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1 Introduction

Noncommutative Geometry [1] provides a way to resolve the physical objections to the co-

existence of continuous space-time and commuting coordinates at the Planck scale [2, 3].

Noncommutativity of space-time might have significant physical impact, e.g. gravitational

and cosmological effects as investigated in [4–9]. Once the noncommutative nature of

space-time is assumed which is generally reflected into the noncommutativity of an algebra

of coordinates, noncommutative field theories (NCFT) or noncommutative gauge theories

naturally arise. For reviews on early studies, see e.g [10–12] and references therein.

One way to investigate quantum properties of a NCFT is to represent it as a matrix

model. This has been done in [13–18, 20–22] (for a review on emergent gravity in matrix

models [19]) for the Moyal spaces and for deformations of R3 which define a class of

noncommutative spaces, or quantum spaces, with su(2) noncommutativity. These latter

spaces have been introduced a long time ago in [23] (see also [24–26]). For an alternative

description in terms of convolution algebra of SU(2), see [27]. These spaces are of our

main concern in the present paper. In the matrix model approach of NCFT, one regards

the noncommutative coordinate algebras as (abstract) involutive algebras of (self-adjoint)

operators so that standard tools and properties of functional analysis can be exploited
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to study quantum properties of the NCFT. Recall that an involutive algebra A, also

known as ∗-algebra, is an algebra endowed with an involution, i.e a map I : A → A such

that I2(a) = a, for any a ∈ A. Albeit powerful, it may happen that the matrix model

formulation of a NCFT becomes unexploitable due to severe technical difficulties.

Another alternative (widely used) framework to study properties of NCFT is to take

advantage of star-products and deformation theory approach, either from the standard

viewpoint of formal deformations extending the quantization approach of classical phase

spaces [28], or taking advantage of underlying Hopf algebra structures and related twists [29,

30]. We adopt the former viewpoint in this paper. Informally, this framework amounts

(among other tasks) to represent the abstract involutive algebras of operators stemming

from the above mentioned coordinate algebras on well chosen involutive algebras of func-

tions equipped with a deformed product, i.e star-product, which can be achieved through

the introduction of some suitable (invertible) quantization map. One well-known example

heavily used in earlier studies of quantum properties of NCFT on Moyal spaces [31–33]

(for a review on gauge theories on Moyal spaces see [34]; families of star products on the

Moyal space R4
θ have been constructed in [35]) is the Weyl quantization map, linked to

the Wigner-Weyl transform, giving rise to the Moyal product. Other star-products related

to κ-Minkowski spaces as well as deformations of R3 with su(2) noncommutativity have

also appeared and used to construct and study NCFT on these spaces [36–44, 46–48] (for

a general construction see [45]). The use of star-product formulation of NCFT is often

convenient for fast construction of reasonable functional actions but may lead to technical

difficulties whenever the star-product is represented by a complicated formula and/or is

not closed for a trace functional.

In this paper, we will focus on quantum spaces with su(2) noncommutativity. Since

these spaces support a canonical Poisson structure stemming from the underlying su(2)

Lie algebra structure, the general framework for the deformations of Poisson manifolds [28]

could be applied to the present situation. However, this would lead to star-products ex-

pressed as infinite expansions which cannot be used to study quantum properties of NCFT.

Explicit (closed) expressions for these star-products are needed. A convenient way to reach

this goal is to represent the abstract ∗-algebra of coordinate operators as ∗-algebra of differ-

ential operators. Therefore, one natural requirement for these differential representations

is to be compatible with the involution. Recall that for such an involutive representation,

or ∗-representation, says π : A → B a morphism of algebras (A and B are ∗-algebras with

respective involutions ∗ and †), one has π(a∗) = (π(a))†. This is what we demand for

the differential representations we look for. Differential representations have been used

in various contexts in the Physics literature, see e.g. [36–48] and references therein, some

being ∗-representations, some being not. The use of a non ∗-representation may lead to

troublesome features. For instance, self-adjoint coordinate operators may not be repre-

sented as self-adjoint differential operators, unitary operators built from the exponential

map may not be represented as unitary differential operators. Besides, one may obtain a

star-product for which, in obvious notations, (f ? g)† 6= g† ? f † (for any f and g in some

suitable space of functions) what may be problematic to define natural reality conditions

on functional actions.
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Before entering the discussion, it is instructive to compare briefly our present approach

to another approach based on a suitable (noncommutative) adaptation of the Hopf map

defining the well known Hopf fibration of the 3-sphere S3, πH : S3 → S2 (πH is the

Hopf map), first developed in [23] (see also [24, 25]) and further related to a geometrical

framework in [26]. The main point underlying [23] is the construction of one particular

deformation of R3, called R3
λ in [23], as a subalgebra of R4

θ, the algebra of (suitable)

functions of R4 ' C2, says F(R4), endowed with the Wick-Voros product [49], a variation

of the Moyal product. Hence, the star-product defining the deformation R3
λ is essentially

induced from the Wick-Voros product by the embedding of R3
λ in R4

θ obtained from the Hopf

map. It turns out that the above construction has a nice commutative geometrical analog

in term of the Kustaanheimo-Stiefel map [50] which can be extended to a noncommutative

setting, as shown in [26]. Indeed, in the commutative setting, by observing that1 R4
/0 '

S3 × R+ and R3
/0 ' S2 × R+ hold true, the Hopf map πH can be extended to πKS :

R4
/0 → R3

/0, using S3 ' SU(2), where the map πKS defines the Kustaanheimo-Stiefel

fibration [50], a principal fibration with structure group U(1). Then, from πKS follows

the embedding of F(R3
/0) in F(R4

/0), while the restriction to non zero elements can be

finally removed. It appears that πKS can be used to define a good notion of integral

on F(R3) from the natural integral on F(R4) together with derivations on F(R3) from

a suitable projection of those on F(R4). For a discussion, see [51]. This scheme can be

extended to the noncommutative setting, as shown in [26], where a natural trace on R3
λ has

been proposed as well as Laplacians with (noncommutative analog) of radial dynamics (see

however [52]). We will discuss these Laplacians at the end of the paper. The approach used

in the present paper is in some sense more algebraic and does not relies explicitly on some

embedding of deformations of R3 into some deformed R4. Instead, it exploits standard

algebraic properties stemming from the relationship pointed out in [27] between those

deformations of R3 and the convolution algebra of SU(2), a particular group algebra. It is

important to note that the present framework supports a natural trace simply related to the

SU(2) Haar measure which can be verified to be consistently related to the trace/integral

on R3
λ constructed in [26].

The paper is organized as follows. In section 2, we find that su(2) Lie algebras of

coordinate operators related to quantum spaces with su(2) noncommutativity can be con-

veniently represented by SO(3)-covariant poly-differential ∗-representations. A comparison

with other differential non ∗-representations that appeared in the literature is presented. In

section 3.1, we show that the so-called quantized plane waves obtained from the action of

a suitable quantization map on the usual exponential functions can be almost determined

from the combination of the usual polar decomposition of operators with an additional con-

straint stemming from the Wigner theorem for SU(2). Subsequent standard computations

detailed in section 3.2 give rise rather easily to the explicit expression for the quantized

plane waves which are found to depend on two Volterra integrals. Properties of the quanti-

zation maps are discussed in section 3.3. In section 3.4, we focus on a particular subfamily

of ∗-representations and show that the resulting star-product is equivalent to a closed star-

1The subscript /0 means that 0 is excluded.
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product for the trace functional defined by the usual Lebesgue integral Tr =
∫
d3x. This

product coincides with the Kontsevich product related to the Poisson manifold dual to

the finite dimensional Lie algebra su(2). The section 4 is devoted to a discussion of the

results. In particular, we indicate a convenient way to extend the present construction

to other semi-simple but non simply connected Lie groups, such as SL(2,R), by making

use of results from group cohomology with value in an abelian group that would replace

the constraints stemming from the simple Wigner theorem used in the construction of sec-

tion 3.1. Finally, we present noncommutative scalar field theories with quartic interactions

which are free from (perturbative) UV/IR mixing as a consequence of the combination of

the analysis of [43] with the results of section 3.4.

2 su(2)-noncommutativity and differential ∗-representations

In this section, we construct families of poly-differential representations for a coordinate op-

erator algebra satisfying su(2) Lie algebra commutation relations. Insisting on the preser-

vation of the involutive structures of the algebra modeling the corresponding noncom-

mutative spaces forces us to focus on ∗-representations. We find that SO(3)-covariant
∗-representations, stemming from the natural action of SU(2)/Z2 on the algebra modeling

the quantum spaces with su(2) noncommutativity, are of the form

x̂µ = xα
[
f(∆)δαµ + g(∆)∂α∂µ + iθε ρ

αµ ∂ρ
]

+ `(∆)∂µ,

see (2.34) below, where ∆ = ∂µ∂µ is the usual SO(3)-invariant Laplacian on R3 and

f , g and ` are functionals of ∆ which satisfy a system of differential functional equa-

tions, (2.35), (2.36) below. Examples are briefly discussed, some being compared to repre-

sentations used recently in the literature.

