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1 Introduction

Discrete symmetries are an integral part of particle physics; they play a key rôle in the

Standard Model physics, such as those to prevent nucleon and lepton number violating

processes, with R-symmetry being the most prominent one, as well as examples of Abelian

and non-Abelian discrete symmetries to address the flavor hierarchy.

In string theory, discrete symmetries are expected to be gauge symmetries. In recent

years there has been a flurry of activities in studies of discrete symmetries in string and F-

theory compactification, focusing on their geometric origin. In F-theory the primary focus

was on the origin of Abelian discrete symmetries, which arise from Calabi-Yau geometries

which are genus-one fibrations without section, in contrast to elliptic fibrations with sec-

tions. A natural object associated with these compactifications is the Tate-Shafarevich

(TS) group which is a discrete Abelian group that organizes inequivalent genus-one ge-

ometries which share the same associated Jacobian fibration. The TS group specifies the

Abelian discrete gauge symmetry of the F-theory compactification. The study of F-theory
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compactifications with discrete gauge symmetries Zn was initiated in [1] and followed-up

in [2–9]. Most of the past works primarily focused on Z2 gauge symmetry. However, new

insights into aspects of the TS group, and its relations to M-theory vacua in the case of

Z3 were addressed in [8]. Furthermore, there has been progress in elucidating the origin of

Abelian discrete symmetries via F-theory/Heterotic duality [9].

On the other hand, the origin of non-Abelian discrete gauge symmetries in string theory

is less understood. An important progress in this direction was made [10] in the context of

Type II string theory compactification to four-dimensions, building on earlier works [11–13]

that study Abelian discrete gauge symmetries in Type II string theory compactification

on Calabi-Yau threefolds with torsion. In the context of Type IIB string theory, a non-

Abelian Heisenberg-type discrete symmetry is realized [10] on a Calabi-Yau threefold with

torsion whose second cohomology torsion elements have a non-trivial cup product into

fourth cohomology torsion ones. This specific approach therefore requires the study of

Calabi-Yau threefolds with torsion by determining torsion cohomology groups and their

cup products, which is technically challenging.

The purpose of this paper is to provide a first explicit construction of a Type IIB string

theory compactification on a Calabi-Yau manifold that exhibits a Heisenberg-type discrete

symmetry.1 For that purpose we choose an example of a Calabi-Yau threefold X6 with

torsion. This particular Calabi-Yau threefold occurs in the classification of [15] as the first

example of the free quotient of a torus T 6 by a finite group action. It had occurred previ-

ously, in various contexts, in [16–18]. It is the quotient of a product of three elliptic curves

by a fixed point free action of Z2×Z2 which we describe explicitly in (3.1). The integer coho-

mology of our Calabi-Yau manifold X6 is given in (4.20). This Calabi-Yau has a symmetric

Hodge diamond, with h1,2 = h1,1 = 3. If it is also a self-mirror manifold, to the best of our

knowledge, this would be the first example of a self-mirror Calabi-Yau threefold where the

two (a priori independent) torsion groups Torsion (H2(X6,Z)) = Torsion (H5(X6,Z)) =

Z2
4 ⊕ Z3

2 and Torsion (H3(X6,Z)) = Torsion (H4(X6,Z)) = Z3
2 actually differ and are

both non-zero.

This example allows us to carry out the challenging computation of the cup products for

torsion coholomology elements explicitly, which in turn determine the Heisenberg discrete

symmetry of the four-dimensional theory. The key strategy is to relate X6 to a lower

dimensional (real) submanifold Y0. Recalling that X6 is the quotient of a six-torus by a

group G = Z2 × Z2, we take Y0 to be the quotient of a four-dimensional subtorus of X6

that happens to be invariant under G. It comes with an inclusion map i : Y0 → X6 and

a projection map going the other way, hence the restriction i∗ : H∗(X6,Z)→ H∗(Y0,Z) is

surjective, and in fact it exhibits H∗(Y0,Z) as a direct summand of H∗(X6,Z). The cup

product calculation on the smaller Y0 can be carried out explicitly. This could probably be

done by hand using elementary topology. Instead, we obtain it as part of a computational

scheme that gives us many additional useful facts about the manifolds involved, including

the integer cohomology of X6, given in (4.20).

1Non-Abelian discrete symmetries of Type IIB string theory on AdS5×S5/Z3 were studied in [14] from

the perspective of AdS/CFT correspondence.
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The cup product on Y0 turns out to have the property we want: there are torsion

classes in H2(Y0,Z) whose product does not vanish in H4(Y0,Z). Even though we do

not fully calculate the multiplicative structure of the cohomlogy ring of X, the fact that

H∗(Y0,Z) is a direct summand of H∗(X6,Z) plus knowing the multiplicative structure of

the cohomlogy ring of Y0 suffices to allow us to conclude that there are torsion classes in

H2(X6,Z) whose product does not vanish in H4(X6,Z), as claimed. In particular, Type

IIB compactification on such a Calabi-Yau manifold leads to a four-dimensional theory

with a Heisenberg-type discrete symmetry group.2

In section 2 we summarize the results of [10] regarding Type IIB string theory compact-

ifications leading to four-dimensionall theories with Heisenberg-type discrete symmetries.

Our Calabi-Yau manifold is described in section 3. The rest of the paper is devoted to

the calculation of the torsion homologies and cup products for this manifold. In section 4

we determine the torsion cohomology groups for the Calabi-Yau manifold and some of its

submanifolds, and in section 5 the specific results for the cup products are obtained. The

outlook is given in section 6. In the appendix we display the notebook containing the main

calculations. A link is provided to a site containing the code and the worksheet, so that

the interested reader can verify the calculations directly.

2 Non-Abelian discrete symmetries in Type IIB

In this section, we review the construction of non-Abelian discrete symmetries arising in

Type IIB compactifications on a Calabi-Yau manifold X6. The analysis follows closely

that of [10]. This latter analysis is closely related to the study [11] of Abelian discrete

symmetries in Type IIB compactifications.

In general, the homology of a threefold X6 has two independent torsion sub-groups

given by

Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) ,

Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) , (2.1)

associated with the torsion one-cycles (and Poincaré dual torsion four-cycles) and torsion

two-cycles (and Poincaré dual torsion three-cycles), respectively.

