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1 Introduction

The detection of the gravitational wave [1] has opened up the era of gravitational astronomy

and cosmology. It is known that, in addition to the oscillatory gravitational wave, there

exists the non-oscillatory contribution [2–5], which is called gravitational memory effect.

This results in the permanent displacement of the proper distance between the free falling

detector particles. The understanding of the memory effect is quite important for the

future gravitational wave experiment. Recently, the memory effect in cosmological setup

has been investigated [6–12]. Other than the experimental aspect, the memory effect is
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theoretically interesting because it has a strong connection to the notion such as the soft

graviton theorem and asymptotic symmetry [13–19].

Inspired by the gravitational memory effect, an electromagnetic analog of the gravi-

tational memory effect was discovered [20], where it was shown that the permanent kick

of the momentum is observed instead of the permanent displacement. More recently, the

axion memory effect was also proposed by the present authors [21].

In this paper, we investigate the gravitational, electromagnetic and axion memory

effects. We first revisit the derivation of the memory effect induced by the kick of the

particle which sources the graviton, photon or axion. It has been known for a long time [22]

that the classical radiation by the kick is related to the soft factor appeared in the leading

soft theorem. Recently, this relation has been revisited with the connection to memory

effects [13, 23, 24]. We explicitly compute the radiation by the kick of particles and confirm

that the soft factor is nothing but the leading memory of the kick, which is characterized

by the step function Θ(u) term in the radiation. In addition to the leading order, we look

at the subleading and the subsubleading memories characterized by the δ(u) and δ′(u)

terms in the classical radiation, and show that they are related to the soft factors in the

subleading and subsubleading soft theorems. Then, we discuss the decomposition of the E

and B modes1 of the memory effect. Compared with the earlier studies, we also find the

following new things. First, we derive the subleading order axion memory effect which is

induced by the kick of the particle coupled with the axion. Second, it is found that the

electromagnetic leading memory contains the B-mode if we allow the magnetic monopole

as an external state.2 Third, we show that the subsubleading memory in gravity cannot

be observed if one can observe only the trajectory and spin of the test particle at far past

and future. Finally, we point out that the (sub)leading memory effect of gravity, photon

and axion can be detected as a permanent change of the spin direction.

This paper is organized as follows. In section 2, we derive the memory effects by solving

the classical equations of motion using the Green function. The detection of the memory

effect is discussed in section 3. The summary is presented in section 4. The definition of

the E and B decomposition is collected in appendix A. In appendix B, the proof of the

soft pion theorem for spin 1 particle is presented. We also argue that the spin 2 particle

does not contribute to the soft pion theorem at the subleading order.

2 Derivation of the memory effects

2.1 Photon

2.1.1 Derivation of the electromagnetic memory effect

We consider the electromagnetic potential induced from kicks of charged particles, and

see that it leads to the electromagnetic memory. See refs. [20, 26–28] for studies on the

1These correspond to the parity even and odd modes, respectively.
2The soft photon theorem in the presence of the magnetic monopole is known [25]. On the other hand,

the memory effect induced by the monopole was not studied before. Previous studies on the electromagnetic

memory effect [20, 26–28] focused on the source without magnetic charges.
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electromagnetic memory effect. As mentioned in section 1, it has been known that classical

radiation is related to the soft factors in the soft theorem [22, 24, 29]. We see that the soft

factors characterize step function terms and delta function terms in the classical radiation

[see (2.17)].

The motion of charged particles is as follows: the particles first move as

yµn(τ) =
pµn
mn

τ + xµ0 (τ < 0) , (2.1)

with charges en, and after a kick, they move as3

yµn′(τ) =
pµn′

mn′
τ + xµ0 (τ > 0) , (2.2)

with charges en′ . x
µ
0 is a spacetime point xµ0 = (t0, ~x0) where the kick occurs. We assume

that charges are conserved ∑
n

en =
∑
n′

en′ . (2.3)

We also represent the momenta as

pµn = ωn(1, ~vn) , pµn′ = ωn′(1, ~vn′) . (2.4)

They satisfy4

p2
n = −ω2

n(1− v2
n) = −m2

n , p2
n′ = −ω2

n′(1− v2
n′) = −m2

n′ . (2.5)

The electromagnetic current is given by

jµ(x) =
∑
n

∫ 0

−∞
dτ

enp
µ
n

mn
δ(4)(x− yn(τ)) +

∑
n′

∫ ∞
0

dτ
en′p

µ
n′

mn′
δ(4)(x− yn′(τ)) (2.6)

We solve the Maxwell equation in the Lorenz gauge (∂µA
µ = 0),

−∂2Aµ = jµ (2.7)

The retarded solution is given by

Aµ(x) (2.8)

= Θ(|~x−~x0|−t+t0)
∑
n

enp
µ
n

4πmn

√
|~x−~x0|2−

(
~vn·(~x−~x0)

vn

)2
+ 1

1−v2n

(
~vn·(~x−~x0)

vn
−vn(t−t0)

)2

+Θ(−|~x−~x0|+t−t0)
∑
n′

en′p
µ
n′

4πmn′

√
|~x−~x0|2−

(
~vn′ ·(~x−~x0)

vn′

)2
+ 1

1−v2
n′

(
~vn′ ·(~x−~x0)

vn′
−vn′(t−t0)

)2
.

