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1 Introduction

Lifshitz theories are characterised by a scaling symmetry under which space and time scale

differently:

~x→ λ~x, t→ λzt , (1.1)

where z is referred to as the dynamical exponent. Such theories govern quantum critical

points in many condensed matter systems. As a simple example, consider the following

theory of a free massless scalar in d+ 1 dimensions:

I =
1

2

∫
dd+1x

[
(∂tφ)2 − α2(~∇zφ)2

]
. (1.2)

Little is known about entanglement entropy in such theories. For the special case of

d = z = 2 one can map the ground state to a Euclidean conformal field theory in 1 + 1

dimensions and compute some subleading universal terms in the entanglement entropy [2–

7], see also [8, 9]. Other work on z = 2 in d = 1 can be found in [10, 11]. This will be

useful for us to fix the overall normalization factor in the entanglement entropy obtained

from cMERA for the case z = 2, as we discuss in section 3.1.

The discretised theory with d = 1 and arbitrary z, including a mass term, was studied

recently in [12, 13] and some partial results for d = 2 were obtained in [12]. In [13] an

analytical approach was also put forward based on the holographic cMERA technique [1]

for Lifshitz scalar fields. In this paper, we follow up and elaborate on this discussion and

extend it to higher dimensions, obtaining several new results.

Holography opens up a new way to compute entanglement entropy. The difficult direct

field theory calculation is mapped to a geometric extremisation problem in the dual gravity
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theory via the Ryu-Takayangi (RT) prescription [14, 15]. In detail, first one computes the

bulk metric that describes the field theory state of interest. The entanglement entropy of

a given region is then equal to the area of the minimal area extremal surface, as measured

by this metric, that ends on this region at the boundary.

However, the holographic dual of a Lifshitz theory has yet to be universally agreed

upon. Whilst a dual spacetime, termed Lifshitz spacetime, was proposed in [16, 17] and

has been studied intensively ever since (see [18] for a review), it is unclear whether the RT

prescription should be applied to this spacetime. Indeed, a study of various perspectives

on the holographic reconstruction of Lifshitz spacetime can be found in [19]. Other recent

work suggests that Newton-Cartan geometry may provide a more natural bulk dual for a

non-relativistic theory [20]. Regardless, holography typically computes the entanglement

entropy for strongly-coupled field theories with large central charges, whereas here we focus

on a very different setting.

In this paper we use a method inspired by holography that is applicable to free

field theories. In particular, Nozaki-Ryu-Takayanagi (NRT) proposed in [1] that a metric

emerges from a continuous version of the multi-scale entanglement renormalisation ansatz

(cMERA) [21]. For a given theory, expectation values of the appropriate disentangler op-

erator determine various components of this metric. In some sense, the NRT proposal

geometrises the entanglement entropy of free fields. Our goal is to compute entanglement

entropies by applying the RT prescription to the cMERA metric for various Lifshitz the-

ories. As we explain later, our results should be viewed as predictions for field theory

calculations. We should stress however that, while the NRT proposal is holography in-

spired, it is not embedded within the AdS/CFT correspondence, since we apply it to a

single free scalar field that is neither large N nor at strong coupling. It is well known

that free conformal fields do not have a gravity dual, at least not with a weakly coupled

gravity sector coupled to matter fields. Nevertheless, the NRT proposal is similar in flavor

to the RT prescription at a technical level (extremisation of surface areas using metric

geometries), so we can make concrete calculations. The justification of this comes from the

MERA approach, and the expectation that a continuum version of it should exist.

We begin in the following section with a brief review of cMERA and the definition of

the cMERA metric. As a crucial consistency check we first compute entanglement entropy

in the ground state of a relativisitic free massive scalar theory and compare with known

results. We then turn to our three main calculations of Lifshitz entanglement entropy in

section 3. We consider the original Lifshitz theory (1.2) and two relevant deformations: a

mass term m2φ2 and a relativistic term (~∇φ)2. We conclude with a discussion in section 4.

2 cMERA and holographic entanglement entropy

The multi-scale entanglement renormalisation ansatz (MERA) is a variational approach

based on the renormalisation group (RG) to construct (ground) states in quantum many

body systems and study their entanglement properties [22, 23]. A continuum version was

developed in [21] for free fields, which we now summarise. We follow the notation of [1].
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Choose a quantum field theory in d + 1 dimensions and introduce a length cut-off ε.