In the following, we shall first restrict our discussion to the case that

Torsion (H1(X6,Z)) ' Torsion (H4(X6,Z)) = Zk ,
Torsion (H2(X6,Z)) ' Torsion (H3(X6,Z)) = Zk′ . (2.2)

The Poincaré dual cohomology groups which are needed for the dimensional reduction of

Ramond-Ramond fields are accordingly given as

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk ,
Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk′ . (2.3)

2For a related work in the context of F-theory, see [19] where the origin of the Heisenberg-type discrete

symmetry does not seem to have a weak coupling limit to Type IIB string theory. In the context of

Heterotic string compactifications some aspects of torsion homologies were studied, e.g., in [20] for the

Schoen manifold.
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Let ρ2, β3, ω̃4, and ζ5 represent the generators of the torsion cohomologies

Torsion (H2(X6,Z)), Torsion (H3(X6,Z)), Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)),

respectively. They satisfy the following relations

δγ1 = kρ2, δρ̃4 = kζ5,

δα3 = k′ω̃4, δω2 = k′β3 , (2.4)

where γ1, ω2, α3 and ρ̃4 are one-, two-, three- and four- cochains on X6, respectively,

belonging to corresponding H∗(X6,U(1)) cohomologies.3 The above elements satisfy:∫
X6

γ1 ∧ ζ5 =

∫
X6

ρ2 ∧ ρ̃4 =

∫
X6

α3 ∧ β3 =

∫
X6

ω2 ∧ ω̃4 = 1 . (2.5)

Here k−1 and k′−1 are the torsion linking numbers between dual torsion p- and (5 − p)-
cycles (p = 1, 3). Note, eqs. (2.4) and (2.5) can be obtained from expressions that determine

torsion linking numbers, cf., appendix C of [11].

The cup-product of two torsion classes is again a torsion class. Thus the product ρ2∧ρ2
is some multiple of the generator ω̃4 of Torsion (H4(X6,Z)):

ρ2 ∧ ρ2 = M ω̃4 , M ∈ Z . (2.6)

The coefficient M is an invariant of the manifold X6. Sometimes it vanishes, and sometimes

it does not. In this work we describe an example where it is non zero. By employing (2.4)

this cup-product integrates to ρ2 ∧ γ1 = M ′ α3, where M ′ ∈ Z and kM = k′M ′.

These torsion subgroups give a priori rise to three non-commuting discrete cyclic groups

in the effective four-dimensional Type IIB action. This can be seen from the following

Kaluza-Klein reduction Ansatz for the Type IIB closed string sector Ramond-Ramond

(RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) two-form fields C2, B2, respectively and

RR four-form field C4:

B2 = b1 ∧ ρ2 +A1 ∧ γ1 , (2.7)

C2 = b2 ∧ ρ2 +A2 ∧ γ1 , (2.8)

C4 = b3ω̃4 +A3 ∧ α3 + V 3 ∧ β3 + c2 ∧ ω2 , (2.9)

where bi and Ai (i = 1, 2, 3) are the three axions and three U(1) one-form gauge potentials,

respectively. (One-form potential V 3 and two-form potential c2, are not independent fields,

due to the self-duality of the five-form field strength F5 in Type IIB supergravity.)

These Ansätze ensure that the Kaluza-Klein reduction of Type IIB supergravity results

in an effective four-dimensional field theory with three massive U(1) one-form gauge poten-

tials Ai (= i = 1, 2, 3). (For further details, see section 4 of [10].) E.g., for B2 one obtains:∫
M10=M4×X6

dB2 ∧ ∗dB2 −→ (2.10)∫
M4

(db1 − kA1) ∧ ∗(db1 − kA1)

∫
X6

ρ2 ∧ ∗ρ2 +

∫
M4

(dA1) ∧ ∗(dA1)

∫
X6

γ1 ∧ ∗γ1 ,

3This approach is a simplified version designed to keep the expository part short and clear. A bet-

ter mathematical treatment would involve Cheeger-Simons cocycles or, more or less equivalently, Deligne

cohomology. These keep track of both the continuous and the discrete parameters.
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which results in a Stückelberg mass term for A1. The Stückelberg mass contributions for

all three gauge fields A1, A2, A3 in the effective four-dimensional action is of the following

schematic form:

L ⊃ Gij ηiµηµ j , (2.11)

where

ηiµ = ∂µb
i − k Aiµ , i = 1, 2 ,

η3µ = ∂µb
3 − k′A3

µ −Mb2(∂µb
1 − k A1

µ) . (2.12)

This four-dimensional action is therefore invariant under the following non-commuting dis-

crete gauge transformations:

Aiµ → Aiµ + ∂µλ
i , bi → b1 + kλi , i = 1, 2 ,

A3
µ → A3

µ + ∂µλ
3 +M ′kλ2A1

µ +M ′b1∂µλ
2 , b3 → b3 +Mkb1λ2 + k′λ3 , (2.13)

where M ∈ Z, M ′ ∈ Z and kM = k′M ′. This corresponds to a set of non-commuting Zk,
Zk, Zk′ factors as long as M 6= 0, resulting in a non-Abelian discrete gauge symmetry of

the four-dimensional action, specified by k, k′ and M .

Altogether there are three generators T1, T2, T3 associated with the discrete symme-

try groups Zk,Zk,Zk′ , respectively. The important fact to note is that these generators

T1, T2, T3 do not commute, provided that there is a non-trivial cup-product (2.6).

These discrete gauge symmetries of the effective four-dimensional action lead to the

following discrete symmetry operations on a four-dimensional state ψ(x), with charges

(q1, q2, q3) under (Zk, Zk,Zk′). From a ten-dimensional perspective this state corresponds

to a bound state of q1 fundamental strings and q2 D1-branes wrapping the torsional one-

cycle in Torsion (H1(X6,Z)) = Zk, and q3 D3-branes wrapping the torsional three-cycle in

Torsion (H3(X6,Z)) = Zk′ .4 The state transforms under T1, T2, T3 generators:

T̃1 : ψ(x) −→ e2πik
−1q1ψ(x) ,

T̃2 : ψ(x) −→ e2πik
−1q2Uψ(x) ,

T̃3 : ψ(x) −→ e2πik
′−1q3ψ(x) , (2.14)

where the charge redefinition matrix U is of the form:q1q2
q3

 7→
1 0 M ′

0 1 0

0 0 1


q1q2
q3

 , kM = k′M ′ . (2.15)

4General (q1, q2)-strings, which source B2 and C2 gauge potentials, wrap torsional one-cycles and re-

sult in a Zk × Zk symmetry at the level of four-dimensional particle states. D3-branes, which source