3The number of particles can be changed.
4Signature is (−,+,+,+).
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The discontinuity of the gauge field is due to the sudden kick of particles. If we consider

smooth trajectories, the obtained potential is also smooth. Our justification to consider the

trajectory (2.1) and (2.2) relies on the leading and the subleading soft theorems in QED.

These soft theorems state that the soft factors are determined by the initial momenta and

angular momenta of particles and do not depend on the details of the scattering. Thus, in

order to see the memory effect associated with the soft theorems, only the initial and final

(angular) momenta of particles are relevant. Thus we expect that the details of smearing

do not affect the memory effects.

We expand this potential in the large r limit with u = t − r fixed.5 The potential is

expanded as

Aµ(x) = Θ(u+ ~x0 · ~̂x− t0)
∑
n′

en′p
µ
n′

4πωn′r(1− ~vn′ · ~̂x)

+ Θ(−u− ~x0 · ~̂x+ t0)
∑
n

enp
µ
n

4πωnr(1− ~vn · ~̂x)
+O(r−2)

= Θ(u+ ~x0 · ~̂x− t0)
∑
n′

en′p
µ
n′

4πpun′r
+ Θ(−u− ~x0 · ~̂x+ t0)

∑
n

enp
µ
n

4πpunr
+O(r−2). (2.9)

The leading electromagnetic memory is the shift of the gauge field from u = −∞ to

u =∞ at large r region (on I +):

Aµ(u = +∞)−Aµ(u = −∞) =

∫ ∞
−∞

du∂uA
µ . (2.10)

For our case (2.9), it is given by∫ ∞
−∞

du∂uA
µ =

∑
n′

en′p
µ
n′

4πpun′r
−
∑
n

enp
µ
n

4πpunr
. (2.11)

The right hand side is certainly the soft factor in the leading soft photon theorem.

The subleading memory is related to the integral
∫∞
−∞ duu∂uA

µ on I + [30–32]. Using

eq. (2.9), the integral is computed as∫ ∞
−∞

duu∂uA
µ = (t0 − ~x0 · ~̂x)

[∑
n′

en′p
µ
n′

4πpun′r
−
∑
n

enp
µ
n

4πpunr

]
. (2.12)

Since the angular momenta of particles with trajectories (2.1) and (2.2) are given by6

Jµνn = xµ0p
ν
n − xν0pµn , Jµνn′ = xµ0p

ν
n′ − xν0p

µ
n′ , (2.13)

we have

Juµn = (t0 − ~x0 · ~̂x)pµn − punx
µ
0 , Juµn′ = (t0 − ~x0 · ~̂x)pµn′ − p

u
n′x

µ
0 . (2.14)

5r = |~x|. ~̂x = ~x/r.
6We have the ambiguity of the choice of the origin to define angular momenta. In fact, angular momenta

are not invariant under spacetime translations. It is related to the ambiguity to define the subleading

memory as
∫∞
−∞ du (u− u0)∂uA

µ where u0 is arbitrary. In the absence of the magnetic charged object, by

concentrating the B-mode part, this ambiguity is removed.
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Eq. (2.12) is then rewritten as[∑
n′

en′J
uµ
n′

4πpun′r
−
∑
n

enJ
uµ
n

4πpunr

]
+

[∑
n′

en′ −
∑
n

en

]
xµ0
4πr

=

[∑
n′

en′J
uµ
n′

4πpun′r
−
∑
n

enJ
uµ
n

4πpunr

]
,

(2.15)

where we have used the charge conservation. Thus, the subleading memory is given by∫ ∞
−∞

duu∂uA
µ =

∑
n′

en′J
uµ
n′

4πpun′r
−
∑
n

enJ
uµ
n

4πpunr
, (2.16)

which is the same form as the soft factor in the subleading soft theorem as discussed in the

earlier works [24].

We can see that these leading and subleading memories appears in the classical radi-

ation as characteristic u-dependences. In fact, if we further expand (2.9) with respect to

~x0 · ~̂x− t0,7 it is written as

Aµ(x) = Θ(u)
∑
n′

en′p
µ
n′

4πpun′r
+ Θ(−u)

∑
n

enp
µ
n

4πpunr
− δ(u)

[∑
n′

en′J
uµ
n′

4πpun′r
−
∑
n

enJ
uµ
n

4πpunr

]

+
1

r
O((~x0 · ~̂x− t0)2) +O(r−2). (2.17)

Therefore, for the radiation by the kick (2.6), the leading and subleading memories are

related to the coefficient of the step function Θ(u) and the delta function δ(u), respectively.8

We will use this fact in section 3.

2.1.2 E and B mode decomposition

The decomposition of the field to parity odd and even modes is sometimes useful. The

classical example may be the observation of the fluctuation of the cosmic microwave back-

ground. From the detection of the E-mode, we learned the information of the density

perturbation. The future observation of the B-mode may provide us the information of the

tensor perturbation. Similarly, here we consider the E,B decomposition of the memory

effect. The definition of the E,B mode decomposition is reviewed in appendix A.

