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k = gcd(N,M). To argue for this duality, we use a geometric realization of these little

string theories in terms of F-theory compactifications on toric, non-compact Calabi-Yau

threefolds XN,M which have a double elliptic fibration structure. We show explicitly for
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the two are related through symmetry transformations and flop transitions. By working

out the full duality map, we provide a simple check at the level of the free energy of little
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1 Introduction

Little string theories are a class of interacting, non-local, ultraviolet complete quantum the-

ories in six dimensions (or lower), which nevertheless has a well-defined energy-momentum

tensor. These theories have recently attracted a lot of renewed attention from various view-

points [1–11]. They can be obtained from string theory through a particular decoupling

limit that preserves numerous ‘stringy’ properties, but suppresses gravitational interac-

tions. The limit in type II string theory requires to take the string coupling constant to

zero (gst → 0), while keeping the string length `st fixed. Depending on the details, we can

construct various types of little string theories [12–19].

Maximally supersymmetric little string theories have sixteen supercharges (for a re-

view, see [20]) and come in two different incarnations that are related by T-duality upon

circle compactification:

• type IIa little string theory of AN−1 type with N = (1, 1) supersymmetry:

This non-chiral LST can be obtained through the decoupling limit of a stack of N

NS5-branes in type IIB string theory, or through the decoupling limit of an R4/ZN
orbifold background in type IIA string theory,

• type IIb little string theory of AN−1 type with N = (2, 0) supersymmetry:

This chiral LST can be obtained through the decoupling limit of a stack of N NS5-

branes in type IIA string theory, or through the decoupling limit of an R4/ZN orbifold

background in type IIB string theory.

One way to make T-duality between these two theories tangible is through a nonpertur-

bative construction of little string theories within the framework of F-theory compactifi-

cation [21, 22]. Indeed, the theories mentioned above can be described in terms of toric,

non-compact Calabi-Yau threefolds that feature a double elliptic fibration structure. We

studied these Calabi-Yau threefolds in previous papers [8, 10] and denoted them by XN,1.

In this F-theory framework, the little string T-duality corresponds to the exchange of the

two elliptic fibrations [8, 9], relating type IIa and type IIb little string theories of type AN−1.

More recently, little string theories with eight supercharges have been studied [9, 10, 23,

24]. A two-parameter class of such theories can be obtained from type IIa or IIb little string

theories of type AN−1 through a particular orbifolding procedure [9, 10, 25]. Specifically,

we consider the decoupling limit of a stack of NS5-branes that probe an orbifold singularity

(rather than flat R4 as above), i.e. for generic N,M ∈ N, we have

• ZN orbifold of IIa little string theory of type AM−1:

This little string theory generically preserves N = (1, 0) supersymmetry and is de-

scribed through the decoupling limit of M NS5-branes in type IIB string theory

probing an R4/ZN orbifold background.

• ZM orbifold of IIb little string theory of type AN−1:

This little string theory generically preserves N = (1, 0) supersymmetry and is de-

scribed through the decoupling limit of N NS5-branes in type IIA string theory

probing an R4/ZM orbifold background.

– 1 –
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Extending the discussion in [26], the type IIb orbifolded little string theory can also be

described as a decoupling limit of N parallel NS5-branes that probe an affine AM−1 ALE

space. By lifting to M-theory, this realisation allows a description of the BPS excitations of

the little string theories through systems of parallel M5-branes with M2-branes stretched

between them. For the latter, the partition functions can be computed in a very efficient

manner, using either the world-sheet theory of the M-string (which is the one-dimensional

intersection between the M5- and M2-branes) [25, 27] or a dual realisation in terms of

(p, q)-brane webs in type II string theory [28, 29].

The description we will mostly focus on in this paper, however, is in terms of F-theory

on a two-parameter class of toric, non-compact Calabi-Yau threefolds XN,M , generalising

the geometric approach to the little string theories with sixteen supercharges mentioned

above. Indeed, denoting by Z
(N,M)
IIa and Z

(M,N)
IIb the little string partition functions and by

ZXN,M (t,T,m, ε1,2) the refined topological string partition function1 onXN,M , we proposed

in the previous work [10]

Z
(N,M)
IIa (T, t,m, ε1,2) = ZXN,M (t,T,m, ε1,2) , Z

(M,N)
IIb (T, t,m, ε1,2) = ZXM,N (T, t,m, ε1,2) ,

which makes T-duality manifest in the sense that Z
(N,M)
IIa (T, t,m, ε1,2)=Z

(N,M)
IIb (t,T,m, ε1,2).

This connection between little string theories and the Calabi-Yau threefolds XN,M also re-

veals a number of other additional dualities. For example, since XN,M can be represented

as a particular resolution of a ZN × ZM orbifold of X1,1 (which at the boundary of the

moduli space resembles the resolved conifold), it follows that XN,M and XM,N are dual to

each other. This duality also implies that the ZN orbifolds of IIa LST of type AM−1 (and

respectively the ZM orbifolds of IIb LST of type AN−1) are self-dual under T-duality [10]

in certain regions of the (t,T) moduli space. This has been checked explicitly at the level

of the free energies associated with the partition functions Z
(N,M)
IIa and Z

(M,N)
IIb [10].

In this paper, we consider further duality relations between theories that are char-

acterised by different (N,M). Based on a number of explicit examples, we propose that

theories characterised by (N,M) (with generic M,N ∈ N and gcd(M,N) = k) and (NMk , k)

are dual to each other. The corresponding Calabi-Yau threefolds are related through a chain

of transformations involving flop transitions:2

XN,M ∼ XNM/k,k , for k = gcd(M,N) .

Moreover, we make a proposal for the full duality map, i.e. we provide the Kähler param-

eters of XNM/k,k completely in terms of the Kähler parameters of XN,M . Finally, based

on results of our previous work [10], we perform a simple check at the level of the free

energies ΣN,M associated with the partition functions ZXN,M . Indeed, in [10], we proposed

that the free energies ΣN,M enjoy a special property which we called self-similarity : in

a particular region of the parameter space and in the Nekrasov-Shatashvili limit [30, 31],

we have limε2→0 ε2ΣN,M = NM limε2→0 ε2Σ1,1. We show for generic M,N ∈ N that the

1Here t and T are two sets of Kähler parameters (associated with a double elliptic fibration of XN,M )

and ε1,2 as well as m are deformation parameters.
2By ∼, we will denote Calabi-Yau threefolds related by symmetry transformations and flop transitions.
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proposed duality map, when restricted to the above mentioned region in parameter space,

corresponds to an Sp(2,Z) transformation, under which ZX1,1 is invariant. This is a strong

indication that indeed ZXN,M = ZXNM/k,k after application of the duality map.

This proposed duality has other consequences and in fact gives rise to a whole web of

dual theories. Indeed, for any pair of integers (M,N) and (M ′, N ′) with MN = M ′N ′ and

gcd(M,N) = k = gcd(M ′, N ′), the proposed duality also implies

XN,M ∼ XN ′,M ′ .

In this way, we have for example that the Calabi-Yau threefolds parametrised by (30, 1) ∼
(15, 2) ∼ (10, 3) ∼ (6, 5) ∼ (5, 6) ∼ (3, 10) ∼ (2, 15) ∼ (1, 30) are all related to one

another. Reformulating this relation in a more abstract fashion, we propose that the

theories parametrised by (M,N) and (M ′, N ′) as above are part of the extended mod-

uli space [32–36] of the Calabi-Yau threefold XNM/k,k. Little string theories described

by (N, 1) brane configuration preserve sixteen supercharges. An additional twist (the m-

deformation) breaks the supersymmetry down to eight supercharges [25, 27]. In M-theory

description, this additional twist is needed for localizing M5-branes in transverse R4 and

thus for unambiguously calculating the partition function using the M-string worldsheet

theory. In F-theory description, this additional twist is needed for obtaining smooth ge-

ometries for various duality maps therein. From the viewpoint of little string theories, this

means that ZM orbifolds of type IIa or IIb little string theories of type AN−1 with k = 1 are

dual to IIb or IIa little string theories of type ANM−1 with this additional twist given by

parameter m, and both configurations preserve eight supercharges. However, as we shall

discuss in detail, the little string theories labelled by (N,M) and (NM, 1) live in different

points of the parameter space: the radii of the two transverse circles on which the little

strings are compactified are different in the two cases.

This paper is organised as follows: in section 2, we review in more detail the relation

between little string theories and toric Calabi-Yau threefolds XN,M . We will also discuss

flop transitions that define the extended moduli space of the latter. In section 3, we review

the topological string partition functions of XN,M as well as its relation to ZX1,1 in a

particular region in the Kähler moduli space. In section 4, we present numerous explicit

examples for the duality XN,M ∼ XNM/k,k (with k = gcd(N,M)) and present checks for

the duality at the level of the free energies. In section 5, we make a proposal of the duality

map for generic (N,M) and show that it satisfies the same checks as all the examples of

section 4. Finally, section 6 contains our conclusions.

2 Little strings and Calabi-Yau threefolds

Little string theories can be described in several different but U-dual equivalent ways. For

example, they can be realised as ADE orbifold compactifications of type II string theory (in

the presence of NS5-branes) subject to a particular limit in which gravity decouples [12–19].

Alternatively, LSTs can also be described by systems of M5-branes in M-theory that probe

a transverse ADE orbifold. However, the description that is most useful for our current

purposes uses the F-theory: indeed, by compactifying F-theory on appropriate elliptically

– 3 –
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fibered Calabi-Yau threefolds, little string theories with both N = (2, 0) and N = (1, 0)

supersymmetry can be obtained. In fact, a classification of little string theories using this

F-theory approach was carried out recently in [9].

These Calabi-Yau threefolds are elliptically fibered over a two complex dimensional

base, which in the decoupling limit becomes non-compact. In general, the charge lattice

of the compactified theory is given by the lattice of two-cycles in the non-compact base,

and BPS states are given by D3-branes wrapping holomorphic two curves in the base. The

little strings in particular arise from D3-branes wrapping a curve of self intersection zero in

the base. Calabi-Yau threefolds that have such a curve with vanishing self-intersection in

the base actually have a double elliptic fibration, since the base itself is an elliptic fibration

over the complex plane [37]. As was first discovered in [8, 9], this double fibration structure

is crucially related to T-duality of the little string theory.

2.1 Calabi-Yau threefolds XN,M

Calabi-Yau threefolds XN,M which realise type IIa little strings in an orbifold background

of type AN are toric and are given by the resolution of a ZN × ZM orbifold of X1,1 [8].

Here X1,1 is itself a Calabi-Yau threefold with a double elliptic fibration over the complex

plane [38]. To understand this, we begin with a geometry that is similar to X1,1, namely

the (deformed) conifold. The latter can be described as a hypersurface in C4

xy − zw = ε , for (x, y, z, w) ∈ C4 . (2.1)

Here ε > 0 corresponds to the deformation that regularises an otherwise singular geometry.

To make the fibration structure visible, we re-write eq. (2.1) in the following manner

xy = u , zw = u− ε , (2.2)

which corresponds to a C× × C× fibration over the u-plane: the first C× fibration degen-

erates at u = 0 and the second one at u = ε. The S1’s of these two C× fibrations together

with the path in the u-plane connecting the points u = 0 and u = ε give an S3. We can

compactify the C× fibers to obtain a double elliptic fibration over the u-plane,

y2 = x3 + f1(u)x+ g1(u) , w2 = z3 + f2(u) z + g2(u) . (2.3)

Here f1(u), g1(u), f2(u), g2(u) are holomorphic functions of u such that ∆1(u) = 4f3
1 +27g2

1

vanishes only at u = 0 and ∆2(u) = 4f3
2 + 27g2

2 vanishes only at u = ε so that the two

elliptic fibrations have fibers of type I1 at u = 0 and u = ε, respectively.

