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Abstract: We investigate geometric aspects of double field theory (DFT) and its formu-

lation as a doubled membrane sigma-model. Starting from the standard Courant algebroid

over the phase space of an open membrane, we determine a splitting and a projection to

a subbundle that sends the Courant algebroid operations to the corresponding operations

in DFT. This describes precisely how the geometric structure of DFT lies in between two

Courant algebroids and is reconciled with generalized geometry. We construct the mem-

brane sigma-model that corresponds to DFT, and demonstrate how the standard T-duality

orbit of geometric and non-geometric flux backgrounds is captured by its action functional

in a unified way. This also clarifies the appearence of noncommutative and nonassocia-

tive deformations of geometry in non-geometric closed string theory. Gauge invariance of

the DFT membrane sigma-model is compatible with the flux formulation of DFT and its

strong constraint, whose geometric origin is explained. Our approach leads to a new gen-

eralization of a Courant algebroid, that we call a DFT algebroid and relate to other known

generalizations, such as pre-Courant algebroids and symplectic nearly Lie 2-algebroids. We

also describe the construction of a gauge-invariant doubled membrane sigma-model that

does not require imposing the strong constraint.
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1 Introduction and summary

Motivation and goals. When quantum gravitational effects become important, it is

expected that the geometry of spacetime departs from classical Riemannian geometry. Such

is the case in open string theory, where the endpoints of open strings ending on D-branes

supporting a constant gauge flux probe a noncommutative deformation of the worldvolume

geometry [1–3] (see e.g. [4, 5] for reviews). However, open strings are associated to gauge

interactions, whereas gravity appears in the closed string sector. In recent years it was

argued that closed strings propagating in backgrounds with non-geometric fluxes can probe

noncommutative and even nonassociative deformations of the background geometry [6–9]

(see e.g. [10–14] for reviews). T-duality plays a prominent role in these developments, since
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string backgrounds that are T-dual to each other may correspond to target spaces with

different geometry and topology. It typically reveals the existence of unconventional closed

string geometries where string duality transformations are required as transition functions,

and lead to non-geometric flux backgrounds (see e.g. [15] and references therein.)

Non-geometric backgrounds can be naturally described within the framework of a

doubled formalism for closed strings [16–21]. A double field theory (DFT), where both

coordinates conjugate to momentum modes and dual coordinates conjugate to winding

modes of the closed string are implemented, was constructed in [18, 19] and more recently

in [22–25]. In [26] an alternative approach to implementing T-duality is given as a linearly

realized symmetry. In DFT, the continuous version of the T-duality group becomes a

manifest symmetry of the action, and as such it has the power to describe different T-dual

backgrounds in a unified way (see e.g. [27–29] for reviews).

On the other hand, the underlying higher mathematical structures for all these develop-

ments appear in the differential geometry of Courant algebroids [30–33] and in generalized

geometry [34, 35]. It was realised by [36] (based on earlier results of [37]) that T-duality

can be understood as an isomorphism of Courant algebroids over two dual manifolds which

are principal torus bundles over a common base via projection from a “large” structure on

the correspondence space. Relations between Courant algebroids and DFT were already

investigated in [23], where it was shown that the C-bracket of DFT is the covariantization

of the Courant bracket, in the sense that solving the strong constraint of DFT reduces one

to the other. Moreover, precise relations among the two brackets for different implementa-

tions of the strong constraint were proposed in [38]. However, the geometric origin of the

DFT data, such as the C-bracket, the generalized Lie derivative and the strong constraint,

is not clarified within this approach. The first main goal of the present paper is to estab-

lish such a geometric origin for the structures appearing in DFT and to provide a precise

geometric definition of the corresponding algebroid. Similar goals were pursued in [39–42]

from a different standpoint, and we shall comment on the similarities and differences with

this approach in the main text.

The second main goal of this paper is to use the relations between DFT and Courant

algebroids to construct and study a membrane sigma-model, which is a worldvolume for-

mulation of DFT. The starting point for this construction is a theorem of Roytenberg

stating that there is a one-to-one correspondence between Courant algebroids and QP2-

manifolds [43]. Since the latter are the natural arena for the general AKSZ construction in

three worldvolume dimensions [44], this essentially means that given the data of a Courant

algebroid one can construct, uniquely up to isomorphism, a membrane sigma-model which is

a three-dimensional topological field theory. This is discussed in detail in [45] (see also [46–

48]). This result was utilized in [9, 49] to explain the origin of nonassociativity in locally

non-geometric R-flux backgrounds upon quantization. There it was already argued that

the target space for such models should be a doubled space, in particular the total space

of the cotangent bundle T ∗M of the original target space M . This proposal was studied

further in [50], where a doubled membrane sigma-model was suggested, albeit without a

complete geometric explanation. A similar construction in the language of supermanifolds

appears in [42, 51].
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Let us elaborate on the necessity of open membrane vs. closed string sigma-models in

this context. First, this is natural when non-trivial fluxes are incorporated. Indeed, the

very presence of an NS-NS flux on a non-trivial background requires the introduction of

a Wess-Zumino term, which already means that one is working with an open membrane

whose worldvolume boundary is the closed string worldsheet. From a different point of

view, the relationship between supergravity and generalized geometry [52] indicates that

Courant sigma-models, which require a membrane worldvolume formulation, are the natu-

ral sigma-models to consider. A third argument is related to quantization. Recall that the

deformation quantization of Poisson manifolds [53] is given by the perturbative expansion

of the path integral for open strings in a B-field background, the open Poisson sigma-

model [54]. Applying this reasoning in one higher dimension, the quantization of closed

strings with fluxes requires an open membrane sigma-model; further details are found in [9].

Summary of results and outline. In order to achieve the goals of this paper that we

discussed above, we begin in section 2 by considering a doubled spacetime. In this paper

we do not consider global aspects of doubled geometry, and we model the doubled space

locally as the cotangent bundle1 T ∗M of the standard target space M . The (doubled)

local coordinates on this space may be identified as the dual momentum and dual winding

coordinates of DFT, or alternatively as phase space coordinates of an open membrane with

configuration space M . Since this space itself has the structure of a smooth manifold, one

may consider an exact Courant algebroid over it, whose vector bundle is the second order

bundle E = T (T ∗M)⊕T ∗(T ∗M). The sections, symmetric bilinear form, Courant bracket

and Dorfman derivative of this ‘large’ Courant algebroid for arbitrary anchor are direct

generalizations of the corresponding data of a Courant algebroid over M . However, these

do not give rise directly to the corresponding DFT data. In order to establish this corre-

spondence, we shall show that a particular splitting E = L+ ⊕ L− should be constructed,

accompanied by a projection p+ : E → L+. DFT vectors, the constant O(d, d)-invariant

metric, the C-bracket and the generalized Lie derivative are all obtained by suitably apply-

ing the projection map p+ on the large Courant algebroid data. Combining this with the

known result that the DFT data reduce to the structure of a ‘canonical’ Courant algebroid

over an undoubled space M when the strong constraint is imposed, our first result is that

• The geometric structure of DFT lies in between two Courant algebroids, which may

be depicted schematically as

Large Courant algebroid

over T ∗M

p+−−−→ DFT on L+
strong−−−−−→ Canonical Courant algebroid

over M

We emphasize that (i) projections to subbundles other than L+ would not result in the

desired structures, and (ii) L+ is not an involutive subbundle of E and as such it does not

correspond to a Dirac structure.

Equiped with this result, we then use the one-to-one correspondence between Courant

algebroids and a class of membrane sigma-models to construct the Courant sigma-model

1Some progress on the global replacement of this doubled manifold has been reported in [38].

– 3 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

for the large Courant algebroid. As expected, this does not directly give rise to the field

content of DFT, but instead the projection p+ should be used once more. This task results

in a topological doubled sigma-model. A connection to the dynamics of string sigma-models

can be reached by adding a symmetric boundary term. Then our second result is that

• The O(d, d)-invariant membrane sigma-model for DFT is given by the action func-

tional

S[X, A, F ] =

∫
Σ3

(
FI ∧ dXI + ηIJ A

I ∧ dAJ − (ρ+)IJ A
J ∧ FI

)
+

∫
Σ3

1

6
TIJK A

I ∧AJ ∧AK +

∫
∂Σ3

1

2
gIJ(X)AI ∧ ∗AJ , (1.1)

where X = (XI) : Σ3 → T ∗M , I = 1, . . . , 2d, are maps from the membrane world-

volume Σ3 to the doubled target space (pullbacks of the DFT coordinates), AI is a

worldvolume 1-form (pullback of a DFT vector), FI is a worldvolume 2-form, and the

rest of the quantities are explained in section 2.4, where a coordinate-independent

formulation of the action is also given.

One direct test for the proposed DFT membrane sigma-model is whether it describes

simultaneously all entries of the standard T-duality chain relating geometric and non-

geometric flux configurations [55]

Hijk
Tk←→ fij

k Tj←→ Qi
jk Ti←→ Rijk , (1.2)

where Ti denotes a T-duality transformation along xi ∈ M . In section 3 we shall demon-

strate that

• All four T-dual backgrounds with H-, f -, Q- and R-flux are captured by (1.1).

In particular, we shall explain how the T-fold is obtained in this framework and provide a

precise explanation of its relation to closed string noncommutativity, thus filling a gap in

the analysis of [9]. Furthermore, we shall revisit the locally non-geometric R-flux frame and

confirm the previously obtained result of [9] on the appearance of closed string nonasso-

ciativity in this case; as expected, these noncommutative and nonassociative polarizations

violate the strong constraint of DFT. We comment on different types of R-flux, including

a comparison with the Poisson R-flux sigma-model considered in [51].

In section 4 we investigate the relation of our membrane sigma-model to the flux

formulation of DFT [56–59]. Recall that invariance of the Courant sigma-model under

gauge transformations is guaranteed by a set of conditions that may be identified as the local

coordinate expressions of the Courant algebroid axioms [47]. From a different point of view,

these expressions give the fluxes of generalized geometry and their Bianchi identities [60].

We shall show that gauge invariance of the DFT membrane sigma-model leads to the local

coordinate expressions for the DFT fluxes (interpreted here as generalized Wess-Zumino

terms) and Bianchi identities, as they appear e.g. in [58]. One additional requirement for
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gauge invariance is identified as the analog of the strong constraint in this context, as

expected. Thus the main result of section 4 is that

• Gauge invariance of the membrane sigma-model (1.1) is compatible with the flux

formulation of DFT.

Along the way we also find that, for special choices of structure maps, the DFT membrane

sigma-models reduce on their boundaries to the usual worldsheet sigma-models for doubled

target space geometries, as studied in e.g. [15, 61], and our worldvolume framework provides

an alternative to the gauging procedures for obtaining T-dual background configurations,

such as those discussed in section 3.

In section 5 we exploit the structural similarity of the expressions appearing in the

flux formulation of DFT to the local coordinate expressions for the axioms of a Courant

algebroid to reverse-engineer a precise geometric definition for the DFT structures. Our

strategy is to replace the Courant algebroid data with the corresponding DFT data and

examine which of the axioms of a Courant algebroid are obstructed. In this process, the

origin of the strong constraint acquires a clear geometric explanation. We shall find that

two of the Courant algebroid axioms, the Leibniz rule and the compatibility condition, are

unobstructed and use them to define the structure of a DFT algebroid:

• A DFT algebroid is the structure given by Definition 5.17.

We also demonstrate precisely how this definition reduces to a canonical Courant algebroid

upon solving the strong constraint, which amounts to a choice of polarization, as in the

explicit examples of section 3, and how O(d, d)-transformations corresponding to changes

of polarization naturally give rise to isomorphisms of Courant algebroids, similarly to [36].

It is useful pointing out that the five Courant algebroid axioms of [31], which we recall

in appendix A, are not a minimal set, since two of them (the homomorphism property

of the anchor and the image of the derivation lying in the kernel of the anchor) follow

from the rest, as shown for example in [62]. This is no longer the case when the Jacobi

identity is relaxed, as in the notion of a pre-Courant algebroid [63] or Courant algebroid

twisted by a 4-form [64]. In such cases, the two additional properties should be included

in the set of axioms. However, one may consider relaxing these properties as well, and

moreover in an independent way. As we discuss in appendix A, two additional geometric

structures may be defined in this fashion, which we call ante-Courant algebroid (where only

the homomorphism property is relaxed) and pre-DFT algebroid (where both additional

properties are relaxed). The latter is a metric algebroid in the terminology of [39]; it has

a corresponding realization in the language of graded geometry and is called a symplectic

nearly Lie 2-algebroid [65]. Our results imply that a DFT algebroid is a special case of a

pre-DFT algebroid in which imposing that the image of the derivation is in the kernel of the

anchor reduces it directly to a Courant algebroid, without passing through the intermediate

structures of ante-Courant and pre-Courant algebroids. All cases may be characterized in

terms of an underlying L∞-algebra structure [41, 66]. In appendix A.4 we provide examples

highlighting the features of each of these structures.
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The structure of a pre-DFT algebroid suggests a natural geometric weakening of the

strong constraint of DFT. The final problem we address in this paper is whether a gen-

eralized doubled membrane sigma-model can be constructed whose gauge invariance does

not rely on the strong constraint. A key element in our approach to this problem is re-

laxing the assumption that the fiber metric of the underlying algebroid is constant. This

indicates a departure from DFT, where the O(d, d)-invariant metric is constant. However,

non-constant fiber metrics were considered before, for example in [38, 64]. We shall show

that this new ingredient in principle allows us to dispense with the strong constraint, as

long as a certain partial differential equation for the fiber metric is satisfied. This ap-

pears in section 6, where we also discuss the closure of the algebra of sigma-model gauge

transformations for both constant and non-constant fiber metric.

Note added. After completion of this work, the paper [67] appeared, where global as-

pects of DFT in the framework of para-Hermitian manifolds are discussed with some over-

lapping similarities.

2 From doubled membrane sigma-models to DFT

In this section we will derive the O(d, d)-invariant open membrane sigma-model associated

to DFT, whose boundary dynamics will govern the motion of closed strings in backgrounds

with both geometric and non-geometric fluxes in a manifestly T-duality invariant way.

2.1 Courant algebroids and membrane sigma-models

We consider as starting point a theorem of Roytenberg stating that there is a one-to-one

correspondence between Courant algebroids and QP2-manifolds [43].2 Since the latter are

the natural arena for the general AKSZ construction in three dimensions, this essentially

means that from a Courant algebroid one can construct uniquely, up to isomorphism,

a membrane sigma-model which is a three-dimensional topological field theory. This is

discussed in detail in [45].

The full BV action, including ghosts, antifields and ghosts-for-ghosts, is constructed

in [45], but in this paper we shall focus only on the classical “bosonic” action obtained

by setting all of the latter fields to zero. We are exclusively interested in exact Courant

algebroids (with a Lagrangian splitting), whose underlying vector bundle over a manifold

M of d dimensions is E = TM ⊕ T ∗M . This defines a standard membrane sigma-model

with action

S0[X,A, F ] =

∫
Σ3

(
Fi ∧ dXi +

1

2
ηIJ A

I ∧ dAJ − ρiI(X)AI ∧ Fi

+
1

6
TIJK(X)AI ∧AJ ∧AK

)
, (2.1)

where Σ3 is the membrane worldvolume, X = (Xi) : Σ3 → M is the mapping of the

worldvolume to the target space M , A ∈ Ω1(Σ3, X
∗E) is a worldvolume 1-form valued

2See appendix A for relevant details about Courant algebroids, including their definition and properties

(together with local coordinate expressions), and some examples.
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in E, and F ∈ Ω2(Σ3, X
∗T ∗M) is an auxiliary worldvolume 2-form with values in the

cotangent bundle of M . The index ranges are i = 1, . . . , d (target space) and I = 1, . . . , 2d

(algebroid). The tensor

η = (ηIJ) =

(
0 1d
1d 0

)
(2.2)

is the matrix of the symmetric bilinear form of the Courant algebroid, which defines an

O(d, d)-invariant metric,3 and ρ and T are the anchor and twist of the Courant algebroid,

respectively, with the latter generating a generalized Wess-Zumino term. This shows that

given the data of a Courant algebroid over M , i.e. a quadruple (E, [ · , · ]E , 〈 · , · 〉E , ρ) (see

appendix A), one can uniquely reconstruct the action (2.1), which is thereby called a

Courant sigma-model. This becomes particularly transparent if we write the action in

basis-independent form as

S0 [X,A,F ] =

∫
Σ3

(
〈F, dX〉+ 〈A, dA〉E − 〈F, ρ(A)〉+

1

3
〈A, [A,A]E〉E

)
, (2.3)

where the bilinear form 〈 · , · 〉 (without subscript) is the canonical dual pairing between the

tangent and cotangent bundles; in the case of exact Courant algebroids, the two pairings

are essentially identical. This action indeed contains just the anchor, the bracket and the

bilinear form of E. The bracket is the Courant bracket twisted by a generalized 3-form T .