Since pB/(rp
u) = −∂B log

(
1− ~v · ~̂x

)
, the spherical components of eq. (2.11) corre-

sponds to the E-mode,

AB(u =∞)−AB(u = −∞)

= − 1

4π
∂B

[∑
n′

en′ log
(

1− ~vn′ · ~̂x
)
−
∑
n

en log
(

1− ~vn · ~̂x
)]

+O
(

1

r

)
. (2.18)

7As far as we know, this view point was not mentioned before. See refs. [33, 34] for the discussions of

the Taylor expansions for distributions from a mathematical perspective.
8This expansion can be used for the case that |u| is large. The expression (2.17) means that, when we

characterize the long time behavior of the radiation w.r.t. u, the first approximation is the step function

which is related to the leading memory, and next correction is related to the subleading memory.
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Thus, the leading memory is the E-mode, which is consistent with the ref. [26]. In ref. [26],

it is claimed that the physically reasonable source only gives the E-mode leading memory.

However, this is too strong statement. If we allow the scattering of magnetic monopoles,

this conclusion is modified. The soft theorem in the presence of the magnetic charge is

investigated in refs. [25, 35]. For a positive-helicity soft photon, the soft factor becomes∑
k

pk · (ekεz + gk ε̃z)

pk · q
, (2.19)

where ek and gk are the electric and magnetic charge, respectively, and ε, ε̃ are the po-

larization vectors of the original and dual U(1) gauge fields. In the neighborhood of the

future null infinity I+, we can see that ε̃z = iεz [25]. Combining with eq. (2.18) and the

fact that the memory effect is equivalent to the soft photon theorem, it can be seen that

the leading B-mode memory is generated by the magnetic monopole.

Next, let us consider the subleading memory effect, eq. (2.16).

FuB ' −
1

r
δ′(u)

JuB
ω (1− ~v · x̂)

= −1

r
δ′(u)

bupB − bBpu

ω (1− ~v · x̂)

= −δ′(u)

{
bt −~b · x̂

ω (1− ~v · x̂)
(∂Bx̂) · ~p− (∂Bx̂) ·~b

}
. (2.20)

Here, we write

Jµν = bµpν − bνpµ. (2.21)

Without loss of generality, bµ does not contain the component proportional to pµ. We

calculate ∂θFuϕ − ∂ϕFuθ to extract the B-mode contribution:

∂θFuϕ − ∂ϕFuθ = δ′(u)
1

1− ~v · x̂
(
∂θx̂

i
) (
∂ϕx̂

j
)

(bivj − bjvi) 6= 0. (2.22)

Therefore, the subleading memory contains the B-mode. Similarly, if the external particle

is the magnetic monopole, the subleading memory contains the E-mode.

2.2 Gravity

2.2.1 Derivation of the gravitational memory effect

We repeat a similar analysis for the gravitational potential. We consider linearized gravi-

tational potential hµν from the above motion of particles (2.1) and (2.2). The stress-energy

tensor is given by

Tµν(x) =
∑
n

∫ 0

−∞
dτ

pµnpνn
mn

δ(4)(x− yn(τ)) +
∑
n′

∫ ∞
0

dτ
pµn′p

ν
n′

mn′
δ(4)(x− yn′(τ)). (2.23)

In the harmonic gauge (the de Donder gauge),9 the linearized Einstein equation takes

the form

�h̄µν = −16πGNT
µν , where h̄µν = hµν − 1

2
ηµνhλλ . (2.24)

9Explicitly, the gauge condition is ∂µh
µν − 1

2
∂νhµµ = 0.
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The retarded solution is given by10

1

16πGN
h̄µν(x)

= Θ(|~x−~x0|−t+t0)
∑
n

pµnpνn

4πmn

√
|~x−~x0|2−

(
~vn·(~x−~x0)

vn

)2
+ 1

1−v2n

(
~vn·(~x−~x0)

vn
−vn(t−t0)

)2

+Θ(−|~x−~x0|+t−t0)
∑
n′

pµn′p
ν
n′

4πmn′

√
|~x−~x0|2−

(
~vn′ ·(~x−~x0)

vn′

)2
+ 1

1−v2
n′

(
~vn′ ·(~x−~x0)

vn′
−vn′(t−t0)

)2
.

(2.25)

The original gravitational potential hµν is obtained by

hµν = h̄µν − 1

2
ηµν h̄λλ. (2.26)

In the large r limit with u = t− r fixed, it is expanded as

1

16πGN
h̄µν(x) =Θ(u+ ~x0 · ~̂x− t0)

∑
n′

pµn′p
ν
n′

4πpun′r
+ Θ(−u− ~x0 · ~̂x+ t0)

∑
n

pµnpνn
4πpunr

+O(r−2).

(2.27)

If we further expand it with respect to ~x0 · ~̂x− t0, it is written as

1

16πGN
h̄µν(x) = Θ(u)

∑
n′

pµn′p
ν
n′

4πpun′r
+Θ(−u)

∑
n

pµnp
ν
n

4πpunr
+δ(u)(~x0 ·~̂x−t0)

[∑
n′

pµn′p
ν
n′

4πpun′r
−
∑
n

pµnp
ν
n

4πpunr

]

+
1

2
δ′(u)(~x0 ·~̂x−t0)2

[∑
n′

pµn′p
ν
n′

4πpun′r
−
∑
n

pµnp
ν
n

4πpunr

]
+

1

r
O
(

(~x0 ·~̂x−t0)3
)

+O(r−2).