A word of caution: to each element of the above family of ∗-representations corresponds

a star-product, hence a deformed R3 space, both depending on f , g, ` (and θ), namely

R3
θ,f,g,` := (F(R3), ?θ,f,g,`). To simplify the notations, we will denote generically any space

R3
θ,f,g,` as R3

θ. The corresponding ∗-representation should be clear from the context.

2.1 The master equations

We start from A[X̂µ], the abstract operator algebra generated by the self-adjoint coordinate

operators X̂µ satisfying

[X̂µ, X̂ν ] = i2θε ρ
µν X̂ρ, µ, ν, ρ = 1, 2, 3, (2.1)

where θ ∈ R, θ > 0.2 We denote by “∗” the usual (canonical) involution on A[X̂µ],

hence a ∗-algebra (with X̂∗µ = X̂µ), and by S(R3) and M(R3) respectively the algebra of

Schwartz functions on R3 and its multiplier algebra. In the following, 〈·, ·〉 denotes the

usual hermitian product defined, for any f, g ∈ M(R3), by 〈f, g〉 :=
∫
d3x f̄(x)g(x) where

f̄(x) is the complex conjugate of f(x).

2For the present algebraic manipulations, one can safely work at the level of the enveloping algebra of

su(2). See eq. (2.19).
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Let π : A[X̂µ]→ L(M(R3)),

π : X̂µ 7→ π(X̂µ) =: x̂µ(x, ∂), µ = 1, 2, 3, (2.2)

be a differential representation, assumed to be an algebra homomorphism, where L(M(R3))

is the set of linear operators acting on M(R3). Hence, (2.1) implies that

[x̂µ, x̂ν ] = i2θε ρ
µν x̂ρ, (2.3)

therefore transferring the su(2) Lie algebra structure onto the relevant set of differential

operators.

In view of further applications to NCFT, in particular to make possible the imple-

mentation of reasonable reality conditions in the construction of Lagrangians, we consider

from now on the more restricted class of ∗-representations, namely those fulfilling, for any

a ∈ A[X̂µ],

π(a∗) = (π(a))† , (2.4)

where the symbol “†” denotes the usual adjoint operation on L(M(R3)). It is convenient

to consider representations of the form [47, 48]

x̂µ = xνϕ
ν
µ(∂) + χµ(∂) , (2.5)

where the functionals ϕνµ(∂) and χµ(∂) are viewed as formal expansions in the usual

derivatives of R3, ∂µ, µ = 1, 2, 3.

By making use of the algebraic relation

[xλ, h(x, ∂)] = − ∂h

∂(∂λ)
, (2.6)

valid for any functional h of xµ and ∂µ, one finds that (2.5) obeys the su(2) Lie algebra

structure (2.3) provided the following functional differential equations

∂ϕλµ
∂(∂ρ)

ϕρν −
∂ϕλν
∂(∂ρ)

ϕρµ = i2θε ρ
µν ϕλρ , (2.7)

∂χµ
∂(∂ρ)

ϕρν −
∂χν
∂(∂ρ)

ϕρµ = i2θε ρ
µν χρ , (2.8)

hold true.

The above relations (2.7), (2.8) generate infinitely many solutions for the representation

π (2.2) defined by (2.5). Among these, we now select the ∗-representations which is achieved

by demanding, for any f, g ∈M(R3),

〈f, x̂µg〉 = 〈x̂µf, g〉, (2.9)

i.e the operators x̂µ, µ = 1, 2, 3 to be self-adjoint so that x̂†µ = x̂µ. Therefore, one can

write, for any f, g ∈M(R3),

〈f, x̂†µg〉 = 〈(xαϕαµ(∂) + χµ(∂))f, g〉 = 〈f, ϕ̄αµ(−∂)xαg〉+ 〈f, χ̄µ(−∂)g〉

= 〈f, xαϕ̄αµ(−∂)g〉+ 〈f,
∂ϕ̄αµ(−∂)

∂(∂α)
g〉+ 〈f, χ̄µ(−∂)g〉, (2.10)
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where we used

∂†µ = −∂µ, h†(∂) = h̄(−∂) , (2.11)

for any functional h(∂) depending on the derivatives, together with (2.6) and the definition

of the Hilbert product 〈·, ·〉.
Hence, eq. (2.10) satisfies (2.9) provided

ϕ̄αµ(−∂) = ϕαµ(∂), (2.12)

∂ϕ̄αµ(−∂)

∂(∂α)
= χµ(∂)− χ̄µ(−∂). (2.13)

From (2.12), one readily infers that ϕαµ must have the following decomposition:

ϕαµ(∂) = Φαµ(∂) + iΨαµ(∂) , (2.14)

with the real functional Φαµ (resp. Ψαµ) of even (resp. odd) degree in ∂.

For further convenience, we collect below the 4 master equations (2.7), (2.8),

(2.12), (2.13) determining the poly-differential ∗-representations

i2θϕαρ = ε µν
ρ

∂ϕαµ
∂(∂β)

ϕβν , (2.15)

ϕ†αρ = ϕαρ (2.16)

i2θχρ = ε µν
ρ

∂χµ
∂(∂α)

ϕαν , (2.17)

∂ϕ†αρ
∂(∂α)

= χρ − χ†ρ, (2.18)

where we have used the algebraic relation δµγδ
σ
ν − δ σ

µ δνγ = ε ρ
µν ε σ

ργ into (2.7) and (2.8)

to produce (2.15) and (2.17).

2.2 SO(3)-equivariant ∗-representations

Owing to the fact that R3
θ supports a natural action of SU(2)/Z2 ' SO(3), since

R3
θ ( U(su(2)) ∼= A[X̂µ]/[X̂µ, X̂ν ] (2.19)

as algebras (see [27, 43]), where U(su(2)) is the universal enveloping algebra of su(2), we

focus now on the particular class of SO(3)-equivariant3 representations π which therefore

correspond to ϕαµ of the form

ϕαµ(∂) = α(∆)δαµ + β(∆)

(
1

3
δαµ∆− ∂α∂µ

)
+ γ(∆)ε ρ

αµ ∂ρ, (2.20)

stemming from a simple application of the Schur-Weyl decomposition theorem4 for SO(3),

where α, β and γ are SO(3)-invariant functionals depending on the Laplacian ∆, to be

determined in a while. It will be further assumed that α and β (resp. γ) are real (resp.

purely imaginary) functionals so that (2.14) is satisfied. In the same spirit, we write χµ as

χµ(∂) = `(∆)∂µ , (2.21)

where `(∆) is a complex SO(3)-invariant functional to be determined.

3This is called SO(3)-covariance in the Physics literature.
4See for instance in H. Weyl, Classical groups, Princeton University Press, Princeton U.S.A. (1946).

– 6 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
6

For computational convenience we rewrite (2.20) as:

ϕαµ(∂) = f(∆)δαµ + g(∆)∂α∂µ + ih(∆)ε ρ
αµ ∂ρ, (2.22)

where the real functionals f(∆), g(∆), and h(∆) are defined by:

f(∆) := α(∆) +
β(∆)

3
∆ , g(∆) := −β(∆) , h(∆) := −iγ(∆). (2.23)

Plugging (2.22) in the first master equation (2.15), we easily obtain for the right-hand side

(r.h.s. ) of (2.15):

r.h.s. = −2θhε ρ
αµ ∂ρ + 2iθ (fδαµ + g∂α∂µ) , (2.24)

and for the left-hand side (l.h.s. ):

l.h.s. = −(2ff ′ + 2gf ′∆− gf + h2)ε ρ
αµ ∂ρ+

+ 2i
[(
hf + gh′∆2 + fh′∆

)
δαµ −

(
gh′∆ + fh′ − gh

)
∂α∂µ

]
, (2.25)

where f ′ denotes the derivative of f with respect to its argument. Thus, identifying (2.25)

with (2.24), the first master equation (2.15) reduces to a system of three differential

equations:

(f + g∆)h′ − (h− θ)g = 0 , (2.26)

(f + g∆)h′∆ + (h− θ)f = 0 , (2.27)

2(f + g∆)f ′ + (h− 2θ)h− gf = 0 . (2.28)

Linear combination of the two first equations of that system leads to

(f + g∆)(h− θ) = 0 , (2.29)

highlighting the possible choices for differential representations satisfying su(2) commuta-

tion relations. Namely, with either f + g∆ = 0 or h = θ.