The geometry described above is singular in the limit ε→ 0. Besides the deformation

eq. (2.1), we have an alternative way of dealing with this singularity: we can also resolve

the conifold to obtain a P1. Indeed, instead of eq. (2.1), we describe the resolution of the

conifold through the equation (
x z

w y

)(
λ1

λ2

)
= 0 , (2.4)
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where λ = λ1
λ2

is the coordinate on the blowup P1 mentioned above. The resulting geometry

can also be described as a C4 quotient by C×,

(A1, A2, B1, B2) 7→ (λA1, λA2, λ
−1B1, λ

−1B2) , (2.5)

where (A1, A2, B1, B2) are coordinates of C4 such that3(
x z

w y

)
=

(
A1

A2

)(
B1 B2

)
. (2.6)

The resolution is particularly useful for discussing orbifolds of the conifold: let Γ1 × Γ2 ⊂
SU(2) × SU(2) be a pair of ADE subgroups of SU(2) which act on (A1, A2, B1, B2) ∈ C4

by embedding in SU(4):

Γ1 :

(
A1

B1

)
7→ γ1

(
A1

B1

)
, for γ1 ∈ Γ1(

A2

B2

)
7→
(
A2

B2

)

Γ2 :

(
A1

B2

)
7→ γ2

(
A1

B2

)
, for γ2 ∈ Γ2(

A2

B1

)
7→
(
A2

B1

)
. (2.7)

Modding the geometry (2.4) by this action we get the Γ1 × Γ2 orbifold of the resolved

conifold. In the particular case Γ1×Γ2 = ZN ×ZM for M,N ∈ Z the action eq. (2.7) takes

the form [39]:

(A1, A2, B1, B2) 7→ (ωaNω
b
M A1, A2, ω

−a
N B1, ω

−b
M B2) , (2.8)

where (ωN , ωM ) = (e
2πi
N , e

2πi
M ) and a, b ∈ Z.4

In order to describe little string theories, we have to replace the deformed conifold

by the doubly elliptically fibered Calabi-Yau manifold X1,1 which can be understood as

a compactification of C× × C× fibers of the resolved conifold to double elliptic fibers, as

we shall discuss in the following section. In the general case of a Γ1 × Γ2 orbifold of X1,1

we obtain a geometry with two fibers of the corresponding ADE type in the two elliptic

fibrations, which describes (Γ1,Γ2) little string theories.5

3Notice that the relation det

[(
A1

A2

)(
B1 B2

)]
= xy−zw = 0 for the unresolved conifold is manifestly

realised in this parametrisation.
4For completeness we mention that we can also describe ZN × ZM orbifolds of the deformed conifold.

Indeed, when the C× × C× fibration of the deformed conifold is compactified to a double elliptic fibration,

we can introduce the orbifold geometry

y2 = x3 + f1(uN )x+ g1(uN ) , w2 = z3 + f2(uM ) z + g2(uM ) , (2.9)

so that there is a IN and IM fiber in the two elliptic fibrations.
5For a recent discussions on multiple fibrations, see [40].

– 5 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
2

Figure 1. The Newton polygon of the resolved conifold (left) and the Calabi-Yau threefold X1,1

(right). The polygon of the latter is obtained by tiling the plane with the Newton polygon of the

resolved conifold. Equivalently, this tiling can be though of drawing the Newton polygon of the

resolved conifold on a (doubly periodic) torus.

N

M

(a)

· · · · · ·

...

...

(b)

Figure 2. (a) The Newton polygon of the ZN × ZM orbifold of the resolved conifold. (b) The

Newton polygon of XN,M is obtained through a tiling of the plane with the Newton polygon of the

orbifold of the resolved conifold.

2.1.1 The dual brane webs

The toric Calabi-Yau threefolds XN,M obtained from ZM × ZN orbifolds of X1,1, as de-

scribed in the previous subsubsection, can be dualised to (p, q) 5-brane webs [41, 42] which

in turn realise certain five- and six-dimensional gauge theories [38, 41]. This dual 5-brane

web is in fact identical to the toric web of XN,M , which is dual to the Newton polygon [41].

The Newton polygon of X1,1 (as well as the one of the resolved conifold) are shown in

figure 1. The ZN ×ZM orbifold of the resolved conifold is also toric and the corresponding

Newton polygon is given by a rectangle of size N ×M [39]. Similar to X1,1, the Newton

polygon of XN,M is described by a tiling of the plane by the Newton polygon of the orb-

ifolded resolved conifold, i.e. the rectangle of size N×M as shown in figure 2. The periodic

tiling in figure 2(b) then implies that these webs are living on T2 rather than on R2, and

the two elliptic fibrations of XN,M are dual to the two circles on which the 5-branes are

wrapped. The web diagram of XN,M can be obtained as the dual graph of the Newton

polygon and is shown in figure 3. The diagonal (blue) lines along the direction (1, 1) in

figure 3 are due to the triangulation of the Newton polygon.

– 6 –
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=1

=2

=3

=M

=1

=2

=3

=M

−1
−2

−3
−4

−5
−N

−1
−2

−3
−4

−5
−N

t1 t2 t3 t4 t5
. . .

tN

T1

T2

..
.

TM

Figure 3. The 5-brane web dual to the Calabi-Yau threefold XN,M .

Furthermore, the lengths of various lines in the 5-brane web correspond to Kähler

parameters of XN,M . From figure 3, it can be seen that there are MN + 2 independent

parameters [25]. This counting arises as follows: the web is parametrised by MN +M +N

parameters, corresponding to the vertical and horizontal distances as well as the blue

diagonal distances. However, there are also M + N − 2 constraints which arise from the

gluing-conditions on T2, which impose that the vertical lines at the top and the bottom of

the diagram and the horizontal lines at the left- and right end of the diagram can be glued

together in a consistent fashion.

Specifically, we denote by Ti the separation between the horizontal lines (corresponding

to D5-branes from the (p, q)-brane web perspectives) and by ta the separation between the

vertical lines (corresponding to NS5-branes). Furthermore, we will collectively denote

T = (T1, T2, . . . , TM ) , and t = (t1, t2, . . . , tN ) , (2.10)

and we denote the following quantities6

τ =
i

2π
(T1 + T2 + . . .+ TM ) , and ρ =

i

2π
(t1 + t2 + . . .+ tN ) . (2.11)

6From the viewpoint of little string theories in five dimensions, τ and ρ play a distinguished role compared

to the remaining moduli (T1, . . . TM−1) and (t1, . . . TN−1): depending on the precise duality frame, they

respectively correspond to the coupling constant of little string theory and the radius of S1 on which the

little string theory is compactified.
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Notice, from the point of view of the Calabi-Yau threefold, τ and ρ are just a particular

combination of the Kähler moduli (t,T). In fact [10], one may choose to parametrise

the moduli space by (τ, T1, . . . , TM−1, ρ, t1, . . . , tN−1). However, from the point of view of

the dual little string theories, τ and ρ are the radii of two circles of the little string theory

geometry. In this regard, they are treated as fixed (but generic) external parameters rather

than moduli.

2.2 Flop transitions in XN,M

In this section, we discuss flop transitions which connect topologically distinct Calabi-Yau

threefolds. We also discuss the flop transition from the brane web perspectives.

2.2.1 Resolved conifold and flop transitions

A Calabi-Yau threefold can degenerate in many different ways including a divisor collapsing

to a point or a curve collapsing to a point. The flop transition is of the latter type in the

sense that a rational curve shrinks to a zero size. In the neighborhood of such a singularity,

the Calabi-Yau threefold is described by

xy − zw = 0 , x = z1 + iz2 , y = z1 − iz2 , z = −z3 − iz4 , w = z3 − iz4 . (2.12)

which resembles the conifold as discussed above. As before, we can resolve the singularity

x

z
=
w

y
such that x = λ z and w = λ y . (2.13)

Here, λ is the local coordinate on the blowup P1 and (x,w, λ) are the coordinates on the

Calabi-Yau threefold in a patch over P1. In the second patch, the coordinates are (z, y, λ−1).

The two equations relating (x,w) to (z, y) in eq. (2.13) are the transition functions for the

bundle O(−1)⊕O(−1) over P1.

However, there are two possible choices:

x

z
=
w

y
such that x = λy and w = λy , (2.14)

x

w
=
z

y
such that x = λ′w and z = λ′y .

The difference between the two choices corresponds to interchanging z and w, and this

is known as a flop transition. Another way of describing this transition is through the

quotient construction of the conifold in terms of (A1, A2, B1, B2) ∈ C4 (see eq. (2.5)),

|A1|2 + |A2|2 − |B1|2 − |B2|2 = r , (2.15)

where the parameter r determines the size of the resolved P1. The flop transition is given

by r 7→ −r so that the roles of A1,2 and B1,2 are interchanged. Thus, in terms of the

original Kähler class, if the P1 has area r, then, after the flop transition, it has area −r.
However, in the flopped geometry, we can define a different Kähler class with respect to

which the flopped curve has a positive area. Thus, at r = 0 we are at the boundary of

the Kähler cone and the flop r 7→ −r takes us out of the Kähler cone of the Calabi-Yau

we started with and into the Kähler cone of another Calabi-Yau threefold. This extended

moduli space of the Kähler class is discussed in more detail in section 2.3.
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Figure 4. Toric diagram of the Calabi-Yau manifold X1,1. The parameters (ρ, τ,m) are those

appearing in the partition function with τ = v +m and ρ = m+ h.

2.2.2 Flop transitions in X1,1 and Sp(2,Z)

In order to facilitate the computations in later part of this paper, we discuss the flop

transition from the perspective of the brane web. The web diagram of X1,1 is shown in

figure 4 with a choice of the NM + 2 = 1 + 2 = 3 independent parameters (h, v,m) (which

correspond to the Kähler parameters of three P1’s) or, equivalently, (ρ, τ,m). The local

geometry of all three P1’s is that of the resolved conifold and hence these can undergo flop

transitions. Indeed, the second figure in eq. (2.16) shows the 5-brane web after a flop of

the curve corresponding to the parameter m. The last two figures of (2.16) give different

ways of representing the web dual to the flopped geometry.7 Eq. (2.16) also indicates the

change in the Kähler parameters caused by the flop transition: the Kähler parameters of

all curves intersecting the curve that undergoes a flop transition change depending on the

intersection number [43].8

h

v

m

h

v

=

=

|

|
=⇒

h+ 2m

v + 2m

−m h+ 2m

v + 2m

=

=

|

|
= −m

v + 2m

h
+

2
m v + 2m

−m=

=
|

|

=⇒ −m

v + 2m

h+ 2m

−m

v + 2m

=

=

|

|

(2.16)

Furthermore, in the first diagram on the left in eq. (2.16), we have

ρ = h+m, τ = v +m, (2.17)

while in the final diagram on the right of (2.16) we have

ρ′ = h+ 2m−m = ρ ,

τ ′ = v + h+ 4m = ρ+ τ + 2m,

m′ = h+ 2m = ρ+m. (2.18)

7In the last step, we have performed an SL(2,Z) transformation that acts in the following manner on

the various lines: (1, 0) −→ (1, 1), (0, 1) −→ (0, 1) and (1,−1) −→ (1, 0).
8Notice, since the vertical and horizontal lines are identified, both h and v touch at both ends the line m

that is flopped (i.e. they have intersection number 2). This explains the shifts by 2m rather than simply m.
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m The transformation (τ, ρ,m) 7→ (τ ′, ρ′,m′) corresponds to an automorphism of X1,1

acting as an Sp(2,Z) transformation. To understand this, we recall that the geometry

mirror to X1,1 is a genus-two curve with period matrix given by

Ω =

(
τ m

m ρ

)
. (2.19)

The automorphism group of this curve is Sp(2,Z), which acts on the period matrix by the

generalisation of the fractional linear transformations:

Ω 7→ (AΩ +B)(CΩ +D)−1 , with

(
A B

C D

)
∈ Sp(2,Z) . (2.20)

Specifically, the matrices A,B,C,D (with integer entries) satisfy

ATD − CTB = 112×2 = DAT − CBT , ATC = CTA , BTD = DTB . (2.21)

Using the transformation of the parameters under a flop transition given by eq. (2.18), we

can arrange them into a transformed period matrices

Ω′ =

(
τ ′ m′

m′ ρ′

)
, (2.22)

which is indeed related to eq. (2.20) by

Ω′ = (AΩ +B)(CΩ +D)−1 , (2.23)

with

A =

(
1 1

0 1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
1 0

−1 1

)
. (2.24)

These matrices satisfy eq. (2.21), as is required for a Sp(2,Z) transformation.9This indicates

that the combined flop transition eq. (2.16) corresponds to an Sp(2,Z) transformation.