C4 gauge potential, wrap torsional three-cycles and result in an additional Zk′ symmetry factor. When

the corresponding torsional classes have non-trivial relations, as spelled out above, this Abelian structure is

promoted to a non-Abelian one. This phenomenon is analogous to the Hanany-Witten effect [21] where four-

dimensional strings emerge from NS5-branes and D5-branes wrapping torsional four-cycles, and D3-branes

wrapping torsional two-cycles. The non-Abelian discrete symmetry emerges when torsional four-cycles in-

tersect non-trivially along a torsional two-cycle; crossing of four-dimensional strings, associated with NS5-

and D5-branes, leads to the creation of strings associated with D3-branes wrapping torsional two-cycles.
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These transformations can be derived from the ten-dimensional perspective by performing

discrete shift transformations on corresponding gauge potentials, supporting p-branes, and

deducing the induced charges after the discrete shifts in the ten-dimensional Chern-Simons

terms of the effective action. (Again, for further details see [10].)

Thus, one observes that

T̃1T̃2 = T̃M3 T̃2T̃1 (2.16)

resulting in a non-commuting discrete gauge symmetry, a Heisenberg discrete symmetry

group (Zk × Zk′) o Zk, specified by k, k′ and M . In special cases, say, when k = k′,

M = 1 the non-Abelian discrete gauge symmetry is given by (Zk × Zk) o Zk and further

specializations of k reduce to, e.g., Dih4 for k = 2 and ∆(27) for k = 3.

2.1 Generalizations

It is straightforward to generalize this analysis to the case when the second torsion coho-

mologies have multiple discrete factors. (For further details, see [19], section 2.)

Let us focus on the following specific examples, which shall be relevant for the rest of

our analysis. The torsion cohomologies are chosen to be:

Torsion (H5(X6,Z)) ' Torsion (H2(X6,Z)) = Zk1 × Zk2 ,
Torsion (H4(X6,Z)) ' Torsion (H3(X6,Z)) = Zk3 , (2.17)

and the nontrivial cup product of the generators ρ
(i)
2 ∈ Zki (i = 1, 2) is of the following form:

ρ
(1)
2 ∧ ρ

(2)
2 = Mω̃4 , (2.18)

where ω̃4 is the generator of Torsion (H4(X6,Z)) = Zk3 .

These generators satisfy the following relations:5

δγ
(i)
1 = kiρ

(i)
2 , δρ̃4(i) = kiζ5(i) , i = 1, 2 ,

δα3 = k3ω̃4, δω2 = k3β3 , (2.19)

where β3, and ζ5(i) (i = 1, 2) represent the generators of the torsion cohomologies

Torsion (H4(X6,Z)) and Torsion (H5(X6,Z)), respectively, and γ1(i), ω2, α3 and ρ̃4(i) are

respective one-, two-, three- and four- cochains, elements of the corresponding H∗(X6,U(1))

cohomologies, that satisfy:∫
X6

γ
(i)
1 ∧ ζ5(j) =

∫
X6

ρ
(i)
2 ∧ ρ̃4(j) = δij ,

∫
X6

α3 ∧ β3 =

∫
X6

ω2 ∧ ω̃4 = 1 . (2.20)

Kaluza-Klein Ansätze for B2, C2 and C4 gauge potentials, parallel those of (2.9):

B2 = b1(i) ∧ ρ
(i)
2 +A1

(i) ∧ γ
(i)
1 , (2.21)

C2 = b2(i) ∧ ρ
(i)
2 +A2

(i) ∧ γ
(i)
1 , (2.22)

C4 = b3ω̃4 +A3 ∧ α3 + V 3 ∧ β3 + c2 ∧ ω2 . (2.23)

5For the sake of simplicity, we chose specialized relations; for the analysis of more general cases, see [19].
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In the four-dimensional effective action there are five massive U(1) gauge fields A1
(i), A

2
(i)

and A3, and five associated axions b1(i), b
2
(i), and b3, respectively. (Again, V 3 and c2 are not

independent fields, due to the self-duality of F5.)

The Stückelberg mass contributions for to the effective action again takes the

schematic form:

L ⊃ GIJ∗ ηIµηµJ
∗
, (2.24)

where ηIµ, complexified four-vectors, which take the following form:

ηµ(i) = ∂µb
2
(i) − τ∂µb

1
(i) + ki

(
A2
µ(i) − τA

1
µ(i)

)
, i = 1, 2 ,

η3µ = ∂µb
3 + k3A

3
µ −M

(
b2(1) − τb

1
(1)

)
k2A

1
µ(2) , (2.25)

and τ = C0 +ie−φ denotes the complexified string coupling of Type IIB string theory. This

structure results in the discrete gauge invariance of the effective four-dimensional action,

which corresponds to the Heisenberg discrete symmetry specified by k1, k2, k3 and M . For

further details see [10] section 2 and [19], section 3.

Thus, in order to determine the Heisenberg discrete group of Type IIB string compact-

ifications on a Calabi-Yau threefold with torsion, the plan is to identify second cohomology

torsion classes and to determine their non-trivial cup products. As explained in the intro-

duction, we proceed to relate the Calabi-Yau threefold X6 with torsion to a simpler space

Y0, a submanifold, where the cup product is under control. In particular, we exhibit a

torsion class t in the second cohomology H2(X6,Z) whose restriction to Y0 is non-zero and

squares to a non- zero class on the auxiliary Y0. Functoriality of this cup product then

fixes the rest. In this paper we apply this strategy the example of the Calabi-Yau threefold

X6, defined in the section below, and explicit calculations are derived in the subsequent

two sections 4 and 5.

3 The Calabi-Yau manifold

Our Calabi-Yau threefold X,6 will be the quotient of a six-torus (in fact the product of

three elliptic curves) by a finite group action. The first and best known example of such

a quotient was studied by Vafa and Witten in [22]. Let Ei = C/(Z + τiZ) 3 zi, be three

elliptic curves, i = 0, 1, 2. Their product admits an action of the group G = Z2 × Z2,

generated by the transformations;

g01 : (z0, z1, z2) 7→
(
z0, −z1, −z2

)
,

g02 : (z0, z1, z2) 7→
(
− z0, z1, −z2

)
.

(3.1)

Vafa and Witten then consider a crepant resolution of this quotient.