Denoting A = AV +AF ∈ Γ(E) where AV ∈ Γ(TM) and AF ∈ Γ(T ∗M), it is given as4

[A,B]E = [AV , BV ] + LAFBV − LBFAV +
1

2
d∗(ιAV BF − ιBV AF )

+ [AF , BF ] + LAV BF − LBV AF −
1

2
d(ιAV BF − ιBV AF ) + T (A,B) . (2.4)

It is precisely its last term, the twist, that yields the generalized Wess-Zumino term in (2.1)

from the last term in (2.3), since all the other terms in [A,A]E are trivially zero. (The

factor of 2 difference is due to the fact that the non-degenerate bilinear form is defined as

〈A,B〉E = 1
2 ηIJ A

I BJ .) A special case of this bracket is the more familiar twisted Courant

bracket that corresponds to the standard Courant algebroid, where the anchor is chosen

to be the projection to the tangent bundle, which reads as

[A,B]sE = [AV , BV ] + LAV BF − LBV AF −
1

2
d(ιAV BF − ιBV AF ) + T (AV , BV ) . (2.5)

Courant algebroids with arbitrary anchor are not however compatible with this choice of

bracket, but only with the general bracket (2.4).

We can summarize the present discussion as

• Given the data of a Courant algebroid one can write a unique membrane sigma-model,

whose action is given in (2.1).

3In the following capital Latin indices I, J, . . . are raised and lowered with this metric.
4Here d and d∗ are exterior differentials increasing the p-form and p-vector degree by one, respectively.
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2.2 Doubling the target space

In order to make contact with DFT, we would like to double the target space of the

membrane sigma-model; for the purposes of this paper, we therefore take the target space

to be the cotangent bundle T ∗M instead of the original manifold M . This is possible

because the total space of T ∗M has itself the structure of a smooth manifold. Such an

approach has been advocated previously in [9, 26, 41, 49, 50, 68, 69]. As most of our

considerations in the following will be local, we can assume M is contractible and thus

identify5 T ∗M = M × (Rd)∗, which we equip with local coordinates (x, p) where x = (xi)

are local coordinates on the base manifold M and p = (pi) are local fiber coordinates.

This provides a local model for the doubled spacetime of DFT, with p playing the role of

winding coordinates which are T-dual to x. Alternatively, we may wish to regard T ∗M

as the kinematical phase space of the membrane configuration space M , with p the dual

momentum coordinates to x with respect to the canonical symplectic form. The relations

between these two perspectives are discussed in [26, 49, 68, 69], and we shall refer to both

points of view interchangeably in what follows.

To write down the open membrane sigma-model, we consider a map

X : Σ3 −→ T ∗M . (2.6)

The components of this map are denoted

X = (XI) = (Xi,Xi) =: (Xi, X̃i) . (2.7)

The fields Xi and X̃i are thus identified with the pullbacks of the coordinate functions,

i.e. Xi = X∗(xi) and X̃i = X∗(pi).
We take the vector bundle E = T(T ∗M) := T (T ∗M) ⊕ T ∗(T ∗M), which is a second-

order bundle over M , being the generalized tangent bundle of the cotangent bundle of M .

We introduce a worldvolume 1-form6 A ∈ Ω1(Σ3,X∗T(T ∗M)) and an auxiliary worldvolume

2-form F ∈ Ω2(Σ3,X∗T ∗(T ∗M)). The Courant sigma-model is given by the coordinate-free

action functional

S[X,A,F] =

∫
Σ3

(
〈F, dX〉+ 〈A, dA〉E − 〈F, ρ(A)〉+

1

3
〈A, [A,A]E〉E

)
. (2.8)

This action is formally the same as (2.1) with M substituted by its cotangent bundle and

the various fields living over the corresponding bundles. In local coordinate form, the action

functional may be written as

S[X,A,F] =

∫
Σ3

(
FI∧dXI+

1

2
ηÎ Ĵ A

Î∧dAĴ−ρI Î(X)AÎ∧FI+
1

6
TÎ ĴK̂(X)AÎ∧AĴ∧AK̂

)
(2.9)

5This identification holds more generally when M is only required to be parallelizable, which will be the

case for some of the examples we discuss in section 3.
6In what follows we use blackboard bold typeface style for quantities in the Courant algebroid E, and

we reserve ordinary typeface style for DFT quantities to be encountered later in this section, e.g. A vs. A.
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where I = 1, . . . , 2d and the extended Courant algebroid index is now Î = 1, . . . , 4d. Finally,

we add a general symmetric term to the action on the boundary of the membrane which

is given by

Ssym[X,A] =

∫
∂Σ3

‖A‖g :=

∫
∂Σ3

1

2
gÎ Ĵ(X)AÎ ∧ ∗AĴ , (2.10)

where g ∈ Γ(T(T ∗M) ⊗ T(T ∗M)) is a (possibly degenerate) symmetric generalized (2, 0)-

tensor and ∗ is the Hodge duality operator with respect to a chosen Riemannian metric

on the worldsheet ∂Σ3; this term breaks the topological symmetry of the Courant sigma-

model on the boundary. To completely define the action, one should of course also specify

suitable boundary conditions on ∂Σ3; we shall address this point later.

So far we have not achieved much. We merely wrote the membrane sigma-model for a

doubled target space. It is clear that this cannot be directly associated to DFT. The reason

is that by doubling both the target space and the bundle over it, we slightly “overdoubled”.

For instance, the fields AÎ have too many components to be associated with DFT vectors.

In other words, the membrane sigma-model over M carries less information than DFT,

while the one over T ∗M carries too much information. Clearly, we should be looking for

something in between, and below we shall construct a suitable DFT membrane sigma-model

as a restriction of the Courant sigma-model on the doubled space.

2.3 Projecting the large Courant algebroid to DFT

Recall that the data needed to define a Courant algebroid and the corresponding Courant

sigma-model are a vector bundle E over a manifold M , together with a skew-symmetric

bracket and a symmetric bilinear form on its sections, and a map ρ from E to the tangent

bundle TM , as discussed before. Here we take the vector bundle

E = T(T ∗M) = T (T ∗M)⊕ T ∗(T ∗M) , (2.11)

the generalized tangent bundle of the cotangent bundle of M , with sections (AÎ) =

(AI , ÃI) = (Ai,Ai, Ãi, Ãi) and

A = AV + AF := AI ∂I + ÃI dXI , (2.12)

where we defined basis vectors and forms on T ∗M as (dXI) := (dXi, dX̃i) and (∂I) =

(∂/∂X i, ∂/∂X̃i) =: (∂i, ∂̃
i). By the large Courant algebroid we mean the vector bundle

E over T ∗M with the symmetric bilinear form constructed using the usual contraction of

vectors and 1-forms,

〈A,B〉E =
1

2

(
AI B̃I + ÃI BI

)
=

1

2
ηÎ Ĵ A

Î BĴ , (2.13)

and the bracket on Γ(E) given by the twisted Courant bracket with twist7 T ,

[A,B]E = [AV ,BV ] + LAV BF − LBV AF −
1

2
d(ιAV BF − ιBV AF ) + ιBV ιAV T . (2.14)

7Note that this is an “H-type” twist from the perspective of the large Courant algebroid. In other words,

in this subsection we take the large Courant algebroid E over the doubled space to be the standard one,

though we do not indicate it explicitly in the notation for the Courant bracket, as our results immediately

generalize to any Courant algebroid as we discuss later on.

– 9 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

Here we have introduced the standard Lie derivative along a vector on T ∗M acting on forms,

LAV = d ◦ ιAV + ιAV ◦ d , (2.15)

where ιAV = ιAI ∂I denotes contraction along the vector, and the exterior derivative is

expanded as df = ∂If dXI = ∂if dXi+∂̃if dX̃i for a function f(X). Written in components

the Courant bracket (2.14) becomes

[A,B]E =
(
AI ∂IBJ − BI ∂IAJ

)
∂J

+

(
AI ∂I B̃J − BI ∂IÃJ −

1

2
(AI ∂J B̃I − B̃I ∂JAI − BI ∂J ÃI + ÃI ∂JBI)

)
dXJ

+ TIJK AI BJ dXK . (2.16)

Our aim now is to extract the various fields and geometric operations of DFT from this

large Courant algebroid structure.

DFT vectors. It is convenient to introduce the notation

AI± =
1

2

(
AI ± ηIJ ÃJ

)
, (2.17)

and rewrite everything in terms of A± using the inverse relations

AI = AI+ + AI− and ÃI = ηIJ
(
AJ+ − AJ−

)
. (2.18)

A crucial point in this discussion is that the metric ηIJ appearing here is the O(d, d)-

invariant metric and not the metric ηÎ Ĵ of the Courant algebroid structure on E = T(T ∗M).

Thus, although our starting point is the large Courant algebroid E over T ∗M , here some

information of a ‘small’ algebroid over M enters. However, for the time being we do

not even consider the latter structure; we simply use the fixed tensor (2.2) to rotate the

components of a generalized vector of E. In other words, this structure is already present

in the large Courant algebroid as becomes manifest from

〈A,B〉E =
1

2
ηÎ Ĵ A

Î BĴ = ηIJ
(
AI+ BJ+ − AI− BJ−

)
. (2.19)

The generalized vector is then given as

A = AI ∂I + ÃI dXI = AI+ e+
I + AI− e−I , (2.20)

where we defined

e±I = ∂I ± ηIJ dXJ . (2.21)

One then notices that taking the components AI− = 0 and renaming AI+ = AI leads to a

special generalized vector of E given by

A = Ai
(
dXi + ∂̃i

)
+Ai

(
dX̃i + ∂i

)
. (2.22)

This is precisely a DFT vector, as written e.g. in [41].

However, setting some components of the vector A to zero is not a good operation, since

it is not invariant. Alternatively, we note that the local frame (2.21) defines a decomposition

of the generalized tangent bundle as

E = T(T ∗M) = L+ ⊕ L− , (2.23)

where L± is the bundle whose space of sections is spanned locally by e±I . Then the same
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special set of sections (2.22) may be reached by projection to the subbundle L+ of E by

introducing the bundle map

p+ : E −→ L+ , (AV ,AF ) 7−→ A+ := A . (2.24)

This indeed gives

p+(A) = A+ = AI+ e+
I =

1

2

(
Ai + Ãi

) (
dXi + ∂̃i

)
+

1

2

(
Ai + Ãi

) (
dX̃i + ∂i

)
, (2.25)

which is identical to (2.22) upon identifying Ai = 1
2

(
Ai + Ãi

)
and Ai = 1

2

(
Ai + Ãi

)
. The

pairing of two such vectors A = p+(A) and B = p+(B), called DFT vectors from now on, is

〈A,B〉L+ = AiB
i +AiBi = ηIJ A

I BJ , (2.26)

as expected in DFT. Retrospectively, we observe why the introduction of the split-

ting (2.23) is necessary: had we attempted to project to T (T ∗M) or T ∗(T ∗M), we would

have not been able to derive the O(d, d)-structure from the large Courant algebroid in

this way. The same is true of the C-bracket and the generalized Lie derivative, as we

show below.

C-bracket. Let us now reconsider the Courant bracket (2.16) of E in light of the above

result: is the projection p+ sufficient to reduce the large Courant bracket to the C-bracket

of DFT? For this, let us rewrite the Courant bracket (2.16) in terms of AI±, setting the

twist T to zero for the moment. We find

[A,B]E = ηIK
(
(AK+ ∂IBL+ − BK+ ∂IAL+ + AK− ∂IBL+ − BK− ∂IAL+) e+

L

+ (AK+ ∂IBL− − BK+ ∂IAL− + AK− ∂IBL− − BK− ∂IAL−) e−L (2.27)

− (AK+ ∂LBI+ + BK− ∂LAI− − AK− ∂LBI− − BK+ ∂LAI+) ηLM dXM
)
.

We can rewrite the last term using ηLM dXM = 1
2 (e+

L − e
−
L ) to obtain

[A,B]E = ηIK

(
AK+ ∂IBL+ + AK− ∂IBL+ −

1

2
(AK+ ∂LBI+ − AK− ∂LBI−)− {A↔ B}

)
e+
L

+ ηIK

(
AK+ ∂IBL− + AK− ∂IBL− +

1

2
(AK+ ∂LBI+ − AK− ∂LBI−)− {A↔ B}

)
e−L .

(2.28)

This form of the Courant bracket should be compared with the C-bracket of DFT vectors,

which reads as8

[[A,B]]JL+
= AK ∂KB

J − 1

2
AK ∂JBK − {A↔ B} . (2.29)

Clearly, projecting with the map p+, i.e. taking the Courant bracket of DFT vectors

[p+(A), p+(B)]E , eliminates the components AI− and BI− from the right-hand side of (2.28).

However, this is not sufficient in order to reduce to the C-bracket. This happens because

8We denote the C-bracket by double brackets, as in e.g. [38].
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the Courant bracket on L+ is not a closed operation, or in other words L+ is not an invo-

lutive subbundle of E (and thus neither a Dirac structure), in contrast to the subbundles

T (T ∗M) and T ∗(T ∗M) which themselves become Lie algebroids under the respective re-

strictions of the Courant bracket and anchor of E. Additionally, a further projection of the

E-section which is the result of the operation [p+(A), p+(B)]E is necessary. More precisely,

this may be expressed as a relation between the Courant bracket on E and the C-bracket

on L+ given by

[[A,B]]L+ = p+

(
[p+(A), p+(B)]E

)C-bracket on L+ vs. Courant bracket on E

(2.30)

Note that this differs from the result of [38] where the C-bracket is related to the Courant

bracket of a ‘small’ Courant algebroid, whereas our relation involves the Courant bracket

on the large Courant algebroid E. This indicates that for each extra operation in DFT,

one has to perform anew a projection from the Courant algebroid structure on E.

Generalized Lie derivative. Let us also examine the reduction of the Dorfman deriva-

tive to the generalized Lie derivative of DFT. The Dorfman derivative for the standard

Courant algebroid is defined as

LAB = [AV ,BV ] + LAV BF − ιBV dAF , (2.31)

and its antisymmetrization yields the Courant bracket

[A,B]E = LAB− LBA . (2.32)

Rewritten in terms of the redefined components A±, the Dorfman derivative takes the form

LAB = ηIK
(
AK+ ∂IBL+ − BK+ ∂IAL+ + AK− ∂IBL+ − BK− ∂IAL+ + BK+ ∂LAI+ − BK− ∂LAI−

)
e+
L

+ ηIK
(
AK+ ∂IBL− − BK+ ∂IAL− + AK− ∂IBL− − BK− ∂IAL− − BK+ ∂LAI+ + BK− ∂LAI−

)
e−L .