Likewise, combining (2.22) and (2.21) with (2.17) and (2.18), one obtains respectively

h = θ, (2.30)

2(f + g∆)′ + 2g = `+ `†. (2.31)

Before giving the general form of SO(3)-covariant ∗-representations x̂µ we are going to focus

on next sections, one comment is in order. One can see that, as long as χµ = 0, (2.17)

gives no information for admissible solutions for f , g and h. In particular, (2.30) does not

necessarily hold true. Then, in the case h 6= θ, one has f + g∆ = 0 from (2.29), and the

system (2.26)–(2.28) together with (2.31) admit two solutions5

x̂µ = 0 , (2.32)

x̂µ = i2θε ρ
σµ xσ∂ρ , (2.33)

5When χµ = 0, (2.31) prevents f + g∆ = 0 and h = θ to be satisfied at the same time.
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that we disregard since (introducing the left-action of operator on functions “B”) x̂µB 1 6=
xµ and x̂µ B f(x)→ 0 when θ → 0 for arbitrary function f (see section 3).

Below, we consider the case h = θ (for χµ 6= 0 or χµ = 0).

Finally, let us go back to representations satisfying the whole set of equations (2.26)–

(2.31). By observing that h = θ solves both (2.26) and (2.27) trivially, one finds the

following family of ∗-representations (2.5) (with SO(3)-covariance):

x̂µ = xα
[
f(∆)δαµ + g(∆)∂α∂µ + iθε ρ

αµ ∂ρ
]

+ `(∆)∂µ, (2.34)

where the functionals f(∆), g(∆) and `(∆) satisfy

2
[
(f + g∆)′ + g

]
= `+ `† , (2.35)

2(f + g∆)f ′ = gf + θ2 , (2.36)

f, g real.

2.3 Discussion and example

We now briefly discuss the above result. First, let us go back to the case of non ∗-

representations for which only the equations (2.26)–(2.28) are relevant, assuming for a

while χµ = 0. It can be easily seen that this latter system admits an interesting solution

by noticing that h = θ solves both (2.26) and (2.27), as already noticed above, while (2.28)

gives rise to a Riccati equation

2g′ =

(
2R′(∆)

∆
− θ2

∆R(∆)

)
− 3

∆
g +

1

R(∆)
g2 , (2.37)

with the constraint

f + g∆ =: R(∆), (2.38)

where R(∆) is some given real functional.

In the special case

f + g∆ = 1 , (2.39)

one easily recovers the expression for the poly-differential (however non ∗-)representation

considered in [44]. Using (2.39), (2.37) reduces to

2t
dG

dt
+ 3 (G(t) + 1)− t

6
G2(t) = 0, (2.40)

where we have defined

g(∆) :=
θ2

3
G(2θ2∆) , (2.41)

in order to make connection with the notations and conventions of [44]. The solution

of (2.40) is:

G(t) = −6

∞∑
n=1

2nB2n

(2n)!
tn−1 , (2.42)

where Bn are Bernoulli numbers.
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Let us now consider the case of ∗-representations. From the above discussion, these

latter must satisfy (2.17)–(2.18) which determine χµ once ϕµν fulfilling (2.16) is obtained

from (2.15). Hence (2.26)–(2.28) must be supplemented by (2.30), (2.31) so that the whole

system reduces to (2.35) and (2.36). In particular, when (2.39) still holds true, (2.35)

and (2.36) imply that

l + l† = 2g(∆) , (2.43)

in which g(∆) is still given by (2.41), (2.42).

Hence, the poly-differential representation used in [44] can be extended to a ∗-

representation which, by further assuming that l(∆) is a real functional,6 is defined by

the following expression

x̂µ = xα
[
(1− g(∆)∆)δαµ + g(∆)∂α∂µ + iθε ρ

αµ ∂ρ
]

+ g(∆)∂µ , (2.44)

with g(∆) given by (2.41), (2.42).

In the next section, we determine explicitly the expression for the star-product corre-

sponding to ∗-representations defined by (2.34)–(2.36).

3 Quantization maps and related star-products

3.1 A natural group cohomological setting

We start by characterizing the quantization map Q and the related star-product we use in

the following. We look for an invertible map which is a ∗-algebra morphism

Q : (M(R3), ?)→ (L(M(R3)), ·), (3.1)

where ? (resp. the dot “·”) denotes the star-product (resp. the product between poly-

differential operators, omitted from now on), such that

f ? g := Q−1 (Q(f)Q(g)) , Q(1) = I, Q(f̄) = (Q(f))† . (3.2)

Hence, one can write, for any f, g ∈M(R3),

(f ? g)(x) =

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)Q−1

(
Q(eipx)Q(eiqx)

)
, (3.3)

where f̃(p) =
∫
d3xf(x)e−ipx is the Fourier transform of f (same for g̃) so that the star-

product is fully characterized once

Ep(x̂) := Q(eipx) , (3.4)

together with the inverse map Q−1 are determined.

For a given ∗-representation, we observe that the determination of the inverse map

Q−1 can be conveniently carried out by enforcing the condition

Q(f) B 1 = f(x) , (3.5)

6We are going to see subsection 3.2.2 that, in view of (3.10), ` is necessarily real.
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for any f ∈M(R3), where the symbol “B” denotes the left action of operators, hence

Q−1 (Q(f)) = Q(f) B 1. (3.6)

In the following, the construction of the star-product is performed by requiring that (3.5)

holds true.

Next we recall, as shown in [27], that the noncommutative algebra R3
θ generated

by (2.3) is the SU(2) Fourier transform of (hence isomorphic to) the convolution algebra

of SU(2), (L2(SU(2)), •), where the symbol • denotes the associative convolution product

on SU(2) given, for any functions f, g ∈ L1(SU(2)), by

(f • g)(u) =

∫
SU(2)

dµ(t)f(t)g(t−1u), (3.7)

in which dµ(t) is the SU(2) Haar measure. Hence, it is natural to view Ep(x̂), eq. (3.4), as

stemming from a map E : SU(2)→ L(M(R3)), with

E : g 7→ E(g) := Ep(x̂), (3.8)

and

E(g†) = E†(g) , (3.9)

for any g ∈ SU(2).

In the following, the quantity E(g) ≡ Ep(x̂) is called “quantized plane waves”.

Now, from the general polar decomposition of an operator, one can write

E(g) = U(g)|E(g)| , (3.10)

where U : SU(2) → L(M(R3)) is a unitary operator and |E(g)| :=
√
E†(g)E(g) 6= 0

denotes as usual the absolute value of E(g). In view of the Stone’s theorem, it is legitimate

to parametrize the unitary operator involved in (3.10) as

U(g) = eiξ
µ
g x̂µ , (3.11)

where ξµg ∈ R, to be determined in a while in terms of the functionals f, g, ` entering

eq. (2.34). Hence, U(g) can be viewed as an element of SU(2) and the Baker-Campbell-

Hausdorff formula for su(2) applies between exponential functions eiξ
µ
g x̂µ , namely

eiξg1 x̂eiξg2 x̂ = eiB(ξg1 ,ξg2 )x̂ , (3.12)

where B(ξg1 , ξg2) is an infinite expansion satisfying

B(ξg1 , ξg2) = −B(−ξg2 ,−ξg1), B(ξg, 0) = ξg . (3.13)

Since U(g) and E(g) define representations of SU(2), one has for any g1, g2 ∈ SU(2)

U(g1)U(g2) = U(g1g2) , (3.14)
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which holds up to unitary equivalence as a mere application of the Wigner theorem to

SU(2), while we demand

E(g1)E(g2) = Ω(g1, g2)E(g1g2) (3.15)

where Ω(g1, g2) will be determined in a while. In particular, (3.15) leads to

E(g†)E(g) = Ω(g†, g)I (3.16)

for any g ∈ SU(2), where we used E(g†g) = E(I) = I. Therefore,

|E(g)| =
√

Ω(g†, g)I. (3.17)

Hence, one has

ωg :=
√

Ω(g†, g) ∈ R, ωg > 0, (3.18)

together with

[|E(g)|, U(g)] = 0. (3.19)

Combining (3.19) with (3.10), one easily obtains:

E(g1)E(g2) = |E(g1)||E(g2)|U(g1g2) = |E(g1)||E(g2)||E(g1g2)|−1E(g1g2) , (3.20)

where the second equality stems from (3.14).

Using the expression for |E(g)|, one can rewrite (3.20) as

E(g1)E(g2) = (ωg1ωg2ω
−1
g1g2)E(g1g2) , (3.21)

where

E(g1g2) = ωg1g2e
iB(ξg1 ,ξg2 )x̂. (3.22)

At this point, some comments are in order.

First, we note that the general form for E(g) derived above may be guessed by per-

forming a brute force computation of eikx̂ B 1. This is given in the appendix A.