Various other quotients, by different group actions, were considered by Oguiso and

Sakurai [18] in the process of studying the collection of all Calabi-Yau manifolds with an

infinite fundamental group. They obtained a partial classification, which has very recently

6For simplicity, in the rest of the paper we shall omit the subscript 6 for a Calabi-Yau threefold, i.e.

X6 → X.
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been completed in [23]. All actions of the basic group G = Z2 × Z2 and of all its Abelian

extensions were classified in [15]. (Those actions of Abelian extensions that specialize to

the Vafa-Witten action on G had been classified earlier, in [24].) It turns out that, up

to obvious equivalences, there are four such actions of G, cf. [15], Lemma 1.2.2. They

all have the same linearization, so they differ only in the shifts. Exactly one of these G

actions is fixed-point free: the fixed-point free G = Z2 × Z2 action is generated by the

transformations:
g1 : (z0, z1, z2) 7→

(
z0 + 1

2 , −z1, −z2
)
,

g2 : (z0, z1, z2) 7→
(
− z0, z1 + 1

2 , −z2 + 1
2

)
.

(3.2)

This modifies the Vafa-Witten action by adding some non-trivial shifts. It is these shifts

that make the action fixed-point free, and therefore the quotient:

X = (E0 × E1 × E2)/G (3.3)

is a manifold, with no need for a resolution. This particular quotient is described in

example 2.17 of [18], where it is attributed to Igusa [16], page 678, and to Ueno [17],

Example [16.16]. Each of g1, g2 and g3 := g1 ◦ g2 preserves the constant holomorphic (3, 0)-

form on E0×E1×E2, so this form descends to a nowhere vanishing holomorphic (3, 0)-form

on X. On the other hand, the gi project out any constant one-forms, so the quotient X

of (3.3) is a proper Calabi-Yau threefold in the sense that compactification preserves only

the minimal amount of supersymmetry. We note that its holonomy group is G, and its

fundamental group is easily seen to be the semidirect product

π1(X) = Z6 oG, (3.4)

cf. [15], section 1.5 and table 1 on page 10. Finally, the only invariant (1, 1)-forms are

dzi ∧ dz̄i, i = 0, 1, 2, leading to the Hodge diamond

hpq
(
X
)

= 1
0

0
1

0
3

3
0

0
3

3
0

1
0

0
1 . (3.5)

For further details see [15]. In this work we will analyze the cohomology ring of this

Calabi-Yau manifold X of (3.3). In [15] it was noted (Lemma 1.7.1) that this is one of four

topologically inequivalent free quotients (the others are by various abelian extensions of

G). All are Calabi-Yau manifolds with Hodge numbers (3, 3), and it seems plausible that

similar calculations can be carried out for each of these fixed-point free actions. We will

not pursue these other manifolds in the present work.

4 Submanifolds

Since the group action eq. (3.2) only ever changes the imaginary part of the coordinates

zi by a sign, there are a number of G-invariant (real) submanifolds of the product, hence

– 8 –
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submanifolds of the quotient X, obtained by setting the imaginary part to zero. On the

covering space, these are sub-tori of E0×E1×E2. After dividing out the group action, we

obtain the special Langrangian 3-manifold

Y ↪→X, (x0, x1, x2) 7→ (x0, x1, x2), (4.1)

three four-dimensional submanifolds

Y0 ↪→X, (x0, x1, x2, y0) 7→ (x0 + τ0y0, x1, x2),

Y1 ↪→X, (x0, x1, x2, y1) 7→ (x0, x1 + τ1y1, x2),

Y2 ↪→X, (x0, x1, x2, y2) 7→ (x0, x1, x2 + τ2y2),

(4.2)

and three 5-dimensional submanifolds

Y01 ↪→X, (x0, x1, x2, y0, y1) 7→ (x0 + τy0, x1 + τy1, x2),

Y02 ↪→X, (x0, x1, x2, y0, y2) 7→ (x0 + τy0, x1, x2 + τy2),

Y12 ↪→X, (x0, x1, x2, y1, y2) 7→ (x0, x1 + τy1, x2 + τy2).

(4.3)

In addition to the submanifold embeddings, we note that there are also projection maps

X → Yij , X → Yi, and X → Y by ignoring the imaginary part of one, two, and all three

complex coordinates. Therefore, these submanifolds are all retractions and the relative

cohomology long exact sequences split into

H∗(X,Z) 'H∗(Y,Z)⊕H∗(X,Y,Z)

'H∗(Yi,Z)⊕H∗(X,Yi,Z), 0 ≤ i < 3,

'H∗(Yij ,Z)⊕H∗(X,Yij ,Z), 0 ≤ i < j < 3.

(4.4)

In the remainder of this section we now discuss the integral cohomology of these subma-

nifolds.

4.1 The special Lagrangian submanifold Y

Again, all constant 2-forms on the covering space torus are projected out by the G-action.

Hence, this is a rational homology sphere. Its fundamental group and Abelianization is

π1(Y ) = Z3 oG, H1(Y ) = π1/[π1, π1] = Z4 ⊕ Z4. (4.5)

To summarize, the integral cohomology is

Hd(Y,Z) =


Z d = 3

Z4 ⊕ Z4 d = 2

0 d = 1

Z d = 0

(4.6)

and, by degree count, there can be no non-trivial cup products.

To get some explicit handle on the torsion cohomology generators, let us write down

cochains in a cellular model. Our model of choice is going to be cubical cells with iden-

tifications. First, by cubical cells we mean (hyper-)cubes in some Rn whose vertices are
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integral, edges are parallel to the axes, and side lengths are either zero or one only. We

write such a cube as

[a0,0, a0,1]× [a1,0, a1,1]× · · · × [an−1,0, an−1,1] (4.7)

subject to the constraints

• ak,l ∈ Z for all 0 ≤ k < n, l ∈ {0, 1},

• ak,0 = ak,1 or ak,0 + 1 = ak,1 for all 0 ≤ k < n.

To efficiently represent tori and quotients thereof, we also allow identifications of cubical

cells, possibly with the opposite orientation. Hence, we will use equivalence classes of

oriented cubical cells as our basic cell, which we will write as

[a0,0, a0,1]× [a1,0, a1,1]× · · · × [an−1,0, an−1,1]
/
∼ (4.8)

and always refer to as cubical cells / cell complex in the following.