(2.33)

Then it is evident that taking the Dorfman derivative of p+-projected vectors, which ef-

fectively amounts to setting AI− = BI− = 0, and recalling that AI+ = AI and BI+ = BI ,

we obtain

LAB = ηIK
(
AK ∂IBL −BK ∂IAL +BK ∂LAI

)
e+
L − ηIK B

K ∂LAI e−L . (2.34)

When restricted to L+ via the map p+, this expression corresponds to the standard one

for the generalized Lie derivative in DFT given by

(LAB)J = AI ∂IB
J −BI ∂IA

J +BI ∂
JAI . (2.35)

Equivalently, the relation between the two derivatives may be expressed in the form

LAB = p+

(
Lp+(A)p+(B)

)DFT generalized Lie derivative on L+ vs. Dorfman derivative on E

(2.36)
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The discussion of the generalized Lie derivative of DFT raises one more question: what

is the role of the strong constraint of DFT here? The Dorfman derivative (2.33) over the

large Courant algebroid E automatically satisfies the closure identity

[LA,LC] = L[A,C]E . (2.37)

However, what happens when we calculate this expression for p+-projected derivatives,

i.e. for generalized Lie derivatives of DFT? Although the result is well-known, let us for

completeness repeat the argument here. We have

LCLAB = ηIK ηJM
(
CK ∂I(AJ ∂MBL −BJ ∂MAL +BJ ∂LAM )

+ (AJ ∂MBK −BJ ∂MAK +BJ ∂KAM ) (∂LCI − ∂ICL)
)
e+
L , (2.38)

and

L[[C,A]]L+
B= ηIK ηJM

(
∂IBL

(
CM ∂JAK−AM ∂JCK− 1

2
CM ∂KAJ+

1

2
AM ∂KCJ

)
−BK ∂I

(
CM ∂JAL−AM ∂JCL− 1

2
CM ∂LAJ+

1

2
AM ∂LCJ

)
+BK ∂L

(
CM ∂JAI−AM ∂JCI− 1

2
CM ∂IAJ+

1

2
AM ∂ICJ

))
e+
L , (2.39)

giving altogether(
[LC , LA]− L[[C,A]]L+

)
B = ηIK ηJM

(
BJ ∂KCM ∂IAL −BJ ∂KAM ∂ICL

+
1

2
CM ∂KAJ ∂IBL − 1

2
AM ∂KCJ ∂IBL

)
e+
L . (2.40)

The right-hand side of (2.40) corresponds to the result obtained in [25, eq. (3.24)], giving

the strong constraint

ηIJ ∂If ∂Jg = 0 , (2.41)

for all fields f, g of DFT. The situation is summarized schematically in the diagram(
E , L · · , ρ , 〈 · , · 〉E

)
[L,L]− L[ · , · ]E = 0

(
L+ , L · · , ρ+ , 〈 · , · 〉L+

)
[L, L]− L[[ · , · ]]L+

= 0

p+ p+

strong

(2.42)

The horizontal arrows here are not maps, but implications of the structure maps from the

left. In the upper-left corner we encounter the large Courant algebroid over T ∗M . This is

projected to the corresponding structure of DFT, appearing in the lower-left corner. As

we will discuss momentarily, the latter structure does not constitute a Courant algebroid.

The upper-right corner contains the closure identity for Dorfman derivatives of E. This is

trivially projected to the corresponding closure identity for generalized Lie derivatives of

DFT. However, in order to reach this lower-right corner at the level of the DFT structure,

the strong constraint is required. Thus we have shown that starting from the large Courant
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algebroid over the doubled target space we can obtain known DFT structures by choosing

a suitable projection map p+ in (2.24). Furthermore, in section 5 we shall utilize the

structure of large Courant algebroid to obtain a geometric interpretation of the strong

constraint itself and DFT data in general.

2.4 Projecting to the DFT membrane sigma-model

We are now ready for our original goal, which is to find the O(d, d)-invariant membrane

sigma-model that corresponds to DFT. The way to do this is to rewrite the Courant

sigma-model over E in terms of AI± and e±I , and then impose the projection we found

above. Focusing first on the topological sector, the action (2.9) may be written as

S =

∫
Σ3

(
FI ∧ dXI + ηIJ

(
AI+ ∧ dAJ+ − AI− ∧ dAJ−

)
−
(
(ρ+)IK AK+ + (ρ−)IK AK−

)
∧ FI

+
1

6
TIJK AI+ ∧ AJ+ ∧ AK+ +

1

2
T ′IJK AI− ∧ AJ+ ∧ AK+

+
1

2
T ′′IJK AI+ ∧ AJ− ∧ AK− +

1

6
T ′′′IJK AI− ∧ AJ− ∧ AK−

)
, (2.43)

where, with respect to the anchor ρI Ĵ = (ρIJ , ρ̃
IJ) of E, we defined

(ρ±)IJ = ρIJ ± ηJK ρ̃ IK , (2.44)

which are maps from L± to the tangent bundle T (T ∗M) = TM ⊕ T (Rd)∗ on the doubled

space. The components of T, T ′, T ′′, T ′′′ are combinations of the twist components

TÎ ĴK̂ :=

(
AIJK BIJ

K

CI
JK DIJK

)
. (2.45)

Their explicit expressions are not important for our purposes, apart from the first one,

which is equal to

TIJK = AIJK + 3B[IJ
L ηK]L + 3C[I

LM ηJL ηK]M +DLMN η[IL ηJM ηK]N , (2.46)

where the underlined indices are not antisymmetrized. Now we project with the map p+,

i.e. we impose AI− = 0, and identify AI+ = AI and FI = FI . The resulting action is9

S[X, A, F ] =

∫
Σ3

(
FI ∧ dXI + ηIJ A

I ∧ dAJ − (ρ+)IJ A
J ∧ FI +

1

6
TIJK A

I ∧AJ ∧AK
)DFT membrane sigma-model

(2.47)

9A remark is in order regarding the generalized Wess-Zumino term here. When the twisted Courant

bracket is considered, the projected twisted C-bracket is obtained with a twist 1
2
T . In more precise terms,

taking the twisted brackets [A,B]tE := [A,B]E+T (A,B) and [[A,B]]tL+ := [[A,B]]L+ +T̂ (A,B), their relation

is found to be

p+
(
[p+(A), p+(B)]tE

)
= [[A,B]]L+ + p+

(
T (A,B)

)
= [[A,B]]L+ +

1

2
T (A,B)

giving T̂ (A,B) = 1
2
T (A,B). Thus the Wess-Zumino term can also be written as 1

3
T̂IJK A

I ∧ AJ ∧ AK in

terms of the C-bracket twist.
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or in coordinate-free form

S[X, A, F ] =

∫
Σ3

(
〈F, dX〉+ 〈A, dA〉L+ − 〈F, ρ+(A)〉+

1

3
〈A, [[A,A]]L+〉L+

)
. (2.48)

We conclude that this is the topological sector of the membrane sigma-model that cor-

responds to DFT. It is satisfying to observe that this very action was essentially proposed

already in [50], albeit without explanation. Here we cover this gap by providing precise

argumentation for that action. However, in [50] it was implicitly assumed that the resulting

sigma-model still corresponds to the Courant algebroid E. Here it becomes clear that no

Courant algebroid is associated to the action (2.47). In particular, the action (2.47) does

not define a Courant sigma-model and so its gauge invariance is not immediate. We shall

analyse this point in detail in section 4. The Courant algebroid structure is broken on the

way from the large Courant algebroid E to DFT and it is recovered, as is well-known, once

the strong constraint is solved and the dual coordinates are eliminated; then the Courant

algebroid over M becomes the relevant structure. Thus we see that DFT lies in between

the Courant algebroid over M and the large Courant algebroid over the doubled space. We

shall further quantify this observation in section 5.

Regarding the remaining symmetric term, which is necessary in order to reach any

connection with the dynamics of string sigma-models, we follow the same procedure of

p+-projecting the corresponding term in (2.10). This leads to

Ssym[X, A] =

∫
∂Σ3

‖A‖g =

∫
∂Σ3

1

2
gIJ(X)AI ∧ ∗AJ . (2.49)

Then the full action we consider from now on is

SDFT = S + Ssym . (2.50)

To completely specify the sigma-model, the bulk action S should be supplemented with suit-

able Dirichlet and Neumann boundary conditions for the fields on ∂Σ3. For the Courant

sigma-model this is discussed in detail in [9, 48, 70], whereby suitable boundary condi-

tions are imposed to ensure BV gauge invariance of the induced boundary worldsheet

sigma-models. In the following we shall treat gauge invariance of our sigma-models from

a different perspective of DFT in section 4, and hence we will only assume implicitly that

suitable boundary conditions are defined, whose details are not important for the boundary

reductions which follow. Moreover, the breaking of topological symmetry by the explicit

boundary term Ssym furthermore ensures consistency of the bulk theory in the presence of

non-geometric flux deformations, as discussed in [9, 60].

In writing the DFT membrane sigma-model we started with a general Courant al-

gebroid and its corresponding Courant sigma-model, in contrast to section 2.3 where we

started with the Courant bracket (2.14) of the standard Courant algebroid. In this case,

it is useful to also write down the C-bracket obtained via the double projection prescrip-

tion (2.30) on the general form of the Courant bracket (2.4). This leads to the general

C-bracket

[[A,B]]JL+
= (ρ+)LI

(
AI ∂LB

J − 1

2
ηIJ AK ∂LBK − {A↔ B}

)
+

1

2
TIK

J AI BK . (2.51)

– 15 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

This bracket is to be used whenever the initial large Courant algebroid is not the standard

one (see e.g. [23]). It will also assist in determining a set of axioms and properties for the

higher geometric structure associated to DFT in section 5.

3 Examples

In order to corroborate our proposal that (2.47) is the DFT membrane sigma-model, let

us test it on some simple yet illustrative cases. In the following we consider the worldsheet

theories for the four T-dual closed string backgrounds associated to the 3-torus M with

constant H-, f -, Q- and R-fluxes, as found e.g. in [15], and show that they are all contained

in the single action (2.47).

Let us introduce the following notation. The components of ρ+ are generally given as

(ρ+)IJ =

(
ρij ρ

ij

ρij ρi
j

)
, (3.1)

while the components of a DFT vector A and of the twist T are written respectively as10

AI = (qi, pi) and TIJK =

(
Hijk fij

k

Qi
jk Rijk

)
. (3.2)

The symmetric term has components11

gIJ =

(
gij gi

j

gij g
ij

)
. (3.3)

Our main goal here is to describe the standard T-duality chain relating geometric and

non-geometric flux configurations schematically through [55]

Hijk
Tk←→ fij

k Tj←→ Qi
jk Ti←→ Rijk , (3.4)

where Ti denotes a T-duality transformation along xi. We shall derive the corresponding

O(d, d) transformations among the structure maps above, and demonstrate how the DFT

membrane sigma-model correctly captures the anticipated geometric and non-geometric

descriptions in each T-duality frame.

3.1 NS-NS flux and the Heisenberg nilmanifold

Let us start with the supergravity frames. In order to describe the geometric H-flux frame

on the 3-torus M , we choose the data12

(ρ+)IJ =

(
δij 0

0 0

)
, TIJK =

(
Hijk 0

0 0

)
and gIJ =

(
0 0

0 gij

)
, (3.5)

10In this section, pi are always worldvolume 1-forms and should not be confused with the local fiber

coordinates of section 2.2.
11The components of ρ and g with different positionings of indices on the right-hand sides of (3.1) and (3.3)

are in general unrelated. In particular, gij is not generally the inverse of gij .
12The choices are not unique.
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where here and below gij denotes a constant metric on the dual space with inverse gij .

Then the membrane action becomes

SDFT =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi +

1

6
Hijk q

i ∧ qj ∧ qk
)

+

∫
∂Σ3

1

2
gij pi ∧ ∗pj . (3.6)

We are interested in the on-shell membrane theory. The equation of motion for FI yields

two relations, one from Fi and the other from F i, giving

qi = dXi and dX̃i = 0 . (3.7)

The action now takes the form∫
∂Σ3

(
pi ∧ dXi +

1

2
gij pi ∧ ∗pj

)
+

∫
Σ3

1

6
Hijk dXi ∧ dXj ∧ dXk , (3.8)

which, after integrating out pi using ∗2 = 1, takes precisely the desired form

SH [X] :=

∫
∂Σ3

1

2
gij dXi ∧ ∗dXj +

∫
Σ3

1

6
Hijk dXi ∧ dXj ∧ dXk (3.9)

for the closed string sigma-model on ∂Σ3 with 3-torus target space and NS-NS flux. We

obtained this action in a rather unnecessarily complicated fashion, however the advantage

is that exactly the same steps may be followed for any other T-duality frame without the

need for major adjustments.

The T-dual of the above configuration corresponds to a twisted 3-torus N that has a

purely metric flux (torsion). It can be constructed as the quotient of the three-dimensional

non-compact Heisenberg group by a cocompact discrete subgroup, and in particular N is

parallelizable. The simplest way to describe it in our formalism is to introduce a globally

defined left-invariant (inverse) vielbein as a component of the anchor map and choose

the data13

(ρ+)MJ =

(
Eµj 0

0 0

)
, TIJK =

(
0 2 fij

k

0 0

)
and gIJ =

(
0 0

0 gij

)
, (3.10)

where here we use the convention that Greek indices µ, ν, . . . label local coordinates while

Latin indices i, j, . . . label frames, and fij
k = −2Eµ[iE

ν
j] ∂µE

k
ν are structure constants

of the three-dimensional Heisenberg algebra. Then the membrane action becomes

SDFT =

∫
Σ3

(
Fµ ∧ dXµ+F̃µ ∧ dX̃µ+qi ∧ dpi+pi ∧ dqi−Eµj qj ∧ Fµ+fij

k qi ∧ qj ∧ pk
)

+

∫
∂Σ3

1

2
gij pi ∧ ∗pj . (3.11)

13Topologically, the tangent bundles TN and TM are (non-canonically) isomorphic, and the components

of ρ+ in (3.10) correspond to a chosen isomorphism from TN to TM . Since this is relevant only in the

simple case discussed here, we shall not delve into further details.
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The equations of motion for FM = (Fµ, F̃
µ) yield two relations

qi = Ei := Eiµ dXµ and dX̃µ = 0 . (3.12)

Using the Maurer-Cartan structure equations

dEi = −1

2
fjk

iEj ∧ Ek (3.13)

we obtain ∫
∂Σ3

(
pi ∧ Ei +

1

2
gij pi ∧ ∗pj

)
, (3.14)

which, after integrating out pi, takes precisely the desired form

Sf [X] :=

∫
∂Σ3

1

2
gij E

i ∧ ∗Ej (3.15)

for the closed string sigma-model with target the geometric T-dual of the 3-torus with

NS-NS flux.

3.2 The T-fold and noncommutativity

To describe the globally non-geometric Q-flux frame corresponding to a parabolic mon-

odromy from this point of view, we choose

(ρ+)IJ =

(
δij β

ij(X)

0 −δij

)
and TIJK =

(
0 0

Qi
jk 0

)
, (3.16)

where

βij(X) = −Qkij Xk (3.17)

defines a local bivector β = 1
2 β

ij(x) ∂i ∧ ∂j on M which is “T-dual” to the Kalb-Ramond

field Bij(X) = HijkX
k of the supergravity frame [71]. We take the only non-vanishing

components of the constant Q-flux to be Q3
12 = −Q = −Q3

21, and

gIJ =

(
0 δ3

j

0 gij

)
with gij = diag(1, 1, 0) . (3.18)

With this choice the topological part of membrane action (2.47) is

S =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi + pi ∧ F i

−QX3 p2 ∧ F1 +QX3 p1 ∧ F2 −Qp1 ∧ p2 ∧ q3
)
. (3.19)

By integrating out the auxiliary fields FI we obtain

qm = dXm −Q3
mnX3 pn for m,n = 1, 2 and q3 = dX3 , (3.20)

and

pi = −dX̃i for i = 1, 2, 3 . (3.21)
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Using these field equations, the three-dimensional membrane action drops to the boundary,

and adding the symmetric term we get∫
∂Σ3

(
dX̃m ∧ dXm +QX3 dX̃1 ∧ dX̃2 +

1

2
dX3 ∧ ∗dX3 +

1

2
dX̃m ∧ ∗dX̃m

)
. (3.22)

The first term plays an important role here. For smooth worldvolume manifolds with

boundary, i.e. when the boundary of ∂Σ3 is empty, one may naively just drop the first

term and obtain a two-dimensional action corresponding to the T-duality exchange of fields

Xm ↔ X̃m, for m = 1, 2, from the sigma-model for the 3-torus with H-flux. However, for

the 3-torus the coordinate fields are not globally defined, so the first term cannot be ignored

and the situation is different. Using ∗2 = 1, integrating out X̃m yields

dX̃m = − 1

1 + (QX3)2

(
∗ dXm −Q3

mnX3 dXn
)
, (3.23)

and the resulting action

SQ[X] :=

∫
∂Σ3

(
1

2
dX3∧∗dX3+

1

2(1+(QX3)2)
dXm∧∗dXm− QX3

1+(QX3)2
dX1∧dX2

)
(3.24)

is the anticipated worldsheet action associated to the T-fold which is the globally non-

geometric T-dual of the 3-torus with NS-NS flux.