(2.28)

Using the momentum conservation, the third term of eq.(2.28) can be rewritten as follows:

−δ(u)

[∑
n′

pνn′J
uµ
n′

4πpun′r
−
∑
n

pνnJ
uµ
n

4πpunr

]
−δ(u)

[∑
n′

pνn′−
∑
n

pνn

]
xµ0
4πr

=−δ(u)

[∑
n′

pνn′J
uµ
n′

4πpun′r
−
∑
n

pνnJ
uµ
n

4πpunr

]
.

(2.29)

The second line of eq.(2.28) can be written as

1

2
δ′(u)

[∑
n′

Juµn′ J
uν
n′

4πpun′r
−
∑
n

Juµn Juνn
4πpunr

]
+

1

2
δ′(u)

[∑
n′

Juνn′ −
∑
n

Juνn

]
xµ0
4πr

+
1

2
δ′(u)

[∑
n′

Juµn′ −
∑
n

Juµn

]
xν0
4πr

+
1

2
δ′(u)

[∑
n′

pun′ −
∑
n

pun

]
xµ0x

ν
0

4πr

=
1

2
δ′(u)

[∑
n′

Juµn′ J
uν
n′

4πpun′r
−
∑
n

Juµn Juνn
4πpunr

]
, (2.30)

10The original gravitational potential hµν is obtained by hµν = h̄µν − 1
2
ηµν h̄λλ.
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where we have used the momentum conservation and the angular momentum conservation.

Thus, we have

1

16πGN
h̄µν(x) =Θ(u)

∑
n′

pµn′p
ν
n′

4πpun′r
+ Θ(−u)

∑
n

pµnpνn
4πpunr

− δ(u)

[∑
n′

pνn′J
uµ
n′

4πpun′r
−
∑
n

pνnJ
uµ
n

4πpunr

]

+
1

2
δ′(u)

[∑
n′

Juµn′ J
uν
n′

4πpun′r
−
∑
n

Juµn Juνn
4πpunr

]
+

1

r
O
(

(~x0 · ~̂x− t0)3
)

+O(r−2).

(2.31)

The step function Θ(±u), the delta function δ(u) and δ′(u) terms correspond to the leading,

subleading and subsubleading memory effects, respectively. These memory effects are

characterized by the following integrations:∫ ∞
−∞

du∂uhµν ,

∫ ∞
−∞

duu∂uhµν ,

∫ ∞
−∞

duu2∂uhµν . (2.32)

We note that, as in the electromagnetic case, we have an ambiguity to choose∫ ∞
−∞

du (u− u0) ∂uhµν ,

∫ ∞
−∞

du (u− u0)2 ∂uhµν . (2.33)

Regarding the subleading order, this ambiguity is removed if one focuses on the B-mode

part, while the ambiguity of the subsubleading order remains.

2.2.2 E,B decomposition

Let us consider the E,B decomposition of the memory effect. The leading gravitational

memory effect is always the E-mode because the following relation holds:

p2
z

1− ~v · x̂
= ω2r2D2

z {(1− ~v · x̂) ln (1− ~v · x̂)} . (2.34)

Note that the relation,

D2
z x̂ =

(
∂z +

2z̄

1 + |z|2

)
∂zx̂ = 0, (2.35)

has been used. Contrary to the U(1) cases, there are no sources which lead to the leading

B-mode memory, because every object universally couples with gravity. Therefore, the

leading gravitational memory is always the E-mode memory.

As in the U(1) case, the subleading part contains the B-mode memory. The nonzero

D2
z̄hzz −D2

zhz̄z̄ means the existence of the B-mode (see appendix A), and we can see

D2
z̄

pzJ
u
z

1−~v ·x̂
−D2

z

pz̄J
u
z̄

1−~v ·x̂
=ω(D2

z̄pzbz−D2
zpz̄bz̄)+

{
D2
z

(
1−~b·x̂
1−~v ·x̂

p2
z̄

)
−D2

z̄

(
1−~b·x̂
1−~v ·x̂

p2
z

)}

=D2
z

(
1−~b·x̂
1−~v ·x̂

p2
z̄

)
−D2

z̄

(
1−~b·x̂
1−~v ·x̂

p2
z

)
. (2.36)

In general, this is not zero, and therefore the subleading memory contains the B-mode.
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2.3 Axion

2.3.1 Derivation of the axion memory effect

The radiated part of axion field a corresponding to the subleading soft theorem takes the

following form in the momentum space:

ã(q) =
1

|~q|
δ(q0 − |~q|)εµνρσ

(
qµp′νJρσp′

p′ · q
− qµpνJρσp

p · q

)
, (2.37)

which can be derived by using the equivalence between the soft theorem and the classical

field. In ref. [21], the subleading soft theorem corresponding to eq. (2.37) is proved for

spin 0 and 1/2 external particles. In appendix B, we present the proof for spin 1 particle.

Performing the Fourier transformation of (2.37), we obtain

a(x) = εµνρσ
1

r
∂µ

(
Θ(u)

p′νJρσp′

ωp′ (1− ~v′ · x̂)
−Θ(−u)

pνJρσp
ωp (1− ~v · x̂)

)
+O(r−2)

= −εuνρσ
1

r
δ(u)

(
p′νJρσp′

p′r
+
pνJρσp
pr

)
+O(r−2)

=:
1

r
δ(u)S(1) +

1

r2
Θ(u)S(2). (2.38)

Therefore, the coefficient of 1/r is zero at past and future.11 We note that, since the axion

field is scalar, there is no notion of the E,B mode decomposition.