Consider then a one-parameter family of states |Ψ(u)〉 living in the Hilbert space of this

theory. The dimensionless parameter u keeps track of the current length scale, with uUV = 0

and uIR = −∞ in the ultraviolet and infrared, respectively. Focus initially on a reference

state |Ψ(uIR)〉 that has no entanglement. Run up the RG scale and generate entanglement

by acting with a unitary transformation based on a local operator K(u). Next act with

a scale transformation L to introduce new degrees of freedom at shorter length scales.

Repeat this process until the UV cut-off is reached. The final state we are interested in

can then be written as

|Ψ(uUV)〉 = U(uUV, uIR)|Ψ(uIR)〉, U(u1, u2) ≡ P exp

[
−i
∫ u1

u2

du (K(u) + L)

]
(2.1)

and the variational principle can then be applied to minimise the energy of this state.

The variational parameters are encoded in the coefficients of the interactions in K(u).

Note that the states |Ψ(u)〉 are manifestly translationally invariant if these coefficients are

independent of ~x.

2.1 Metrics from cMERA

The authors of [1] associate a metric in d + 2 dimensions with a type of cMERA. In

particular, they argue that a cMERA yielding a translationally invariant ground state

should correspond to a metric of the form

ds2 = guu(u) du2 +
e2u

ε2
d~x 2

d + gtt(u) dt2 . (2.2)

The metric in the RG direction parametrised by u is given by the Hilbert-Schmidt distance

between cMERA states at nearby scales u. It can be expressed in terms of the variance of

the operator K(u) in the state |Ψ(u)〉:1

guu(u) = 〈Ψ(u)|K(u)2|Ψ(u)〉 − 〈Ψ(u)|K(u)|Ψ(u)〉2 . (2.3)

This metric component effectively measures the density of disentanglers at the scale u. The

gtt component cannot be determined from the field theory entanglement on a fixed-time

slice and therefore plays no role in our discussion.

The explicit form of this metric can be calculated for the ground state of a free scalar

theory [1], given the choice of disentangler proposed in [21]. It depends purely on the

dispersion relation ω(k), with k ≡ |~k|, and will be used throughout this paper:

√
guu(u) =

k ∂k ω

2ω

∣∣∣∣
k=eu/ε

. (2.4)

The cMERA metric constructed in this way captures how the quantum degrees of

freedom in the field theory are entangled with each other at different RG scales. It has the

1Equation (2.3) is a simple rewrite of equation (90) in [1] using their equations (18) and (21), relating

|Ψ(u)〉 and K(u) with |Φ(u)〉 and K̂(u).
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flavour of holography, but the precise connection with AdS/CFT is not understood since

we are neither at large N nor at strong coupling and no expression for gtt is provided.

For relativistic conformal field theories, the holographic cMERA approach gives the AdS

metric [1]. And as we review below, applying the RT prescription to the cMERA metric

for massive scalar fields yields the correct answers for the entanglement entropy when the

correlation length is small. Based on this, we take a pragmatic approach and apply the

holographic cMERA techniques to non-relativistic theories with Lifshitz scaling and with

mass deformations corresponding to small correlation lengths. The method yields predic-

tions for the Lifshitz entanglement entropy for general values of the dynamical exponent z.

2.2 Consistency checks in relativistic theories

Before embarking on our main calculations, in this section we illustrate the consistency

of this approach with a simple example: a free massive scalar field in 1 + 1 dimensions.

The action for this theory is (we absorb a factor c2/~ in m such that m has dimension of

inverse seconds)

I =
1

2

∫
d2x

[
(∂tφ)2 − c2(∂xφ)2 −m2φ2

]
(2.5)

and the dispersion relation is ω(k)2 = c2k2 + m2. Computing guu via (2.4), we should

therefore associate the following metric with the ground state of this theory:

ds2 =

[
e2u

2(e2u + (mε/c)2)

]2
du2 +

e2u

ε2
dx2 + gtt dt2 . (2.6)

For m = 0 this reduces to the metric on AdS3 in Poincaré coordinates with z = εe−u

and gtt = −c2/z2, together with a simple rescaling of x and t. The AdS radius in this

normalisation is RAdS = 2, but one can rescale the overall metric to get any radius.

Our task now is to compute entanglement entropy from this metric using the RT

prescription. We will focus on an interval in the x-direction of width ` at t = 0. It is useful

to define the dimensionless quantities

J1 ≡
mε

c
and J2 ≡

m`

c
. (2.7)

We want to compute entanglement entropy as a function of J1 and J2. We require J1 <

1 and J2 > J1 to ensure that the cut-off ε is the smallest length scale in the theory.