2.2.3 Flop transitions and constraints

The orbifold XN,M has many curves which can undergo flop transitions. In eq. (2.25), we

show the generic case, where a generic such curve in the web diagram undergoes a flop,

and the way the Kähler parameters change: the transformation not only changes the sign

of the Kähler parameter of the curve that undergoes a flop, but also modifies the Kähler

parameter of any curve with non-trivial intersection with the former eq. (2.25).

hi

vi

m

hj

vj

=⇒

hi +m

vj +m

−m hj +m

vi +m

(2.25)

9Notice also detΩ = ρτ −m2 = detΩ′.
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L2 L2

(a)
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−E3 E2

L1

L1

L2 L2

(b)

E1

E2

E3

E4

L2 − E4

L2 − E3

L
1 −

E
4

L
1 −

E
3

(c)

Figure 5. (a) Four-cycles of the type P1 × P1 glued together. (b) The four-cycles are blown up

with curves E1,2 and −E3,4. (c) The geometry after a flop of the lines −E3 and −E4.

We can apply the result of this generic transformation to more complex cases. For example,

the Calabi-Yau threefolds XN,M are non-compact with a collection of four-cycles forming

the compact part. These four-cycles Sa are all P1 × P1 blown up at four points glued to

each other, as depicted in figure 5. The six curves (E1, E2, E3, E4, L1, L2) shown in figure 5

are all exceptional curves which are locally O(−1)⊕O(−1) 7→ P1. They have the following

intersection form

Li · Lj = 1− δij , Li · Ea = 0 , Ea · Eb = −δab , for
i = 1, 2

a, b = 1, 2, 3 .
(2.26)

After the blow-ups, the areas of the curves can be represented as follows

A(Ea) = ma , A(L1 − E4) = h1 , A(L1 − E3) = h2 ,

A(L2 − E3) = v1 , A(L2 − E4) = v2 , (2.27)

for which the corresponding Kähler form is given by

ω = (v1 +m3)L1 + (h1 +m4)L2 −m1E1 −m2E2 −m3E3 −m4E4 . (2.28)

We can check that the above Kähler form gives areas for the curves E1,2,3,4 and L1 − E4

and L2−E3 that are consistent with eq. (2.27). However, the areas of L1−E3 and L2−E4

under this Kähler form give two constraints:

h2 = h1 +m4 −m3 , and v2 = v1 +m3 −m4 . (2.29)

The presence of two constraints is consistent with the fact that there are eight curves in

figure 5, of which only six are independent. The canonical class of Sa is given by

−KSa = 2L1 + 2L2 − E1 − E2 − E3 − E4 , (2.30)
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va

vb

ha

hb

−va

−vb

ma + va

ha + va

mb + vb

hb + vb

va−1

vb+1

mc

md

hb+1

ha−1 −va−1

−vb+1

mc + va + vb+1

md + va−1 + vb

ha−1 + va−1 + va

hb+1 + vb + vb+1

A

B

A

B

(a) (b)

Figure 6. Change of parameters and vertices A,B after a flop transition.

and its area is given by

sa = ω · (−KSa) = 2(h1 +m4 + v1 +m3)−m1 −m2 −m3 −m4

= 2h1 + 2v1 +m3 +m4 −m1 −m2

= h1 + h2 + v1 + v2 +m3 +m4 −m1 −m2 . (2.31)

Here, we have used the constraint eq. (2.29) to simplify the expression in the second line.

The area of the canonical class remains the same as the various curves in the geometry

undergo flop transitions.

Finally, another loop of cycles that is needed for the computations later on is shown in

figure 6, which corresponds to a four-cycle S in the Calabi-Yau threefold, which is P1× P1

blown up at four points. The loop corresponds to the curve class which is the anti-canonical

class of S, whose area is given by

A := va +mc + vb+1 + hb+1 + vb +md + va−1 + ha−1 . (2.32)

After a flop transition, the area of the curves in S changes but the area of the canonical

class remains the same

A′ = −va + (mc + va + vb+1)− vb+1 + (hb+1 + vb + vb+1)− vb + (md + va−1 + vb) (2.33)

− va−1 + (ha−1 + va−1 + va) = A .

2.3 Calabi-Yau threefolds and extended moduli space

In the previous section, we discussed flop transition from the point of view of Calabi-

Yau manifolds and the associated brane webs. To understand the physical implications

of such transitions, we recall that propagating strings see the underlying geometry in a

very different way than point particles. This extended nature of strings is responsible for

physically smooth processes which lead to topology changes of the geometry. In [32], Reid

conjectured (this conjecture is known as Reid’s fantasy) that all Calabi-Yau threefolds are
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Figure 7. (a) Kähler cone of a CY3fold. (b) Extended Kähler cone connecting two dis-

tinct CY3folds.

connected to each other through singular, perhaps non-Kähler, manifolds. Many families

of Calabi-Yau threefolds are now known to be connected by conifold and flop transitions,

as discussed above [33–36]. The case of the conifold transition is well understood from

string theory point of view that it requires non-perturbative effects to make the physics

non-singular [44, 45]. The conifold transition also leads to a change in the Hodge numbers

of the Calabi-Yau threefold [45].

To understand these transitions from the point of view of the Kähler moduli space of

Kähler threefolds, we recall that the latter has the structure of a cone given by:∫
X
ω ∧ ω ∧ ω > 0 ,

∫
Pa

ω ∧ ω > 0 ,

∫
Σi

ω > 0 , (2.34)

where ω is the Kähler form on X, Pa are two-dimensional complex submanifolds and Σi

represent holomorphic curves in X. The walls of the Kähler cone are given by the shrinking

of a rational curve or a divisor in the Calabi-Yau threefold [46]. In the case of rational

curve resolving this degeneration as described above leads again to a rational curve but

in a Calabi-Yau threefold which is outside the Kähler cone we started with. In terms of

the original Kähler form the new rational curve has negative area. Therefore, such flop

transitions connects two Calabi-Yau threefolds with same hodge numbers but different

triple intersection numbers. By putting together the Kähler cones of the two Calabi-

Yau threefolds, we get an extended moduli space, as shown in figure 7. In was shown

recently that Calabi-Yau threefold related by flop transitions are connected by a path in

the extended Kähler moduli space which consists of Ricci flat Calabi-Yau threefolds [47].

There are many known examples of families of Calabi-Yau threefolds which connect to

each other via flop transitions (and conifold transitions) and therefore fit to an extended

Kähler moduli space [33, 48–51]

3 Partition function: relation between (N,M) and (1, 1)

In this section, we review some results in the literature, which will turn out to be important

in the following.

3.1 Partition functions

In our previous works [8, 10], the topological string partition functions ZXN,M of the toric

Calabi-Yau manifolds XM,N have been studied. The former can either be computed di-
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rectly using the (refined) topological vertex formalism or alternatively as the M-string

partition function.

The partition function ZXN,M depends on the MN+2 independent Kähler parameters

of XN,M as well as two deformation parameters ε1,2. In [25, 27, 28], it has been computed

for the particular case that the resolution of each intersection (called m) is the same.

For the remaining parameters, the notation in figure 3 was used which appear in the

following fashion

Q̄i = e−Ti , ∀i = 1, . . . ,M ,

Qa = e−ta , ∀a = 1, . . . , N ,

Qab = QaQa+1 . . . Qb−1 , for 1 ≤ a < b ≤ N , (3.1)

as well as the two deformation parameters of the Ω-background ε1,2 which appear through

q = e2πiε1 and t = e−2πiε2 . (3.2)

With this notation, the partition function takes the form [28]

ZXN,M (t,T,m,ε1,2) =WN (∅)M
∑
α
(i)
a

Q
∑
a |α

(M)
a |

τ

(
M∏
i=1

Q

∑
a

(∣∣∣α(i)
a

∣∣∣−∣∣∣α(M)
a

∣∣∣)
i

)
(3.3)

×
M∏
i=1

N∏
a=1

ϑ
α
(i+1)
a α

(i)
a

(Qm;ρ)

ϑ
α
(i)
a α

(i)
a

(
√
t/q;ρ)

∏
1≤a<b≤N

M∏
i=1

ϑ
α
(i)
a α

(i+1)
b

(QabQ
−1
m ;ρ)ϑ

α
(i+1)
a α

(i)
b

(QabQm;ρ)

ϑ
α
(i)
a α

(i)
b

(Qab
√
t/q;ρ)ϑ

α
(i)
a α

(i)
b

(Qab
√
q/t;ρ)

,

with the prefactor

WN (∅; t,m, ε1,2) = lim
τ→i∞

ZXN,1(τ, ρ, t1, · · · , tN−1,m, ε1,2) (3.4)

=
1∏∞

n=1(1−Qnρ )

∏
i,j,k

N∏
a,b=1

1−Qk−1
ρ Qa,a+bQ

−1
m ti−

1
2 qj−

1
2

1−Qk−1
ρ Qa,a+b ti−1qj

1−Qk−1
ρ Qa,a+b−1Qm t

i− 1
2 qj−

1
2

1−Qk−1
ρ Qa,a+b tiqj−1

.

Here, we have used the notation

Qτ = e2πiτ , Qρ = e2πiρ , Qm = e2πim , (3.5)

and α
(i)
a in eq. (3.3) for NM many independent integer partitions where, for a particular

partition α
(i)
a = (α

(i)
a,1, α

(i)
a,2, . . . , α

(i)
a,`) with total length `,

|α(i)
a | =

∑̀
n=1

α(i)
a,n . (3.6)

Finally, for any two integer partitions µ and ν, the functions ϑµν in eq. (3.12) are defined as

ϑµν(x; ρ) :=
∏

(i,j)∈µ

ϑ

(
x−1 q−µi+j−

1
2 t−ν

t
j+i−

1
2 ; ρ

) ∏
(i,j)∈ν

ϑ

(
x−1 qνi−j+

1
2 tµ

t
j−i+

1
2 ; ρ

)
,

(3.7)
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where (for x = e2πiz)

ϑ(x; ρ) :=
(
x

1
2 − x− 1

2

) ∞∏
k=1

(1− xQkρ)(1− x−1Qkρ) =
i θ1(ρ, x)

Q
1/8
ρ
∏∞
k=1(1−Qkρ)

. (3.8)

Here, θ1 is the Jacobi theta function and we refer the reader to [52] for the proper definition

along with several useful identities.

Finally, we can also define the BPS partition function that counts single particle BPS

states of the little string theories associated with XN,M

ΣN,M (t,T,m, ε1,2) = PlogZXN,M (τ, ρ, t1, . . . , tN−1, T1, . . . , TM−1,m, ε1,2) (3.9)

=

∞∑
k=1

µ(k)

k
logZXN,M (kτ, kρ, k t1, . . . , k tN−1, k T1, . . . , k TM−1, k m, kε1,2) ,

where Plog is the plethystic logarithm and µ(k) is the Möbius function. In [10], we have

studied the BPS counting functions (3.9) at the particular region in the full string mod-

uli space

Q1 = Q2 = . . . = QN = Q
1
N
ρ and Q1 = Q2 = . . . = QM = Q

1
M
τ . (3.10)

For a large class of examples, we found that, in the Nekrasov-Shatashvili limit ε2 → 0,

lim
ε2→0

ε2 ΣN,M ( ρN , · · · ,
ρ
N ,

τ
M , · · · , τM ,m, ε1,2) = NM lim

ε2→0

ε2 Σ1,1( ρN ,
τ
M ,m, ε1,2) , (3.11)

which we termed self-similarity and which we conjectured to hold for generic M,N ∈ N.