Next, it can be easily realized that (3.21) insures automatically the associativity of the

SU(2) group product and therefore the associativity of the related star-product (3.3). This

comes from the fact that Ω(g1, g2) := ωg1ωg2ω
−1
g1g2 obeys a 2-cocycle relation, namely

Ω(g1, g2)Ω(g1g2, g3) = Ω(g1, g2g3)Ω(g2, g3), (3.23)

for any g1, g2, g3 ∈ SU(2).

Finally, from eq. (3.14), it follows that any unitary equivalent representations, says

U and U ′, give rise to unitary equivalent products. Indeed, by unitary equivalence, one

can write

U ′(g) = eiγ(g)U(g) = eiγ(g)eiξg x̂ (3.24)

where γ is a real function. Then, it can be easily verified that one can write the following

relation

T (f ?′ g) = Tf ? Tg, (3.25)
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which defines obviously an equivalence relation between the two star-products, where the

map T is defined from

E′k(x̂) ≡ Q′(eikx) := Q ◦ T (eikx) = eiγ(k)Q(eikx) = eiγ(k)Ek(x̂). (3.26)

This can be rephrased by stating that the star-product which will be determined in a while

is essentially unique up to unitary equivalence.

A similar conclusion applies for any other semi-simple and simply connected Lie group

G, assuming of course that a suitable ∗-representation for its Lie algebra similar to (2.3)

has been determined. This reflects the fact that H2(G,R/Z), the second cohomology group

of G with value in U(1) ' R/Z is trivial, implying that any unitary map U : G→ End(H)

(where H is some suitable Hilbert (representation) space) satisfies

U(g1)U(g2) = Γ(g1, g2)U(g1g2) (3.27)

for any g1, g2 ∈ G where the map Γ : G × G → U(1) is simply a coboundary (i.e a trivial

cocycle) which therefore takes the form

Γ(g1, g2) = eiγ(g1)eiγ(g2)e−iγ(g1g2). (3.28)

Hence, as in the case of G = SU(2), one can set Γ(g1, g2) = I, any other star-product ob-

tained from Γ(g1, g2) 6= I being unitary equivalent to the one corresponding to Γ(g1, g2) = I.
Notice that eq. (3.27) defines a projective representation of G. Recall that (inequiv-

alent) projective representations of any (connected) Lie group G are classified by the 2-

cocycles pertaining to H2(G,U(1)). Basic properties of the group cohomology with val-

ues in a G-module that are relevant here are recalled in the appendix B for the sake

of completeness.

It appears that semi-simple but non simply connected groups may have non trivial

H2(G,U(1)), leading to the appearance of different classes of star-products that we briefly

discuss section 4.

3.2 Determination of the quantized plane waves

We are now in position to characterize from the family of ∗-representations x̂µ defined

by (2.34)–(2.36), the explicit expression for the quantized plane waves, (3.8),

Ep(x̂) = ω(p)eiξ(p)x̂, (3.29)

discussed subsection 3.1, by actually computing ω(p) and ξ(p) whose general expressions

are given by two Volterra integrals, (3.56) and (3.45) respectively.

3.2.1 Computation of ξ(p)

Let’s first derive the expression for ξ. From the definition of Ep(x̂), one has:

eiξ(p)x̂ B 1 =
eipx

ω(p)
. (3.30)
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Then, the action of e−iξ(p)x̂∂µe
iξ(p)x̂ on 1 gives:

e−iξ(p)x̂∂µe
iξ(p)x̂ B 1 = e−iξ(p)x̂∂µ B

eipx

ω(p)

= e−iξ(p)x̂ B (ipµ)
eipx

ω(p)

= (ipµ)e−iξ(p)x̂eiξ(p)x̂ B 1 .

Since e−iξ(p)x̂eiξ(p)x̂ ≡ I, one gets the following (operator) identity:

e−iξ(p)x̂∂µe
iξ(p)x̂ = (ipµ)I , (3.31)

which is satisfied for any 3-momentum p ∈ R3, hence holds true by rescaling p 7→ λp, with

λ ∈ R, namely

e−iξ(λp)x̂∂µe
iξ(λp)x̂ = (iλpµ)I. (3.32)

Then, making use of the derivative w.r.t. λ on this last expression gives (ipµ)I for the r.h.s.

and, for the l.h.s.

d

dλ

[
e−iξ(λp)x̂∂µe

iξ(λp)x̂
]

= i
d

dλ
[ξν(λp)]

(
e−iξ(λp)x̂ϕµν(∂)eiξ(λp)x̂

)
, (3.33)

where we have used the identity [∂µ, x̂ν ] = [∂µ, x
aϕaν ] = ϕµν . Since ϕµν is a function of ∂

only, it is straightforward to show (in view of (3.31)) that:

e−iξ(λp)x̂ϕµν(∂)eiξ(λp)x̂ = ϕµν(iλp)I , (3.34)

then (by identification of l.h.s. and r.h.s. ):

ϕµν(iλp)
d

dλ
[ξν(λp)] = pµ, (3.35)

which permits us to determine ξ(p) by solving a first order differential equation.

To do so, we first have to invert ϕµν . From our discussion section 2, we search solution

of the form

(ϕ−1)µν(∂) := X(∆)δµν + Y (∆)∂µ∂ν + Z(∆)ε ρ
µν ∂ρ , (3.36)

such that ϕµν(ϕ−1)νσ = δ σµ . A standard computation leads to the following system:

fX − iθ∆Z = 1 ,

(f + ∆g)Y + gX + iθZ = 0 , (3.37)

fZ + iθX = 0 ,

which admits the following unique solution (assuming f2 6= θ2∆):7

X(∆) =
f(∆)

f2(∆)− θ2∆
, (3.38)

Y (∆) = − 2f ′(∆)

f2(∆)− θ2∆
, (3.39)

Z(∆) = − iθ

f2(∆)− θ2∆
, (3.40)

7In the case f2 − θ2∆ = 0, ϕµν is not invertible.
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where we have used equation (2.36) to simplify the expression for Y . Then:

(ϕ−1)µν(ip) =
1

f2 + θ2p2

(
fδµν + 2f ′pµpν + θεµνρpρ

)
, (3.41)

where f and its derivative, defined by (2.34)–(2.36), are functions of (−p2).

Finally, the expression for ξ(p) follows directly by integrating dξµ = (ϕ−1)µν|iλppνdλ

between 0 and 1. Namely, one has

ξµ(p) =

∫ 1

0
dλ(ϕ−1)µν|iλppν , (3.42)

where ϕ−1
|y refers to the function ϕ−1 evaluated on y, whose expression is given by (3.41),

and where we have used ξµ(0) = 0 stemming from E(I) = E0(x̂) = I.
At this stage, one remark is in order. One can easily verify that, by setting

f = 1 + p2g , (3.43)

which corresponds to the case (2.39), (2.44) discussed section 2, one has

(ϕ−1)µνpν = pµ, (3.44)

thus recovering the expected result ξµ(p) = pµ (cf. eq. (A.8)).

One can rewrite (3.42) as a Volterra integral by using (3.36) and the change of variable

t = −λ2p2:

ξµ(p) =

∫ 0

−p2

dt

2p
√
−t

[X(t) + tY (t)] pµ , (3.45)

Note that ξµ is an injective antisymmetric real-valued function.

3.2.2 Computation of ω(p)

Now, it remains to determine ω(p) in order to fully characterize Ep(x̂). Let us rescale

p 7→ λp, λ ∈ R in (3.30). On one hand, one has:

d

dλ

[
eiξ(λp)x̂

]
= i

d

dλ
[ξµ(λp)] x̂µe

iξ(λp)x̂ = i(ϕ−1)µν|iλppν x̂µe
iξ(λp)x̂ , (3.46)

where we used (3.42) for the second equality. Then,

d

dλ

[
eiξ(λp)x̂

]
B 1 = i(ϕ−1)µν|iλppν (xαϕαµ(∂) + χµ(∂)) B

eiλpx

ω(λp)

= i(ϕ−1)µν|iλppν (xαϕαµ(iλp) + χµ(iλp))
eiλpx

ω(λp)

= i
(
xν + χµ(ϕ−1)µν|iλp

)
pν

eiλpx

ω(λp)
. (3.47)

On the other hand, one can write

d

dλ

[
eiλpx

ω(λp)

]
=

(
ixνpν −

1

ω(λp)

d

dλ
[ω(λp)]

)
eiλpx

ω(λp)
. (3.48)
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Now, from the action of the derivation operation

dg

dλ
:= lim

ε→0

g(λ+ ε)− g(λ)

ε
, (3.49)

on g(λ, x) = Â(λ)f(x) for some suitable operator Â and function f , one obtains

dg

dλ
= lim

ε→0

(
Â(λ+ ε)− Â(λ)

ε

)
f(x) . (3.50)

Hence, one can write

d

dλ

[
Âf(x)

]
=
dÂ

dλ
f(x). (3.51)

From this, we easily obtain

d

dλ

[
eiξ(λp)x̂ B 1

]
=

d

dλ

[
eiξ(λp)x̂

]
B 1 , (3.52)

and

i
(
xν + χµ(ϕ−1)µν|iλp

)
pν = ixνpν −

1

ω(λp)

d

dλ
[ω(λp)] , (3.53)

which gives rise to the following differential equation:

1

ω(λp)

d

dλ
[ω(λp)] = −iχµ(ϕ−1)µν|iλppν , (3.54)

admitting the following solution

ω(p) = e
−i

∫ 1
0 dλ χµ(iλp)(ϕ−1)µν|iλp

pν
. (3.55)

This latter equation (3.55) can also be written as a Volterra equation using (3.36) and

performing the change of variable t = −λ2p2:

ω(p) = e
∫ 0
−p2 dt[X(t)+tY (t)]`(t) . (3.56)

Note that ω is symmetric function, namely ω(−p) = ω(p).