Furthermore, the regime J2 < 1 means that the correlation length ξ ≡ c/m is larger than

the subsystem size `, whereas J2 > 1 means that the correlation length is smaller than the

subsystem size. The entanglement entropy is known to be different in these two regimes [24]

— a result we now re-derive.

First we change coordinates:

e2u =
ε2

r2
− J2

1 =⇒ ds2 =
dr2

4r2
+

(
ε2

r2
− J2

1

)
dx2

ε2
+ gtt dt2 . (2.8)

The boundaries of the r coordinate are fixed by the limits of the cMERA length scale u:

rUV(u = 0) =
ε√

1 + J2
1

, rIR(u→ −∞) =
ε

J1
=

c

m
= ξ . (2.9)
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Figure 1. Types of geodesic for J2 = 1/2, J1 = 1/5. The blue and red curves are the two possible

connected geodesics and the pair of green lines is the disconnected geodesic. All three geodesics

end at mrUV/c = 1/
√

26 and the dashed line is the IR cut-off mrIR/c = 1.

We seek geodesics of this metric parametrised by x(r) that end at x(rUV) = ±`/2. The

length of the shortest geodesic is proportional to the entanglement entropy. The steps to

find the appropriate geodesics and compute their lengths are identical to those in [14, 15];

we adapt them to our setup and only present the results and a few intermediate steps.

Two types of geodesic are relevant for a non-zero mass. See figure 1 for examples.

The first type connects the endpoints and is smooth at the point of deepest extent in r:

x(r?) = 0 and x′(r?)→∞. The boundary condition for this type of geodesic relates r? to

the interval width `:

J2 =
√

1− a2 tanh−1
√
a2(1 + J2

1 )− J2
1 , a ≡ mr?

c
. (2.10)

At fixed J1, the function on the right-hand side is real and non-zero for J1(1 + J2
1 )−1/2 <

a < 1, in accordance with (2.9). It is positive within this range and has a single maximum.

Thus, equation (2.10) cannot be satisfied for large J2, but may have two solutions for small

J2. The second type of geodesic exists for all J2 and consists of two disconnected straight

sections x(r) ≡ ±`/2 that end at r = rIR.

We must be careful to identify the geodesic with the shortest length for a given J2.

The lengths of the connected and disconnected geodesics are given respectively by

LC = tanh−1

(√
a2(1 + J2

1 )− J2
1

a

)
− a tanh−1

√
a2(1 + J2

1 )− J2
1 , (2.11)

LD =
1

2
log

(
1 +

1

J2
1

)
. (2.12)

We demonstrate in figure 2 that the disconnected geodesic is shorter than any connected

geodesic above a critical value of J2. This value is slightly below that for which a connected

geodesic no longer exists.

In the massless case (i.e. setting m = 0 from the beginning in (2.6)) the connected

geodesic is always the shortest. We can find its length explicitly as a function of `/ε:

L = log

 `
ε

+

√(
`

ε

)2

+ 1

 = log

(
`

ε

)
+ log 2 +O

(ε
`

)2
. (2.13)
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Figure 2. Ratio of the connected geodesic length to the disconnected geodesic length for J1 = 1/5

as a function of J2. The red, green and blue dots correspond to the curves plotted in figure 1 for

J2 = 1/2 and the black dot marks the critical value of J2 for this J1. The region to the left of the

vertical dashed line is unphysical since J2 < J1 therein.

In the last equation, we made an expansion in small ε/`. The first term is the dominant term

and leads to the area law, which in 1 + 1 dimensions is logarithmic in `. The entanglement

entropy is proportional to the length of the geodesic and the proportionality factor is known

to be related to the central charge [25]:

S =
c

3
log

(
`

ε

)
+ · · · , (2.14)

with c = 1 for a real scalar field.

Given that we have fixed the overall normalisation, we can return to the massive case

and perform another consistency check for the case when the correlation length is smaller

than the size of the interval. This translates into large J2, for which the disconnected bulk

curve (2.12) is the shortest. Expanding for small J1 and using the same normalisation

factor c/3 as before, we find the following leading term:

S =
c

6
log

(
1

J2
1

)
+ · · · = c

3
log

(
ξ

ε

)
+ · · · , (2.15)

where we recall that the correlation length is defined by ξ ≡ c/m. This result for the

entanglement entropy matches perfectly with the universal result of Cardy and Calabrese

in [24] applied to the case of one interval with two boundary points.