An alternative perspective on this global non-geometry is the proposal of [7] that closed

strings which wind in the Q-flux background probe a noncommutative deformation of the

background geometry. This effect cannot be observed in the membrane sigma-model by

viewing the closed strings as boundary modes of open membranes, as we have done until

now, but instead we should regard them as wrapping modes of closed membranes. For this,

we view the target space as M = M2 × S1, with M2 the 2-torus and X3 the coordinate

on S1, and take the membrane worldvolume to be a product space Σ3 = Σ2 × S1, with σ3

denoting the worldvolume coordinate on S1. We wrap the membrane on the target S1 by

making a partial gauge-fixing

X3(σ) = w3 σ3 (3.25)

of the worldvolume diffeomorphism symmetry, where w3 is the winding number of the

worldvolume circle around the target space circle. The symmetric part of the action is

now defined over the closed string worldsheet Σ2. Dimensional reduction of the topological

action (2.47) proceeds by restricting all membrane fields Xm(σ) and X̃i(σ) to configurations

which are independent of σ3. Proceeding as above, integration over the worldvolume S1

then yields the worldsheet action

SQ,w[X, X̃ ] :=

∫
Σ2

(
1

2
dX̃m ∧ ∗dX̃m + dX̃m ∧ dXm +

1

2
Q3

mnw3 dX̃m ∧ dX̃n

)
. (3.26)

The inverse of the B-field appearing in the topological term here defines a bivector θ =
1
2 θ

mn ∂m ∧∂n +∂m ∧ ∂̃m, showing that the closed string coordinates have noncommutative

phase space Poisson brackets

{Xm, Xn}θ = θmn = Q3
mnw3 , {Xm, X̃n}θ = δmn and {X̃m, X̃n}θ = 0

(3.27)

– 19 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

in the approach of [9] whereby Σ2 is effectively an open string worldsheet, which confirms

the expectations of [7, 72]. Note that even for vanishing Q-flux the coordinates and their

duals do not commute, which agrees with the recent suggestion of intrinsic closed string

noncommutativity [73]. In fact, as the noncommutativity parameter θmn is induced entirely

by the generalized Wess-Zumino term from above, dimensional reduction of our membrane

sigma-model corroborates and clarifies the proposal [74] that the general relation between

the globally non-geometric flux and closed string noncommutativity is provided by a Wilson

line of the Q-flux through

θij =

∮
Ck

Qk
ij dXk , (3.28)

where Ck = S1 are the 1-cycles of M .

The metric and B-field in the worldsheet action (3.24) are locally defined but are not

single-valued under periodic shifts of the circle coordinate X3. Within the framework of

the DFT membrane sigma-model, this global non-geometry is due to the fact that the

anchor ρ+ in (3.16) is not globally defined. The correct global parameterization of the

non-geometric space is defined by the open-closed field redefinition [22, 74, 75]

g̃−1 + β = (g +B)−1 (3.29)

which maps the closed string metric and B-field (g,B) appearing in (3.24) to the open string

bivector β in (3.17) and globally defined metric g̃ = diag(1, 1, 1). The relation (3.29) is just

a particular T-duality transformation [74], and in this non-geometric parameterization the

anchor of (3.16) is modifed to

(ρ+)IJ =

(
δ3
j 0

0 ρi
j

)
with ρi

j = diag(1, 1, 0) , (3.30)

which is now globally defined; the remaining structure maps are as above. By following

the same steps as before, we arrive at the worldsheet sigma-model action

SQ[X, X̃ ] :=

∫
∂Σ3

(
1

2
dX3 ∧ ∗dX3 +

1

2
dX̃m ∧ ∗dX̃m

)
+

∫
Σ3

1

2
Q3

mn dX3 ∧ dX̃m ∧ dX̃n , (3.31)

which is now indeed the naive T-dual of the sigma-model with H-flux.

3.3 Locally non-geometric flux and nonassociativity

The corresponding locally non-geometric R-flux frame, which has no conventional target

space description on M , is described within our framework by choosing the anchor ρ+ to be

(ρ+)IJ =

(
δij β

ij(X̃ )

0 −δij

)
, (3.32)

where

βij(X̃ ) = Rijk X̃k (3.33)
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is the T-dual image of the bivector (3.17) [71]. The bracket twist T and the symmetric

form g are chosen as

TIJK =

(
0 0

0 Rijk

)
and gIJ =

(
0 0

0 gij

)
. (3.34)

The topological part of the membrane action (2.47) becomes

S =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi + pi ∧ F i

−Rijk X̃k pj ∧ Fi +
1

6
Rijk pi ∧ pj ∧ pk

)
. (3.35)

Integrating out the auxiliary fields FI gives

qi = dXi −Rijk X̃k pj and pi = −dX̃i . (3.36)

The second equation implies dpi = 0, so for constant Rijk all the rest of the terms drop to

the two-dimensional boundary giving∫
∂Σ3

(
−qi ∧ dX̃i −

1

2
Rijk X̃k dX̃i ∧ dX̃j +

1

2
gij pi ∧ ∗pj

)
. (3.37)

Restricting (3.36) to the boundary we obtain

SR[X, X̃ ] :=

∫
∂Σ3

(
1

2
gij dX̃i ∧ ∗dX̃j + dX̃i ∧ dXi +

1

2
Rijk X̃k dX̃i ∧ dX̃j

)
, (3.38)

which, in contrast to the case of the T-fold, cannot even be locally expressed in terms of

fields on the target space M . This is precisely the membrane sigma-model proposed in [9]

which captures the nonassociative phase space structure of the R-flux background that is

formally T-dual to the associative algebra (3.27) [7]; here we have shown that it is also

included in the DFT membrane sigma-model (2.47). Following [9], membranes propagating

in the locally non-geometric target space do not have smooth worldvolumes, but rather Σ3

should now be regarded as a manifold with corners of codimension two, as suggested by

the open-closed string duality of the R-flux background which implies that ∂Σ3 has non-

empty boundary. Thus in this parameterization, the inverse of the B-field appearing in

the doubled space sigma-model action (3.38) defines a bivector Θ = 1
2 ΘIJ ∂I ∧∂J on phase

space T ∗M with

ΘIJ =

(
Rijk X̃k δ

i
j

−δij 0

)
. (3.39)

It induces a twisted Poisson bracket given by

{XI ,XJ}Θ = ΘIJ , (3.40)

which reads explicitly as14

{Xi, Xj}Θ = Rijk X̃k , {Xi, X̃j}Θ = δij and {X̃i, X̃j}Θ = 0 . (3.41)

14We emphasize that due to the additional twisted Poisson structure, X̃i are regarded here as canonically

conjugate momenta to Xi and not as T-dual winding coordinates.
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This leads to the non-vanishing Jacobiator

{Xi, Xj , Xk}Θ :=
1

3
{{Xi, Xj}Θ, Xk}Θ + cyclic = −Rijk . (3.42)

Deformation quantization of this twisted Poisson structure was carried out in [9] via per-

turbative quantization of the sigma-model in the formalism of [53, 54], and reproduced in

various other contexts in [76–80].

Alternatively, we may choose to work in a suitable global reparameterization of the

locally non-geometric space, analogously to the global non-geometry of the Q-flux frame.

For this, we modify the anchor (3.32) to the globally defined map

(ρ+)IJ =

(
0 0

0 δi
j

)
. (3.43)

Following the same steps as above, the resulting worldsheet action is

SR[X̃ ] :=

∫
∂Σ3

1

2
gij dX̃i ∧ ∗dX̃j +

∫
Σ3

1

6
Rijk dX̃i ∧ dX̃j ∧ dX̃k , (3.44)

which is the same as the sigma-model action with H-flux under the naive T-duality ex-

changes of all fields Xi with X̃i.
15 The difference between the two membrane sigma-models

is that the choice of anchor (3.32) violates the strong constraint of DFT, while (3.43) does

not. This agrees with the observation [81] that the nonassociative deformation of the closed

string background is not compatible with the strong constraint between the background

Rijk and fluctuations around it.

These results clarify the appearance of noncommutativity and nonassociativity in

closed string theory. It is known that the H-flux frame can also be described simply

by a Courant sigma-model. Recall that the action (3.6) is not a Courant sigma-model

action, as already explained generally in section 2.4. However, imposing solely the second

of the field equations (3.7) would lead to an action which is a Courant sigma-model action,

and in particular the one associated to the standard Courant algebroid over the target

space M [9]. The same is true for the other three cases under the exchange of Xi with X̃i,

whose final worldsheet action results from a Courant sigma-model corresponding to the

standard Courant algebroid, albeit not over M but over other slices of the doubled target

space, as in e.g. (3.31) and (3.44). Thus in terms of the doubled space of DFT, the four

T-dual backgrounds with H-, f -, Q- and R-flux all correspond to the standard Courant

algebroid over different polarizations of the doubled space. However, this does not include

the noncommutative and nonassociative backgrounds discussed above, which violate the

strong constraint of DFT and therefore do not correspond to Courant sigma-models; as

such, the corresponding membrane sigma-models do not possess the usual (higher) BV

gauge symmetries. Later on we shall describe how the strong constraint can be weakened

and how gauge invariance of the membrane sigma-model is reconciled in this case. In more

complicated cases, for instance when fluxes coexist, this picture gets suitably modified.

15In this case there is no (twisted) Poisson structure and X̃i are interpreted as T-dual winding coordinates

to Xi.
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3.4 R-flux with Poisson structure

There is another simple yet interesting example involving the R-flux, wherein the target

space M is a Poisson manifold with non-degenerate Poisson bivector Π = 1
2 Πij(x) ∂i ∧ ∂j .

We choose the anchor ρ+ to be

(ρ+)IJ =

(
0 −Πij

0 0

)
, (3.45)

and the bracket twist T and the symmetric form g are chosen as

TIJK =

(
0 0

2 ∂kΠ
ij Rijk

)
and gIJ =

(
gij 0

0 0

)
. (3.46)

The topological part of the membrane action (2.47) becomes

S =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi + Πij pj ∧ Fi

+ ∂kΠ
ij qk ∧ pi ∧ pj +

1

6
Rijk pi ∧ pj ∧ pk

)
. (3.47)

Taking the FI equations of motion,

dXi = −Πij pj and d̃ Xi = 0 , (3.48)

the non-degeneracy assumption on the bivector allows us to invert the first equation

and write

pi = −Π−1
ij dXj . (3.49)

Since Π is a Poisson bivector and thus its Schouten bracket with itself vanishes, [Π,Π]S = 0,

or in local coordinates

Πl[i ∂lΠ
jk] = 0 , (3.50)

the topological part of the action takes the form

−
∫
∂Σ3

Π−1
ij q

i ∧ dXj −
∫

Σ3

1

6
Rlmn Π−1

li Π−1
mj Π−1

nk dXi ∧ dXj ∧ dXk . (3.51)

Concerning the kinetic part of the boundary action, it is convenient to add an addi-

tional term ∫
∂Σ3

(
1

2
gij q

i ∧ ∗qj +
1

2
gij dXi ∧ ∗dXj

)
, (3.52)

and after taking the equation of motion for qi into account, we obtain the worldsheet

sigma-model action

SR,Π[X] :=

∫
∂Σ3

1

2

(
gij −Π−1

ik g
kl Π−1

lj

)
dXi ∧ ∗dXj

−
∫

Σ3

1

6
Rlmn Π−1

li Π−1
mj Π−1

nk dXi ∧ dXj ∧ dXk . (3.53)
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An alternative option would be to take only the second term in (3.52); then, adding also an

extra 2-form topological term 1
2 Bij q

i ∧ qj and choosing appropriate boundary conditions,

one obtains the R-flux sigma-model considered in [51]. In the case where the twist R

and the Poisson bivector considered here are constant (as is the case, for instance, for a

toroidal target in Darboux coordinates), the topological term falls locally on the boundary

as 1
2 R

lmn Π−1
li Π−1

mj Π−1
nk X

k dXi ∧ dXj .

There is an important difference between the R-flux models with actions (3.38)

and (3.53). The former is a sigma-model on the doubled space, while the latter is a

Courant sigma-model on M . (Note also that the metrics in the two actions are not gen-

erally related, as we are slightly abusing notation here.) Only the former one should be

properly understood as a sigma-model for non-geometric R-flux in the sense that it can

be obtained from a generalized T-duality transformation of a geometric background. The

second R-flux is itself a geometric flux.16 Comparing the actions (3.44) and (3.53), we note

that the reason for the existence of both models is that there are two distinct Courant

algebroids, one being the standard Courant algebroid on the dual winding space, and the

other the non-standard Courant algebroid on M with its anchor given by a Poisson bivector

(see appendix A.4).

4 DFT fluxes from the membrane sigma-model

In this section we discuss how the membrane sigma-model (2.47) captures the flux formu-

lation of DFT, in particular the role of the generalized Wess-Zumino term in formulating

the geometric and non-geometric fluxes, and the manner in which the standard Bianchi

identities for DFT fluxes are generated by the gauge symmetries of the action.

4.1 Three roads to DFT fluxes

In DFT, the potential expressions for the four types of fluxes (H, f,Q,R) are modified with

respect to the ones of generalized geometry, receiving additional contributions due to the

dual coordinate dependences of fields. In a holonomic frame they read as [56–59]

Hijk = 3 ∂[iBjk] + 3B[il ∂̃
lBjk] , (4.1)

fij
k = ∂̃kBij + βklHlij , (4.2)

Qk
ij = ∂kβ

ij +Bkl ∂̃
lβij + 2βl[i ∂̃j]Blk + βil βjmHlmk , (4.3)

Rijk = 3 ∂̃[iβjk] + 3β[il ∂lβ
jk]

+ 3Blm β
[il ∂̃mβjk] + 3β[il βjm ∂̃k]Blm + βil βjm βknHlmn , (4.4)

where B is the Kalb-Ramond 2-form field and the bivector field β its “T-dual” in DFT.

The fluxes in generalized geometry are simply the ones with ∂̃i = 0 [60], which is a solution

of the strong constraint (2.41). These expressions, and their counterparts in an arbitrary

non-holonomic frame, may be obtained in the following ways.

16The precise relation between the two models is clarified in [82], where it is shown that the degenerate

limit Π = 0 of the Courant sigma-model of [51] with a particular BV gauge-fixing coincides exactly with

the R-twisted membrane sigma-model of [9].
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Generalized vielbein. In [58] a generalized vielbein formulation of DFT is considered.

Starting from the d-dimensional Minkowski metric17 sab, and introducing the O(1, d−1)×
O(1, d − 1)-invariant metric SAB = diag(sab, sab), the covariant generalized metric H is

written as

HIJ = EAI SAB EBJ , (4.5)

where EAI is a generalized vielbein. One also introduces a flat derivative

DA = EAI ∂I (4.6)

and the generalized Weitzenböck connection

ΩABC = DAEBI ECI . (4.7)

It is shown in [58] that the DFT fluxes18 T̂ABC are given as

T̂ABC = 3 Ω[ABC] , (4.8)

which agrees with the expanded formulas upon the choice of parametrization for the gen-

eralized vielbein given by

EAI =

(
ea
i ea

j Bji
eaj β

ji eai + eaj β
jk Bki

)
, (4.9)

where e is a standard vielbein. As usual, when the vielbein e is the identity and we identify

T̂IJK =

(
T̂ijk T̂ij

k

T̂i
jk T̂ ijk

)
=:

(
Hijk fij

k

Qi
jk Rijk

)
, (4.10)

these formulas reproduce the ones appearing in (4.1)–(4.4). These expressions are not

unique as a different parametrization of the generalized vielbein would yield different ex-

pressions, essentially the equivalent ones in a different O(d, d) frame.