Although cubical cells are clearly convenient for describing tori, one might wonder

whether the existence of a cubical cell complex imposes any constraint on a manifold. In

fact, for topological manifolds we now known [25] that non-triangulable manifolds, that

is, manifolds not homeomorphic to any simplicial complex, exist in each dimension ≥ 4.

However, for smooth manifolds such as ours, the situation is notably different, and triangu-

lations always exist, by an old theorem of Whitehead. Finally, we note that the existence

of a triangulation and of a cubical cell decomposition are equivalent. In one direction

this equivalence is clear: the barycentric subdivision of any polyhedron (in particular, of

a cube) yields a decomposition into simplices. Conversely, consider a d-simplex and its

barycentric subdivision into (d + 1)! top-dimensional simplices. For each of the original

d + 1 vertices, note that the d! adjacent sub-simplices fit together into a d-dimensional

cube. In fact, this is the dual polyhedral decomposition of the simplex, and it defines a

canonical cubical decomposition of a triangulation. Therefore, a smooth manifold always

has a decomposition into a cubical cell complex.

Coming back to Y , we start with eight maximal cells7

[0, 1]× [0, 1]× [0, 1], [0, 1]× [0, 1]× [1, 2],

[0, 1]× [1, 2]× [0, 1], [0, 1]× [1, 2]× [1, 2],

[1, 2]× [0, 1]× [0, 1], [1, 2]× [0, 1]× [1, 2],

[1, 2]× [1, 2]× [0, 1], [1, 2]× [1, 2]× [1, 2].

(4.9)

By identifying opposite sides, this is a 3-torus with real coordinates

(ξ0, ξ1, ξ2) = (2x0, 2x1, 2x2) ∈ (R/2Z)3, (4.10)

7Before any identifications, the cubical complex consists of 8 three-cubes, 36 squares, 54 line segments,

and 27 vertices.
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and, using these coordinates, the G action becomes (compare [15], page 6 and Lemma 1.2.2):

g1 : (ξ0, ξ1, ξ2) 7→
(
ξ0 + 1, −ξ1,−ξ2

)
,

g2 : (ξ0, ξ1, ξ2) 7→
(
− ξ0, ξ1 + 1, −ξ2 + 1

)
.

(4.11)

The equivalence classes of cells under both the group action and identification of opposite

sides in listed in table 1. Using this notation, the two generators of H2(Y,Z) = Z4 ⊕ Z4

can be written as cochains

ĉ1 =χ
(
[0, 1]× [0, 1]× [0, 0]/ ∼

)
,

ĉ2 =χ
(
[0, 0]× [0, 1]× [0, 1]/ ∼

)
+ χ

(
[0, 1]× [0, 0]× [1, 2]/ ∼

)
,

(4.12)

where χ(c) denotes the cochain dual to the cell c, that is, the cochain that evaluates to one

on c and to zero on all other cells.

4.2 The four-dimensional submanifold Y0

Note that Y0 is not orientable, so its top cohomology group is Z2. The fundamental group

and Abelianization of Y0 is

π1(Y0) = Z4 oG, H1(Y0) = π1/[π1, π1] = Z2 ⊕ Z4 ⊕ Z4 ⊕ Z. (4.13)

Finally, its degree-3 cohomology is not going to be relevant for even-degree cup products

in the following, but can easily be determined numerically from the cell complex structure.

To summarize, the integral cohomology is

Hd(Y0,Z) =



Z2 d = 4

Z2 d = 3

Z2 ⊕ Z4 ⊕ Z4 ⊕ Z d = 2

0 d = 1

Z d = 0.

(4.14)

We observe that the degrees are such that there can be a non-trivial cup product H2×H2 →
H4 involving torsion cohomology classes, which we will investigate in subsection 5.1.

The cubical complex for Y0 is very similar to table 1, the only change is that we add

a factor ×[0, 1] for the y0 coordinate, that is, use coordinates

(ξ0, ξ1, ξ2, η0) = (2x0, 2x1, 2x2, y0) ∈ (R/2Z)3 × (R/Z). (4.15)

Note that the group action

g1 : (ξ0, ξ1, ξ2, η0) 7→
(
ξ0 + 1, −ξ1,−ξ2, η0

)
,

g2 : (ξ0, ξ1, ξ2, η0) 7→
(
− ξ0, ξ1 + 1, −ξ2 + 1,−η0

)
.

(4.16)

never shifts η0, which is why we do not need any subdivision in the cubical complex in that

direction. After identifying opposing sides and G-images, we can again write down explicit
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dim cell same orientation opposite orientation

3 [0,1]×[0,1]×[0,1]/∼ {[0,1]×[0,1]×[0,1], [1,2]×[1,2]×[1,2],
[0,1]×[0,1]×[1,2], [1,2]×[1,2]×[0,1]}

{}

3 [0,1]×[1,2]×[0,1]/∼ {[1,2]×[0,1]×[1,2], [0,1]×[1,2]×[1,2],
[0,1]×[1,2]×[0,1], [1,2]×[0,1]×[0,1]}

{}

2 [0,0]×[0,1]×[0,1]/∼
{[0,0]×[0,1]×[0,1],
[1,1]×[1,2]×[1,2],
[2,2]×[0,1]×[0,1]}

{[0,0]×[1,2]×[0,1],
[1,1]×[0,1]×[1,2],
[2,2]×[1,2]×[0,1]}

2 [0,0]×[0,1]×[1,2]/∼
{[0,0]×[0,1]×[1,2],
[1,1]×[1,2]×[0,1],
[2,2]×[0,1]×[1,2]}

{[0,0]×[1,2]×[1,2],
[1,1]×[0,1]×[0,1],
[2,2]×[1,2]×[1,2]}

2 [0,1]×[0,0]×[0,1]/∼
{[0,1]×[0,0]×[0,1],
[0,1]×[2,2]×[0,1],
[1,2]×[1,1]×[0,1]}

{[1,2]×[0,0]×[1,2],
[1,2]×[2,2]×[1,2],
[0,1]×[1,1]×[1,2]}

2 [0,1]×[0,0]×[1,2]/∼
{[0,1]×[0,0]×[1,2],
[0,1]×[2,2]×[1,2],
[1,2]×[1,1]×[1,2]}

{[1,2]×[0,0]×[0,1],
[1,2]×[2,2]×[0,1],
[0,1]×[1,1]×[0,1]}

2 [0,1]×[0,1]×[0,0]/∼
{[0,1]×[0,1]×[1,1],
[0,1]×[0,1]×[2,2],
[0,1]×[0,1]×[0,0]}

{[1,2]×[1,2]×[1,1],
[1,2]×[1,2]×[2,2],
[1,2]×[1,2]×[0,0]}

2 [0,1]×[1,2]×[0,0]/∼
{[0,1]×[1,2]×[1,1],
[0,1]×[1,2]×[2,2],
[0,1]×[1,2]×[0,0]}

{[1,2]×[0,1]×[1,1],
[1,2]×[0,1]×[2,2],
[1,2]×[0,1]×[0,0]}

1 [0,0]×[0,0]×[0,1]/∼
{[2,2]×[2,2]×[0,1], [2,2]×[0,0]×[0,1],
[1,1]×[1,1]×[1,2], [0,0]×[2,2]×[0,1],
[0,0]×[0,0]×[0,1]}