In the opposite limit, i.e. for large correlation lengths compared to the length of the line

interval, the cMERA approach seems to not reproduce known results. Namely, it was shown

in [26, 27] that the entanglement entropy for a free massive scalar field in 1+1 dimensions

in the regime ` � ξ contains a term proportional to log(− log(mε/c)) = log(− log J1) in

the limit of small J1. It is unclear to us how such a double logarithm would appear in the

cMERA approach (see also section 3.3 for the case of general z), and it would be interesting

to understand better where this apparent discrepancy comes from.

This concludes the consistency checks on the holographic cMERA techniques applied

to free relativistic scalar field theories. The generalisation to higher dimensions can also be

done, but we include it in the general analysis of Lifshitz theories with arbitrary dynamical

exponent z. When we set z = 1 we recover the relativistic results.
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3 Lifshitz entanglement entropy

We now apply the holographic cMERA technique to compute entanglement entropy in free

Lifshitz scalar field theories. This possibility was in fact already pointed out in [1] but not

worked out. In fact, in that reference, the case z = 1 treated in the previous section was

also not worked out in detail. The case of d = 1 was recently also considered in [13] which

we review and extend below.

As suggested in [1], all we need is the dispersion relation and the rest is computational.

In this section we perform all the calculations and provide results for arbitrary z and d,

treat the massive case as well, and compute the RG flow of the entanglement entropy from

z > 1 theories to z = 1.

3.1 Massless Lifshitz scalar

First we consider the simple theory given in (1.2) with d = 1. This has dispersion relation

ω(k) = αkz. According to the prescription given in the previous section, we should associate

the following metric with its ground state:

ds2 =
z2

4
du2 +

e2u

ε2
dx2 + gtt dt2 . (3.1)

We wish to compute the entanglement entropy of an interval in this state, and for this

we calculate the length of the geodesics in this metric. Remarkably, the result is a simple

rescaling of the massless relativistic result (2.13):

L = z log

 `

zε
+

√(
`

zε

)2

+ 1

 . (3.2)

This can be seen immediately at the level of the metric. Suppose we scale out the factor z2

in front of the metric. Then up to this overall rescaling, this is the z = 1 metric provided

we replace the cutoff ε → zε in (3.1). (Physically, we are not changing the cutoff ε for

the Lifshitz theory, it is just a trick to get the answer. Equivalently, one can also rescale

x → zx.) It is then clear that the length of geodesics on the t = 0 slice is just a rescaling

by z of that obtained from (2.6) at m = 0. This observation was already made in [13],

but there the result was only given for large `/zε, which does not permit taking large

values of z.

Here, we also obtain a sensible large z limit. In a discrete model of a continuum

local theory, entanglement entropy is dominated by contributions from nearest neighbors

across the boundary of the entangling region. As z is increased, more and more lattice

sites are involved and we expect the full interval to contribute at infinite z. This is indeed

what we find:

lim
z→∞

L =
`

ε
, (3.3)

i.e. it becomes extensive with the region size, so we recover a volume law in the large z

limit. This agrees with the observations and results of [12]. It has to be noted though that
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this limit is only natural in the continuum limit (where also the cutoff ε is sent to zero),

as long as z � l/ε.

The entanglement entropy S follows from L by a multiplicative factor. In AdS/CFT,

this factor comes from translating Newton’s constant into the central charge of the theory,

which in 1+1 dimensions gives a multiplicative factor of c/3, leading to S = c/3 log(`/ε)+c0
for relativistic CFTs. The cMERA approach, however, does not fix the overall normaliza-

tion. The best we can do is to replace the central charge c by an overall multiplicative

constant cz, independent of ` but which can depend on the dynamical exponent z. For a

relativistic scalar field, we have cz=1 = 1. In general, we call cz the Lifshitz central charge.

Then we obtain the following entanglement entropy formula for general values of z:

Sd=1 =
cz
3
z log

 `

zε
+

√(
`

zε

)2

+ 1

 . (3.4)

There might still be a non-universal additive constant independent of `, just like the coef-

ficient c0 that is cutoff-dependent. We will leave it out of the discussion here.