C-bracket. Alternatively, the fluxes may be obtained directly from the C-bracket. For

this, first recall that in generalized geometry one can consider the Roytenberg bracket [43,

60], which is the Courant bracket with an arbitrary generalized 3-form twist. One way to

obtain explicit expressions for the fluxes is to act with the twist operator eB eβ on the basis

∂i and dxi to get

∂i
eB eβ−→ ei := ∂i +Bij dxj , (4.11)

dxi
eB eβ−→ ei := dxi + βij ∂j + βij Bjk dxk = dxi + βij ej . (4.12)

17Hereby indices a, b, c, . . . refer to flat quantities and indices i, j, k, . . . to curved quantities. The corre-

sponding capitalized indices are doubled.
18Note that we identify the DFT fluxes with the twist T̂ of the C-bracket rather than the twist T of the

large Courant bracket; the two twists are related as explained in footnote 9.
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Then computing the untwisted Courant brackets of the new basis, one obtains

[ei, ej ]E = Hijk e
k + fij

kek ,

[ei, e
j ]E = fik

j ek +Qi
jk ek ,

[ei, ej ]E = Qk
ij ek +Rijk ek , (4.13)

where the generalized structure functions appearing on the right-hand side are precisely

given by the expressions (4.1)–(4.4) upon setting ∂̃i = 0. Once again, these expressions

are not unique, since they depend on the way one twists the basis. Different operators,

e.g. eβ eB, would give the fluxes in a different O(d, d) frame [83]. Now in the DFT case, we

choose the components of the anchor ρ+ to be given by

(ρ+)IJ =

(
δij βij

Bij δi
j + βjk Bki

)
, (4.14)

in close relation to the generalized vielbein (4.9) in a holonomic frame; this is similar (up

to signs) to what we chose in (3.16) and (3.32) in the case of the 3-torus with purely

non-geometric Q-flux and R-flux, respectively. We then consider

ê+
J = (ρ+)IJ e

+
I (4.15)

as the analog of (4.11) and (4.12). Then a straightforward computation of the untwisted

C-bracket establishes that

[[ê+
M , ê

+
N ]]L+ = 3 ηIK (ρ+)K [M ∂I(ρ+)LN (ρ+)LP ] η

PQ ê+
Q , (4.16)

which on comparing (4.8), (4.9) and (4.14) is seen to be the desired result [[ê+
M , ê

+
N ]]L+ =

T̂MN
Q ê+

Q. This last computation also appears in [58], wherein ρ+ is a duality twist.

(An alternative derivation, based on the commutator algebra of two differential operators,

appears in [84].)

Generalized Wess-Zumino term. In the spirit of our approach, the expressions for

the DFT fluxes may be derived from the DFT membrane sigma-model (2.47). One can

confirm this in two alternative ways. First, let us recall that the Wess-Zumino term in the

Courant sigma-model is obtained in the basis-independent formulation from the term

〈A, [A,A]E〉E . (4.17)

This term is zero for the untwisted Courant bracket; the generalized Wess-Zumino term is

obtained from the twist of the bracket. Similarly, in the DFT membrane sigma-model, one

may write the generalized Wess-Zumino term as

〈A, [[A,A]]L+〉L+ . (4.18)

The bracket is now the C-bracket of DFT and A is a DFT vector; the term is trivially

zero when it is untwisted but non-zero when twisted. Recall now that the background field

local expressions for the fluxes are obtained from the untwisted bracket. Thus, in order
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to derive these expressions in our approach, we consider the untwisted DFT membrane

sigma-model, namely (2.47) without the last term. As in all other approaches, the precise

expressions depend on the parametrization. With the goal of obtaining the result in a

holonomic frame, we take the components of the anchor ρ+ to again be given by (4.14).

The DFT membrane sigma-model becomes

SDFT =

∫
Σ3

(
FI ∧ (dXI − (ρ+)IJ A

J) + ηIJ A
I ∧ dAJ

)
+

∫
∂Σ3

1

2
gIJ A

I ∧ ∗AJ . (4.19)

Taking the equation of motion for the worldvolume 2-form FI in three dimensions, we

obtain dXI = (ρ+)IJ A
J which implies

AI = (ρ+)J
I dXJ , (4.20)

where we used the fact that the particular anchor ρ+ of (4.14) is invertible with inverse

(ρ+)I
J =

(
δi
j +Bik β

kj Bij
βij δij

)
. (4.21)

Eliminating FI , the action takes the form∫
∂Σ3

(
1

2
gIJ A

I ∧ ∗AJ + ηIJ (ρ+)K
I AJ ∧ dXK

)
+

1

3

∫
Σ3

3 ηIM (ρ+)LK (ρ+)N
M ∂L(ρ+)NJ A

I ∧AJ ∧AK . (4.22)

Comparing with (4.16), it is observed that the three-dimensional term in this action indeed

encodes the correct DFT fluxes T̂ . Moreover, the kinetic term may be written in the second

order formalism, and the resulting action describes the motion of a closed string with

worldsheet ∂Σ3 in the doubled target space T ∗M as a standard non-linear sigma-model

(see e.g. [15])

SH,F [X] :=

∫
∂Σ3

1

2
HIJ dXI ∧ ∗dXJ +

∫
Σ3

1

3
FIJK dXI ∧ dXJ ∧ dXK , (4.23)

where

HIJ := (ρ+)I
K gKL (ρ+)J

L and FIJK := (ρ+)I
L (ρ+)J

M (ρ+)K
N T̂LMN . (4.24)

We can identify HIJ(X) with the covariant generalized metric on T ∗M , provided we take

a diagonal symmetric form gIJ , i.e. gi
j = gij = 0. Indeed, substituting the components of

ρ+ from (4.14), we find that HIJ is then given by(
gij−Bik gklBlj −Bik gkj+gik βkj−Bik gklBlm βmj

gik Bkj−βik gkj + βimBmk g
klBlj g

ij−βik gkl βlj+2 g(ilBln β
n j)+βimBmk g

klBln β
nj

)
.

(4.25)

As expected, when β = 0 one obtains the familiar geometric parameterization

HIJ =

(
gij −Bik gklBlj −Bik gkj

gik Bkj gij

)
, (4.26)
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while dually for B = 0 one obtains the non-geometric parameterization implied by the

open-closed background field redefinition (3.29) as

H̃IJ =

(
gij gik β

kj

−βik gkj gij − βik gkl βlj

)
. (4.27)

4.2 Gauge invariance and Bianchi identities

A systematic way to derive the Bianchi identities for the fluxes is to examine the gauge

invariance of the DFT membrane sigma-model action (2.47). For this, we consider the

infinitesimal gauge transformations19

δεXI = ρIJ(X) εJ , (4.28)

δεA
I = dεI + ηIJ T̂JKL(X)AK εL , (4.29)

where ε is a gauge parameter which is a function only of the worldvolume coordinates

on Σ3. To test the invariance of the action (2.47) under these transformations, first we

introduce the worldvolume derivative

DXI = dXI − ρIJ(X)AJ , (4.30)

which accompanies the auxiliary fields FI in the sigma-model action. It transforms un-

der (4.28) and (4.29) as

δεDXI = εJ ∂Kρ
I
J DXK +

(
ρKL ∂Kρ

I
M − ρKM ∂Kρ

I
L − ρIJ ηJK T̂KLM

)
AL εM . (4.31)

Had we required that this derivative transforms covariantly, as would have been the case

for a Courant sigma-model, the second term would have to vanish. However, one can easily

verify that it does not. Indeed, the DFT fluxes T̂ satisfy

ρKL ∂Kρ
I
M − ρKM ∂Kρ

I
L −

1

2
ρKL ∂

IρKM +
1

2
ρKM ∂IρKL = ρIJ η

JK T̂KLM , (4.32)

since they are obtained via the C-bracket. This implies that

δεDXI = εJ ∂Kρ
I
J DXK + ρK[L ∂

IρKM ]A
L εM . (4.33)

Later we will prove that the last term does not contribute to the gauge variation of the

action when the strong constraint (2.41) is satisfied. Moreover, in section 6 we will suggest

a way of eliminating this term altogether.20

19In this subsection we simplify the notation for the components of the map ρ+ by denoting (ρ+)IJ
as ρIJ .

20It appears as if it is possible to get rid of this term already by allowing the transformation (4.29) to

contain an extra term such that the combination (4.32) appears as such in (4.31). However, in that case new

terms of the form A ∧ dA would arise in the gauge variation of the action, whose interpretation is unclear.
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Equipped with this relation, we proceed with the evaluation of the gauge variation of

the action (2.47) to get

δεS =

∫
Σ3

(
ηIJ dεI ∧ dAJ + ρK[L ∂

IρKM ] ε
M FI ∧AL

+ δεFK ∧DXK + εJ (∂Kρ
I
J FI − ∂K T̂ILJ AI ∧AL) ∧DXK (4.34)

+εL
(
ηMN T̂MJK T̂ILN + ρMI ∂M T̂KJL +

1

3
ρML ∂M T̂IJK

)
AI ∧AJ ∧AK

)
.

The first term is a total derivative, while the second line vanishes upon postulating that

the gauge variation of the auxiliary 2-form FI is

δεFK = −εJ
(
∂Kρ

I
J FI − ∂K T̂ILJ AI ∧AL

)
. (4.35)

Considering the variation of the action at face value, there is no way to cancel the term in

the third line of (4.34) against another term; thus an additional requirement would be that

3 ηMN T̂M [JK T̂I]LN + 3 ρM [I ∂M T̂KJ ]L + ρML ∂M T̂IJK = 0 . (4.36)

Since this is a differential condition for the fluxes, it is naturally interpreted as the imple-

mentation of the Bianchi identities in the DFT membrane sigma-model. This is confirmed

by noting that the first term is in fact antisymmetric in all four indices (IJKL), while

the second and the third term combine to a single term antisymmetric in these indices; in

other words, we rewrite the equation as

3 ηMN T̂M [JK T̂IL]N + 4 ρM [I ∂M T̂KJL] = 0 . (4.37)

This is indeed the correct formula for the Bianchi identities in DFT, see e.g. [58], after

imposing the strong constraint. Substitution into (4.37) of the explicit expressions for the

DFT fluxes together with the anchor components from (4.14) leads to its expanded form

D[iHjkl] =
3

2
Hm[ij fkl]

m ,

D[ifjk]
l − 1

3
D̃lHijk = Q[i

lmHjk]m − f[ij
m fk]m

l ,

D[iQj]
kl + D̃[kfij

l] =
1

2
fij

mQm
kl +

1

2
HijmR

mkl − 2Q[i
m[k fj]m

l] , (4.38)

D̃[iQl
jk] − 1

3
DlRijk = flm

[iRjk]m −Qm[ij Ql
k]m ,

D̃[iRjkl] =
3

2
Rm[ij Qm

kl] ,

where

Di = ∂i +Bji ∂̃
j and D̃i = ∂̃i + βjiDj , (4.39)

and we used the identifications (4.10). Recall that these are expressions in a holonomic

frame; the corresponding expressions for a non-holonomic frame may be found using simi-

lar methods.
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However, there is a delicate issue here. The second term in the first line of (4.34)

cannot be cancelled and thus it would give rise to a gauge anomaly. How can this be? In

order to avoid this, one may impose the following constraint

ρKL ∂
IρKM εM FI ∧AL = ρKL ∂iρ

K
M εM F i ∧AL + ρKL ∂̃

iρKM εM Fi ∧AL = 0 , (4.40)

where we opened up only the index contracted among the derivative and F . We discuss

this point and its relation to the strong constraint of DFT systematically in section 5. The

very presence of this term also explains why the Bianchi identities above are only valid

when a constraint is used. In accord with [58], we could just impose

3 ηMN T̂M [JK T̂IL]N + 4 ρM [I ∂M T̂KJL] = ZIJKL , (4.41)

where Z is a 4-form. As we will discuss in section 5 in terms of a modified Jacobi identity,

after solving the strong constraint (2.41) this 4-form can be consistently set to zero and

the Bianchi identities are recovered as above. However, there is a way to relax this. We

can introduce the 4-form Z as a Wess-Zumino term on an extension of the membrane

worldvolume to four dimensions, as in [64]. Thus we take a four-dimensional worldvolume

Σ4 such that ∂Σ4 = Σ3 and the action21

Ŝ[X, A, F ] = S +

∫
Σ4

1

4!
TIJKL dXI ∧ dXJ ∧ dXK ∧ dXL . (4.42)

If the 4-form T is closed,

dT = 0 , (4.43)

then the gauge variation of this action vanishes provided that (4.41) holds with

ZIJKL =
1

2
ρMI ρ

N
J ρ

P
K ρ

Q
L TMNPQ , (4.44)

and the variation of the auxiliary 2-form FI is modified to

δεFK = −εJ
(
∂Kρ

I
J FI −

(
∂K T̂ILJ +

1

6
ρMJ ρ

N
L ρ

P
I TMNPK

)
AI ∧AL

+
1

6
ρMJ TMNPK dXN ∧ dXP +

1

6
ρMJ ρ

P
L TMNPK dXN ∧AL

)
. (4.45)

In this way, even after the strong constraint is solved, the underlying geometric structure is

not precisely a Courant algebroid, but a Courant algebroid twisted by this closed 4-form T .

21If Σ3 is a manifold with boundary, as we have assumed before, then Σ4 must be a manifold with corners

of codimension two in order to support this Wess-Zumino term, analogously to the situation discussed in [9].

If the boundary Σ3 = ∂Σ4 consists of two faces Σ±3 , i.e. Σ3 = Σ+
3 ∪Σ−3 and ∂Σ3 = Σ+

3 ∩Σ−3 , then different

boundary conditions have to be implemented on Σ+
3 and Σ−3 in order to reproduce the fields of the pertinent

worldsheet sigma-model on their intersection.
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5 The DFT algebroid structure

In section 2 we mentioned that the geometric structure of DFT lies between the two

Courant algebroid structures over T ∗M and M respectively. Let us call the first one the

large Courant algebroid and the second the canonical Courant algebroid. Here we would

like to understand better what the intermediate structure is. First, we know what it is

not; it cannot be a Courant algebroid. The quickest way to see this is to note that the

canonical Courant algebroid is associated with the fields (Xi, AI , Fi) of the Courant sigma-

model, while the large Courant algebroid is associated with the fields (XI ,AÎ ,FI) of the

large Courant sigma-model respectively. Recalling that i = 1, . . . , d, I = 1, . . . , 2d, Î =

1, . . . , 4d, we see that in both cases the number of 1-forms A is double the number of

fields corresponding to the target manifold coordinates X or auxiliary fields F . This is

true in any Courant algebroid. However, in the DFT case the relevant data comprise

the fields (XI , AI , FI) and the number of all fields is the same, since they all carry the

same index. Another, maybe more intuitive way to understand this is the following: the

canonical Courant algebroid defined over a d-dimensional target has an O(d, d)-invariant

metric on its vector bundle, the large Courant algebroid defined over a 2d-dimensional

target has an O(2d, 2d)-invariant metric on its vector bundle, while in DFT case we have a

2d-dimensional target (as in the large Courant algebroid) but an O(d, d)-invariant metric

(as in the canonical Courant algebroid). The goal of this section is to establish a more

precise criterion for this statement, and to properly define the new geometric structure.

5.1 The role of the strong constraint

A Courant algebroid comes with a set of axioms (see appendix A). In local coordinates

these axioms lead to three equations, one algebraic and two differential, given in (A.9)–

(A.11). These are obviously valid in both the canonical and the large Courant algebroids.