3 Detecting the memory effects

So far, we have seen that the memory effects are encoded in Θ(u), δ(u) and δ′(u) terms in

the radiation field when we see the long time behavior. Here we discuss how to detect the

memory effects. It is known that the memory effect can be probed by looking the change

of the trajectory of the free falling particle. In addition to this, we show that the direction

of the spin can be a good observable to detect the memory effects.

3.1 Electromagnetic memory

3.1.1 The memory of the trajectory

The non-relativistic equation of motion of a charged test particle is

M~̈x = Q
(
~E + ~̇x× ~B

)
, (3.1)

where the dot means the derivative with respect to t, Q is the charge of the test particle,

and ~Ei = Fi0 and ~Bi = 1
2εijkF

jk are given by

~E= δ(u)
{
−r̂i

(
S

(0A)
0 −S(0B)

0

)
+
(
S

(0A)
i −S(0B)

i

)}
−δ′(u)

(
r̂iS

(1)
0 +S

(1)
i

)
+O

(
1

r2

)
,

~B=
1

2
εijk

[
δ(u)

{
−
(
r̂iS(0A)j−r̂jS(0A)i

)
+
(
r̂iS(0B)j−r̂jS(0B)i

)}
−δ′(u)

(
r̂iS(1)j−r̂jS(1)i

)]
+O

(
1

r2

)
, (3.2)

11In ref. [21], we discussed the memory effect of r−2Θ(u) term.
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where we have used Aµ ' Θ(u)S
(0A)
µ + Θ(−u)S

(0B)
µ + δ(u)S

(1)
µ . Then, we can see

Mẍk = Ckδ(u) +Dkδ
′(u), (3.3)

where

Ck = −Q
[{
r̂k

(
S

(0A)
0 − S(0B)

0

)
+
(
S

(0A)
k − S(0B)

k

)}
+ ẋi

(
−r̂[iS(0A)k] + r̂[iS(0B)k]

)]
,

Dk = −Q
[(
r̂iS

(1)
0 + S

(1)
i

)
− ẋir̂[iS(1B)k]

]
. (3.4)

Here D[ij] means 1
2

(
Dij −Dji

)
. The velocity of the test particle is constant for u < 0 and

u > 0. The jumps of the velocity and the position at u = 0 can be calculated as

∆ẋk =
Ck
M

∣∣∣∣∣
(r,θ,ϕ)=(r∗,θ∗,ϕ∗)

, ∆xk =
Dk

M

∣∣∣∣∣
(r,θ,ϕ)=(r∗,θ∗,ϕ∗)

, (3.5)

where (r∗, θ∗, ϕ∗) are the position of the test particle at u = 0,12 and ∆ẋk :=

limε→0 (ẋk|t=r∗+ε − ẋk|t=r∗−ε), ∆xk := limε→0 (xk|t=r∗+ε − xk|t=r∗−ε). In this way, the

leading memory effect can be detected as a kick memory of the test particles [20]. The

subleading memory effect as the jump of the coordinate x was pointed out in ref. [28].

Although it seems difficult to detect the subleading memory effect, the leading memory

drops out if we take a particular combination by multiplying the projection operator, i.e.,

only the B-mode contribution can be picked up, see ref. [28] for the detail.

3.1.2 The memory of the spin

If the test particle has a spin, it is natural to consider the time evolution of the spin due

to the pulse injection. For simplicity, we consider a non-relativistic particle. Then, the

interaction Hamiltonian is

Hint = ~B · ~s, (3.6)

where ~s is the spin operator. The Heisenberg equation of the spin operator is

~̇s = ~B × ~s, → ~s =

∫
dt
(
~B × ~s

)
. (3.7)

The magnetic field ~B would be written as ~B =
~B1
r δ(u) +

~B2
r δ
′(u) (see eq. (3.2)). Then, the

above equation means that the spin rotation happens by the leading effect, B1. Thus, the

leading memory is related to the change of the direction of the spin. The subleading part

does not contribute to such a permanent change of the spin at O(1/r) order.

3.2 Gravitational memory

3.2.1 The memory of the trajectory and time delay

Here we briefly review the detection of the leading and subleading memory effect by mea-

suring the trajectory of the particle and the time delay. One can easily see that the leading

12We assume that ∆xk is much smaller than r∗.
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memory effect can be probed by the displacement memory effect between two free par-

ticles [2–5]. The proper distance at u > 0 is different from the distance at u < 0. It

is non-trivial to detect the subleading memory effect, namely the δ(u) part. However, in

ref. [23], it is shown that the Sagnac effect can be used to probe the subleading memory

effect. The effect from the leading memory can be removed because only the B-mode part

contributes to the Sagnac effect.

Then, the natural question is whether we can detect the subsubleading memory effect

by only looking the observable at far past and future. As shown in section 2, formally, the

subsubleading memory is characterized by∫ ∞
−∞

duu2∂uhµν , (3.8)

which corresponds to the coefficient of δ′(u) in the classical gravitational wave produced

by the kick of particles (2.23). One might think that the finiteness of the integral (3.8) is

owing to our specific choice of the source. However, for the same reason below eq. (2.8),

we expect that the integral is also finite for other trajectories of particles as long as the

duration time of the burst is finite, and the value is characterized only by the momenta

and angular momenta.