The expansion around small values of `/zε gives small deviations from the volume law,

Sd=1 =
cz
3

`

ε

[
1− 1

6

(
`

zε

)2

+O
(
`

zε

)4
]
, (3.5)

whereas expanding around the area law `/zε� 1 gives deviations from the area law,

Sd=1 =
cz
3
z

[
log

(
2`

zε

)
+
z2ε2

4`2
+O

(
zε

`

)4
]
. (3.6)

In [13], the assumption was made that cz is independent of z. Recent numerical work,

however, shows that this assumption should be relaxed, as the work of [10, 11, 28] showed

that for z = 2, one has cz=2 = 3/4, such that the entanglement entropy for z = 2 starts

like S = 1
2 log( `ε) to leading order. This implies that cz does depend on z. But the fact

that we don’t know cz does not prevent us from making predictions that could be checked

using numerics or other methods. Indeed for fixed but arbirtray z, we can still check the

functional dependence on `/zε inside the logarithm in (3.4) with numerical methods. Or

stated differently, we can take the ratio of the entanglement entropies for large and small

values of `/zε and compare this to lattice results. This ratio is independent of cz, so is

not sensitive to our ignorance of it. Admittedly, this issue needs to be better understood,

either from further numerical work, or perhaps analytically, by computing cz from the

replica trick or from Lifshitz scale anomaly coefficients. We leave this for further study,

and leave the coefficient cz undetermined in this paper. More conveniently, we will focus

on just the length or area of the minimal surfaces, which do not involve this factor cz.

We now generalise our treatment to higher dimensions. We make the replacement

dx2 → d~x 2
d with ~x = (x1, . . . , xd) and also the change of coordinates e2u = ε2

r2
in (3.1):

ds2 =
z2

4

dr2

r2
+

d~x 2
d

r2
+ gtt dt2 . (3.7)

– 8 –
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Our region of interest is now the strip
{
~x
∣∣− `

2 ≤ xd ≤
`
2

}
at t = 0. Translational invariance

of the metric and strip in the additional spatial directions simplifies the problem dramat-

ically: we seek extremal surfaces of this metric parametrised by xd(r) that fill the other

directions and end at xd(ε) = ±`/2. The area of the smallest surface is proportional to the

entanglement entropy.

We find the following expressions for the width of the strip and the area of the surface

extending to r = r?, respectively:

`

ε
= z

b

2d
Γ

(
1 + d

2d

)[ √
π

Γ
(
1+2d
2d

) − 2F1

(
1
2 ,

1+d
2d ,

1+3d
2d , 1

b2d

)
Γ
(
1+3d
2d

)
bd+1

]
, (3.8)

A = z
Vd−1
εd−1

[ √
π Γ
(
1−d
2d

)
2dΓ

(
1
2d

)
bd−1

− 2F1

(
1
2 ,

1−d
2d ,

1+d
2d ,

1
b2d

)
d− 1

]
, (3.9)

where we have defined b ≡ r?/ε and regulated the infinite volume of the remaining directions

with Vd−1. Note that these results are again related to those of the relativistic case with a

rescaling by z: we scale ε→ zε and multiply A→ zdA .

We deduce from these results that the entanglement entropy follows an area law for

finite z. The equation (3.8) relating ` and r? has a unique solution for given d and z. We

can invert this asymptotically at large `/ε and find the following expansion for the area:

A =
z

d− 1

Vd−1
εd−1

− (zκ)d

d− 1

Vd−1
`d−1

+O

(
Vd−1 ε

d+1

`2d

)
, κ(d) ≡

√
π

Γ
(
d+1
2d

)
Γ
(

1
2d

) . (3.10)

The first term represents the area term, and the second term is finite and independent of

the cutoff. (See also, for example, [15] for the case z = 1 using AdS/CFT and the RT

formula.) The entanglement entropy is proportional to A, with a proportionality factor

that is not universal for d > 1. In the cMERA approach, this normalisation inherits from

that of the disentangler operator K(u) and is usually fixed by comparing with known field

theory results for the entanglement entropy. Because of the non-universality, we leave this

overall factor undetermined.

In the large z limit, we again obtain a volume law instead of an area law. We can

invert (3.8) asymptotically at large z, finding

b = 1 +
1

2

(√
d`

zε

)2

+
2d− 5

24

(√
d`

zε

)4

+ . . . . (3.11)

We substitute this into the area expression (3.9) and find

lim
z→∞

A =
` Vd−1
εd

, (3.12)

which is indeed proportional to the regulated volume ` Vd−1 of the strip.

3.2 Disc geometry

In this section we depart briefly from the strip to consider a region of finite size: the disc.