As a consequence, in the Nekrasov-Shatashvili limit and for eq. (3.10), the free energy of

any configuration (N,M) can be completely obtained from ZX1,1 . In section 3.2, we will

discuss ZX1,1 in detail and show that it is invariant under Sp(2,Z). It then follows from

eq. (3.11) that Sp(2,Z) symmetry is inherited by the partition function of the (N,M) case

in the limit we discussed before.

3.2 The case X1,1

The simplest configuration corresponds to the case (N,M) = (1, 1), which will play an

important role throughout this work.

3.2.1 The partition function ZX1,1

As discussed in section 2, the Calabi-Yau threefold X1,1 has three Kähler parameters

(τ, ρ,m). Figure 4 shows the three parameters in the dual 5-brane web diagram. The

topological string partition function ZX1,1 depends on these three Kähler parameters and

is given by [8, 27, 28]

ZX1,1(τ, ρ,m, ε1,2) = W1(∅)
∑
α

Q|α|τ
ϑαα(Qm; ρ)

ϑαα(
√
t/q; ρ)

, (3.12)
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with the same notation as in (3.2) and (3.5). The prefactor (3.4) for N = 1 takes the form

W1(∅;ρ,m,ε1,2) = lim
τ→i∞

ZX1,1(τ,ρ,m,ε1,2)

=
1∏∞

n=1(1−Qnρ )

∏
i,j,k

1−QkρQ−1
m ti−

1
2 qj−

1
2

1−Qkρ ti−1qj
1−Qk−1

ρ Qm t
i− 1

2 qj−
1
2

1−Qkρ tiqj−1
. (3.13)

As was discussed in [38, 53] (see also [54]), the expansion of ZX1,1 in a power series in Qτ
can be written in terms of the equivariant elliptic genus of the Hilbert scheme of points,

ZX1,1(τ, ρ,m, ε1,2) = W1(∅, ρ,m, ε1,2)

∞∑
k=0

Qkτχell(Hilbk[C2])

=
∏

n,k,`,r,s

(
1−QnρQkτQ`mqrts

)−c(nk,`,r,s)
, (3.14)

where the coefficients c are obtained from a Fourier expansion of the equivariant elliptic

genus of C2

χell(C2) =
∑
n,`,r,s

c(n, `, r, s)QnρQ
`
mq

rts . (3.15)

Notice that eq. (3.14) is manifestly invariant under the exchange ρ ←→ τ since c only

depends on the product nk. This is compatible with a particular Hecke structure [29]

found for the associated free energy Σ1,1.

Furthermore, as was discussed in [28], the partition function ZX1,1 can be written as a

sum over the Narain lattice Γ3,2, which is manifestly invariant under SO(3, 2,Z).10 Since

the latter is homeomorphic to Sp(2,Z) as recalled below, the partition function ZX1,1 is

invariant under the latter. As a consequence of eq. (3.11), this property is also inherited

by ZXN,M in the NS-limit and eq. (3.10).

Recall that an element of R3,2 that transform linearly under SO(3, 2,Z) can be mapped

to a (4× 4) matrix that transform by conjugation under Sp(2,Z). Denote

~a = (a1, a2, a3, a4, a5) ∈ R3,2 and M(~a) =
1

2


a1 a2 − a3 0 −a4 + a5

a2 + a3 −a1 a4 − a5 0

0 −a4 − a5 a1 a2 + a3

a4 + a5 0 a2 − a3 −a1

 .

(3.16)

Then, the SO(3, 2,Z) action on ~a is realized as an Sp(2,Z) action on M given by gM g−1,

where g ∈ Sp(2,Z) with invariant inner product given by Tr(M(~a)M(~b)) = a1b1 + a2b2 −
a3b3 − a4b4 + a5b5.

10It was shown in [55] that the generating function of the elliptic genus of Hilbert scheme of points on K3

can be expressed as a sum over the Narain lattice Γ3,2 and is given in terms of the weight ten Igusa cusp

form. The two are not unrelated as the genus-one amplitude of ZX1,1 is precisely the generating function

studied in [54, 55]. This is not a coincidence, as to be explained in [56].
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(lcm(M,N), lcm(M,N))

N

M

Figure 8. Newton polygon of XN,M (with gcd(M,N) = 1) and a path following only diagonal

lines. The two points at (0, 0) and (lcm(M,N), lcm(M,N)) are equivalent. Furthermore, since

gcd(M,N) = 1, this path maps out all inequivalent points of the polygon.

4 Mapping (N,M) to (MN
k

, k): examples

In this section, we compile evidences that the Calabi-Yau threefolds XN,M and XNM
k
,k are

related through a series of flop transitions.

4.1 Relations between Newton polygons

Before presenting a series of examples, we first give a general argument to motivate that

such a relation ought to exists. To this end, we consider the Newton polygon of XN,M

tiling the plane R2. We start from the origin and follow a diagonal lines until we reach a

point that is equivalent to the origin (see figure 8).

This point has coordinates

(lcm(M,N), lcm(M,N)) =
(
NM
k , NMk

)
, with k = gcd(M,N) . (4.1)

If k = 1 (as in the example in figure 8), this path has already mapped out all inequivalent

points of the Newton polygon. If k > 1, we can continue the procedure by following one

horizontal line from the origin and tracing another diagonal path until we hit again an

equivalent point. Following this procedure for k steps maps out the entire Newton polygon

(see figure 9). The fact that the Newton polygon can equivalently be mapped out by k

lines of length NM
k suggests that it is equivalent to the Newton polygon of size (NMk , k). In

other words, it suggests that there exists a transformation which maps XN,M to XNM
k ,k

.

In the following, we discuss numerous examples (using the toric webs of XN,M ) to show

that such a transformation indeed exists.
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Figure 9. Newton polygon of XN,M with gcd(M,N) ≥ 2 and two paths following only diagonal

lines (the specific case shown here is (N,M) = (6, 4) with gcd(6, 4) = 2). These two paths map out

all inequivalent points of the Newton polygon.

4.2 Relation between (N,M) = (3, 2) and (6, 1)

Our first example is the configuration (N,M) = (3, 2), which we show can be related to

the case (N,M) = (6, 1). Since this is the simplest (non-trivial) example, we will work out

this case in great detail.

4.2.1 Starting configuration (N,M) = (3, 2) and consistency conditions

The web diagram of the configuration (N,M) = (3, 2) is shown in figure 10 which is

parametrised by 18 variables: hi, vi and mi for i = 1, . . . , 6. As discussed above, these

parameters are not all independent. Indeed, for consistency, all lines of the same color in

figure 10 have to be parallel to each other. With the blue lines oriented along the direction

(1, 1), these conditions can be formulated locally for each of the 6 hexagons (see also the

– 18 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
2

=

1

=

2

=

1

=

2

−1

−2

−3

−
1

−
2

−
3

m1

m2

m3m4

m5

m6

h1

h2

h3h4

h5

h6

v1

v2

v3v4

v5

v6

1

2

3

4

5

6

Figure 10. Parametrisation of the (N,M) = (3, 2) web diagram. The parameters (hi, vi,mi) with

i = 1, . . . , 6 are not all independent, but are subject to the conditions (4.2)–(4.7).

discussion in section 2.2.3)

• hexagon 1:

h1 +m2 = m4 + h4 , v4 +m4 = m2 + v5 , (4.2)

• hexagon 2:

h2 +m3 = m5 + h5 , v5 +m5 = m3 + v6 , (4.3)

• hexagon 3:

h3 +m1 = m6 + h6 , v6 +m6 = m1 + v4 , (4.4)

• hexagon 4:

h6 +m4 = m3 + h3 , v3 +m3 = m4 + v1 , (4.5)

• hexagon 5:

h4 +m5 = m1 + h1 , v1 +m1 = m5 + v2 , (4.6)

• hexagon 6:

h5 +m6 = m2 + h2 , v2 +m2 = m6 + v3 . (4.7)

These equations leave 8 independent parameters. This agrees with the result found in [27]

(see also [10]) that a generic (M,N) web has MN + 2 independent parameters.
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Figure 11. Cutting the (N,M) = (3, 2) web diagram. The vertical lines 1, 2, 3 and the horizontal

lines a, b are identified respectively.

4.2.2 Duality transformation

To proceed, we cut the (3, 2) diagram along the dashed lines shown in figure 11 and glue

them back together in order to obtain figure 12. Cutting again along the dashed line and

glueing the lines labelled by a together, we arrive at the web drawn in figure 13. Next, we

perform an SL(2,Z) transformation. The latter does not change the length of a given line,

however, it changes their orientation. Specifically, the transformation we consider rotates

the lines as follows:

(1, 0) −→ (1, 1) , (0, 1) −→ (−1, 0) , (1, 1) −→ (0, 1) , (4.8)

i.e. it rotates a horizontal line into a diagonal one, a diagonal into a vertical and a vertical

into a horizontal. The resulting diagram is shown in figure 14. In order to be consistent,

however, we have to impose two types of consistency conditions

• The vertical length of the line connecting the upper node 1 with the lower node 1

(denoted L = m4 + h4 + h2 + h6 in figure 14) must be equal to the length of the line

connecting the upper node 2 with lower node 2 (denoted L′ = m2 + h2 + h6 + h1 in

figure 14) as well as 3 with 3 etc.:

m4 + h4 + h2 + h6 = m2 + h2 + h6 + h1 = m6 + h6 + h1 + h5 (4.9)

= m1 + h1 + h5 + h3 = m5 + h5 + h3 + h4 = m3 + h3 + h4 + h2 .
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respectively. The dashed line signifies the cutting in order to obtain the web drawn in figure 13.

v1

h4

v5

h2

v3

h6

v4

h1

v2

h5

v6

h3

v1

m5

m3

m4

m2

m6

m1

m4

m2

m6

m1

m5

m3

1

2

3

4

5

6

5

6

1

2

3

4

a

a
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identified respectively.
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Figure 14. Diagram after the SL(2,Z) transformation in equation (4.8). The red lines undergo a

flop transition in the following step.

• The horizontal distance between the nodes 1 and 2 at the bottom of the diagram

(denoted s in figure 14) has to be identical to the horizontal distance between the

nodes 1 and 2 at the top of the diagram (denoted s′ in figure 14). The same constraint

has to hold for the nodes 2 and 3, 3 and 4, etc.

s =h4 + v5 = v4 + h1 = s′ , h2 + v3 = v2 + h5 ,

h6 + v4 = v6 + h3 , h1 + v2 = v1 + h4 ,

h5 + v6 = v5 + h2 , h3 + v1 = v3 + h6 . (4.10)

The consistency conditions eq. (4.9) and eq. (4.10) are fully equivalent to the conditions

eq. (4.2) through eq. (4.7), which guarantee that the original diagram in figure 11 is con-

sistent.

The diagram in figure 14 looks already very similar to the (N,M) = (6, 1) configura-

tion, however, the identification of the vertical lines at the bottom of the diagram with the

lines at the top of the diagram is different. Indeed, the latter are ‘shifted’ with respect to

the former. However, through a series of further transformations, we can bring the diagram

into the form of the (6, 1) web, with the correct identification of the vertical lines. To this

end, as a next step we perform a flop transition on all the lines drawn in red in figure 14.