In the canonical case, the algebraic equation stems from one of the properties of a Courant

algebroid E over M ,

〈Df,Dg〉E = 0 , (5.1)

which in local coordinate form reads as

ρiI η
IJ ρjJ ∂if ∂jg = 0 , (5.2)

for all functions f, g ∈ C∞(M).

On the other hand, in DFT the situation differs. As explained in the previous sections,

instead of the map ρ = (ρiJ) : E → TM , the role of the anchor in DFT is played by

ρ+ = (ρIJ) : L+ → T (T ∗M). In a general parametrization, the components of ρ+ are

given in (4.14). At this stage, using (4.14), it is useful to compute

ρKI η
IJ ρLJ = ηKL . (5.3)

This directly implies that

ρKI η
IJ ρLJ ∂Kf ∂Lg = ηKL ∂Kf ∂Lg , (5.4)
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for f, g ∈ C∞(T ∗M), and the right-hand side is in general non-vanishing. Thus, one

immediately sees the failure of the Courant algebroid structure for general ρ+. Had ρ+

been an anchor map in a Courant algebroid, the right-hand side of (5.4) would have been

zero, as in (5.2). Its vanishing is precisely the strong constraint (2.41). In other words,

before imposing the strong constraint the relevant structure cannot be a Courant algebroid,

but it can become such when the strong constraint is imposed. The expression (5.4) can

be written without reference to a local coordinate system as

〈D+f,D+g〉L+ =
1

4
〈df, dg〉L+ , (5.5)

where

〈D+f,A〉L+ =
1

2
ρ+(A)f , (5.6)

or, in local coordinates,

D+f =
1

2
ρKL ∂Kf η

LJ e+
J . (5.7)

Thus (5.5) should be one of the properties of the DFT geometric structure before imposing

the strong constraint.

From a different point of view, the local coordinate form (5.2) of the Courant alge-

broid property (5.1) may be obtained directly from the classical master equation (see

appendix A). As explained in appendix A, the Courant algebroid data can be recov-

ered from a differential graded manifold M equipped with a degree-2 symplectic form

ω and a degree-3 Hamiltonian function Θ. In particular, M is equipped with local Dar-

boux coordinates (xi, AI , Fi) of degree 0,1 and 2 respectively, while the symplectic form

ω = dxi ∧ dFi + 1
2ηIJdAI ∧ dAJ is utilized to construct the graded Poisson bracket. With

the most general Hamiltonian function (A.25), the classical master equation {Θ,Θ} = 0

yields three conditions, the first of which reads as(
ρkI η

IJ ρlJ
)
Fk Fl = 0 . (5.8)

From the point of view of the membrane sigma-model, the Fi correspond to the auxiliary

worldvolume 2-forms introduced in (2.1). In this spirit, in the case of DFT, the classical

master equation leads instead to(
ρKI η

IJ ρLJ
)
FK FL = ηKL FK FL =: FK FK , (5.9)

and the right-hand side is in general non-vanishing. This was also derived in [42]. One

immediately observes that this can be zero when, for instance, F i = 0. Recalling that F i

is the conjugate variable to X̃i, we conclude that when nothing depends on the dual coor-

dinates this obstruction to the Courant algebroid structure is eliminated. In other words,

the solution of the strong constraint reduces the DFT structure to a Courant algebroid

structure. Note that different solutions of the strong constraint are naturally implemented

in this discussion. For example, in the opposite case of eliminating all target space coor-

dinates Xi, the conjugate variable Fi is eliminated and (5.9) gives again zero. According

to this discussion, it is now clear how the gauge anomaly encountered in section 4.2 is

– 32 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

Algebroid structure Fields Axioms in local coordinates

Large Courant (XI ,AÎ ,FI)
ηÎ Ĵ ρKÎ ρ

L
Ĵ = 0

2 ρL[Î ∂Lρ
K
Ĵ ] − η

M̂N̂ ρKM̂ TN̂ ÎĴ = 0

4 ρM [L̂ ∂MTÎ ĴK̂] + 3 ηM̂N̂ TM̂ [Î Ĵ TK̂L̂]N̂ = 0

DFT (XI , AI , FI)
ηIJ ρKI ρ

L
J = ηKL

2 ρL[I ∂Lρ
K
J ] − ηMN ρKM T̂NIJ = ρL[I ∂

KρLJ ]

4 ρM [L ∂M T̂IJK] + 3 ηMN T̂M [IJ T̂KL]N = ZIJKL

Canonical Courant (Xi, AI , Fi)

ηIJ ρkI ρ
l
J = 0

2 ρl[I ∂lρ
k
J ] − ηMN ρkM TNIJ = 0

4 ρm[L ∂mTIJK] + 3 ηMN TM [IJ TKL]N = 0

Table 1. The fields and local coordinate expressions for the axioms of the three different

geometric structures encountered. With reference to the classical master equation, the three

sub-rows in the last column of each row are the 0-form coefficients in front of the 4-forms

FK FL/FK FL/Fk Fl for the first sub-row, FK AÎ AĴ/FK AI AJ/Fk A
I AJ for the second sub-row,

and AÎ AĴ AK̂ AL̂/AI AJ AK AL/AI AJ AK AL for the third sub-row, respectively. Indices run as

i = 1, . . . , d, I = 1, . . . , 2d and Î = 1, . . . , 4d.

accounted for. The relevant term appears in (4.40). Now solving the strong constraint as

∂̃i = 0 and F i = 0, i.e. eliminating dual coordinates, renders this expression zero. The

same is true for the alternative choice ∂i = 0 and Fi = 0, or any other mixed choice that

solves the strong constraint and eliminates half of the coordinates; the different choices are

related by O(d, d) transformations, and both (5.9) and (4.40) are O(d, d)-invariant.

However, this is not the only relation we should examine, since there are two additional

ones. In our case, these are given by the two conditions (4.32) and (4.41). For clarity, we

summarize all relevant data in table 1. The local coordinate expressions appearing in

the third column clarify in which sense the DFT structure lies between the two Courant

algebroids. The first equation was already discussed above. The second equation in the

DFT case also exhibits a non-trivial right-hand side, which is zero in the case of Courant

algebroids. It appears in the gauge anomaly and it is zero when the strong constraint

is imposed.

5.2 Global formulation and Courant algebroids

Now our goal is to express these relations without reference to a local coordinate system,

thereby obtaining a set of axioms and properties that the DFT structure should satisfy

in general, similarly to Definition A.1 in the case of a Courant algebroid. For this, we

will examine properties 1–5 of Definition A.1 by replacing the Courant bracket with the

C-bracket (2.51), the fiber metric 〈 · , · 〉E with 〈 · , · 〉L+ , and the anchor ρ with ρ+, and

examine the resulting geometric structure, which is not known a priori since this is not a

Courant algebroid structure. We do not impose the strong constraint in this process.
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First, for the Jacobi-like identity, one obtains

[[[[A,B]]L+ , C]]L+ + cyclic = D+N+(A,B,C) + Z(A,B,C) + SCJac(A,B,C) , (5.10)

where N+ is the analog of the Nijenhuis operator for the C-bracket,

N+(A,B,C) =
1

3
〈[[A,B]]L+ , C〉L+ + cyclic , (5.11)

and Z is a 4-form with components as given in table 1. The DFT (3, 1)-tensor SCJac

vanishes upon imposing the strong constraint and its explicit local form is given by

SCJac(A,B,C)L = −1

2

(
AI ∂JBI ∂

JCL −BI ∂JAI ∂
JCL

)
− ρI[J ∂Mρ

I
N ]

(
AJ BN ∂MCL − 1

2
CJ AK ∂MBK η

NL

+
1

2
CJ BK ∂MAK η

NL

)
+ cyclic . (5.12)

We observe that the C-bracket does not satisfy the very first of the axioms in Definition A.1,

which confirms once more the claim that the structure is not a Courant algebroid. At this

point one might suspect that the relevant structure is that of a pre-Courant algebroid, which

fails to be a Courant algebroid precisely due to the violation of property 1 in Definition A.1.

However, we can already infer that this is not the case, since for a pre-Courant algebroid

property 4 in Definition A.1 continues to hold, while here we have already seen that it is

in general violated in (5.5).

For the Leibniz rule (property 3 in Definition A.1), a straightforward calculation re-

veals that

[[A, f B]]L+ = f [[A,B]]L+ +
(
ρ+(A)f

)
B − 〈A,B〉L+ D+f , (5.13)

for all functions f ∈ C∞(T ∗M). In other words, the Leibniz rule is not modified with

respect to the (pre-)Courant algebroid structure.

Next we move on to the analog of the compatibility condition expressed as property 5

in Definition A.1. We find

〈[[C,A]]L+ +D+〈C,A〉L+ , B〉L+ +〈A, [[C,B]]L+ +D+〈C,B〉L+〉L+ = ρ+(C)〈A,B〉L+ . (5.14)

Thus we also find an unmodified compatibility condition for the DFT structure.

Finally, we examine the homomorphism property for ρ+. A direct computation leads to

ρ+[[A,B]]L+ = [ρ+(A), ρ+(B)] + SCρ(A,B) , (5.15)

where SCρ vanishes upon imposing the strong constraint and in local coordinates it reads as

SCρ(A,B) =

(
ρL[I ∂

KρLJ ]A
I BJ +

1

2
(AI ∂KBI −BI ∂KAI)

)
∂K . (5.16)

Thus ρ+ is not a homomorphism of bundles, but rather a “quasi-homomorphism” whose

failure to preserve the brackets on Γ(L+) and Γ(T (T ∗M)) is controlled by the strong

constraint of DFT.

We can collect our discussion above into the following precise definition.

– 34 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

Definition 5.17 Let M be a d-dimensional manifold. A DFT algebroid on T ∗M is a

quadruple (L+, [[ · , · ]]L+ , 〈 · , · 〉L+ , ρ+), where L+ is vector bundle of rank 2d over T ∗M

equiped with a skew-symmetric bracket [[ · , · ]]L+ : Γ(L+) ⊗ Γ(L+) → Γ(L+), a non-

degenerate symmetric form 〈 · , · 〉L+ : Γ(L+)⊗ Γ(L+)→ C∞(T ∗M), and a smooth bundle

map ρ+ : L+ → T (T ∗M), which satisfy

1. 〈D+f,D+g〉L+ = 1
4 〈df, dg〉L+ ;

2. [[A, f B]]L+ = f [[A,B]]L+ +
(
ρ+(A)f

)
B − 〈A,B〉L+ D+f ;

3. 〈[[C,A]]L+ +D+〈C,A〉L+ , B〉L+ + 〈A, [[C,B]]L+ +D+〈C,B〉L+〉L+ = ρ+(C)〈A,B〉L+ ;

for all A,B,C ∈ Γ(L+) and f, g ∈ C∞(T ∗M), where D+ : C∞(T ∗M) → Γ(L+) is the

derivative defined through 〈D+f,A〉L+ = 1
2 ρ+(A)f .

Remark 5.18 A DFT algebroid as defined above is a special case of a more general struc-

ture where properties 1, 2 and 4 of Definition A.1 are relaxed. In appendix A we discuss

this pre-DFT algebroid structure, whose supermanifold description corresponds to a sym-

plectic nearly Lie 2-algebroid [65]. Note that although the DFT algebroid is an example

of pre-DFT algebroid by construction, there exist pre-DFT algebroids which are not DFT

algebroids; we spell out an explicit example in appendix A.4. This outcome is reasonable in

view of the fact that we reverse-engineered a definition from a set of local expressions; the

general structure thus encompasses more cases than the particular case that motivated it.

Remark 5.19 A more constructive definition, along the lines in which we have explicitly

obtained it, would be to define a DFT algebroid as a projection of a Courant algebroid

(E, [ · , · ]E , 〈 · , · 〉E , ρ) over T ∗M , in the sense that there exists a surjective bundle map

p+ : E → L+ which induces a bracket on L+-sections [[ · , · ]]L+ := p+([p−1
+ · , p−1

+ · ]E), a

non-degenerate bilinear form 〈 · , · 〉L+ := 〈p−1
+ · , p−1

+ · 〉E, and a bundle map ρ+ := ρ ◦ p−1
+ :

L+ → T (T ∗M), such that properties 1–3 of Definition 5.17 hold.

Note that in Definition 5.17 we do not require that ρ+ is a homomorphism of bundles,

and based on our discussion above and in appendix A we have

Proposition 5.20 Let L+ be a DFT algebroid on T ∗M . If the strong constraint of DFT is

imposed, then the map ρ+ becomes a bundle homomorphism and L+ reduces to a Courant

algebroid over T ∗M .

Remark 5.21 Although a DFT algebroid reduces to a Courant algebroid on the strong

constraint, this is not true for the more general structure of a pre-DFT algebroid.22 In

this case one encounters intermediate structures. Indeed, imposing 〈Df,Dg〉E = 0 on a

pre-DFT algebroid E leads to an ante-Courant algebroid (see appendix A.3), where ρ is still

only a quasi-homomorphism. Imposing that ρ is a homomorphism reduces an ante-Courant

algebroid to a pre-Courant algebroid, which only becomes a true Courant algebroid when the

22This is a metric algebroid in the terminology of [39] and is used there to describe the C-bracket and

reductions to Courant algebroids in a similar way to our treatment.
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Jacobi identity is satisfied. This naturally suggests a weakening of the strong constraint:

the strong constraint of DFT is sufficient to guarantee reduction of a DFT algebroid L+

to a Courant algebroid on T ∗M , whereas the weaker notion of a pre-DFT algebroid can be

more generally reduced, in a coordinate-independent way, to a Courant algebroid via weaker

constraints that do not necessarily imply the strong constraint.

Having established in Proposition 5.20 what becomes of the DFT algebroid structure

when the strong constraint is imposed, let us now examine what happens on an explicit

solution of the strong constraints. Following [38, 49], solving the strong constraints amounts

to choosing a polarization, which is a foliation of T ∗M over a d-dimensional submanifold

MP which decomposes the tangent bundle as T (T ∗M) = L ⊕ L̃, where the integrable

distribution L = TMP is the tangent bundle on the leaves of the foliation and L̃ is its dual

bundle with respect to the orthogonal complement in the O(d, d) metric (2.2). The strong

constraint then restricts the set of admissible fields to foliated tensor fields TP with respect

to the distribution L̃: ι
Ã
TP = L

Ã
TP = 0 for all sections Ã ∈ Γ( L̃ ). A polarization may

be defined by introducing a projection P : T (T ∗M) → L mapping a local frame eI of the

tangent bundle T (T ∗M) onto the vector fields

ei = PiJ eJ , (5.22)

which span a d-dimensional subspace of the 2d-dimensional tangent space, that is maxi-

mally isotropic with respect to the metric (2.2); in other words

PiK ηKL PjL = 0 . (5.23)

We can also define a polarization of local coordinates,23 which is specified by a constant

projector P : T ∗M → T ∗M , P2 = P, of rank d whose image carves out a d-dimensional

submanifold MP ↪→ T ∗M with coordinates

Zi = P iJ XJ . (5.24)

For example, the supergravity frame with MP = M is reached with P iJ = (δij , 0), while

the winding frame with X̃i = P̃iJ XJ corresponds to the complementary projector P̃ =

1−P . We require the subspace MP to be maximally isotropic with respect to the O(d, d)

metric (2.2), in the sense that

P iK ηKL PjL = 0 . (5.25)

Different choices of polarization are all related by O(d, d) transformations: acting with

O ∈ O(d, d) changes the polarization as( P
P̃

)
7−→

( P ′
P̃ ′
)

=
( P
P̃

)
O . (5.26)

The projection P induces as usual a pullback P∗, which is right-inverse of the restriction to

MP ⊂ T ∗M , and also a pushforward P∗, which is integration over the fibers of the bundle

T ∗M →MP .