We study the same state of theory (1.2) but simply write the appropriate cMERA metric

– 9 –
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in different coordinates:

ds2 =
z2

4

dr2

r2
+

dp2 + p2 ds2
Sd−1

r2
+ gtt dt2 . (3.13)

The following function describes a surface lying on the constant time slice t = 0 that ends

at r = ε on a disc of radius p = R:

r(p) = ε

(
2R

zε

)√
1− p2

R2
+
( zε

2R

)2
. (3.14)

This surface is smooth at p = 0, independent of d, minimises the area functional and has

area

A = Vol
(
Sd−1

) zd

2dd

(
1 + x2

)−d/2
2F1

(
d

2
,
d+ 1

2
;
d+ 2

2
;

1

1 + x2

)
, x ≡ zε

2R
. (3.15)

The area diverges as the cut-off is taken much smaller than the disc radius. For finite z,

this divergence is proportional to the area of the disc:

A =
z

2(d− 1)

Vol
(
Sd−1R

)
εd−1

+ . . . . (3.16)

The lowest subleading divergence is logarithmic when d is odd; in particular, we re-

cover (3.2) for d = 1 since the interval width satisfies ` = 2R. For even d, the small

x expansion contains a constant term which is universal. All these results are straightfor-

ward generalisations and rescalings of the z = 1 case described in, for example, [15].

It is interesting to compare our results with [2], where the entanglement entropy was

studied for d = 2 with z = 2. In particular it was found that for the disc subspace, no

logarithmic terms were found, see case (a) in figure 1 in [2]. This is consistent with our

general result that for even d, no logarithms appear in the expansion of (3.15). More

interesting would be to study the geometries where logarithmic terms do arise, such as the

rectangular or half disc subspaces studied in [2] as well. To reproduce the coefficients in

front of the log-terms using the cMERA approach, we would need to perform extremisation

of surfaces in geometries that end on these rectangles or half discs that have less symmetry.

This is much harder in d ≥ 2 but is an interesting problem for separate study. Given that

we don’t know proportionality coefficient between the area and the entanglement entropy,

it is cumbersome to perform such a test at present.

In the large z limit we again obtain a volume law:

lim
z→∞

A =
Vol

(
Sd−1

)
d

(
R

ε

)d
=

Vol
(
Bd
R

)
εd

, (3.17)

Here Bd
R is the d-dimensional ball whose boundary is the (d − 1)-dimensional sphere of

radius R.

From now on we focus exclusively on strip regions.
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3.3 Massive deformation

We now deform the theory (1.2) by adding the mass term m2φ2. The dispersion relation

is modified to ω(k)2 = α2k2z +m2, leading to a cMERA metric

ds2 =

[
z e2zu

2 (e2zu + (mεz/α)2)

]2
du2 +

e2u

ε2
d~x 2

d + gtt dt2 . (3.18)

The dimensionless parameters that characterise the mass deformation and the region size

can be chosen

J1 ≡
ε

ξ
and J2 ≡

`

ξ
, ξ ≡ (α/m)1/z , (3.19)

respectively. They reduce to (2.7) in the relativistic limit. We have written them in terms

of the correlation length ξ, generalising the one from the relativistic case. We want to

compute entanglement entropy as a function of d, z, J1 and J2. Again we require J1 < 1

and J2 > J1 to ensure that the cut-off ε is the smallest length scale in the theory. As in the

relativistic case, the correlation length maybe larger or smaller than the interval length or

strip width `, corresponding to the regimes J2 < 1 or J2 > 1 respectively.

Just like the relativistic case covered in section 2.2, there is a competition between two

types of extremal surface: connected and disconnected. We analyse this case in a similar

fashion. We begin with a change of coordinates:

e2zu =
ε2z

r2z
− J2z

1 =⇒ ds2 =
z2dr2

4r2
+

(
ε2z

r2z
− J2z

1

)1/z
d~x 2

d

ε2
+ gtt dt2 . (3.20)

For a connected surface extending to r = r?, the width of the strip and the area of the

surface can be written

J2 = z

∫ t?

J1

dt
(t/t?)

d

(1 + t2z)
√

1− (t/t?)2d
, (3.21)

AC = z J
(d−1)
1

Vd−1
εd−1

∫ t?

J1

dt
1

td (1 + t2z)
√

1− (t/t?)2d
, (3.22)

respectively, where it is convenient to parametrise the bulk depth via

a ≡ r?
ξ

with t? ≡
(

a2z

1− a2z

) 1
2z

. (3.23)

We can evaluate these integrals exactly for various values of d and z; more generally, they

are straightforward to evaluate numerically. Equation (3.21) relates J2 and r?. We find that

it may have zero, one or two solutions depending on the value of J2, just like the relativistic

case. We observe an area law divergence in AC that degenerates to a logarithmic divergence

for d = 1.