Using the general transformations as explained in (2.25) we can draw the new diagram in
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Figure 15. The final (p, q)-web diagram after six flop transformations.

figure 15. After undergoing the flop transformations, we can again check the consistency

conditions for the diagram in figure 15. As before, we have to impose two different types

of conditions

• The vertical length of the line connecting the upper node 1 with the lower node 1

(L = m4 + h4 + h6 − (−h2)) must be equal to the length of the line connecting the

upper node 2 with the lower node 2 (L′ = m2 + h1 + h2 − (−h6)) as well as 3 with

3 etc.:

m4 + h4 + h2 + h6 = m2 + h2 + h6 + h1 = m6 + h6 + h1 + h5 (4.11)

= m1 + h1 + h5 + h3 = m5 + h5 + h3 + h4 = m3 + h3 + h4 + h2 .

These conditions are identical to equation eq. (4.9).

• The horizontal distance between the nodes 1 and 2 at the bottom of the diagram has

to be identical to the horizontal distance between the nodes 1 and 2 at the top of the

diagram. The same constraint has to hold for the nodes 2 and 3, 3 and 4, etc

h4 + v5 = v4 + h1 , h2 + v3 = v2 + h5 ,

h6 + v4 = v6 + h3 , h1 + v2 = v1 + h4 ,

h5 + v6 = v5 + h2 , h3 + v1 = v3 + h6 . (4.12)

These conditions are identical to equation (4.10).

– 23 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
2

v 1
+
h 3

+
h 4

v 5
+
h 2

+
h 4

v 3
+
h 2

+
h 6

v 4
+
h 1

+
h 6

v 2
+
h 1

+
h 5

v 6
+
h 3

+
h 5

v 1
+
h 3

+
h 4

−h4

−h2

−h6

−h1

−h5

−h3

m4 + h4 + h6

m2 + h1 + h2

m6 + h5 + h6

m1 + h1 + h3

m5 + h4 + h5

m3 + h2 + h3

m5 + h4 + h5

m3 + h2 + h3

m4 + h4 + h6

m2 + h1 + h2

m6 + h5 + h6

m1 + h1 + h3

a

a

1

2

3

4

5

6

5

6

1

2

3

4

Figure 16. Diagram after another SL(2,Z) transformation. The red lines are to undergo a flop

transition in the next step.

Thus, the consistency conditions eq. (4.11) and eq. (4.12) are still fully equivalent to the

conditions eq. (4.2) through (4.7). This is to be expected, since the flop transformation

does not change the overall length in the vertical or horizontal direction, as can be seen

from eq. (2.25).

As a next step, we perform another SL(2,Z) transformation to change the orientation

of all lines in figure 15. Indeed, we transform

(1, 0) −→ (1,−1) , (0, 1) −→ (0, 1) , (1, 1) −→ (1, 0) , (4.13)

which changes horizontal lines into diagonal ones and vice versa, while leaving the vertical

lines invariant. The resulting diagram is shown in figure 16. Since the SL(2,Z) transforma-

tion does not modify the length of the individual lines (but only changes their orientation),

the consistency conditions are also not altered, but remain eq. (4.11) and eq. (4.12).

As a next step we perform flop transitions on all the lines marked red in figure 16.

Using the map of parameters in eq. (2.25), the new diagram takes the form of figure 17,

where the vertical lengths m′1,2,3,4,5,6 are given by

m′1 = m4 + v3 + v5 + 2(h2 + h4 + h6) ,

m′2 = m2 + v3 + v4 + 2(h1 + h2 + h6) ,

m′3 = m6 + v2 + v4 + 2(h1 + h5 + h6) ,

m′4 = m1 + v2 + v6 + 2(h1 + h3 + h5) ,

m′5 = m5 + v6 + h3 + h4 + 2h5 ,
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Figure 17. Diagram after five further flop transformations. The quantities m′1,2,3,4,5,6 are given in

eq. (4.14). The diagram will be cut along the dashed line in the following step.

m′6 = m3 + v5 + 2h2 + h3 + h4 . (4.14)

As a next step we cut the diagram in figure 17 along the dashed line and glue it again

along the diagonal line marked a. The result is shown in figure 18, for which we perform a

flop transition for the line shown in red to arrive at figure 19. Here, the lines m′′5 and m′′6
have length

m′′5 = m′5 + v1 + h3 + h4 = m5 + v1 + v6 + 2(h3 + h4 + h5) ,

m′′6 = m′6 + v1 + h3 + h4 = m3 + v1 + v5 + 2(h2 + h3 + h4) . (4.15)

The consistency conditions for the diagram in figure 19 are the same as eq. (4.9) and

eq. (4.10).

As a next step we perform an SL(2,Z) transformation which acts in the same manner

as (4.13), i.e.

(1, 0) −→ (1,−1) , (0, 1) −→ (0, 1) , (1, 1) −→ (1, 0) . (4.16)

Thus, it transforms horizontal lines into diagonal ones and vice versa, while leaving vertical

lines invariant. The resulting diagram is shown in figure 20. Finally, in order to obtain the

familiar form of the (N,M) = (6, 1) web (see [27]), we cut the diagram in figure 20 along

the dashed line to arrive at figure 21. Comparing figure 21 with figure 14, we see that in
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Figure 18. Re-gluing the diagram in figure 17. The red line will undergo a flop transition in the

next step.

the former the vertical lines are directly above each other and not ‘rotated’ against each

other as in the former. Therefore, the diagram in figure 21 indeed corresponds to the web

(N,M) = (6, 1). The consistency conditions are the same as in eq. (4.9) and eq. (4.10),

which are equivalent to those in eq. (4.2) through eq. (4.7) in the original diagram in

figure 10. Thus, by a series of flop transitions, we have been able to relate the Calabi-Yau

threefold X3,2 to X6,1.

In the F-theory compactification, without m-deformation, the Calabi-Yau threefold

X3,2 gives rise to a little string theory with N = (1, 0) supersymmetry, while the Calabi-

Yau threefold X6,1 gives rise to little string theory with (2, 0) supersymmetry. However,

undeformed Calabi-Yau threefolds XM,N are singular, prohibiting us from performing flop

transitions. In our construction, we thus always turned on the m-deformation. Hence, in

the extended moduli space, these deformed theories retain the same (1, 0) supersymmetries

and can be smoothly mapped to each other via flop transitions.

One would think that, since XN,1 are related to (2, 0) little strings and XN,M to (1, 0)

little strings, there is a jump in supersymmetry given by the duality discussed above.

However, as we mentioned before, the deformation by U(1)m commutes with the orbifold

action on the transverse space and breaks the supersymmetry to (1, 0) in both sides. It is

also not easy to see if the deformation by m can be turned off after performing the flop

transitions since it mixes with other parameters of the theory in a non-trivial way. However,

it is known that a situation exhibiting a phenomenon of supersymmetry do exist such as the

one discussed in [59] in a different context, namely, M-theory compactifications on compact
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Figure 19. Diagram after a further flop transition. The parameters m′1,2,3,4 are as in eq. (4.14)

while m′′5,6 are defined in eq. (4.15).

Calabi-Yau threefolds. In this framework, flop transitions of birationally equivalent Calabi-

Yau threefolds extend the Coulomb branch of five-dimensional N = 1 theories. It was

demonstrated in [59] through several lower-rank examples that the supercharges are well

defined everywhere in this extended moduli space, but that the energy and the charges

of BPS configurations are not differentiable everywhere: indeed, the number of residual

supersymmetries often jumps across the walls of the Kähler cones (i.e. the locus where the

flop transition takes place).

4.2.3 Simple check of the duality

As a simple check of the proposed relation between the partition functions of the (N,M) =

(3, 2) and the (6, 1) brane webs, we consider the particular case

m = m1 = m2 = m3 = m4 = m5 = m6 ,

v = v1 = v2 = v3 = v4 = v5 = v6 ,

h = h1 = h2 = h3 = h4 = h5 = h6 . (4.17)

which is a solution of eq. (4.2) through eq. (4.7) (and therefore also of eq. (4.9) and

eq. (4.10)). Moreover, as has been proposed in [10] at this particular region in the moduli
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Figure 20. Diagram after another SL(2,Z) transformation. In the final step, the diagram will be

cut along the dashed line.
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Figure 21. The final (p, q)-web diagram corresponding to (N,M) = (6, 1).
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space, the Nekrasov-Shatashvili limit of the free energies of a generic (N,M) brane can be

related to those of the web (1, 1) (see eq. (3.11)). Thus, at eq. (4.17), the transformation

of the parameters obtained by comparing figure 10 with figure 21 must be a symmetry of

the partition function of the brane web (1, 1). Our strategy of showing such an invariance

is to show that this transformation is part of Sp(2,Z) which was proposed in [28, 54] to be

a symmetry of the (M,N) = (1, 1) case.

To this end, we start with the (3, 2) web and introduce

ρ = 3m+ 3h , and τ = 2m+ 2v . (4.18)

which entails

h =
1

3
(ρ− 3m) , and v =

1

2
(τ − 2m) . (4.19)

Furthermore, we introduce the (1, 1) period matrix

Ω =

(
τ/2 m

m ρ/3

)
. (4.20)

Notice here the rescaling of the parameters, as is required to make contact with the config-

uration (N,M) = (1, 1). We now want to compare Ω to a similar period matrix obtained

from the (6, 1) web. For the latter, we introduce in a similar fashion

ρ′ = 6v + 6h , τ ′ = m+ 4v + 9h , m′ = 2v + 3h . (4.21)

which in terms of (ρ, τ,m) reads

ρ′ = 3τ + 2ρ− 12m, τ ′ = 2τ + 3ρ− 12m, m′ = ρ+ τ − 5m. (4.22)

We also introduce the (1, 1) period matrix

Ω′ =

(
τ ′ m′

m′ ρ′/6

)
=

(
2τ + 3ρ− 12m τ + ρ− 5m

τ + ρ− 5m 1
6(3τ + 2ρ− 12m)

)
. (4.23)

The two period matrices Ω and Ω′ are related through an Sp(2,Z) transformation

Ω′ = (AΩ +B) · (CΩ +D)−1 , (4.24)

with

A =

(
2 −3

1 −1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
−1 −1

3 2

)
, (4.25)

which satisfy eq. (2.21) (notice also that detΩ = ρτ
6 −m2 = detΩ′). This shows that ZX1,1 is

indeed invariant under the change of parameters implied by the above chain of dualities.11

11Notice that due to det(CΩ+D)=1 for (4.25), a weight factor in the Sp(2,Z) transformation is irrelevant.
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4.2.4 Vertex identification

We compare the diagrams in figure 11 and figure 21, where we identified vertices that are

mapped into each other (see figure 22). We notice that the length of the horizontal and

diagonal lines in the (6, 1) diagram can be read off as the distances (using only horizontal

and vertical lines) between the same vertices in the (3, 2) web. As an example, we have

highlighted the distance between the vertices E and H as well as L and K respectively.

Notice that this rule does not only apply to neighboring vertices: e.g. the (shortest)12

distance between vertices H and I is (again we only use horizontal and vertical lines)

h4 = v5 + h2 + h4 − v1 − v5 − h2 − h3 − h4 + v1 + h3 + h4 . (4.26)

In section 5 we discuss how to generalise this observation to a general pattern that allows

reconstructing the web (NMk , k) starting from a labelling of the vertices of the web (N,M).

4.3 Relation between (N,M) = (2, 5) and (10, 1)

The next example is the web (N,M) = (2, 5).