Unfortunately, as far as we investigate, for a massive test particle, the subsubleading

gravitational memory effect cannot be observed by measuring the trajectories at far future

and past. We consider that the massive particle is first at rest with large r in the background

ηµν + hµν , where hµν has a form eq. (2.31). Due to this form, the velocity of the particle

after the burst is order r−1. The geodesic equation with respect to the proper time τ ,

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 , (3.9)

is approximated as

d2xi

dτ2
= −Γitt

dt

dτ

dt

dτ
, (3.10)

by taking up to the O(r−1) terms. Here, Γitt takes the form

Γitt = δ(u)∆i(0) + δ′(u)∆i(1) + δ′′(u)∆i(2) +O(r−2), (3.11)

where ∆i(0),∆i(1) and ∆i(2) are the factors related to the leading, subleading and subsub-

leading soft factors, respectively. By integrating the EoM (3.10), we can see that ∆i(0) is

related to the shift of the velocity (the kick memory) and ∆i(1) corresponds to the position

memory. However, the subsubleading term ∆i(2) does not lead to such a step function.

Thus, the effect from ∆i(2) cannot be detected as a memory for the trajectory of the

test particle.

3.2.2 The memory of the spin

As in the electromagnetic memory, we consider the non-relativistic Hamiltonian of the spin

1/2 particle. In order to derive the non-relativistic Hamiltonian including the interaction

– 11 –
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with the linearized gravitational field, we first consider the Dirac equation given by13

( /∇+m)ψ = 0, (3.12)

where

/∇ψ= /∂ψ+
1

2
hµνγν∂µψ+

1

4
(∂µhνρ)(η

ρµγν+ηρνγµ)ψ , γ0 =

(
−i 0

0 i

)
, γi =

(
0 −iσi

iσi 0

)
.

(3.13)

In this subsection, we concentrate on the configuration where hµν satisfies the transverse

traceless condition, that is,

h0µ = hii = ∂ihij = 0. (3.14)

Then, the Dirac equation reduces to(
/∂ +

1

2
hijγj∂i +m

)
ψ = 0. (3.15)

By employing the following parameterization,

ψ = e−imt

(
ϕ

ξ

)
, (3.16)

we perform the non-relativistic approximation. In this parametrization, the Dirac equation

becomes

γ0∂0

(
ϕ

ξ

)
=

{
im
[
(i+ γ0)

]
− γi∂i −

1

2
hijγj∂i

}(
ϕ

ξ

)
. (3.17)

In the non-relativistic limit, we get

ξ ' − i

2m
σi∂iϕ−

i

4m
hijσi∂jϕ, (3.18)

from which we arrive at

i∂0ϕ = − 1

2m
∂2
i ϕ−

1

2m
hij∂i∂jϕ−

1

8m
[σi, σj ](∂ih

jk)∂kϕ. (3.19)

The right hand side can be interpreted as the non-relativistic Hamiltonian. The last term

corresponds to the interaction of the spin and gravity. Since the spin operator does not

commute with the last term, in general, the direction of the spin changes by the pulse

emission. More concretely, the Heisenberg equation of the spin operator sn = σn/2 is

ṡn = − 1

2m

(
δilδjn − δinδjl

)
sl(∂ih

k
j )pk. (3.20)

The derivative of hij contains the delta function at order r−1, and by integrating over time,

we would get the permanent change of the direction of the spin. One can see that this spin

change can detect the leading memory effect which is proportional to the step function,

and cannot detect the subleading and subsubleading memory effects.

13See also ref. [36] for the equations of motion of the spin in the curved background.
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3.3 Axion memory

Here we consider the detection of the axion memory effect. We take spin 1/2 or 1 particle

as a probe.

3.3.1 Coupling with fermion

The non-relativistic Hamiltonian for the fermion which couples with the axion a is

HNR = − p2

2M
− κ(~σ · ~∇a). (3.21)

Therefore, the spin couples with the axion field, and it is expected that the axion memory

effect can be proved by observing the change of the direction of spin. The time evolutions

of the momentum and spin are given by Heisenberg equation:

~̇p =
1

2
κ~∇(~s · ~∇a), ~̇s = −1

2
κ(~∇× ~s)a. (3.22)

We can solve it easily, and obtain

~p(∞)− ~p(−∞) =
1

2
κ

∫
dt
{
~∇(~s · ~∇)a

}
, ~s(∞)− ~s(−∞) = −1

2
κ

∫
dt
{

(~∇× ~s)a
}
.

(3.23)

Hence, the change of the spin happen at the order of r−2. Explicitly, by putting eq. (2.38),

we get

~p(∞)− ~p(−∞) =
κ

2

[
~∇(~s · ~∇)

(
S(1)

r

)
− ~∇

{
(~s · r̂) S

(2)

r2

}
− r̂

(
~s · ~∇

)(S(2)

r2

)] ∣∣∣∣∣
(r∗,θ∗,ϕ∗)

+O
(

1

r4

)
,

~s(∞)− ~s(−∞) =
κ

2

[
−
(
~∇× ~s

)(S(1)

r

)
+ (r̂ × ~s) S

(2)

r2

] ∣∣∣∣∣
(r∗,θ∗,ϕ∗)

+O
(

1

r3

)
. (3.24)

Here (r∗, θ∗, ϕ∗) is the same as eq. (3.5). We note that, although the effect is r−2 order, it

can be distinguished from the effect from the radiation without burst, whose order is r−3.