At this point, one important comment is in order. According to the discussion subsec-

tion 3.1, ω(p) must be a positive real quantity. By observing that X and Y , (3.38), (3.39),

are real, it follows that ` has to be a real functional, `† = `.

Hence, eq. (2.35) entering the definition of the family of ∗-representations (2.34) re-

duces to

` = (f + g∆)′ + g, (3.57)

which therefore constraints the expression for ` once f and g satisfying (2.36)

are determined.
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3.3 Quantization maps and ∗-representations

According to the discussion subsection 3.1, the quantization map Q, (3.1), as well as the

star-product, (3.3), are determined once the map E, (3.8), is known. In practice, this is

done by first choosing a ∗-representation fulfilling (2.34)–(2.36), then computing ω and ξ

using (3.45) and (3.56). In this section, we show that Q (whose inverse is given by (3.5))

cannot be the Weyl quantization map W corresponding to the symmetric ordering of

operators whenever the poly-differential representation x̂µ is a ∗-representation as defined

by (2.5). In other words, from eq. (3.61), that means we cannot find ∗-representation such

that ω(p) = 1, ξµ(p) = pµ, for all p ∈ R3, and W (eipx) B 1 = eipx.

To see that, first recall that the Weyl map is defined for any function f with corre-

sponding expansion

f(x) =
∑
n

αµ1µ2...µnx
µ1xµ2 . . . xµn (3.58)

and for any representation x̂, by the map W :

W (f) :=
∑
n

αµ1µ2...µn〈x̂µ1 x̂µ2 . . . x̂µn〉S , (3.59)

〈x̂µ1 x̂µ2 . . . x̂µn〉S :=
∑

Pn∈Sn

1

n!
Pn(x̂µ1 x̂µ2 . . . x̂µn) , (3.60)

where the sum in the symmetric product (3.60) runs over all the permutations of n operators

x̂µ. Hence, one easily realizes that

W (eipx) = eipx̂, (3.61)

W (f) =

∫
d3p

(2π)3
f̃(p)eipx̂. (3.62)

Now, when the operators x̂µ are defined by (2.34)–(2.36), a simple computation yields

〈x̂µ1 x̂µ2〉S B 1 = xµ1xµ2 + `0δµ1µ2 , (3.63)

〈x̂µ1 x̂µ2 x̂µ3〉S B 1 = xµ1xµ2xµ3 +
2

3

(
f1 + g0 +

3

2
`0

)
x(µ1δµ2µ3) , (3.64)

〈x̂µ1 x̂µ2 x̂µ3 x̂µ4〉S B 1 = xµ1xµ2xµ3xµ4 +
2

3

(
f1`0 + g0`0 +

3

2
`20 + 3`1

)
x(µ1δµ2µ3)

+
4

3

(
f1 + g0 +

15

16
`0

)(
δµ1(µ2xµ3xµ4) + xµ1x(µ2δµ3µ4)

)
, . . . ,

(3.65)

in which the fi’s (resp. gi, `i) are coefficients appearing in the expansion of f(∆) (resp.

g(∆), `(∆)). Then, one concludes that unless the functionals f(∆), g(∆), l(∆) satisfy some

relation which implies the vanishing of all the terms involving Kronecker symbol (∼ δµν)

in the r.h.s. of eqs. (3.63)–(3.65), an arbitrary x̂µ in the family of ∗-representations (2.34)–

(2.36) is such that

W (eipx) B 1 6= eipx, (3.66)
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and thus W (f) B 1 6= f(x) so that the condition (3.5) is not satisfied. Note that, at least

for the family of solutions we will consider, eq. (3.19), such a relation implying the above

vanishing does not exist as we now show.

Let us assume that there exists a ∗-representation for which W (eipx)B 1 = eipx. From

the discussion subsection 3.1, one then would have W (eipx) = ω(p)eiξ(p)x̂ with ω(p) = 1

and ξµ(p) = pµ. But this would imply from (3.42) and (3.55)∫ 0

−p2
dt(X(t) + tY (t))`(t) = 0, (3.67)∫ 0

−p2

dt

2t
√
−t

(X(t) + tY (t)) = 1. (3.68)

Whenever χ(t) 6= 0, it can be easily checked that (3.67) and (3.68) cannot be simultaneously

satisfied. Indeed, (3.67) implies (X(t) + tY (t))`(t) = 0 and therefore

X(t) + tY (t) = 0 , (3.69)

which clearly contradicts (3.68).

When χ(t) = 0, (3.68) implies the following Riccati equation

2tf ′ = tθ2 + f − f2, (3.70)

whose solution does not solve (2.35), (2.36) (for ` = 0). Hence, we conclude that there is

no poly-differential ∗-representation (2.34) that could fit with the Weyl quantization map.

As a remark, we notice that the fact that ∗-representations (2.34) with χ = 0 cannot

give rise to quantized plane waves of the general form (3.29) fulfilling (3.61), is already

apparent in e.g eq. (3.35). Indeed, recall that ξµ(p) = pµ holds true whenever f + gt = 1,

as discussed in subsection 3.2, which however is not compatible with (2.35)–(2.36).

One concludes that the only poly-differential representation compatible with the Weyl

quantization map within the framework of subsection 3.1 is the non ∗-representation dis-

cussed in subsection 2.3 whose form is given by

x̂µ = xα ((1− g∆)δαµ + g∂α∂µ + iθεαµρ∂ρ) (3.71)

where g is given by (2.41), (2.42).

3.4 Closed star-product

From now on, we focus on the example discussed in subsection 2.3, for which the differential
∗-representation (2.2) is given by (2.44)

x̂µ = xα
[
(1− g(∆)∆)δαµ + g(∆)∂α∂µ + iθε ρ

αµ ∂ρ
]

+ g(∆)∂µ ,

where g(∆) = −
∑∞

n=1
(2θ)2nB2n

(2n)! ∆n−1, which (formally) converges to:

g(∆) = −∆−1
(
θ
√

∆ coth(θ
√

∆)− 1
)
. (3.72)
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Now, recall that g is obtained from a Riccati equation given by 2tf ′ = tθ2 + f − f2 where

f = 1−tg (see (2.37), (2.39)). Then, it follows from (3.38) and (3.39) that X(t)+tY (t) = 1.

Hence, using (3.56) and (3.45), one finds that the corresponding quantized plane waves take

the form

Ep(x̂) = ω(p)eipx̂ , (3.73)

with

ω(p) = exp

[∫ 0

−p2
g(y)dy

]
, (3.74)

and g still given by (3.72).

Passing from hyperbolic to trigonometric functions and performing the change of vari-

able x = θ
√
y, one can rewrite ω as

ω(p) = exp

[
2

∫ θ|p|

0

(
cot(x)− 1

x

)
dx

]
. (3.75)

Upon integrating this latter expression, one finally obtains the following quantized

plane waves

Q(eipx) ≡ Ep(x̂) =

(
sin(θ|p|)
θ|p|

)2

eipx̂. (3.76)

According to the discussion of subsection 3.1, the corresponding ?-product, denoted by ?Q,

is readily obtained from

eipx ?Q e
iqx =W2(p, q)eiB(p,q)x , (3.77)

with

W(p, q) :=
|B(p, q)|
θ|p||q|

sin(θ|p|) sin(θ|q|)
sin(θ|B(p, q)|)

, (3.78)

and B(p, q), stems from the Baker-Campbell-Haussdorff formula for su(2), as introduced

in subsection 3.1. One therefore has

(f ?Q g)(x) =

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)W2(p, q)eiB(p,q)x , (3.79)

for any f, g ∈M(R3).