4.3.1 Duality transformation

A parametrisation of the (N,M) = (2, 5) web is given in figure 23. Out of the 30 parameters

(hi, vi,mi) with i = 1, . . . , 10, only 12 are independent. The remaining ones are fixed by

consistency relations, as discussed above. Following a similar sequence of flop-transitions,

cutting and re-gluing the diagram, as well as SL(2,Z) transformations, we can dualise the

(N,M) = (2, 5) to the (10, 1) web with the parametrisation given in figure 24. Explicitly,

the parameters v̄i are given in terms of (hi, vi,mi) as

v1 = m1 + 4(v1 + v2 + v4 + v8 + v10) + 3(h2 + h4 + h8 + h10) ,

v2 = m10 + 4(v2 + v4 + v6 + v8 + v10) + 3(h2 + h4 + h6 + h8) ,

v3 = m4 + 4(v2 + v4 + v5 + v6 + v8) + 3(h2 + h5 + h6 + h8) ,

v4 = m8 + 4(v2 + v5 + v6 + v8 + v9) + 3(h2 + h5 + h6 + h9) ,

v5 = m2 + 4(v2 + v3 + v5 + v6 + v9) + 3(h3 + h5 + h6 + h9) ,

v6 = m6 + 4(v3 + v5 + v6 + v7 + v9) + 3(h3 + h5 + h7 + h9) ,

v7 = m5 + 4(v1 + v3 + v5 + v7 + v9) + 3(h1 + h3 + h7 + h9) ,

v8 = m9 + 4(v1 + v3 + v7 + v9 + v10) + 3(h1 + h3 + h7 + h10) ,

v9 = m3 + 4(v1 + v3 + v4 + v7 + v10) + 3(h1 + h4 + h7 + h10) ,

v10 = m7 + 4(v1 + v4 + v7 + v8 + v10) + 3(h1 + h4 + h8 + h10) , (4.27)

12Counting in the opposite direction in the (6, 1) web corresponds to ρ′ + h4, where ρ′ is the length of

the horizontal circle in the (6, 1) web.
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Figure 22. Identifying vertices in the (3, 2) and (6, 1) webs.
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Figure 23. Parametrisation of the (N,M) = (2, 5) web and a labelling of the vertices.

while the parameters h are

h1 =−(v2+v4+v8+v10+h2+h4+h8) , h2 =−(v2+v4+v6+v8+h2+h6+h8) ,

h3 =−(v2+v5+v6+v8+h2+h5+h6) , h4 =−(v2+v5+v6+v9+h5+h6+h9) ,

h5 =−(v3+v5+v6+v9+h3+h5+h9) , h6 =−(v3+v5+v7+v9+h3+h7+h9) ,

h7 =−(v1+v3+v7+v9+h1+h3+h7) , h8 =−(v1+v3+v7+v10+h1+h7+h10) ,

h9 =−(v1+v4+v7+v10+h1+h4+h10) , h10 =−(v1+v4+v8+v10+h4+h8+h10) , (4.28)
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Figure 24. Parametrisation of the (N,M) = (10, 1) web and a labelling of the vertices that is

compatible with the one in figure 23.

and the parameters m

m1 = (v1 + v2 + v4 + v8 + v10) + (h2 + h4 + h8 + h10) ,

m2 = (v2 + v4 + v6 + v8 + v10) + (h2 + h4 + h6 + h8) ,

m3 = (v2 + v4 + v5 + v6 + v8) + (h2 + h5 + h6 + h8) ,

m4 = (v2 + v5 + v6 + v8 + v9) + (h2 + h5 + h6 + h9) ,

m5 = (v2 + v3 + v5 + v6 + v9) + (h3 + h5 + h6 + h9) ,

m6 = (v3 + v5 + v6 + v7 + v9) + (h3 + h5 + h7 + h9) ,

m7 = (v1 + v3 + v5 + v7 + v9) + (h1 + h3 + h7 + h9) ,

m8 = (v1 + v3 + v7 + v9 + v10) + (h1 + h3 + h7 + h10) ,

m9 = (v1 + v3 + v4 + v7 + v10) + (h1 + h4 + h7 + h10) ,

m10 = (v1 + v4 + v7 + v8 + v10) + (h1 + h4 + h8 + h10) . (4.29)

Using the assignment of vertices in figure 23 and figure 24, the parameters h and m can be

read off from the two vertex diagrams in the same manner as in the case of (N,M) = (3, 2).

The fact that the diagram in figure 23 can be transformed into figure 24 through a

sequence of flops and SL(2,Z) transformations shows that the web diagram (N,M) = (2, 5)

is indeed dual to the web diagram (N,M) = (10, 1).
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4.3.2 Simple check of the duality

As in section 4.2.3 for the case (N,M) = (3, 2), we can perform a simple check of the

duality found above. Indeed, we consider the following choice of the parameters

m1 = m2 = · · · = m10 = m,

h1 = h2 = · · · = h10 = h =
ρ

2
−m,

v1 = v2 = · · · = v10 = v =
τ

5
−m, (4.30)

which are compatible with all the consistency conditions. Furthermore, we introduce the

three parameters (τ ′, ρ′,m′) for the (10, 1) web

τ ′ = 5τ + 8ρ− 40m, ρ′ = 2τ + 5ρ− 20m, m′ = τ + 2ρ− 9m. (4.31)

and define the (1, 1) period matrices

Ω =

(
τ/5 m

m ρ/2

)
, and Ω′ =

(
τ ′ m′

m′ ρ′/10

)
, (4.32)

These satisfy the relation

Ω′ = (AΩ +B) · (CΩ +D)−1 , (4.33)

for the matrices

A =

(
5 −4

1 −1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
1 1

−4 −5

)
, (4.34)

which satisfy as well the relations (2.21). This shows that (ρ, τ,m) and (ρ′, τ ′,m′) are

related through an Sp(2,Z) transformation. Therefore, ZX1,1 is indeed invariant under the

change of parameters implied by the above chain of dualities.

4.4 Relation between (N,M) = (3, 4) and (12, 1)

The next example is the case (N,M) = (3, 4).

4.4.1 Duality transformation

A parametrisation of the web (N,M) = (3, 4) is given in figure 25, which also shows

an assignment of vertices. Of the 36 parameters in the web in figure 25, only 14 are

independent on account of the consistency conditions. After going through a sequence of

flop-transitions, cutting and re-gluing as well as SL(2,Z) transformations, we can bring

this diagram to the form of the (N,M) = (12, 1) web with the parametrisation given in

figure 26. Specifically, the parameters m are given by

m1 =h2+h7+h12+v2+v3+v5+v12 , m2 =h2+h4+h12+v2+v5+v11+v12

m3 =h2+h4+h9+v2+v5+v8+v11 , m4 =h4+h9+h11+v1+v2+v8+v11
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Figure 25. Parametrisation of the (N,M) = (3, 4) web along with an assignment of vertices.

m5 =h1+h9+h11+v1+v8+v10+v11 , m6 =h1+h6+h11+v1+v7+v8+v10 ,

m7 =h1+h6+h8+v1+v4+v7+v10 , m8 =h6+h8+h10+v4+v7+v9+v10 ,

m9 =h3+h8+h10+v4+v6+v7+v9 , m10 =h3+h5+h10+v3+v4+v6+v9 ,

m11 =h3+h5+h7+v3+v6+v9+v12 , m12 =h5+h7+h12+v3+v5+v6+v12 , (4.35)

while the parameters h̄ are

h1 = −(h2 + h12 + v2 + v5 + v12) , h2 = −(h2 + h4 + v2 + v5 + v11) ,

h3 = −(h4 + h9 + v2 + v8 + v11) , h4 = −(h9 + h11 + v1 + v8 + v11) ,

h5 = −(h1 + h11 + v1 + v8 + v10) , h6 = −(h1 + h6 + v1 + v7 + v10) ,

h7 = −(h6 + h8 + v4 + v7 + v10) , h8 = −(h8 + h10 + v4 + v7 + v9) ,

h9 = −(h3 + h10 + v4 + v6 + v9) , h10 = −(h3 + h5 + v3 + v6 + v9) ,

h11 = −(h5 + h7 + v3 + v6 + v12) , h12 = −(h7 + h12 + v3 + v5 + v12) . (4.36)
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Figure 26. Parametrisation of the web (N,M) = (12, 1)web with an assignment of vertices com-

patible with figure 25.
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and the parameters v̄ are

v1 = m2 + 2(h2 + h7 + h12) + 3(v2 + v3 + v5 + v12) ,

v2 = m11 + 2(h2 + h4 + h12) + 3(v2 + v5 + v11 + v12) ,

v3 = m8 + 2(h2 + h4 + h9) + 3(v2 + v5 + v8 + v11) ,

v4 = m1 + 2(h4 + h9 + h11) + 3(v1 + v2 + v8 + v11) ,

v5 = m10 + 2(h1 + h9 + h11) + 3(v1 + v8 + v10 + v11) ,

v6 = m7 + 2(h1 + h6 + h11) + 3(v1 + v7 + v8 + v10) ,

v7 = m4 + 2(h1 + h6 + h8) + 3(v1 + v4 + v7 + v10) ,

v8 = m9 + 2(h6 + h8 + h10) + 3(v4 + v7 + v9 + v10) ,

v9 = m6 + 2(h3 + h8 + h10) + 3(v4 + v6 + v7 + v9) ,

v10 = m3 + 2(h3 + h5 + h10) + 3(v3 + v4 + v6 + v9) ,

v11 = m12 + 2(h3 + h5 + h7) + 3(v3 + v6 + v9 + v12) ,

v12 = m5 + 2(h5 + h7 + h12) + 3(v3 + v5 + v6 + v12) .

As in the cases before, using the assignment of vertices in figure 25 and figure 26 the

parameters h and m can be directly read off. Furthermore, the transformation above

shows that the web diagrams (N,M) = (3, 4) and (12, 1) are indeed dual to each other.

4.4.2 Simple check of duality

In order to perform a check of the duality worked out above, we consider

m1 = m2 = · · · = m12 = m,

h1 = h2 = · · · = h12 = h =
ρ

3
−m,

v1 = v2 = · · · = v12 = v =
τ

4
−m. (4.37)

Furthermore, we introduce the parameters in the (12, 1) web

τ ′ = 4τ + 3ρ− 24m, ρ′ = 3τ + 4ρ− 24m, m′ = τ + ρ− 7m. (4.38)

Next we also introduce the period matrices

Ω =

(
τ/4 m

m ρ/3

)
, and Ω′ =

(
τ ′ m′

m′ ρ′/12

)
, (4.39)

which are related to each other by

Ω′ = (AΩ +B) · (CΩ +D)−1 , (4.40)

with the matrices

A =

(
4 −3

1 −1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
1 1

−3 −4

)
, (4.41)

which satisfy indeed the relations (2.21). This shows that (ρ, τ,m) and (ρ′, τ ′,m′) are

related through an Sp(2,Z) transformation. Therefore, ZX1,1 is indeed invariant under the

change of parameters implied by the above chain of dualities.
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4.5 Relation between (N,M) = (4, 6) and (12, 2)

Our final example is the relation between the web diagrams (N,M) = (4, 6) and (12, 2).

Notice that in this case the gcd is gcd(4, 6) = 2 and it is therefore dualised to the web (12, 2).