For example, we have obtained analytical expressions for d = 1, z ∈ N:

J2 =
1

t?

z∑
n=1

γn√
1 + γn/t2?

tanh−1

√
1− J2

1/t
2
?

1 + γn/t2?
, (3.24)

LC = z tanh−1
√

1− J2
1/t

2
? −

z∑
n=1

1√
1 + γn/t2?

tanh−1

√
1− J2

1/t
2
?

1 + γn/t2?
, (3.25)
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where the γn satisfy

1 + (−1)z γzn = 0 =⇒ γn = eiπ(2n−1+z)/z, n = 1, 2, . . . , z . (3.26)

It is clear from the first term in (3.25) that the length diverges like − log J1 as J1 → 0. Note

that the correct formulae (2.10) and (2.11) are recovered for z = 1. In addition, analytical

expressions can be obtained for z = d, but these are lengthy and not very illuminating.

The disconnected surface exists for all J2. Its area is in fact independent of J2 and can

be evaluated in closed form:

AD = z J
(d−1)
1

Vd−1
εd−1

∫ ∞
J1

dt
1

td (1 + t2z)

=
z

d− 1

Vd−1
εd−1

[
1− 2F1

(
1,
d− 1

2z
;
d− 1

2z
+ 1;− 1

J2z
1

)]
, d > 1 (3.27)

This result is again proportional to the area of the region. For d = 1 we find a simple

expression that diverges logarithmically as J1 → 0:

LD =
1

2
log

(
1 +

1

J2z
1

)
. (3.28)

We must now identify which surface has the least area for a given region size J2. For

fixed d, z and J1 we find that the disconnected surface has minimal area above a critical

value of J2. This value is slightly below that for which a connected surface no longer exists.

We observe the same qualitative behaviour as presented in figure 2 for the relativistic case

regardless of d and z. Besides yielding analytical solutions, the point z = d does not appear

to be special in this calculation.

For any given J1 it is straightforward to numerically find the critical value of J2 at

which the two types of surface have equal area. In this way we can construct the phase

diagram of a given theory. Our results in d = 1 for various values of z are plotted in figure 3.

Note that the J2-intercepts of the phase boundaries follow a roughly linear relationship:

J2(J1 = 0) ∼ z/2. For large values of J2 the disconnected curve is always the shortest.

This is the limit in which the correlation length is smaller than the length of the interval:

ε � ξ � `. For z = 1 this was the regime in which the result of Cardy and Calabrese

holds: cf. (2.15). For z > 1, the result obtained in (3.28) generalises the Cardy-Calabrese

result, and we obtain

Sd=1 =
cz
3
z log

(
ξ

ε

)
, (3.29)

where we have used the same normalisation factor cz/3 as before that relates the length of

the geodesic to the entanglement entropy for a real scalar field.

For large correlation lengths ξ > `, so small J2 (and therefore small J1), we get

again logarithmically diverging terms − log J1. There are no known analytical or numerical

results in this case, but we expect similar discrepancies as for z = 1, where the leading

diverging term involves a double logarithm, log(− log J1) in the limit of small J1.
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Figure 3. Phase diagram for d = 1. The curves correspond to z = 1 (blue), z = 2 (red), z = 3

(green) and z = 4 (yellow). To the left of each curve the shortest geodesic is connected, whereas

to the right the shortest geodesic is disconnected. The dashed lines mark the boundaries of the

physical region J1 < 1 and J2 > J1. The black dots are extracted directly at J1 = 0.

3.4 RG flow to an IR CFT

In this section we begin with a massless free scalar field in 1 + 1 dimensions and turn on

an irrelevant Lifshitz coupling:

I =
1

2

∫
d2x

[
(∂tφ)2 − c2(∂xφ)2 − α2(∂zxφ)2

]
. (3.30)

Our goal is to compute the entanglement entropy along the entire renormalisation group

flow from the UV Lifshitz theory to the IR CFT. For sublattice entanglement entropy,

such a study was carried out in [13], where it was found that the entanglement entropy

decreases along the renormalisation group flow, for any starting value of z > 1. This

provides evidence for a generalisation of the c-theorem for entanglement entropy in the

relativistic case [29], applicable to flows between two Lifshitz fixed points. Our analysis

below will give further support for this.