23Recalling that M is assumed to be contractible, in the present discussion we work mostly in affine

coordinates and assume M = Rd throughout.
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Given a DFT algebroid (L+, [[ · , · ]]L+ , 〈 · , · 〉L+ , ρ+) on the doubled space T ∗M , the

polarization selects a vector bundle EP := L+

∣∣
MP

of rank 2d as the restriction of L+

to the maximally isotropic submanifold MP ⊂ T ∗M . Define a smooth bundle map

ρP : EP → TMP by ρP := P∗ ◦ ρ+ ◦ P∗, a skew-symmetric bracket [ · , · ]P : Γ(EP) ⊗
Γ(EP) → Γ(EP) by [ · , · ]P := P∗

(
[[P∗ · , P∗ · ]]L+

)
, and a non-degenerate symmetric

form 〈 · , ·〉P : Γ(EP) ⊗ Γ(EP) → C∞(MP) by 〈 · , ·〉P := P∗
(
〈P∗ · , P∗ · 〉L+

)
. Chang-

ing polarization P → P ′ then clearly defines a natural bijection between the quadruples

(EP , [ · , · ]EP , 〈 · , · 〉EP , ρP) on MP and (EP ′ , [ · , · ]EP′ , 〈 · , · 〉EP′ , ρP ′) on MP ′ , as the struc-

ture maps all transform covariantly under the O(d, d) transformations (5.26). With these

restrictions of the sections and structure maps of the DFT algebroid, it follows from (5.25)

that the expressions (5.5), (5.12) and (5.16) vanish, and we have

Proposition 5.27 Let L+ be a DFT algebroid on T ∗M , and let MP ⊂ T ∗M be a d-

dimensional submanifold defined by a maximally isotropic polarization P. Then the quadru-

ple (EP , [ · , · ]EP , 〈 · , · 〉EP , ρP) defined by L+ and P is a Courant algebroid over MP . If

MP → MP ′ is any O(d, d) transformation of maximally isotropic submanifolds, then the

corresponding Courant algebroids on EP and EP ′ are naturally isomorphic.

Let us close the present discussion by comparing our framework with the very similar

constructions of [41, 42], which are both rooted in the supermanifold formalism. In that

language, the starting point of [41] is identical to ours, i.e. the large Courant algebroid

on E = T(T ∗M), as is their projection to L+ which is described as a pre-QP-manifold;

their derived bracket conditions ensuring existence of an L∞-algebra structure are a slight

weakening of those corresponding to a pre-Courant algebroid (see appendix A), and they

appear to characterise our DFT algebroid and its reduction to a Courant algebroid in terms

of graded geometry. On the other hand, in [42] the Courant algebroid structure is relaxed

from the start to regard the generalized tangent bundle on the doubled space as a pre-QP-

manifold itself; their construction of the strong constraint is also a slight weakening of the

derived bracket structure of a pre-Courant algebroid, but they do not appear to have a

version of our DFT algebroid structure. Our DFT algebroid picture in this sense seems to

be somewhat weaker than the structures discussed in [41, 42].

6 Sigma-models with dynamical fiber metric

In sections 4 and 5 we saw that the DFT membrane sigma-model is gauge-invariant pro-

vided that the constraint (4.40) is imposed, which is satisfied for instance when the strong

constraint of DFT holds. Motivated by the natural geometric weakenings of the strong

constraint that we encountered in section 5, in this section we would like to challenge this

result and examine to what extent one can write a gauge-invariant sigma-model of the

type (2.47) without imposing additional constraints.

The new ingredient we introduce in this section is a dynamical metric η(X). In other

words we promote the metric η, which controls the choice of polarization in (2.17), to a

dynamical field and examine the consequences of such an assumption. This will take us

beyond DFT, where η is fixed to (2.2). Previous discussions of the global geometry of DFT
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have also considered such a dynamical metric, as in e.g. [26, 38]. More notably, in [64]

where sigma-models were used to derive a definition of a Courant algebroid twisted by a

closed 4-form, the fiber metric is also dynamical.

The first consequence of introducing an X-dependent metric η is that its projection to

the DFT structure gives rise to a modified C-bracket. Indeed, recall that our strategy in

deriving the DFT ingredients was to rewrite all large Courant algebroid data in terms of

A± using the expressions (2.18). Now ÃI is modified by the X-dependence of η and thus

it will yield terms with derivatives acting on η whenever a derivative operator acts on it.

Taking this into account, we calculate

[[A,B]]L+,η := p+

(
[p+(A), p+(B)]E

)
= [[A,B]]L+ + S(A,B) , (6.1)

where in local coordinate form

S(A,B) = SLIJ A
I BJ e+

L := ηLK ρM [I ∂M ηJ ]K A
I BJ e+

L . (6.2)

Thus the twist of the C-bracket is modified to include a ∂η-type term. At the level of the

membrane sigma-model (2.47), this correction is not visible because η is symmetric, namely

〈[[A,A]]L+,η, A〉L+ = 〈[[A,A]]L+ , A〉L+ . However, the additional twist has the following effect

in the gauge structure of the theory. Considering the transformations

δεXI = ρIJ(X) εJ , (6.3)

δεA
I = dεI +

(
ηIJ(X) T̂JKL(X) + SIKL(X)

)
AK εL , (6.4)

the variation of the worldvolume derivative DXI becomes

δεDXI = εJ ∂Kρ
I
J DXK +

(
2 ρK [L ∂Kρ

I
M ] − ρIJ ηJK T̂KLM − ρIJ SJLM

)
AL εM . (6.5)

Then DXI can be made exactly covariant by requiring the vanishing of the second term,

which gives the relation

ρIJ S
J
LM = ρN [L ∂

IρNM ] , (6.6)

or equivalently

ρK [I ∂KηL]J = ρJ
K ρM [I ∂Kρ

N
L] ηMN . (6.7)

The advantage now is that the anomaly term of the gauge variation of the action disappears

and at the same time no new terms of the type A ∧ dA are generated. In particular, the

gauge variation of the action (2.47) gives

δεS =

∫
Σ3

(
δεFK ∧DXK + εJ

(
∂Kρ

I
J FI − ∂KηJL dAL

−
(
∂K T̂JIL − ∂KηIM (ηMN T̂NLJ + SMLJ)

)
AI ∧AL

)
∧DXK

+ εL
(
ηMQ (ηPQ T̂PJK + SQJK) (ηMN T̂NIL + SMIL)

+ ρMI ∂M T̂KJL +
1

3
ρML ∂M T̂IJK

)
AI ∧AJ ∧AK

)
. (6.8)
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Thus, with an appropriate transformation rule for FI , the membrane sigma-model action

is gauge-invariant provided that the last term vanishes. This has the additional conse-

quence that, when a 4-form Wess-Zumino term is included as explained in section 4.2,

the strong constraint is no longer a necessary condition for the gauge invariance of the

extended action Ŝ.

One also needs to check the closure of the algebra of gauge transformations. Assuming

that the gauge parameters do not change under gauge variation, i.e. they do not depend

on X but only on the worldvolume coordinates, we calculate

(δλ δε − δε δλ)XI = 2 ρK [L ∂Kρ
I
J ] λ

L εJ . (6.9)

Using the expression for the DFT fluxes (4.32) we have

(δλ δε − δε δλ)XI =
(
ρIN η

NS T̂SLJ + ρN [L ∂
IρNJ ]

)
λL εJ

= ρIN
(
ηNS T̂SLJ + SNLJ

)
λL εJ . (6.10)

For gauge parameters which are independent of X we have

[[λ, ε]]L+,η = λL εJ [[e+
L , e

+
J ]]L+,η = λL εJ

(
ηNS T̂SLJ + SNLJ

)
e+
N , (6.11)

so we can define a new gauge parameter

ξ = ξN e+
N := [[λ, ε]]L+,η , (6.12)

such that

(δλ δε − δε δλ)XI = ρIN ξ
N = δξXI , (6.13)

namely the algebra of gauge transformations closes on X. The gauge variation of AI gives

(δλ δε − δε δλ)AI = dξI + CIKLA
K ξL − ∂NCIJK λJ εK DXN

−
(
3 ρK [N ∂KC

I
LM ] − 3CIK[LC

K
MN ]

)
AM λN εL , (6.14)

where we used the shorthand notation CIJK(X) := ηIL T̂LJK(X) + SIJK(X). The first

two terms combine to the expected result and the third term vanishes on the equations of

motion for FI . The last term should vanish as a consequence of the Jacobi identity for the

bracket (6.1), and indeed for the case of constant η this term vanishes under application of

the anchor map and using the strong constraint (2.41). So it would seem that one needs

the strong constraint for closure of the algebra of gauge transformations.

However, let us check what happens with the gauge transformations of ρ+(A) =

ρIJ A
J ∂I . From the gauge variations (6.3) and (6.4) we obtain

δε
(
ρIJ A

J
)

= d
(
ρIJ ε

J
)
− ∂KρIJ εJ DXK , (6.15)

again using (4.32). Now we check the closure of gauge transformations on V I = ρIJ A
J ,

still assuming that δελ = 0, and we find

(δλ δε−δε δλ)V I = d
(
ρIJ ξ

J
)
−
(
2 ρM [N ∂M∂Kρ

I
J ] +2 ∂Mρ

I
[J ∂Kρ

M
N ]

)
DXK λN εJ . (6.16)
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Therefore the algebra of gauge transformations of V := ρ+(A) closes on the equations of

motion for the auxiliary field FI . In the correspondence with the flux formulation of DFT

discussed in section 4, one can regard ρIJ as a duality twist matrix, and V I as the physical

fields obtained after gauge-fixing and reduction. Thus, by using a dynamical fiber metric

η(X), the algebra of gauge transformation closes on the physical fields XI , V I without use

of the strong constraint (2.41).
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A From Courant algebroids to DFT algebroids

In this appendix we provide a brief account of Courant algebroids and some of their natural

generalizations. We begin with the two equivalent definitions of Courant algebroid given

in [31] and [43], stating the axioms and properties of the geometric structure. We further

provide the local coordinate expressions of these axioms, and discuss them in the spirit of

the main text of this paper. Then we present the notions of a pre-Courant algebroid [63]

and of a 4-form twisted Courant algebroid [64], whose equivalence is discussed in [66].

Finally, we introduce the notions of an ante-Courant algebroid and a pre-DFT algebroid

as natural generalizations of the pre-Courant algebroid structure, and further discuss their

relation to the metric algebroid of [39] and their description in terms of graded geometry.

We provide examples for all structures in appendix A.4.

A.1 Courant algebroids

The notion of a Courant algebroid, essentially introduced in [30], was systematically defined

in [31].

Definition A.1 Let M be a d-dimensional manifold. A Courant algebroid on M is a

quadruple (E, [ · , · ], 〈 · , · 〉, ρ) consisting of a vector bundle E → M , a skew-symmetric

bracket on its sections, a non-degenerate symmetric bilinear form on E, and a smooth

bundle map ρ : E → TM , satisfying

1. [[A,B], C] + cyclic = DN (A,B,C) ;
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2. ρ[A,B] = [ρ(A), ρ(B)] ;

3. [A, f B] = f [A,B] +
(
ρ(A)f

)
B − 〈A,B〉Df ;

4. ρ ◦ D = 0 ⇐⇒ 〈Df,Dg〉 = 0 ;

5. ρ(C)〈A,B〉 = 〈[C,A] +D〈C,A〉, B〉+ 〈A, [C,B] +D〈C,B〉〉 ;

where

N (A,B,C) =
1

3
〈[A,B], C〉+ cyclic , (A.2)

and the differential operator D : C∞(M)→ Γ(E) is defined by

〈Df,A〉 =
1

2
ρ(A)f , (A.3)

for any A,B,C ∈ Γ(E) and f ∈ C∞(M).

In applications to generalized geometry and DFT one is interested in exact Courant

algebroids, whose underlying vector bundles fit into the short exact sequence

0 −→ T ∗M
ρ∗−−→ E

ρ−−→ TM −→ 0 , (A.4)

where ρ∗ : T ∗M → E denotes the transpose map of ρ. If there is H-flux on M , then a choice

of B-field defines a Lagrangian splitting λ : TM → E, and locally E is the Whitney sum of

the tangent and cotangent bundles of M (see e.g. [85]). This defines the generalized tangent

bundle. As we are interested in local considerations in the present paper (equivalently M

is contractible), we assume E = TM ⊕ T ∗M throughout.

Properties 1–5 in Definition A.1 are not meant to be a minimal set of axioms defining

the structure, since some of them imply the others [62]. Minimally one would only have to

assume properties 1 and 5, together with any one of properties 2, 3 or 4. Let us discuss the

meaning of these properties and also write them in a local coordinate form. For this, we

introduce a local basis eI , I = 1, . . . , 2d, of sections of E, which we expand as A = AI e
I .

The map ρ is called the anchor and it has components (ρiJ) = (ρij , ρ
ij), where i = 1, . . . , d.

In this basis we write the local coordinate form of the relevant operations as

[eI , eJ ] = ηIK ηJL TKLM eM , (A.5)

〈eI , eJ〉 =
1

2
ηIJ , (A.6)

ρ(eI)f = ηIJ ρiJ ∂if , (A.7)

Df = DIf eI = ρiI ∂if e
I , (A.8)

where the bundle metric η on E has split signature (d, d), and D is the pullback of the

exterior derivative d by the transpose map ρ∗.

Property 1 is the modified Jacobi identity; it states that the bracket of the Courant

algebroid is not a Lie bracket due to a D-exact form obstruction characterized in terms of

the Nijenhuis operator N . Property 3 is simply the Leibniz rule for the bracket on E. In
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local coordinates, after a computation using the expressions (A.5)–(A.8) and the Leibniz

rule, property 1 is equivalent to the three equations

ηIJ ρiI ρ
j
J = 0 , (A.9)

ρiI ∂iρ
j
J − ρiJ ∂iρjI − ηKL ρjK TLIJ = 0 , (A.10)

4 ρi[L ∂iTIJK] + 3 ηMN TM [IJ TKL]N = 0 . (A.11)

Property 2 states that the map ρ is a homomorphism of bundles, i.e. it is compatible

with the bracket on Γ(E) and the usual Lie bracket of vector fields on Γ(TM); its local

expression is identical to (A.10), thus it follows from properties 1 and 3. Property 5 is a

compatibility condition and it is satisfied identically when the local expressions are used.

Finally, property 4, 〈Df,Dg〉 = 0, is written in local coordinates as

ηIJ ρiI ρ
j
J ∂if ∂jg = 0 . (A.12)

Thus we observe that it is identically satisfied due to (A.9), and it also follows from the

previous properties. It is interesting to note that this property involves the product of two

derivatives acting on functions on M . As such it is reminiscent of the strong constraint of

DFT. Indeed, as we show in the main text, it is precisely the violation of (A.9) that leads

to the strong constraint. However, at the level of the Courant algebroid there is clearly no

such additional assumption.

The local coordinate expression for the skew-symmetric bracket, called the Courant

bracket, may be obtained by using the Leibniz rule and the expressions (A.5)–(A.8). A

direct calculation leads to

[A,B] =

(
ρlJ (AJ ∂lBK −BJ ∂lAK)− 1

2
ρlK (AJ ∂lBJ −BJ ∂lAJ)

)
eK

+ALBM TLMK e
K , (A.13)

where indices are raised with the inverse metric η−1. For the special case of the standard

Courant algebroid, where the anchor ρ : E → TM is the projection to the tangent bundle,

the metric is induced by the natural pairing between TM and T ∗M , and the map D :

C∞(M)→ Γ(E) is given by Df = df , one has ρiJ = (δij , 0) and writing eI = (∂i, dx
i) the

formula (A.13) reads

[A,B]s =
(
Al ∂lB

k −Bl ∂lA
k
)
∂k +

(
Al ∂lBk −Bl ∂lAk −

1

2
Al ∂kBl +

1

2
Bl ∂kAl

−1

2
Al ∂kB

l +
1

2
Bl ∂kA

l +AlBmHlmk

)
dxk , (A.14)

which is the local coordinate expression for the standard H-twisted Courant bracket

[A,B]s = [AV , BV ] + LAV BF − LBV AF −
1

2
d(ιAV BF − ιBV AF ) +H(AV , BV ) , (A.15)

where A = AV + AF ∈ Γ(E) with AV ∈ Γ(TM) and AF ∈ Γ(T ∗M). However, the

expression (A.13) is evidently more general and may in fact be written in intrinsic geometric
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terms as

[A,B] = [AV , BV ] + LAFBV − LBFAV +
1

2
d∗(ιAV BF − ιBV AF ) (A.16)

+ [AF , BF ] + LAV BF − LBV AF −
1

2
d(ιAV BF − ιBV AF ) + T (A,B) ,

as in [31]. (Here d and d∗ are exterior differential operators on the tangent and cotangent

bundles of M , respectively, see e.g. [50] for details.) Whenever one deals with a Courant

algebroid other than the standard one, this more general bracket should be used (see

e.g. [40, 50].)