Now, define a new quantization map K :M(R3)→ L(M(R3)) as

K := Q ◦H, (3.80)

where the operator H acting on the functions of the algebra M(R3) is given by

H :=
θ
√

∆

sinh(θ
√

∆)
, (3.81)

and such that

H(f ?K g) = H(f) ?Q H(g), (3.82)

for any f, g ∈ M(R3), which defines obviously an equivalence relation between the star-

products ?Q and ?K.
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A standard calculation yields

K(eipx) =
sin(θ|p|)
θ|p|

eipx̂. (3.83)

Hence the corresponding ?-product ?K, which is (H-)equivalent to ?Q, can be obtained from

eipx ?K e
iqx =W(p, q)eiB(p,q)x, (3.84)

and one can write, for any f, g ∈M(R3),

(f ?K g)(x) =

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)W(p, q)eiB(p,q)x , (3.85)

where W(p, q) is still given by (3.78).

This star-product ?K, (3.85), coincides with the Kontsevich product [28]. This has

been derived for R3
θ within a different approach in [58, 59] (see also [44]), namely

K = W ◦ j
1
2 (∆) , (3.86)

where W is the Weyl quantization map and

j
1
2 (∆) =

sinh(θ
√

∆)

θ
√

∆
, (3.87)

is the Harish-Chandra map [60–62]. Recall that ?K is closed for the trace functional defined

by the Lebesgue integral on R3, namely∫
d3x(f ?K g)(x) =

∫
d3xf(x)g(x). (3.88)

Comparing (3.81) and (3.87), one infers

j
1
2 (∆) = H−1, (3.89)

hence H (3.81) is the inverse of the Harish-Chandra map. Notice that, by using (3.76)

combined with (3.83), one has

K(eipx) B I =
θ|p|

sin(θ|p|)
eipx, (3.90)

while (3.83) and (3.86) yield

W (eipx) =
θ|p|

sin(θ|p|)
K(eipx) = eipx̂. (3.91)
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4 Discussion

Let us summarize and discuss the results of this paper. As we have shown, abstract su(2) Lie

algebras of coordinates underlying popular quantum spaces with su(2) noncommutativity

can be conveniently represented by poly-differential involutive representations hence pre-

serving the involutions of the various algebraic structures modeling these quantum spaces.

Their natural SO(3)-covariance singles out a particular family of involutive representations

defined by eqs. (2.34)–(2.36). A brief comparison with non-involutive representations used

in the literature is done.

Given an involutive representation, the related star-product is obtained once the ac-

tion of a suitable quantization map on the usual exponential functions (plane waves) is

defined, giving rise to the so-called quantized plane waves. We show that their expression

is mostly constrained by the general polar decomposition of operators combined with addi-

tional constraints stemming from the Wigner theorem for SU(2). This leads to the general

expression (3.29) for the quantized plane waves which is shown to depend on two functions

of the momenta. A standard computation then leads to the explicit expressions for these

functions in term of two Volterra integrals.

We note, by the way, that the star-product used in e.g [23] to define a particular

deformation of R3 (called R3
λ) does not belong to the general family of star-products related

to (2.34) as it can be easily verified by computing xµ ? xν = x̂µx̂ν . 1 using (2.34) and

comparing the result to e.g the formula (2.19) of [23]. Thus, the deformation defining R3
λ

does not pertain to the type of deformations we obtained in this paper. Notice that the

former deformation is related to the Wick-Voros product [49, 63–65] which stems from a

twist. We do not know at the present time whether or not our family of star-products

also admits a representation in terms of a twist. Assuming such a twist exists and has

an expansion in terms of the deformation parameter, preliminary (tedious) computation

of the first terms suggests that the answer is likely positive. The corresponding complete

determination, which is an interesting question, is beyond the scope of this paper.

As shown in section 3.1, uniqueness up to unitary equivalence of the related star-

product simply reflects the trivial structure of the projective representations for SU(2).

This can be translated more abstractly as a consequence of the triviality of H2(SU(2),U(1)),

the second cohomology group of SU(2) valued in U(1). Recall that group cohomology with

value in an abelian group is the proper tool to investigate the so-called central extensions

of a group, which is a convenient way to extend the present work to more complicated class

of Lie groups. Some basic details are given in the appendix B.

Let us discuss this result on a more general footing. Let D, G and g denote respectively

a discrete group of R (i.e D = pZ), a Lie group and its Lie algebra. Consider the case of

central extensions of G by a 1-dimensional abelian group8 A = R/D. When G is simply

connected, a general result in mathematics states that

H2(G,R/D) ' H2
alg(g,R), (4.1)

8As a remark, notice that the 1-dimensional abelian group serving to extend G is not related to any

subgroup of G.
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see e.g [66, 67], where H2
alg(g,R) is the 2nd group of real cohomology of the Lie algebra

g, which then both classify the inequivalent central extensions of G by the compact group

R/D. Now, when G is in addition semi simple, so that g is also semi simple, it is known

that H2
alg(g,R) = {0}. Hence, H2(G,R/D) is trivial implying uniqueness of the central

extension of any semi-simple and simply connected Lie group by R/D.

When D = Z, one has R/D = U(1). Then, the triviality of H2(SU(2),U(1)) extends

to any semi-simple and simply connected Lie group G and any extension of the present

scheme to a coordinate algebra obeying the commutation relations of the Lie algebra of G

can be expected to give rise to a unique (up to unitary equivalence) star-product.

Before discussing possible extensions of the present work to non simply connected

groups, one remark is in order. Let us briefly compare our scheme to the construction

based on the Hopf map mentioned in the introduction. Recall that this latter map permits

one to define S3 (isomorphic to the Lie group SU(2)) as a fiber bundle over the base manifold

(but not a Lie group) S2 with fiber being the S1 isomorphic to the compact Lie group U(1).

The structure underlying our construction is different in that the Lie group SU(2) is now

the base space of a (principal) fiber bundle with fiber U(1), the central extension of SU(2)

by U(1). More generally, the general structure of our construction requires the use of

Lie groups (and their associated Lie algebras, these latter being related to the coordinate

algebras defining the noncommutative spaces). In particular, the central extension of G

by R/D, says G̃, defines (up to technical requirements) a (principal) fiber bundle G̃ → G

with structure group R/D. Extensions of the Hopf scheme [23] using generalized Hopf

fibrations9 (e.g Sn → RPn or S2n+1 → CPn, n > 3), if possible at all, appears to be related

to a different fiber bundle structure, e.g, base spaces are not (always) Lie groups, Sn, n > 3

is not a Lie group.

In view of future generalizations [57], we point out that semi-simple but non simply

connected groups may have non trivial H2(G,U(1)), leading to the appearance of inequiva-

lent classes of star-products. Indeed, one can show that the inequivalent central extensions

of a semi-simple Lie group G are classified, up to some additional technical requirements, by

H1
Č

(G,R/D), where H•
Č

refers to the Čech cohomology. But a standard result in algebraic

topology states that

H1
Č

(G,R/D) ' Hom(π1(G)→ R/D) (4.2)

where the r.h.s. denotes the group of homomorphisms from the first homology group of

G into R/D. Hence, the inequivalent central extensions of semi-simple but non simply

connected groups G by R/D are classified by the group Hom(π1(G)→ R/D).

Now, pick G = SL(2,R) and D = Z so that once more time R/D is the compact U(1)

group. From Iwazawa decomposition, one infers SL(2,R) ' R2×S1 as topological spaces.10

Using π1(X × Y ) = π1(X) × π1(Y ) for any (topological) spaces X and Y , one obtains

π1(SL(2,R)) ' Z and thus Hom(Z → U(1)) ' U(1), which classifies the inequivalent

extensions of SL(2,R) by U(1).

9Fibrations between spheres are only possible for S1, S3, S7, S15.
10Note that the compact subgroup S1 ' U(1) in SL(2,R) is obviously not related to the abelian group

R/D|D=Z = U(1).
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Notice that a simpler example is provided by SO(3) for which one has π1(SO(3)) =

Z/2Z so that the relevant group is Hom(Z/2Z→ U(1)) and one recovers the 2 inequivalent

projective representations of SO(3), i.e indexed by Γ = ±I in (3.27).