3.3.2 Coupling with photon

As an another observable, we consider the polarization of the photon. The relevant part

of the Lagrangian is

L = −1

4
FµνF

µν − cγ
4
aFµνF̃

µν . (3.25)

The EoM for the gauge field in the Lorenz gauge is

∂2Aµ − cγεµνρσ∂νa∂ρAσ = 0. (3.26)

– 13 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
7

As a simple situation, we consider the propagation of the photon to z-direction, and

suppose that the polarization is x-direction. That is,

A1 ∝ eik·x, A0,2,3 = 0, kµ = (ω, 0, 0, ω). (3.27)

are satisfied at the initial time.14 We expect that the axion pulse changes the polarization

of the photon. By putting this background solution, we want to obtain the time evolution

of A2. We denote the perturbation of A2 as δA2, which follows the equation

∂2δA2 − cγ {(∂3a)∂0 − (∂0a)∂3}A1 = 0. (3.28)

We solve it with the large r approximation. The axion field a can be written as

a = δ(t− r)F (θ, ϕ)

r
, ∂3a ' −x̂3δ

′(t− r)F (θ, ϕ)

r
, ∂0a ' δ′(t− r)

F (θ, ϕ)

r
, (3.29)

where F is a function. From this, we obtain

∂2δA2 ∝ −icγ (1− x̂3) δ′(u)
F

r
eik·x. (3.30)

Unfortunately, the left-hand side does not contain the term ∂2
uδA2. Thus, the solution δA2

does not have the step function term θ(u), while it has δ(u). To obtain θ(u), we have to

go to r−2 order.

4 Summary

We have investigated various memory effects induced by the kick of the particle interacting

with graviton, photon and axion. The memory effects are characterized by the terms in

the radiation fields proportional to the step function, the delta function and its derivative.

We have derived the memory effects by solving the classical equations of motion with the

classical kick currents. We have found that the classical radiation fields up to subsubleading

order can be correctly reproduced the soft factors which are consistent with known soft

theorems. The axion memory starts from subleading order, which is consistent with the soft

pion theorem. We have argued the decomposition of the E and B modes of the classical

gauge field, where it has been found that the B-mode leading electromagnetic memory

is possible if a hard particle has the magnetic charge. Then, we have investigated the

detection of the memory effect. It is known that the trajectory and time delay of the test

particle can be used to detect the leading and subleading gravitational or electromagnetic

memory. In addition, we have pointed out that the leading memory effect can be probed

by the permanent change of the direction of the spin. The subleading axion memory can

also be detected by the permanent change of the spin. Since the field value of the axion

field is related to the effective theta parameter, we could detect the memory effect through

the measurement of the electric dipole moment. We will leave this study for a future

publication. On the other hand, the subsubleading term in gravitational field does not

lead to the step function terms in the trajectory, time delay and the spin direction.

14This is consistent with the Lorenz gauge condition.
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A The decomposition to E and B modes

For the U(1) gauge theory, the definition of E, B decomposition is [26, 37]

XB = DBΦ + εCBD
CΨ, (A.1)

where XB is the vector on S2, and Φ,Ψ are E-mode and B-modes, respectively. The E

and B modes correspond to the parity even and odd modes, respectively. In (θ, ϕ) or (z, z̄)

coordinates, we can write this as

Xθ = ∂θΦ−
εθϕ

sin2 θ
∂ϕΨ, Xϕ = ∂ϕΦ + εθϕ∂θΨ, (A.2)

Xz = ∂zΦ + i
εθϕ
2

1 + |z|2

|z|
∂zΨ, Xz̄ = ∂z̄Φ− i

εθϕ
2

1 + |z|2

|z|
∂z̄Ψ. (A.3)

It can be seen that ∂z̄Xz − ∂zXz̄ 6= 0 signals the B-mode, while the E-mode is present if

∂z̄Xz + ∂zXz̄ 6= 0.15

Note that (1+ |z|2)/|z| = 2/ sin θ. Because of εθϕ = sin θ and εzz̄ = −2i/(1+ |z|2)2 [26],

we obtain

Xθ = ∂θΦ−
1

sin θ
∂ϕΨ, Xϕ = ∂ϕΦ + sin θ∂θΨ, (A.4)

Xz = ∂zΦ + i∂zΨ, Xz̄ = ∂z̄Φ− i∂z̄Ψ. (A.5)