{[2,2]×[1,1]×[0,1],
[1,1]×[2,2]×[1,2],
[1,1]×[0,0]×[1,2],
[0,0]×[1,1]×[0,1]}

1 [0,0]×[0,0]×[1,2]/∼
{[0,0]×[0,0]×[1,2], [2,2]×[2,2]×[1,2],
[0,0]×[2,2]×[1,2], [2,2]×[0,0]×[1,2],
[1,1]×[1,1]×[0,1]}

{[1,1]×[2,2]×[0,1], [1,1]×[0,0]×[0,1],
[2,2]×[1,1]×[1,2], [0,0]×[1,1]×[1,2]}

1 [0,0]×[0,1]×[0,0]/∼
{[0,0]×[0,1]×[2,2], [0,0]×[0,1]×[0,0],
[2,2]×[1,2]×[1,1], [2,2]×[0,1]×[0,0],
[0,0]×[1,2]×[1,1], [2,2]×[0,1]×[2,2]}

{[1,1]×[1,2]×[2,2],
[1,1]×[1,2]×[0,0],
[1,1]×[0,1]×[1,1]}

1 [0,0]×[0,1]×[1,1]/∼
{[0,0]×[1,2]×[2,2], [0,0]×[1,2]×[0,0],
[2,2]×[0,1]×[1,1], [2,2]×[1,2]×[0,0],
[0,0]×[0,1]×[1,1], [2,2]×[1,2]×[2,2]}

{[1,1]×[0,1]×[2,2],
[1,1]×[0,1]×[0,0],
[1,1]×[1,2]×[1,1]}

1 [0,1]×[0,0]×[0,0]/∼
{[1,2]×[2,2]×[2,2], [0,1]×[2,2]×[2,2],
[1,2]×[2,2]×[0,0], [0,1]×[0,0]×[0,0],
[1,2]×[0,0]×[2,2], [0,1]×[2,2]×[0,0],
[0,1]×[0,0]×[2,2], [1,2]×[0,0]×[0,0]}

{}

1 [0,1]×[0,0]×[1,1]/∼ {[0,1]×[0,0]×[1,1], [1,2]×[2,2]×[1,1],
[1,2]×[0,0]×[1,1], [0,1]×[2,2]×[1,1]}

{[0,1]×[1,1]×[0,0], [1,2]×[1,1]×[0,0],
[1,2]×[1,1]×[2,2], [0,1]×[1,1]×[2,2]}

0 [0,0]×[0,0]×[0,0]/∼ {15 points} {}

0 [0,0]×[0,0]×[1,1]/∼ {12 points} {}

Table 1. Cubical cell complex for Y . For each equivalence class, the cubical cells with the same

and opposite orientation are shown.
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cochains for the cohomology classes of interest. The generator of Z2 ⊂ H2(Y0,Z) can be

chosen to be the 2-cochain

c0 =χ
(
[0, 0]× [0, 0]× [0, 1]× [0, 1]/ ∼

)
− χ

(
[0, 0]× [0, 0]× [1, 2]× [0, 1]/ ∼

)
.

(4.17)

By the retraction property, the 4-torsion part Z4 × Z4 ⊂ H2(Y0,Z) is necessarily the

pullback of H2(Y,Z). Hence the generators are

c1 =χ
(
[0, 1]× [0, 1]× [0, 0]× [0, 0]/ ∼

)
,

c2 =χ
(
[0, 0]× [0, 1]× [0, 1]× [0, 0]/ ∼

)
+ χ

(
[0, 1]× [0, 0]× [1, 2]× [0, 0]/ ∼

)
,

(4.18)

see eq. (4.12). Finally, a free Z ⊂ H2(Y0,Z) is generated by

c3 =χ
(
[0, 1]× [0, 0]× [0, 0]× [0, 1]/ ∼

)
+ χ

(
[0, 1]× [0, 0]× [1, 1]× [0, 1]/ ∼

) (4.19)

The code producing these calculations and the worksheet can be found in the appendix.

4.3 Cohomology of the Calabi-Yau manifold

We know already by eq. (4.4) that H∗(Y0,Z) is a direct summand of the cohomology of the

Calabi-Yau manifold X. As far as cup products are concerned, this is all that we will be

using in the following. However, for completeness let us note that the entire cohomology

group can be computed numerically from the cubical cell complex, and the result is

Hd(X,Z) =



Z d = 6

Z2
4 ⊕ Z3

2 d = 5

Z3 ⊕ Z3
2 d = 4

Z8 ⊕ Z3
2 d = 3

Z3 ⊕ Z2
4 ⊕ Z3

2 d = 2

0 d = 1

Z d = 0.

(4.20)

If this Calabi-Yau manifold were self-mirror, to the best of our knowledge, this would

the first example of a self-mirror Calabi-Yau threefold where the two (a priori indepen-

dent) torsion groups Torsion (H2(X,Z)) = Torsion (H5(X,Z)) and Torsion (H3(X,Z)) =

Torsion (H4(X,Z)) actually differ.

5 Cup product

5.1 Cup product on Y0

For orientable manifolds, the cup product is dual to the cap (intersection) product. Now

Y0 is not orientable, so Poincaré duality does not hold over Z. However, any manifold is

Z2-orientable which is sufficient for our purposes since the codomain of the cup product

∪ : H2(Y0,Z)×H2(Y0,Z)→ H4(Y0,Z) = Z2 (5.1)
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is two-torsion, anyways. Furthermore, all relevant intersections turn out to be transversal,

which lets us read off the cup product from the cochain representatives in eqs. (4.17), (4.12),

and (4.19). The result is that

c0 ∪ c1 = c2 ∪ c3 6= 0 (5.2)

and all other products vanish.