Finally, focusing on a particular subfamily of ∗-representations indexed by a single real

functional of ∆, the laplacian on R3, we have shown in section 3.4 that the corresponding

star-product ?K is equivalent to the Kontsevich product related to the Poisson manifold

dual to the finite dimensional Lie algebra su(2), hence closed for the trace functional

defined by the usual Lebesgue integral Tr =
∫
d3x. Then, the analysis of [43] can be

straightforwardly adapted to scalar noncommutative field theories with functional actions

(in obvious notations) given by

S1 =

∫
d3x

[
1

2
∂µφ ?K ∂µφ+

1

2
m2φ ?K φ+

λ

4!
φ ?K φ ?K φ ?K φ

]
, (4.3)

S2 =

∫
d3x
[
∂µΦ† ?K ∂µΦ +m2Φ† ?K Φ + λΦ† ?K Φ ?K Φ† ?K Φ

]
, (4.4)

which obviously admit standard (i.e commutative) massive real or complex scalar field

theories with quartic interaction as formal commutative limits. From [43], one concludes

in particular that (4.3) and (4.4) do not have (perturbative) UV/IR mixing. Indeed, a

standard analysis as in e.g [43] shows that the quadratic part of the effective action for (4.3)

(i.e 2-point function part) receives 2 types of one-loop contributions whose typical form is

given by

Γ
(I)
2 =

∫
d3x φ(x)φ(x)ωI , (4.5)

Γ
(II)
2 =

∫
d3k1

(2π)3

d3k1

(2π)3
φ̃(k1)φ̃(k2)ωII(k1, k2), (4.6)

where φ̃ is the Fourier transform of φ, in which

ωI ∼
4

θ2

∫
d3p

(2π)3

sin2( θ2 |p|)
p2(p2 +m2)

=
1− e−θm

2mπθ2
(4.7)

ωII ∼
∫
d3x

d3p

(2π)3

1

p2 +m2
(eipx ?K e

ik1x ?K e
−ipx ?K e

ik2x), (4.8)

up to unessential overall factors. For θ 6= 0, one can check that ωI is finite (even for

m = 0) while one obtains ωII(0, k2) ∼ δ(k2)ωI (with similar expression for ωII(k1, 0)).

Besides, UV one-loop finiteness of ωII can be verified in the same way as done in [43].

Similar conclusions hold true for the complex scalar field case (4.4). Then, absence of IR

singularity signals the absence of perturbative UV/IR mixing.

Let us comment this result. We first note that the absence of UV/IR mixing (together

with a mild and even all order finite UV behaviour) also occurs in other NCFT built on

deformations of R3 as well as in related gauge theory versions as shown in [20–22], for which

a factorization property of the corresponding partition functions played a salient role. This

factorization property stems from the Peter-Weyl decomposition of the noncommutative

algebra combined with the fact that the kinetic operators considered in these theories
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have a blockwise diagonal representation induced by the Peter-Weyl decomposition. In-

deed, the operator algebra linked with these deformations with su(2) noncommutativity

is isomorphic to the convolution algebra of SU(2), the isomorphism being simply defined

by the SU(2) Fourier transform, see [27]. Hence, the noncommutative space splits into

an (infinite) orthogonal sum of finite noncommutative geometries, each one modeled by

M2j+1(C), j ∈ N
2 , and the NCFT split into an infinite tower of (matrix) field theories on

finite geometries, each one having a natural cut-off provided by, says the radius ∼ j of the

relevant “fuzzy sphere” M2j+1(C), thanks to the blockwise diagonal decomposition of the

considered kinetic operators.

For the NCFT (4.3), (4.4) considered in this paper, the Peter-Weyl decomposition

still holds true for the algebra, so that one still has a natural cut-off similar to the one

mentionned above. However, investigating the perturbative properties to any order (i.e the

UV behavior to any order) is more complicated than for the above mentioned NCFT, while

however no IR singularity shows up as shown above. In fact, while the interaction part of

the action can still be easily represented as a matrix model interaction using the canonical

Peter-Weyl basis as done in [20–22], the kinetic part involving the usual Laplacian on R3,

despite its familiar form, would lead to a complicated expression (presumably not block-

diagonal) when represented as a matrix model kinetic part, which would make the analysis

of the UV behavior (at any order) more involved. Checking that the UV finitess of the

present NCFT extends to any order (that we conjecture to be true) would require to use a

(convenient) parametric representation of the general amplitudes combined with suitable

estimates. This is beyond the scope of the paper.

It would be interesting to extend these NCFT to the case of noncommutative gauge the-

ories built from differential calculi which do not belong to the category of usual derivation-

based differential calculi [68–70]. These latter are known to give rise to gauge theory models

whose commutative limit do not coincide with standard gauge theories on R3, reflecting

the fact that no (analog of) radial dependence can be accommodated in this framework.

Hence, natural noncommutative Laplacians do not reduce to ∆ at the commutative limit.

Interesting candidates to consider would be the bicovariant differential calculus which is

a natural case to consider on R3
θ, see e.g [71]. Such type of noncommutative differential

calculus may well lead to Laplacian having the expected commutative limit. Notice that

another interesting proposal has been analyzed in [65], which however amounts to enlarge

the initial algebra by incorporating the deformation parameter itself. This permits one

to define an additional 4th (and quite natural) derivation (hence a 4th “engineering” di-

mension) related to the dilation. Doing this, a radial dependence is introduced in the

derivations. Such a noncommutative differential calculus would presumably gives rise to

some “Laplacian” having the right commutative limit. The related gauge theories from the

viewpoint of their perturbative quantum behavior would be worth investigating. Notice

that in [23] appeared another early attempt to construct NCFT on R × R3
θ in which it is

tempting to interpret the extra factor R as related to a “time” direction. Then, provided

a suitable radial dependence is re-installed through a suitable choice for the differential

calculus (which should concern the R3
θ part of the algebra), it would then be possible to

study NCFT (having a right commutative limit) on this noncommutative space(-time).
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A Computation of eipx̂ B I

In order to have more insight on the possible expression for Ep(x̂), (3.4), (3.8), it is in-

structive to study the action of eipx̂ on 1. This can be achieved by using the Zassenhaus

formula stemming from the Baker-Campbell-Hausdorff formula. Namely, for any operators

X and Y , one can write

eX+Y = eXeY
∞∏
n=2

eCn(X,Y ) , (A.1)

where Cn(X,Y ) is a homogeneous Lie polynomial of degree n depending on X and Y of

the form

[V1, [. . . , [Vn−1, Vn] . . . ]] , Vi ∈ {X,Y } , i ∈ {1, 2, . . . n} . (A.2)

A mere application of (A.1) to eipx̂ where x̂µ is of the general form (2.5), setting X =

qµxαϕαµ(∂) and Y = qµχµ(∂), gives

eiq
µ(xaϕαµ+χµ) = eiq

µxaϕαµ(∂)eiq
µχµ(∂)Fq(∂) (A.3)

where Fq :=
∏
n≥2 e

Cn(X,Y ) depends only on ∂ (and q), as it can be easily shown by

induction.

Indeed, this is apparent from the expressions for C2 and C3 respectively given by

C2 = −1

2
[X,Y ] , C3 =

1

3
[C2, X + 2Y ] , (A.4)

with X and Y just given above and further using relation (2.6). Now, assume that Cn,

n > 3, depends only on the ∂µ’s. Then, the Lie homogeneous polynomials of degree n+ 1

involves terms of the generic form [qµ(xαϕαµ(∂)), C̃n(∂)] or [qµχµ(∂), C̃n(∂)] where the

symbol C̃n denotes generically terms involved in Cn which therefore depends only on ∂ by

assumption. But from a simple computation, one immediately obtains

[qµχµ(∂), C̃n(∂)] = 0, (A.5)

while the first commutator reduces to

[qµxαϕαµ(∂), C̃n(∂)] = −qµ ∂C̃n
∂(∂α)

ϕαµ, (A.6)

where we used (2.6). It follows that Fq depends only on the ∂µ’s (and q) as an-

nounced above.
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We are now in position to guess a reasonable Ansatz for Ep(x̂). From (A.3), we get:

eiqx̂ B 1 = Fq(0)eiq
µχµ(0)

(
eiq

µxαϕαµ(∂) B 1
)

= Fq(0)
(
eiq

µxαϕαµ(∂) B 1
)
, (A.7)

with χµ(0) = 0 from (2.21) and Fq(0) 6= 1 depending on ϕ, χ, their derivatives (all evaluated

in 0) and q. In the last equation (A.7), the term eiq
µxaϕaµ(∂) B 1 corresponds to the case

mainly studied in the literature (where poly-differential representation are used), namely

for representation preserving the Lie algebra structure but not the involution.

We see that for ∗-representations, the addition of χµ in the definition of the poly-

differential representation x̂µ, modifies the action of eiqx̂ on 1 by a factor depending (in a

non trivial way) on ϕaµ, χµ and their derivatives. However, eiq
µxaϕaµ(∂) B 1 will still give

(in general11) a result different from the commutative plane wave eiqx.

However, in the case x̂µ given by (2.44), eiq
µxaϕaµ(∂) B 1 = eipx and (A.7) reduces to

eiqx̂ B 1 = Fq(0)eipx , (A.8)

which leads to the following quantized plane waves

Eq(x̂) =
eiqx̂

Fq(0)
. (A.9)

In view of (A.9), it is tempting to extend its validity to the general family of represen-

tations (2.34)–(2.36). Therefore, we look for quantized plane waves (3.4) of the form

Ep(x̂) = ω(p)eiξ(p)x̂, (A.10)

for any ∗-representation of the form (2.34)–(2.36), which satisfies

Ep(x̂) B 1 = eipx, (A.11)

so that Q−1(Q(f)) = Q(f) B 1 = f for any f ∈M(R3).

