + 1

)

= G{m′,n′,r′}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
+ {k̂ − k̂0, n}

⌊
m+ r

n

⌋
,m

}
, {k̂ − k̂0, n}; ∆a, τ

)

= G{m′,n′,r′}
({

ĵ + k̂

⌊
m+ r

n

⌋
,m

}
−
{
ĵ0 + k̂0

⌊
m+ r

n

⌋
,m

}
, k̂ − k̂0; ∆a, τ

)
= r.h.s. (B.5)

Here {A,B} denotes A mod B (0 ≤ A < B). Note that (B.4) has been used in the 1st and

the 3rd lines. The 2nd line comes from (3.24).

Proof of (B.3b).

l.h.s. = G{m,n,r}

({
ĵ − ĵ0 + r

⌊
k̂ − k̂0

n

⌋
,m

}
, {k̂ − k̂0, n};

∆a

τ
,−1

τ

)

= τG{m′,n′,r′}

({
− g
n

(
(k̂ − k̂0) + d

{
n

g
(ĵ − ĵ0) +

r

g
(k̂ − k̂0),

N

g

})
, g

}
,

{
n

g
(ĵ − ĵ0) +

r

g
(k̂ − k̂0),

N

g

}
; ∆a, τ

)

= τG{m′,n′,r′}

({
− g
n

(
k̂ + d

{
n

g
ĵ +

r

g
k̂,
N

g

})
, g

}
−
{
− g
n

(
k̂0 + d

{
n

g
ĵ0 +

r

g
k̂0,

N

g

})
, g

}
,{

n

g
ĵ +

r

g
k̂,
N

g

}
−
{
n

g
ĵ0 +

r

g
k̂0,

N

g

}
; ∆a, τ

)
= r.h.s. (B.6)

Note that (B.4) has been used in the 1st and the 4th lines. The 2nd line comes from (3.24)

followed by the identity M{A,B} = {MA,MB}.

C Proof that the map (3.34) is bijective

First we prove that (3.34) is one-to-one, i.e.

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ ĵ1 = ĵ2 & k̂1 = k̂2. (C.1)
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To begin with, note that (3.34a) implies

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ k̂1 = k̂2 (mod n), (C.2)

which means k̂1 = k̂2 in fact. Combined with this fact, (3.34b) implies

ĵ′1 = ĵ′2 & k̂′1 = k̂′2 ⇒ ĵ1 = ĵ2 (mod m), (C.3)

which means ĵ1 = ĵ2 in fact. Hence (3.34) is one-to one.

Next we prove that (3.34) is onto, i.e. there exists (ĵ, k̂) ∈ Zm × Zn satisfying (3.34)

for any given (ĵ′, k̂′) ∈ Zm′ × Zn′ (m′ = g, n′ = N/g). To begin with, recall that we have

n

g
(−b) +

r

g
(d) = 1. (C.4)

Then for any given (ĵ′, k̂′) ∈ Zm′ × Zn′ , we have

n

g

(
−bk̂′ + r

g
ĵ′
)

+
r

g

(
dk̂′ − n

g
ĵ′
)

= k̂′. (C.5)

This can be rewritten as

k̂′ =

{
n

g

{
−bk̂′ + r

g
ĵ′ + r

⌊
dk̂′ − n

g ĵ
′

n

⌋
,m

}
+
r

g

{
dk̂′ − n

g
ĵ′, n

}
,
N

g

}
. (C.6)

As in appendix B, {A,B} denotes A mod B (0 ≤ A < B). Now it is straightforward to

check that

ĵ =

{
−bk̂′ + r

g
ĵ′ + r

⌊
dk̂′ − n

g ĵ
′

n

⌋
,m

}
∈ Zm, (C.7a)

k̂ =

{
dk̂′ − n

g
ĵ′, n

}
∈ Zn, (C.7b)

truly satisfy (3.34), so (3.34) is onto.
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