An alternative definition of a Courant algebroid, appearing in [32] (see also [33]), uses

instead a binary operation which is often called the Dorfman bracket, although it is not

skew-symmetric. It is defined by

A ◦B := [AV , BV ] + LAV BF − ιBV dAF , (A.17)

and it is related to the Courant bracket by skew-symmetrization

[A,B] = A ◦B −B ◦A . (A.18)

Definition A.19 Let M be a d-dimensional manifold. A Courant algebroid on M is a

quadruple (E, · ◦ · , 〈 · , · 〉, ρ) consisting of a vector bundle E →M , a binary operation on

its sections, a non-degenerate symmetric bilinear form on E, and a smooth bundle map

ρ : E → TM , satisfying:

1. A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C) ;

2. ρ(A ◦B) = [ρ(A), ρ(B)] ;

3. A ◦ (f B) = f (A ◦B) +
(
ρ(A)f

)
B ;

4. A ◦A = D〈A,A〉 ;

5. ρ(C)〈A,B〉 = 〈C ◦A,B〉+ 〈A,C ◦B〉 ;

for any A,B,C ∈ Γ(E) and f ∈ C∞(M).

Definitions A.1 and A.19 are completely equivalent, as proven in [32], with the binary

operation given by

A ◦B = [A,B] +D〈A,B〉 . (A.20)

The convenience of the latter definition is that (a) unlike the Courant bracket, the Dorfman

bracket satisfies a Jacobi-like identity, and (b) in the Leibniz rule and the compatibility

condition the additional “anomaly” terms of Definition A.1 are now absent.

Finally, let us briefly discuss the relation to differential graded (dg-)manifolds. First

recall that a QPn-manifold is a triple (M, ω,Q) consisting of an n-graded manifold M, a
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degree n symplectic structure ω, and a degree 1 vector field Q which is nilpotent, Q2 = 0,

called a homological vector field, satisfying the compatibility condition

LQ ω = 0 . (A.21)

Because of (A.21), the homological vector field Q gives rise to a degree n+ 1 Hamiltonian

function Θ ∈ C∞(M) as

Q = {Θ, · } , (A.22)

where the bracket is the graded Poisson bracket defined from ω. The nilpotency of Q

implies the classical master equation

{Θ,Θ} = 0 , (A.23)

which in the AKSZ construction essentially guarantees the gauge invariance of the corre-

sponding BV action and the closure of the gauge algebra. QPn-manifolds are sometimes

also refered to as symplectic Lie n-algebroids [86], which arise from n-graded vector bundles

M over their degree 0 body M :=M0.

For our purposes, we are interested in the case n = 2. We can introduce local Darboux

coordinates (xi, AI , Fi) on M of degree 0, 1 and 2, respectively, such that

ω = dxi ∧ dFi +
1

2
ηIJ dAI ∧ dAJ . (A.24)

Then the most general Hamiltonian function Θ is given in these coordinates by [45]

Θ = ρiI(x)FiA
I − 1

3!
TIJK(x)AI AJ AK , (A.25)

and the classical master equation (A.23) gives precisely the three conditions (A.9)–(A.11),

see e.g. [70]. In other words, QP2-manifolds, or symplectic Lie 2-algebroids, are in a

one-to-one correspondence with Courant algebroids, which is the celebrated Roytenberg

theorem [43]; in this correspondence, functions of degree 1 onM are identified with sections

Γ(E) of a vector bundle E → M whose structure maps are given by the derived bracket

construction. In particular, exact Courant algebroids on a manifold M can be recovered

from QP2-manifolds with underlying 2-graded manifold M = T ∗[2]T [1]M .24

A.2 Pre-Courant algebroids

The structure of a Courant algebroid may be generalized in the direction of relaxing the

Jacobi identity in its definition. This was considered in [63].

Definition A.26 With the same conventions as above, a pre-Courant algebroid on M is

a quadruple (E, [ · , · ], 〈 · , · 〉, ρ) which satisfies only properties 2–5 of Definition A.1.

24The notation [n] indicates grade-shift of the fiber degree by n.
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The crucial difference here is that property 1 is no longer necessarily satisfied. Further-

more, one can define the corresponding generalization of Definition A.19, by relaxing its

property 1. Schematically:

Pre-Courant algebroid ��1←−−− Courant algebroid (A.27)

In a similar fashion, the violation of the Jacobi identity may be expressed in terms of

a 4-form, defined as in [64].

Definition A.28 With the same conventions as above, let T be a closed 4-form on M . A

T -twisted Courant algebroid on M is a quadruple (E, · ◦ · , 〈 · , · 〉, ρ) satisfying properties

2–4 of Definition A.19 together with

A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C) + ρ∗ T
(
ρ(A), ρ(B), ρ(C)

)
. (A.29)

This definition shows that the violation of the Jacobi identity is controlled by a 4-form25

T . As discussed in [66], the two definitions are essentially equivalent.

Furthermore, following [43], in [65] the structure corresponding to a pre-Courant alge-

broid in the supermanifold framework is defined as a symplectic almost Lie 2-algebroid. In

this case, the classical master equation (A.23) is no longer satisfied, but is weakened to

{{Θ,Θ}, f} = 0 , (A.30)

for any function f ∈ C∞(M), where in local Darboux coordinates the Hamiltonian function

Θ ∈ C∞(M) is given as in (A.25).

A.3 Ante-Courant algebroids and pre-DFT algebroids

Further generalization of the Courant algebroid structure can be achieved by relaxing the

homomorphism property of the anchor map ρ and property 4 of Definition A.1. As we

have seen in section 5, this is the appropriate setting for DFT before the strong constraint

is imposed. However, in general properties 2 and 4 may be relaxed independently. This

becomes clear with the following definitions and the examples discussed in appendix A.4.

Definition A.31 Let (E, [ · , · ], 〈 · , · 〉, ρ) be a quadruple with the same conventions as

above. With reference to Definition A.1, we call it an ante-Courant algebroid on M if

it only satisfies properties 3, 4 and 5, and a pre-DFT algebroid on M if it only satisfies

properties 3 and 5.

Schematically, this enhances the picture (A.27) to

Pre-DFT

algebroid
��4←−−− Ante-Courant

algebroid
��2←−−− Pre-Courant

algebroid
��1←−−− Courant

algebroid
(A.32)

What we have shown in the main text is that a DFT algebroid is a special case of a pre-

DFT algebroid, such that the properties 1, 2 and 4 are violated in a dependent way. In

25In [64] this 4-form is denoted by H. Here we use a different notation in order to avoid confusion with

the NS–NS 3-form flux H.
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other words, imposing property 4, namely the strong constraint, on the DFT algebroid

leads directly to a Courant algebroid without stopping at the intermediate structures.

Schematically:

Large Courant algebroid
p+−−−→ DFT algebroid

4
−−−→ Courant algebroid (A.33)

Remark A.34 In [39], a metric algebroid is defined as a quadruple (E, · ◦ · , 〈 · , · 〉, ρ)

satisfying properties 3, 4 and 5 of Definition A.19. Although it looks like this structure

corresponds to an ante-Courant algebroid, the situation is more subtle. When ρ is not a

homomorphism, properties 4 of Definitions A.1 and A.19 do not directly follow from each

other. Therefore, when an antisymmetric bracket is introduced in [39], a metric algebroid

does not necessarily satisfy property 4 of Definition A.1. Thus an ante-Courant algebroid

is always a metric algebroid but not conversely. On the other hand, assuming (A.20) we

conclude that a metric algebroid is equivalent with a pre-DFT algebroid.

In the supermanifold description, the structure corresponding to a pre-DFT algebroid

was identified as a symplectic nearly Lie 2-algebroid in [65], which consists of a 2-graded

superbundle M over a manifold M , a non-degenerate Poisson bracket of degree −2, and

a Grassmann odd function Θ ∈ C∞(M) of degree 3. Using these data and the derived

bracket construction, one can show that the derived (Dorfman) bracket satisfies the Leibniz

rule and the compatibility property (properties 3 and 5 of Definition A.19). Therefore the

skew-symmetrization of the Dorfman bracket, which is the C-bracket of DFT in our case,

satisfies properties 3 and 5 of Definition A.1.

Moreover, the failure of properties 1 and 2 in the definition of a Courant algebroid

is given in [65] in terms of third order higher derived brackets generated by {Θ,Θ} as

{{{{Θ,Θ}, A}, B}, C} and {{{{Θ,Θ}, f}, A}, B} respectively, for A,B,C ∈ Γ(E) and f ∈
C∞(M). Explicit calculation, using the component expressions and taking into account

the appropriate skew-symmetrization, shows that these obstructions are exactly the ones

given in (5.10) and (5.15).

A.4 Examples

In order to compare with the results obtained in the main text regarding DFT, it is instruc-

tive to examine some characteristic cases of Courant algebroids, and their generalizations

above, with twists.

The standard Courant algebroid. The standard Courant algebroid is the simplest

case corresponding to the choice of anchor ρ = (id, 0), the projection to the tangent bundle,

which in components reads

ρiJ = (δij , 0) . (A.35)

The condition (A.9) is identically satisfied without further restrictions. The condi-

tion (A.10) implies, after opening the Courant algebroid indices, that Tjk
i = Tk

ij = T ijk =

0, or, in standard notation in the context of string backgrounds with fluxes, f = Q = R = 0.

This means that only H-flux is permitted for this anchor, leading to the H-twisted stan-

dard Courant algebroid. Indeed, for a 3-form NS–NS flux H satisfying the Bianchi identity
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dH = 0, the condition (A.11) is also automatically satisfied. Alternatively, one may think

of (A.11) as imposing the Bianchi identity.

Non-standard Courant algebroids and their generalizations. Let us now go be-

yond the choice of projection for the anchor. One possibility is to choose ρ = (0, β]) for

some (0, 2)-tensor β ∈ Γ(TM ⊗ TM) with corresponding bundle map β] : T ∗M → TM

induced by the canonical dual pairing between the tangent and cotangent bundles. In

components this reads

ρiJ = (0, βij) . (A.36)

Then once more the condition (A.9) is identically satisfied. The condition (A.10) now

implies that

βklHlij = 0 , βkl flj
i = 0 and βli ∂lβ

jk − βlk ∂lβji + βjlQl
ik = 0 . (A.37)

In principle this allows for all fluxes to be non-vanishing; notably, the R-flux does not even

appear in these conditions and thus it is not constrained by condition (A.10).

For example, if β = Π is a non-degenerate Poisson bivector, in which case the Schouten

bracket with itself vanishes, [Π,Π]S = 0, then a Courant algebroid is obtained as H = f = 0

and Qi
jk = ∂iΠ

jk. Furthermore, the condition (A.11) leads to the additional requirement

[Π, R]S = 0, or in local coordinates

Πm[l ∂mR
ijk] +

3

2
Rm[ij ∂mΠkl] = 0 , (A.38)

which is the Bianchi identity in this instance. This case was studied for example in [51].

It plays a role in our discussion in section 3.4. In addition, as noticed in [65], when no

condition is assumed between the Poisson structure Π and the trivector R, one obtains a

simple example of pre-Courant algebroid. Finally, as also discussed in [65], if one discards

the assumption that β is a Poisson bivector, namely [β, β]S 6= 0, then the pre-Courant

algebroid structure is further relaxed, this being an example of a symplectic nearly Lie

2-algebroid. In our language, this example constitutes an ante-Courant algebroid, since

although the Jacobi identity and the homomorphism property for ρ are obstructed, this

choice of anchor satisfies the property ρ ◦ D = 0. Moreover, one may directly check that

the condition (4.32) for the DFT fluxes is not satisfied. As we showed in the main text,

the DFT equations are compatible only with a pre-DFT algebroid structure.

A combination of the above choices leads to an even larger class of examples for Courant

algebroids. Specifically, consider ρ = (id, β]), which in local coordinates reads

ρiJ = (δij , β
ij) . (A.39)

Then (A.9) implies that

β(ij) = 0 , (A.40)
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thus β has to be a bivector, though not necessarily Poisson. Additionally, (A.10) leads to

the conditions

fij
k + βklHlij = 0 , (A.41)

∂kβ
ij −Qkji + βjl flk

i = 0 , (A.42)

βli ∂lβ
jk − βlk ∂lβji −Rjik − βjlQikl = 0 . (A.43)

We emphasize once more that these are conditions on the fluxes which ensure that the

structure consistently defines a Courant algebroid. They yield the potential expressions

for fluxes in generalized geometry, as discussed in the main text, along with the Bianchi

identities that are obtained from (A.11).

Let us make two final noteworthy observations. First, suppose we would like to have

a pure R-flux. Thus we set H = f = Q = 0, which leads to ∂iβ
jk = 0 and thus R = 0.

We conclude that even for such general anchors, there is no pure R-flux Courant algebroid.

Second, the most general expressions for fluxes are obtained using a coordinate-dependent

anchor ρij = eij(x) instead of just the projection to the tangent bundle. Then one may

associate the resulting structure to the fluxes in a non-holonomic frame.

Open Access. This article is distributed under the terms of the Creative Commons
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[8] R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric Fluxes,

Asymmetric Strings and Nonassociative Geometry, J. Phys. A 44 (2011) 385401

[arXiv:1106.0316] [INSPIRE].

[9] D. Mylonas, P. Schupp and R.J. Szabo, Membrane Sigma-models and Quantization of

Non-Geometric Flux Backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

– 48 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/1998/02/008
https://arxiv.org/abs/hep-th/9711165
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711165
https://doi.org/10.1016/S0550-3213(99)00199-6
https://doi.org/10.1016/S0550-3213(99)00199-6
https://arxiv.org/abs/hep-th/9812219
https://inspirehep.net/search?p=find+EPRINT+hep-th/9812219
https://doi.org/10.1088/1126-6708/1999/09/032
https://arxiv.org/abs/hep-th/9908142
https://inspirehep.net/search?p=find+EPRINT+hep-th/9908142
https://doi.org/10.1103/RevModPhys.73.977
https://doi.org/10.1103/RevModPhys.73.977
https://arxiv.org/abs/hep-th/0106048
https://inspirehep.net/search?p=find+EPRINT+hep-th/0106048
https://doi.org/10.1016/S0370-1573(03)00059-0
https://arxiv.org/abs/hep-th/0109162
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109162
https://doi.org/10.1088/1751-8113/44/1/015401
https://doi.org/10.1088/1751-8113/44/1/015401
https://arxiv.org/abs/1010.1263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1263
https://doi.org/10.1007/JHEP12(2010)084
https://doi.org/10.1007/JHEP12(2010)084
https://arxiv.org/abs/1010.1361
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1361
https://doi.org/10.1088/1751-8113/44/38/385401
https://arxiv.org/abs/1106.0316
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0316
https://doi.org/10.1007/JHEP09(2012)012
https://arxiv.org/abs/1207.0926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0926


J
H
E
P
0
7
(
2
0
1
8
)
0
1
5

[10] E. Plauschinn, Non-geometric fluxes and non-associative geometry, PoS(CORFU2011)061

[arXiv:1203.6203] [INSPIRE].
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[79] I. Bakas and D. Lüst, T-duality, Quotients and Currents for Non-Geometric Closed Strings,

Fortsch. Phys. 63 (2015) 543 [arXiv:1505.04004] [INSPIRE].

[80] V.G. Kupriyanov and D.V. Vassilevich, Nonassociative Weyl star products, JHEP 09 (2015)

103 [arXiv:1506.02329] [INSPIRE].

[81] R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative Deformations of
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