We further require that

ξ̄(p) = ξ(p) , (A.12)

what implies that the operators of the form eiξ(p)x̂ are unitary, therefore belong to SU(2)

and thus insures that the operator product between the Ep(x̂) is associative. This implies

that the related star-product is associative, as a mere consequence of the factorisation of

the prefactor in (A.10) combined with the BCH formula for su(2).

B Basics on group cohomology

Let G be a (connected) Lie group. It turns out that the U(1)-valued 2-cocycles mentioned

in the subsection 3.1 can be actually interpreted as 2-cocycles relation for a differential on

11As discussed in subsection 3.3, there is actually only one representation for which eipx̂ B 1 = eipx.

However, it is important to notice that the exponent qµxaϕaµ(∂), involved in eiq
µxaϕaµ(∂) B 1, is not

self-adjoint as shown subsection 2.1. Thus, eiq
µxaϕaµ(∂) /∈ SU(2). This is in particular the case for the

representation studied in [44].
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some cochains groups with values in a G-module A, i.e an abelian Lie group with an action

ρ of G on A,

ρ : G×A → A, (B.1)

which will be assumed to be trivial in the following, namely ρ(g, a) = a for any a ∈ A,

g ∈ G. This pertains to the framework of the cohomology H•(G,A), i.e the cohomology of a

(connected) group G with value in A that we now briefly describe. For more mathematical

details together with applications in (commutative) quantum field theory, see e.g [53–56].

It is the cohomology of the complex (C•(G,A), δ) where the graded space

C•(G,A) =
⊕
p∈N
Cp(G,A) (B.2)

is built from the p-cochain groups

Cp(G,A) = {Ω : G×G . . .×G︸ ︷︷ ︸
p

→ A} (B.3)

for any p ∈ N, with coboundary operator

δ : Cp(G,A)→ Cp+1(G,A) (B.4)

defined for any Ω ∈ Cp(G,A) and any g1, g2, . . . , gp+1 ∈ G by

(δΩ)(g1, . . . , gp+1) = g1Ω(g2, . . . , gp+1) +

p∑
k=1

(−1)kΩ(g1, . . . , gkgk+1, . . . , gp+1)

+(−1)p+1Ω(g1, . . . , gp). (B.5)

One can check that δ is nilpotent, i.e

δ2 = 0. (B.6)

Denoting by Zp(G,A) and Bp(G,A) respectively the groups of p-cocycles (δΩ = 0) and

p-coboundaries (Ω = δρ), one has

Hp(G,A) = Zp(G,A)/Bp(G,A), (B.7)

for any p ∈ N, and

H•(G,A) =
⊕
p∈N

Hp(G,A) (B.8)

(with in particular H0(G,A) = AG, the set of G-invariant elements in A).

Of particular interest here is H2(G,A). This latter classifies all the inequivalent central

extensions of G by A. Note that group central extensions can be related to Lie algebra

central extensions. It is more convenient here to use the framework of group extensions.

Recall that E is a central extension of G by A if A is (isomorphic to) a subgroup of the

center of G and one has the group isomorphism G ' E/A. Two extensions, says E1 and

E2, are equivalent if one can find a group isomorphism ψ : E1 → E2 such that

π2 ◦ ψ = π1 (B.9)
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and

ψ(g1α) = ψ(g1)α (B.10)

for any g1 ∈ E1, α ∈ A, where πi : Ei → G, i = 1, 2 denotes the canonical projection in the

sense of group homomorphisms. More abstractly, H2(G,A) classifies all the inequivalent

central extensions of G by A, encoded in the exact short sequences

I→ A→ E π→ G→ I, (B.11)

supplemented by the condition Im(A) ⊂ Z(E), where Z(E) is the center of E .

Many results are known in mathematics whenever A is a 1-dimensional abelian group,

A = R/D where D is a discrete subgroup of R, which is the situation considered below.

Note that in this case the central extension E can be actually interpreted as a principal

fiber bundle over the group G with structure group A = R/D. We do not exploit this

viewpoint in this paper.

When G is semi simple and simply connected (which is the case of SU(2)), it turns

out that the only central extension of G by R/D is the trivial one G×R/D. In particular,

whenever D = Z, one easily recovers the Wigner theorem from (3.27), (3.14) since from the

above triviality one can set Γ = 1 in (3.27) which thus defines the unique (up to unitary

equivalence) unitary representation of G.

When the Lie group G is semi-simple but not simply connected, the situation becomes

non trivial (see the discussion in section 4). Note the existence of relationships between

central extensions of groups and central extensions of corresponding Lie algebras which

however is not so well adapted to the present construction.
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[43] T. Jurić, T. Poulain and J.-C. Wallet, Closed star product on noncommutative R3 and scalar

field dynamics, JHEP 05 (2016) 146 [arXiv:1603.09122] [INSPIRE].

[44] V.G. Kupriyanov and P. Vitale, Noncommutative Rd via closed star product, JHEP 08

(2015) 024 [arXiv:1502.06544] [INSPIRE].

[45] N. Durov, S. Meljanac, A. Samsarov and Z. Skoda, A universal formula for representing Lie

algebra generators as formal power series with coefficient in the Weyl algebra, J. Algebra 309

(2007) 318.

[46] V.G. Kupriyanov and D.V. Vassilevich, Star products made (somewhat) easier, Eur. Phys. J.

C 58 (2008) 627 [arXiv:0806.4615] [INSPIRE].

– 29 –

https://doi.org/10.1016/j.nuclphysb.2016.04.001
https://doi.org/10.1016/j.nuclphysb.2016.04.001
https://arxiv.org/abs/1603.05045
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B912,354%22
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
https://arxiv.org/abs/q-alg/9709040
https://inspirehep.net/search?p=find+J+%22Lett.Math.Phys.,66,157%22
https://doi.org/10.1140/epjc/s10052-007-0335-2
https://arxiv.org/abs/hep-th/0703075
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C51,977%22
https://doi.org/10.1140/epjc/s10052-007-0369-5
https://doi.org/10.1140/epjc/s10052-007-0369-5
https://arxiv.org/abs/hep-th/0703169
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C52,435%22
https://doi.org/10.1088/1751-8113/43/42/425401
https://arxiv.org/abs/0912.2634
https://inspirehep.net/search?p=find+J+%22J.Phys.,A43,425401%22
https://doi.org/10.1002/prop.200900102
https://arxiv.org/abs/0908.0467
https://inspirehep.net/search?p=find+J+%22Fortschr.Phys.,58,364%22
https://doi.org/10.1140/epjc/s10052-007-0450-0
https://arxiv.org/abs/0705.2471
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2471
https://doi.org/10.1140/epjc/s10052-007-0285-8
https://arxiv.org/abs/hep-th/0702215
https://inspirehep.net/search?p=find+EPRINT+hep-th/0702215
https://doi.org/10.1103/PhysRevD.79.045012
https://arxiv.org/abs/0812.0576
https://doi.org/10.1088/1751-8113/48/44/445202
https://doi.org/10.4171/JNCG/129
https://doi.org/10.4171/JNCG/129
https://arxiv.org/abs/1104.0206
https://inspirehep.net/search?p=find+J+%22J.Noncommut.Geom.,7,605%22
https://doi.org/10.1140/epjc/s2006-02584-8
https://arxiv.org/abs/hep-th/0605133
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605133
https://doi.org/10.1007/JHEP12(2011)010
https://arxiv.org/abs/1111.5553
https://inspirehep.net/search?p=find+J+%22JHEP,1112,010%22
https://doi.org/10.1007/JHEP05(2016)146
https://arxiv.org/abs/1603.09122
https://inspirehep.net/search?p=find+J+%22JHEP,1605,146%22
https://doi.org/10.1007/JHEP08(2015)024
https://doi.org/10.1007/JHEP08(2015)024
https://arxiv.org/abs/1502.06544
https://inspirehep.net/search?p=find+J+%22JHEP,1508,024%22
https://doi.org/10.1140/epjc/s10052-008-0804-2
https://doi.org/10.1140/epjc/s10052-008-0804-2
https://arxiv.org/abs/0806.4615
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C58,627%22


J
H
E
P
0
7
(
2
0
1
7
)
1
1
6

[47] S. Meljanac and M. Stojic, New realizations of Lie algebra kappa-deformed Euclidean space,

Eur. Phys. J. C 47 (2006) 531 [hep-th/0605133] [INSPIRE].
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