5.2 Naturality and the Calabi Yau manifold

Recall that the cup product is natural, that is, the diagram

H∗(X,Z)×H∗(X,Z)

f∗

��

∪ // H∗(X,Z)

f∗

��
H∗(Y0,Z)×H∗(Y0,Z)

∪ // H∗(Y0,Z)

(5.3)

commutes for any map f : Y0 → X. When applied to our embedding map i : Y0 ↪→ X, we

note that i∗ is surjective by eq. (4.4). In particular, there are elements c̄i ∈ H2(X,Z) such

that i∗(c̄i) = ci are our generators of H2(Y0,Z), i = 0, 1, 2, 3. Their cup products

c̄0 ∪ c̄1, c̄2 ∪ c̄3 ∈ H4(X,Z) (5.4)

must be non-trivial cohomology classes because

i∗(c̄0 ∪ c̄1) = i∗(c̄2 ∪ c̄3) 6= 0 ∈ H4(Y0,Z) = Z2 (5.5)

To summarize, the resulting non-commuting discrete gauge symmetries of four dimen-

sional theory are associated with Z2 × Z4 sectors of second torsion cohomology and a Z2

sector of the fourth torsion cohomology, resulting in the Heisenberg group determined by

k1 = 2, k2 = 4, k3 = 2 and M = 1.8

6 Outlook

In this paper we provided the first explicit example of Type IIB string theory compactifi-

cation on a Calabi-Yau manifold, which leads to a non-Abelian discrete gauge symmetry

in four-dimensions. The compactification is based on the Calabi-Yau threefold whose tor-

sion cohomology structure results in a non-trivial cup product of the second cohomology

torsion class elements, thus resulting in a non-Abelian gauge symmetry associated with a

Heisenberg-type discrete group.

We should, however, point out that this is a very specific Type IIB compactification on

a smooth Calabi-Yau manifold. Generalizations to Calabi-Yau orientifolds, which would

also allow for introduction of non-Abelian continuous symmetries and chiral matter, are

expected to be straightforward, with generators ρ2 (ω̃4) of the second (fourth) cohomology

8Note that a cup product with the free sector of H2 does not result in a non-Abelian discrete symmetry.
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torsion classes odd (even) under the orientifold action.9 Further studies of such com-

pactifications with a full fledged particle physics content would be an important future

research direction.

We should also note that these constructions result in specific non-Abelian discrete

gauge symmetries, namely, Heisenberg-type ones. Furthermore, specific results apply here

only to four-dimensional field theories, and not to six-dimensional ones, as K3 Calabi-Yau

twofolds have no torsion classes. Therefore an important generalization to other Calabi-

Yau manifolds, both twofolds and threefolds, where the non-Abelian discrete symmetries

could arise, e.g., from generalized isometries of the compactification manifold, awaits fur-

ther studies.

Last, but not least, an important direction of this program is to extend studies of non-

Abelian discrete gauge symmetries to F-theory, and to shed light on the geometric origins

of non-Abelian discrete gauge symmetries there. Techniques spelled out in this paper may

open the door for a systematic construction of F-theory compactifications on elliptically

fibered Calabi-Yau fourfolds with a structure of torsion cohomologies [19] that would result

in four-dimensional non-Abelian discrete symmetries.
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A Notebook

The paper describes a six-dimensional Calabi-Yau manifold with a non-trivial cup product

between two degree-two torsion classes. As described above, the cup product can be

detected by a (non-orientable) four-dimensional submanifold Y0, see section 4.2. In this

worksheet, we construct a ∆-complex for Y0 and determine the cohomology ring structure.

• This worksheet together with all required code can be found on github at

https://github.com/vbraun/torsion cup product.

• To run this worksheet yourself you need Sage http://sagemath.org and the Python

package in the torus triangulation directory of this repository. The latter is

only used to build up the cubical/simplicial/∆-complex representation of the Y0 =

T 4/(Z2×Z2) quotient. The computation of cohomology groups and the cup product

is taken from Sage.

9Note however, that issues related to the manifestly supersymmetric four-dimensional action were raised

in [19].

– 15 –

https://github.com/vbraun/torsion_cup_product
http://sagemath.org


J
H
E
P
0
7
(
2
0
1
7
)
1
2
9

In [3]: from __future__ import print_function, absolute_import

from sage.all import *

from torus_triangulation.cube_triangulation import CubeTriangulation

from torus_triangulation.builder import TorusQuotientBuilder

A.1 Constructing Y0

Let zi = xi + τyi, i = 0, . . . , 2 be the three complex coordinates on the 6-torus covering Y ,

see section 3 of the paper. This worksheet constructs the 4-d submanifold Y0 defined by

the four coordinates

(x0, x1, x2, y0)

subject to the identifications:

• The torus x0 ∼ x0 + 2, x1 ∼ x1 + 2, x2 ∼ x2 + 2, and y0 ∼ y0 + 1. Note the different

domain on y0, which we chose for convenience.

• The G = Z2 × Z2 group action:

In [4]: def f(point):

return tuple([ point[0] + 1, -point[1], -point[2], point[3]])

def g(point):

return tuple([-point[0], point[1] + 1, -point[2] + 1, -point[3]])

Up to the G-action, we need two unit 4-cubes to cover Y0. These are defined below, together

with a particular order of their vertices. Combined with a particular choice of triangulation

of these unit 4-cubes that is defined by the CubeTriangulation Python class, and as

long as everything is invariant under the torus identification and G-action, this defines a

decomposition into simplicies with an order on the vertices, that is, a ∆-complex.