4.5.1 Duality transformation

A parametrisation of the web (N,M) = (4, 6) is given in figure 27. Out of the 72 parameters

in the diagram, only 26 are independent on account of the consistency conditions. By

cutting and re-gluing the diagram in figure 27, we can bring it into a form which is very

similar to the web (N,M) = (12, 2), except that the lines at the top of the diagram are

glued to the lines at the bottom in a twisted fashion (see figure 28). Next we perform a flop

transition on the curves labelled by parameters vi, which is carried out in both ‘layers’, as

shown in the figure 29. The new parameters h′i can be determined using figure 6 and are

given by

h′1 = h1 + v2 + v7 , h′9 = h9 + v10 + v15 , h′17 = h17 + v18 + v23 ,

h′2 = h2 + v3 + v8 , h′10 = h10 + v11 + v16 , h′18 = h18 + v13 + v24 ,

h′3 = h3 + v4 + v9 , h′11 = h11 + v12 + v17 , h′19 = h19 + v1 + v20 ,

h′4 = h4 + v5 + v10 , h′12 = h12 + v7 + v18 , h′20 = h20 + v21 + v2 ,

h′5 = h5 + v6 + v11 , h′13 = h13 + v14 + v19 , h′21 = h21 + v22 + v3 ,

h′6 = h6 + v1 + v12 , h′14 = h14 + v15 + v20 , h′22 = h22 + v23 + v4 ,

h′7 = h7 + v8 + v13 , h′15 = h15 + v16 + v21 , h′23 = h23 + v24 + v5 ,

h′8 = h8 + v9 + v14 , h′16 = h16 + v17 + v22 , h′24 = h24 + v6 + v19 . (4.42)

along with the parameters m′i

m′1 = m1 + v1 + v2 , m′2 = m2 + v3 + v2 , m′3 = m3 + v3 + v4 ,

m′4 = m4 + v5 + v4 , m′5 = m5 + v5 + v4 , m′6 = m6 + v1 + v6 ,

m′7 = m7 + v8 + v7 , m′8 = m8 + v8 + v9 , m′9 = m9 + v10 + v9 ,

m′10 = m10 + v10 + v11 , m′11 = m11 + v12 + v11 , m′12 = m12 + v12 + v7 ,

m′13 = m13 + v13 + v14 , m′14 = m14 + v15 + v14 , m′15 = m15 + v15 + v16 ,

m′16 = m16 + v17 + v16 , m′17 = m17 + v17 + v18 , m′18 = m18 + v13 + v18 ,

m′19 = m19 + v20 + v19 , m′20 = m20 + v20 + v21 , m′21 = m21 + v22 + v21 ,

m′22 = m22 + v22 + v23 , m′23 = m23 + v24 + v23 , m′24 = m24 + v24 + v19 . (4.43)

Now carrying out the flop transition on the curves labelled by h′i in the web shown in

figure 29 gives the web shown in figure 30 which is the standard untwisted (12, 2) web.
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Figure 27. Parametrisation of the web (N,M) = (4, 6) along with an assignment of vertices.
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Figure 28. Twisted (N,M) = (12, 2) web which is obtained from figure 27 by cutting and re-gluing

different lines.
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Figure 29. The twisted (N,M) = (12, 2) web of figure 28 after flop transitions along the curves vi.
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Figure 30. Parametrisation of the web (N,M) = (12, 2) web along with an assignment of vertices.
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The parameters vi in terms of the parameters of the original (4, 6) web are given by

v1 = m′1 + h′6 + h′20 , v2 = m′2 + h′1 + h′21 , v3 = m′3 + h′2 + h′22 ,

v4 = m′4 + h′3 + h′23 , v5 = m′5 + h′4 + h′24 , v6 = m′6 + h′5 + h′19 ,

v7 = m′7 + h′12 + h′2 , v8 = m′8 + h′7 + h′3 , v9 = m′9 + h′8 + h′4 ,

v10 = m′10 + h′9 + h′5 , v11 = m′11 + h′10 + h′6 , v12 = m′12 + h′11 + h′1 ,

v13 = m′13 + h′18 + h′8 , v14 = m′14 + h′13 + h′9 , v15 = m′15 + h′14 + h′10 ,

v16 = m′16 + h′15 + h′11 , v17 = m′17 + h′6 + h′20 , v18 = m′18 + h′17 + h′7 ,

v19 = m′19 + h′14 + h′24 , v20 = m′20 + h′19 + h′15 , v21 = m′21 + h′16 + h′20 ,

v22 = m′22 + h′21 + h′17 , v′23 = m′23 + h′22 + h′18 , v24 = m′24 + h′23 + h′13 , (4.44)

while the parameters mi are

m1 =−v1+h′19+h′6 , m2 =−v2+h′20+h′1 , m3 =−v3+h′21+h′2 ,

m4 =−v4+h′22+h′3 , m5 =−v5+h′23+h′4 , m6 =−v6+h′26+h′5 ,

m7 =−v7+h′1+h′12 , m8 =−v8+h′2+h′7 , m9 =−v9+h′3+h′8 ,

m10 =−v10+h′4+h′9 , m11 =−v11+h′5+h′10 , m12 =−v12+h′6+h′11 ,

m13 =−v13+h′7+h′18 , m14 =−v14+h′8+h′13 , m15 =−v15+h′9+h′14 ,

m16 =−v16+h′10+h′15 , m17 =−v17+h′11+h′16 , m18 =−v18+h′12+h′17 ,

m19 =−v19+h′13+h′26 , m20 =−v20+h′14+h′19 , m21 =−v21+h′15+h′20 ,

m22 =−v22+h′16+h′21 , m23 =−v23+h′17+h′22 , m24 =−v24+h′18+h′23 , (4.45)

and the parameters hi are

h1 = −(h1 + v2 + v7) , h2 = −(h2 + v3 + v8) , h3 = −(h3 + v4 + v9) ,

h4 = −(h4 + v5 + v10) , h5 = −(h5 + v6 + v11) , h6 = −(h6 + v1 + v12) ,

h7 = −(h7 + v8 + v13) , h8 = −(h8 + v9 + v14) , h9 = −(h9 + v10 + v15) ,

h10 = −(h10 + v11 + v16) , h11 = −(h11 + v12 + v17) , h12 = −(h12 + v7 + v18) ,

h13 = −(h13 + v14 + v19) , h14 = −(h14 + v15 + v20) , h15 = −(h15 + v16 + v21) ,

h16 = −(h16 + v17 + v22) , h17 = −(h17 + v18 + v23) , h18 = −(h18 + v13 + v24) ,

h19 = −(h19 + v1 + v20) , h20 = −(h20 + v21 + v2) , h21 = −(h21 + v22 + v3) ,

h22 = −(h22 + v23 + v4) , h23 = −(h23 + v24 + v5) , h24 = −(h24 + v6 + v19) . (4.46)

As in the previous cases, using the assignment of vertices in figure 27 and figure 30 the

parameters h and m can be directly read off. Furthermore, the transformation above shows

that the web diagrams (N,M) = (4, 6) and (12, 2) are indeed dual to each other.
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4.5.2 Simple check of duality

In order to perform a check of the duality worked out above, we consider (mi, hi, vi) =

(m,h, v) such that

τ = 6(v +m) =⇒ v =
τ

6
−m (4.47)

ρ = 4(h+m) =⇒ h =
ρ

4
−m

In the (12, 2) web the parameters (ρ′, τ ′,m′) are given by

τ ′ = 2(v +m) , with ρ′ = 12(h+m) , (4.48)

with

v = m+ 2h+ 6v , and h = −(h+ 2v) , and m = 2h+ 3v . (4.49)

This gives the following map between (τ, ρ,m) and (τ ′, ρ′,m′):

τ ′ = 3τ + 2ρ− 24m, ρ′ = 3ρ+ 2τ − 24m, m′ =
τ

2
+
ρ

2
− 5m. (4.50)

Next, we also introduce the period matrices

Ω =

(
τ/6 m

m ρ/4

)
, and Ω′ =

(
τ ′/2 m′

m′ ρ′/12

)
, (4.51)

which are related to each other by

Ω′ = (AΩ +B) · (CΩ +D)−1 , (4.52)

with the matrices

A =

(
3 −2

1 −1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
1 1

−2 −3

)
, (4.53)

which satisfy indeed the relations (2.21). This shows that (ρ, τ,m) and (ρ′, τ ′,m′) are

related through an Sp(2,Z) transformation. Therefore, ZX1,1 is indeed invariant under the

change of parameters implied by the above chain of dualities.

5 Map for arbitrary (N,M)

In the previous section, we have discussed a number of examples of how to transform a

web (N,M) into a web (MN
k , k), where k = gcd(M,N). While we have argued that such

a transformation always exists, this does not fix the parameters of the new toric diagram

(MN
k , k) in terms of the parameters of the original one. However, based on the examples

discussed before, we explain in this section that there exists a clear pattern, which we

conjecture to hold for generic (N,M). In the following, without loss of generality, we

assume that M > N .13

13In case N > M , a similar procedure applies, except that all vi are replaced by hi and vice versa.
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5.1 Parameter map

The key in reconstructing the parameters (h̄i, v̄i, m̄i) (for i = 1, . . . ,MN) of the web

(MN
k , k) in terms of the parameters (hi, vi,mi) of the original web (N,M) is to find a

matching between the vertices of the two webs. In this section, starting from a labelling

(A1, A2, . . . , A2MN ) of the vertices of the web (N,M) we construct a labelling of the vertices

in the web (MN
k , k), in other words, we explain how the vertices are mapped into each other.

Furthermore, we provide a rule for the area for the curve connecting any two vertices in

the web (MN
k , k) in terms of the parameters of the original web.

5.1.1 Notation: vertices and paths

Before we describe the mapping of the parameters between the webs (N,M) and (MN
k , k),

we need to introduce some notation. We start from a labelling of the vertices of the web

(N,M). There are two types of the former, depending on the orientation of the external

leg along the direction (1, 1), i.e.

•

vertex of type 1

•

vertex of type 2

Furthermore, for n ∈ N we can define for each vertex A the path P(A,n) that starts at A

and follows n vertical and n− 1 horizontal lines

v1

h1

...
hn−1

vn

•
A

•

path P(A, n) for a vertex of type 1

vn
hn−1

...
h1

v1

•

•
A

path P(A, n) for a vertex of type 2

Notice that P(A,n) connects a vertex of type 1 with a vertex of type 2 or vice versa.

Finally, we call p(A,n) the (ordered) (2n − 1)-tuple of parameters of the lines that form

the path P(A,n), i.e. specifically with regards to the figures above

p(A,n) = (v1, h1, v2, h2, . . . , hn−1, vn) . (5.1)
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5.1.2 Vertex mapping

As we have mentioned above, from a generic labelling of the (N,M) web, we conjecture

that it is possible to directly reconstruct the labelling of the (MN
k , k) web. The procedure

we propose starts from any vertex of type 1 in the (N,M) web which we call A1.14 To

find (one of) the neighbour(s) of this vertex in the (MN
k , k) web, we follow P(A1,

M
k ), i.e.

a path with M
k vertical lines and M

k − 1 horizontal lines, that leads to a vertex of type 2 in

the (N,M) web:

Web (N,M) Web (MN
k , k)

v1

h1

v2

h2

v3

•
A1

•
A2

•
A1

•
A2

v
1 +

v
2 +

v
3 +

h
1 +

h
2

We conjecture that the parameter connecting the two vertices in the (MN
k , k) web is the

sum of all vi’s and hi’s we have followed,

m̄1 =

2M
k −1∑
i=1

(
p(A1,

M
k )
)
i
. (5.2)

From A2, we follow P(A2,
M
k −1), i.e. a path with M

k −1 vertical lines and M
k −2 horizontal

lines, to a vertex of type 1 (which is different from A1)

Web (N,M) Web (MN
k , k)

v1

h1

v2

h2

v3

•
A1

•
A2

•
A3

•
A1

•
A2

•
A3

v
1 +

v
2 +

v
3 +

h
1 +

h
2

−
v

2 −
v

3 −
h

2

14As a possible source of confusion, we point out that vertices of type 1 in the web (N,M) will be mapped

to vertices of type 2 in the web (MN
k
, k) and vice versa. Thus A1 is of type 1 in the (N,M) web, but will

be of type 2 in the (MN
k
, k) web.