Regarding the gravity, the E and B decomposition is given by [38]

hAB =
1

2

(
2DADB − γABD2

)
Φ + εC(ADB)D

CΨ, (A.6)

in the Bondi gauge. In (θ, ϕ) or (z, z̄) coordinate, we can write eq. (A.6) explicitly:

hθθ =

{
∂2
θ −

1

2

1

sin θ
∂θ (sin θ∂θ)−

1

2

1

sin2 θ
∂2
ϕ

}
Φ− 1

sin θ

(
∂θ∂ϕ −

1

tan θ
∂ϕ

)
Ψ,

hθϕ = hϕθ =

(
∂θ∂ϕ −

1

tan θ
∂ϕ

)
Φ +

1

2

{
sin θ ∂2

θ −
1

sin θ

(
∂2
ϕ + cos θ sin θ ∂θ

)}
Ψ,

hϕϕ = − sin2 θ hθθ,

hzz =

(
∂z +

2z̄

1 + |z|2

)
∂zΦ + i

(
∂z +

2z̄

1 + |z|2

)
∂zΨ, hzz̄ = 0. (A.7)

It can be seen that if D2
z̄hzz −D2

zhz̄z̄ 6= 0 there is B-mode, while the E-mode is present if

D2
z̄hzz +D2

zhz̄z̄ 6= 0.

15Here we have neglected the zero mode contribution.
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B Soft pion theorem for spin 1 particle

In ref. [21], it is shown that the soft pion theorem for spin 0 and spin 1/2 external lines

can be written in a universal form:

lim
ω→0

〈out|0 a
(π)
ωq̂ S |in〉0 = J (1)(q) 〈out|0 S |in〉0 , (B.1)

where

J (1)(q) =
∑
k

−iy ηk
2mpk · q

εµνρσq
µpνkJ

ρσ
k . (B.2)

In this appendix, we show that this formula persists even when the external particle is the

spin 1 particle. The coupling between the axion π and spin 1 particle can be written as

π tr
(
FµνF̃

µν
)

= π tr

{
2∂µ

(
Aν∂ρAσ +

2

3
igAνAρAσ

)
εµνρσ

}
. (B.3)

Note that the second term does not give rise to the pole, and therefore does not contribute

to the O(1) soft theorem.

Let us consider the diagram where external photon line has polarization vector eβ .

Then, if we attach the soft pion to this diagram, the eβ is modified as

eβ → 1

q · p
qµpρε

µβραeα, (B.4)

in the soft limit. This is nothing but

1

q · p
qµpρε

µγρα[Jαγ , e
β ]. (B.5)

Note that the action of Jµν is given by

[Jµν , Aρ] = i (ηνρAµ − ηµρAν) . (B.6)

Therefore, we confirm that the formula in ref. [21] holds for spin 1 particle.

One might think that the formula can be extended to the spin 2 particle, where the

interaction is given by aR̃µνR
µν . However, this contain at least four derivative, and does

not contribute to the subleading soft theorem. In this sense, eq. (B.1) is not valid for spin

2 particle.
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[37] T. Mädler and J. Winicour, The sky pattern of the linearized gravitational memory effect,

Class. Quant. Grav. 33 (2016) 175006 [arXiv:1605.01273] [INSPIRE].

[38] D.A. Nichols, Spin memory effect for compact binaries in the post-Newtonian approximation,

Phys. Rev. D 95 (2017) 084048 [arXiv:1702.03300] [INSPIRE].

– 18 –

https://doi.org/10.1016/0003-4916(61)90151-8
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,13,379%22
https://doi.org/10.1007/JHEP12(2016)053
https://doi.org/10.1007/JHEP12(2016)053
https://arxiv.org/abs/1502.06120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06120
https://doi.org/10.1016/j.physletb.2017.08.064
https://doi.org/10.1016/j.physletb.2017.08.064
https://arxiv.org/abs/1707.07118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07118
https://doi.org/10.1103/PhysRevLett.116.031602
https://doi.org/10.1103/PhysRevLett.116.031602
https://arxiv.org/abs/1509.00543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00543
https://doi.org/10.1088/0264-9381/31/20/205003
https://arxiv.org/abs/1407.0259
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0259
https://arxiv.org/abs/1507.02584
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02584
https://doi.org/10.1103/PhysRevD.95.125011
https://arxiv.org/abs/1703.06588
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06588
https://doi.org/10.1103/PhysRevLett.113.111601
https://arxiv.org/abs/1407.3814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3814
https://doi.org/10.1007/JHEP11(2016)012
https://arxiv.org/abs/1605.09677
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09677
https://doi.org/10.1103/PhysRevD.95.021701
https://arxiv.org/abs/1605.09731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09731
https://doi.org/10.1002/mma.1670070128
https://doi.org/10.1002/mma.1670160405
https://doi.org/10.1002/mma.1670160405
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05448
https://doi.org/10.1155/2017/7397159
https://arxiv.org/abs/1710.07135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07135
https://doi.org/10.1088/0264-9381/33/17/175006
https://arxiv.org/abs/1605.01273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01273
https://doi.org/10.1103/PhysRevD.95.084048
https://arxiv.org/abs/1702.03300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.03300

	Introduction
	Derivation of the memory effects
	Photon
	Derivation of the electromagnetic memory effect
	E and B mode decomposition

	Gravity
	Derivation of the gravitational memory effect
	E,B decomposition

	Axion
	Derivation of the axion memory effect


	Detecting the memory effects
	Electromagnetic memory
	The memory of the trajectory
	The memory of the spin

	Gravitational memory
	The memory of the trajectory and time delay
	The memory of the spin

	Axion memory
	Coupling with fermion
	Coupling with photon


	Summary
	The decomposition to E and B modes
	Soft pion theorem for spin 1 particle