In fact, most orderings for the vertices clash with the (torus and/or G-) identifications

and fail to define a ∆-complex. It is a non-trivial fact that there is an ordering that works at

all, in general the existence is only guaranteed after subdivision of the simplicies. However,

by a computer search we found the following solution:

In [5]: order1 = [

(1, 1, 1, 0),

(1, 1, 1, 1),

(0, 1, 1, 0),

(0, 1, 1, 1),

(0, 0, 0, 1),

(0, 0, 0, 0),

(1, 0, 0, 1),

(1, 0, 0, 0),

(0, 0, 1, 1),

(1, 0, 1, 1),

(0, 0, 1, 0),

(1, 1, 0, 0),

(1, 0, 1, 0),
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(0, 1, 0, 0),

(1, 1, 0, 1),

(0, 1, 0, 1),

]

order2 = [(o[0]+1, o[1], o[2], o[3]) for o in order1]

Given this data, we now build up all simplices on the covering space in the fundamental

region 0 ≤ x0, x1, x2 ≤ 2, 0 ≤ y0 ≤ 1

In [6]: builder = TorusQuotientBuilder(2, 2, 2, 1, group_gens=[f, g])

cube_triangulation = CubeTriangulation(*order1)

for simplex in cube_triangulation:

builder.add_simplex_orbit(*simplex)

cube_triangulation = CubeTriangulation(*order2)

for simplex in cube_triangulation:

builder.add_simplex_orbit(*simplex)

builder.test() # Test the construction

For example, there are 626 two-simplices, the first 5 of which are defined by the vertices

In [7]: list(builder.cells.simplices[3])[0:5]

Out[7]: [((1, 0, 2, 0), (2, 1, 1, 0), (1, 1, 1, 0)),

((1, 0, 2, 0), (1, 1, 1, 1), (1, 0, 1, 1)),

((1, 2, 0, 0), (2, 1, 1, 0), (1, 2, 1, 0)),

((1, 0, 2, 0), (1, 1, 2, 0), (2, 1, 2, 1)),

((0, 0, 2, 1), (0, 0, 2, 0), (1, 0, 1, 1))]

A.2 Cohomology groups: the fundamental region

As a toy example, consider the [0, 2] × [0, 2] × [0, 2] × [0, 1] fundamental region before

identifying any cells:

In [8]: cube = builder.cells.delta_complex(); cube

Out[8]: Delta complex with 54 vertices and 1844 simplices

As expected, it has the cohomology groups of a point:

In [9]: cube.cohomology(reduced=False)

Out[9]: {0: Z, 1: 0, 2: 0, 3: 0, 4: 0}

A.3 Cohomology groups: four-torus

Let us check that we indeed obtain a T 4 by identifying opposing sides (and ignoring the

G-action):

In [10]: T4 = builder.torus_cells.delta_complex(); T4

Out[10]: Delta complex with 8 vertices and 1201 simplices

In [11]: T4.cohomology(reduced=False)

Out[11]: {0: Z, 1: Z x Z x Z x Z, 2: Z^6, 3: Z x Z x Z x Z, 4: Z}
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A.4 Cohomology groups of Y0

Finally, we construct the ∆-complex for the Y0 = T 4/G quotient

In [12]: Y0 = builder.quotient_cells.delta_complex(); Y0

Out[12]: Delta complex with 2 vertices and 301 simplices

In [13]: Y0.cohomology(reduced=False)

Out[13]: {0: Z, 1: 0, 2: Z x C2 x C4 x C4, 3: Z x Z, 4: C2}

A.5 Cup products

By dimension, the only interesting case is H2(Y0,Z) × H2(Y0,Z) → H4(Y0,Z). We start

by extracting generators in degree two, that is, two-cochains:

In [14]: chains2 = Y0.n_chains(2, base_ring=ZZ, cochains=True)

h2_0, h2_1, h2_2, h2_3 = Y0.cohomology(generators=True, dim=2)

c0 = chains2.from_vector(h2_0[1].vector(2))

c1 = chains2.from_vector(h2_1[1].vector(2))

c2 = chains2.from_vector(h2_2[1].vector(2))

c3 = chains2.from_vector(h2_3[1].vector(2))

We now verify that the chosen generators of H2(T 4/G) are:

• c0 is two-torsion

• c1, c2 are four-torsion

• c3 is free

In [15]: for c in [c0, c1, c2, c3]:

print(c.is_cocycle(), c.is_coboundary(),

(2*c).is_coboundary(), (4*c).is_coboundary())

True False True True

True False False True

True False False True

True False False False

For the codomain of the cup product we also need to chose a generator, which we take to

be the four-cochain y0:

In [16]: chains4 = Y0.n_chains(4, base_ring=ZZ, cochains=True)

h4_0, = Y0.cohomology(generators=True, dim=4)

y0 = chains4.from_vector(h4_0[1].vector(4))

The generator of H4(T 4/G) is y0, and we verify that it is two-torsion:

In [17]: y0.is_cocycle(), y0.is_coboundary(), (2*y0).is_coboundary()

Out[17]: (True, False, True)
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By checking which degree four expressions are coboundaries, we can build up a list of all

cup products:

In [18]: [c0.cup_product(c0).is_coboundary(),

c0.cup_product(c1).is_coboundary(),

(c0.cup_product(c2) - y0).is_coboundary(),

c0.cup_product(c3).is_coboundary(),

c1.cup_product(c0).is_coboundary(),

c1.cup_product(c1).is_coboundary(),

(c1.cup_product(c2) - y0).is_coboundary(),

(c1.cup_product(c3) - y0).is_coboundary(),

(c2.cup_product(c0) - y0).is_coboundary(),

(c2.cup_product(c1) - y0).is_coboundary(),

c2.cup_product(c2).is_coboundary(),

c2.cup_product(c3).is_coboundary(),

c3.cup_product(c0).is_coboundary(),

(c3.cup_product(c1) - y0).is_coboundary(),

c3.cup_product(c2).is_coboundary(),

c3.cup_product(c3).is_coboundary(),

]

Out[18]: [True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True,

True]

In [19]: def trivial_cup_product_table(*cohomology_generators):

"""

Make a table whose entries are whether the cup product

is trivial

"""

names = [’c0’, ’c1’, ’c2’, ’c3’]

rows = [[’’] + names]

for row_name, c in zip(names, cohomology_generators):

– 19 –
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row = [row_name]

for d in cohomology_generators:

cd = c.cup_product(d)

assert cd.is_cocycle()

row.append(’0’ if cd.is_coboundary() else ’1’)

rows.append(row)

return table(rows)

In [20]: trivial_cup_product_table(c0, c1, c2, c3)

Out[20]: c0 c1 c2 c3

c0 0 0 1 0

c1 0 0 1 1

c2 1 1 0 0

c3 0 1 0 0

A.6 Alternate basis

There is a slightly better basis choice that leads to fewer non-trivial table entries:

In [21]: trivial_cup_product_table(c0, c2, c1+c0, c3+2*c2)

Out[21]: c0 c1 c2 c3

c0 0 1 0 0

c1 1 0 0 0

c2 0 0 0 1

c3 0 0 1 0
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