The dispersion relation is given by ω(k)2 = c2k2+α2k2z. After a change of coordinates,

this results in a cMERA metric of the following form:

ds2 =
f(r)2

4r2
dr2 +

dx2

r2
+ gtt dt2 . (3.31)

The function f(r) interpolates between the two limits of the flow as the dimensionless

parameter K ≡ α/(c εz−1) is varied:

f(r) =
1 + zK2(ε/r)2(z−1)

1 +K2(ε/r)2(z−1)
−→

{
z, K � 1

1, K � 1
(3.32)

We seek geodesics of the form x(r) extending to r = r? that end at x(ε) = ±`/2.
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Figure 4. Entanglement entropy for a flow between a CFT in the IR and z = 2 Lifshitz theory in

the UV. Left: length as a function of log10K for `/ε = 2, 5, 10, 20 (bottom to top). These curves

interpolate monotonically between the correct IR (left) and UV (right) limits. Right: length as a

function of `/ε for K = 0.5, 5, 50 (bottom to top, solid). The dashed lines correspond to the IR

(black) and UV (red) limits.

For example, for z = 2 we find that the interval width and the geodesic length can be

written respectively as

`

ε
=
√
b2 − 1 +

K2

√
b2 +K2

tanh−1
√

b2 − 1

b2 +K2
, (3.33)

L = 2 log
(
b+

√
b2 − 1

)
− b√

b2 +K2
tanh−1

√
b2 − 1

b2 +K2
, (3.34)

where we have again defined b ≡ r?/ε. Note that the expression for `/ε increases monoton-

ically with b (at fixed K) so can be inverted uniquely. It is straightforward to check that

these results have the correct limits: (3.2) for large K and (2.13) for small K. These are

the UV and IR limits, respectively. We plot the geodesic length as a function of K or `/ε

in figure 4. We see that the length decreases monotonically along this RG flow from UV

to IR, as expected. (We have checked that qualitatively similar results can be obtained

numerically for other values of z.)

4 Discussion

An approach was put forward in [1] to geometrise entanglement entropy based on cMERA

techniques [21]. It is similar in spirit to AdS/CFT but is applicable to free fields, i.e.

weak coupling and small N . We have illustrated in this paper that this approach leads to

concrete predictions for the entanglement entropy of free scalar fields. In the relativistic

case, it reproduces well-known analytical field theory results, as we showed in our analysis.2

In the Lifshitz case, it leads to new predictions, generalising and extending the observations

made in [13]. The overall normalisation for the entanglement entropy is however not fixed

from the metrics introduced by [1]; rather, it depends on the choice and normalisation of

the disentangler operator. In AdS/CFT this normalisation is fixed by the dictionary that

2With the exception of the massive case where the correlation length exceeds the length of the interval,

as discussed in section 2.2.
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relates Newton’s coupling constant to the central charge or number of colours. We have not

been able to determine this overall normalization, which we denoted by cz, and which can

depend on the value of the dynamical exponent z. It would be interesting to understand

if cz is related to Lifshitz scale anomaly coefficients. These anomalies have been studied

in [30–32], but also in earlier work for z = 2 [33, 34] in 2+1 and 3+1 dimensions, and z = 3

in 3+1 dimensions [35]. The results obtained in e.g. [2] show that central charges do appear

in certain logarithmic terms entanglement entropy for z = d = 2 (so 2+1 dimensions), but

it is not straightforward to see the relation to Lifshitz scale anomaly coefficients. Moreover,

for the strip and disc geometries we consider here, these logarithmic terms are absent. It

would be important progress to find such a relation if it exists.

In the massless case, our results for free Lifshitz scalars are obtained from a simple

rescaling of the relativistic case, but this is not true in the massive case. In the latter

case, we generalised the Calabrese-Cardy result to Lifshitz scalar fields with values of the

dynamical exponent z > 1. It would be interesting to repeat our analysis for fermions.

Clearly, it would be important to better understand the validity of the holographic

cMERA approach. From this point of view, our results are merely predictions rather than

solid results. It would be nice to reproduce some of our predictions for Lifshitz entanglement

based solely on field theoretic techniques. For free Lifshitz scalar fields, one imagines this

should not be so difficult by attempting the replica method, but the presence of longer

range interactions for large z complicates this. In low dimensions, numerical and lattice

methods can also be used, as was illustrated in [12, 13]. We leave this topic for future study.
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