– 45 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
2

The parameter connecting A2 and A3 in the web (MN
k , k) show up as the negative sum of

all vi’s and hi’s that we have followed, i.e.

h̄1 = −
2M
k −3∑
i=1

(
p(A2,

M
k − 1)

)
i

(5.3)

Continuing from A3 along P(A3,
M
k ), i.e. a path with M

k vertical lines and M
k −1 horizontal

lines, we arrive at a new vertex A4 of type 2. This procedure can be continued for 2MN
k

steps passing through the vertices A1, A2, . . . , A2MN
k

in the (N,M) web. After this, we

return to our original starting point, since at each step of the construction the vertex

reached by the path

P
(
A1,

M

k

)
∪P

(
A2,

M

k
− 1

)
∪ P

(
A3,

M

k

)
∪ P

(
A4,

M

k
− 1

)
∪ . . .

. . . ∪ P
(
A 2MN

k
−1,

M

k

)
∪ P

(
A 2MN

k
,
M

k
− 1

)
, (5.4)

is A1 itself. We therefore have constructed the first ‘layer’ of the (MN
k , k) web, which at

this point looks like

m̄
M
N
k

m̄
M
N
k

−1
m̄

M
N
k

−2
m̄

M
N
k

−3

m̄
4

m̄
3

m̄
2

m̄
1

h̄MN
k

h̄MN
k −1

h̄MN
k −2

h̄MN
k −3

h̄3

h̄2

h̄1

h̄k

a

a

•A 2MN
k

•
A 2MN

k
−1 •

A 2MN
k
−2

•
A 2MN

k
−3 •

A 2MN
k
−4

•
A 2MN

k
−5 •

A 2MN
k
−6

•
A7

• A6

•
A5

• A4

•
A3

• A2

•
A1

· · ·

This web configuration is the counterpart of the diagonal path in figure 9. In order to find

the remaining vertices, we return to (the type 1 vertex) A1 in the (N,M) web and follow
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the diagonal line

Web (N,M) Web (MN
k , k)

v1

h1

v2

h2

v3

•
A1

•
A2

•
A3

•
A 2MN

k
+1

•
A1

•
A2

•
A3

• A 2MN
k

+1

v
1 +

v
2 +

v
3 +

h
1 +

h
2

−
v

2 −
v

3 −
h

2

v̄1

to arrive at the next vertex A2MN
k +1

in the (N,M) web which is of type 2.15 The parameter

v̄1 is somewhat more involved to read off from the original (N,M) web. Indeed, calling the

curve connecting A1 and AMN
k

+1 in the (N,M) web M
(
A1, A2MN

k +1

)
(with parameter

m), we consider the path

P
(
A1,

M

k
− 1

)
∪M

(
A1, A 2MN

k
+1

)
∪ P

(
A 2MN

k
+1,

M

k
− 1

)
, (5.5)

i.e. from the two vertices A1 and A 2MN
k

+1 we consider a curve that follows M
k − 1 vertical

and M
k − 2 horizontal lines upwards and downwards. For illustrative purposes, we consider

15Notice, if k = 1, this vertex is in fact A2 and the mapping of vertices is already complete. If k > 1, the

vertex A 2MN
k

+1 is different from the ones already encountered, i.e. A1, . . . , A 2MN
k

.
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the simple example M
k = 4 for which the total path is given in the following picture

v1

h1

v2

h2

v3

m

•
A1

•
A 2MN

k
+1

v4

v5

h3

v6

h4

(5.6)

We then conjecture that the parameter v̄1 is given by the sum over all the parameters along

this path, however, with factors that decrease the further we get away from the vertices

A1 and A 2MN
k

+1:

v̄1 = m+

(
M

k
− 1

)[(
p(A1,

M
k − 1)

)
1

+
(
p(A 2MN

k
+1,

M
k − 1)

)
1

]

+

M
k −2∑
i=1

(
M

k
− 1− i

)[(
p(A1,

M
k − 1)

)
2i

+
(
p(A 2MN

k
+1,

M
k − 1)

)
2i

]

+

M
k −2∑
i=1

(
M

k
− 1− i

)[(
p(A1,

M
k − 1)

)
2i+1

+
(
p(A 2MN

k
+1,

M
k − 1)

)
2i+1

]
, (5.7)

e.g. for the case displayed in the diagram in eq. (5.6)

v̄1 = m+ (4− 1) (v1 + v4) + (4− 2) (h1 + v2 + h3 + v5) + (4− 3) (h2 + v3 + h4 + v6) .

(5.8)

From the last vertex A 2MN
k

+1, we can repeat all the previous steps to construct fur-

ther vertices that make up the second ‘layer’ of the web (MN
k , k). Indeed, following
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P(A2MN
k +1

, Mk − 1) we arrive at the next vertex A2MN
k +2

, which is16

Web (N,M) Web (MN
k , k)

v1

h1

v2

h2

v3

•
A1

•
A2

•
A3

•
A 2MN

k
+1

• A 2MN
k

+2

v4

v5

h3

•
A1

•
A2

•
A3

• A 2MN
k

+1
•

A 2MN
k

+2

v
1 +

v
2 +

v
3 +

h
1 +

h
2

−
v

2 −
v

3 −
h

2

v̄1

−
v

4 −
v

5 −
h

3

From here on, we can continue to map out the full (MN
k , k) web: after a total of 2MN

steps, this procedure is guaranteed to map all vertices of the (N,M) web to the (MN
k , k)

web. Moreover, while we have no general proof, the values for (v̄i, h̄i, m̄i) we obtain in this

manner are compatible with all the examples we have discussed so far.

5.2 Sp(2,Z) transformation

Based on the expressions for (v̄i, h̄i, m̄i) obtained in the previous subsection, we can check

whether they correspond to an Sp(2,Z) transformation for the partition function ZX1,1 , in

the same manner as we did for all the examples in section 4. To this end, we set

vi = v , hi = h , mi = m, ∀i = 1, . . . ,MN , (5.9)

and hence identify all vertical, horizontal and diagonal parameters in the original (N,M)

web. This leads to

v̄i = v̄ , h̄i = h̄ , m̄i = m̄ , ∀i = 1, . . . ,MN , (5.10)

16For k > 1 the vertex A 2MN
k

+1
is different from the vertices A1, . . . , A 2MN

k

that we have previously

constructed.
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with

v̄ = m+ 2

M
k
−1∑

n=1

(
M

k
− n

) v + 2

M
k
−2∑

n=1

(
M

k
− 1− n

)h
= m+ 2

[(
M

k

)2

− 1

2

M

k

(
M

k
+ 1

)]
v + 2

[(
M

k
− 1

)2

− 1

2

M

k

(
M

k
− 1

)]
h

= m+
M(M − k)

k2
v +

(
2 +

M(M − 3k)

k2

)
h , (5.11)

as well as

h̄ = −
(
M

k
− 1

)
v −

(
M

k
− 2

)
h , and m̄ =

M

k
v +

(
M

k
− 1

)
h . (5.12)

Furthermore, we introduce

ρ = N(h+m) , and τ = M(v +m) , (5.13)

along with

ρ′ =
MN

k
(h̄+ m̄) =

MN

k
(h+ v) =

N

k
τ +

M

k
ρ− 2MN

k
m ,

τ ′ = k(v̄ + m̄) =
1

k

[
k2m+ (M − k)2h+M2v

]
=
M

k
τ +

(M − k)2

Nk
ρ− 2M(M − k)

k
m ,

m′ = m̄ =
τ

k
+

1

N

(
M

k
− 1

)
ρ+

(
1− 2M

k

)
m. (5.14)

With these parameters, we define the period matrices for the (1, 1) web

Ω =

(
τ/M m

m ρ/N

)
, and Ω′ =

(
τ ′/k m′

m′ ρ′/
(
MN
k

)) , (5.15)

which have identical determinants

det Ω =
ρτ

MN
−m2 = det Ω′ . (5.16)

In fact, Ω and Ω′ are related by an Sp(2,Z) transformation in the following manner

Ω′ = (AΩ +B) · (CΩ +D)−1 , (5.17)

with

A =

(
M
k −M−k

k

1 −1

)
, B =

(
0 0

0 0

)
, C =

(
0 0

0 0

)
, D =

(
1 1

−M−k
k −M

k

)
, (5.18)

which satisfy as well the relations eq. (2.21). This shows that (ρ, τ,m) and (ρ′, τ ′,m′)

are related through an Sp(2,Z) transformation. Therefore, ZXM,N at this special locus is

indeed invariant under the change of parameters implied by the above chain of dualities.
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5.3 Extended moduli space of Calabi-Yau threefold

In the previous sections, we have compiled evidence that the web diagrams (N,M) and

(NMk , k) with k = gcd(M,N) are dual to each other. This relation, however, also im-

plies dualities between two different webs (N,M) and (N ′,M ′) with MN = M ′N ′ and

gcd(M,N) = k = gcd(M ′, N ′). We can give a characterisation of all such webs in the

following manner: let M,N ∈ N with the following prime number decomposition

M =

(
r∏

a=1

chaa

) (
s∏
b=1

mpa
a

)
, and N =

(
r∏

a=1

chaa

) (
t∏

b=1

nqaa

)
, (5.19)

with r, s, t ≥ 0 and ca, ma and na prime numbers with multiplicities ha, pa and qa, respec-

tively. Furthermore, ma 6= nb for a = 1, . . . , s and b = 1, . . . , t such that

k = gcd(M,N) =
r∏

a=1

chaa . (5.20)

Finally, we define the disjoint sets

M⊂ {mp1
1 ,m

p2
2 , . . . ,m

ps
s , n

q1
1 , n

q2
2 , . . . , n

qt
t } , N ⊂ {mp1

1 ,m
p2
2 , . . . ,m

ps
s , n

q1
1 , n

q2
2 , . . . , n

qt
t } ,

(5.21)

such that

M∩N = {} , and M∪N = {mp1
1 ,m

p2
2 , . . . ,m

ps
s , n

q1
1 , n

q2
2 , . . . , n

qt
t } , (5.22)

and we denote the product of all elements of M by m, and the product of all elements of

N by n, respectively (notice that gcd(m, n) = 1). With this notation in place, we propose

that all webs of the form (k n, km) are dual to each other, i.e. for two different (n,m) and

(n′,m′) we propose17

Xk n,km ∼ Xk n′,km′ . (5.23)

In particular, as we have proposed above, the partition functions ZXk n,km
and ZXk n′,km′

are identical after a judicious change of variables.

Notice that the 3× 3 matrix of transformation U given by eq. (5.14), ρ′

τ ′

m′

 = U

 ρ

τ

m

 , U =


M
k

N
k −2N M

k
(M−k)2

Nk
M
k −

2M(M−k)
k

1
N (Mk − 1) 1

k 1− 2M
k

 , (5.24)

has the property U2 = 1. This property together with the fact that TrU = 1 implies that

the eigenvalues of U are {−1, 1, 1}. We can choose a new set of parameters α1, α2 and

α3 (which are a linear combination of ρ, τ and m), such that under the transformation in

eq. (5.14),

α1 7→ −α1 , and α2,3 7→ α2,3 . (5.25)

17As an example, we propose that the configurations (30, 1) ∼ (15, 2) ∼ (10, 3) ∼ (6, 5) ∼ (5, 6) ∼
(3, 10) ∼ (2, 15) ∼ (1, 30) are dual to each other.
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The plane α1 = 0 is a wall of the (ρ, τ,m) Kähler cone and the flop transitions responsible

for eq. (5.14) are reflections on this wall. In terms of (ρ, τ,m) the parameter α1 is given by

α1 = N
(
ρ+

2M

M − kτ −
m

M − k
)
. (5.26)

such that the wall α1 = 0 is given by,

(M − k)ρ+ 2M τ −m = 0 . (5.27)

The above codimension-one wall in the (ρ, τ,m) space has a form very similar to that of

Humbert surfaces [60–62], although the corresponding invariant is negative.

6 Conclusions

In this paper, we have discussed a two-parameter family of little string theories that gener-

ically preserve eight supercharges. These theories are labelled by two integers (N,M) and

are realised by a particular decoupling limit of M5-branes probing an orbifold geometry.

The M5-branes are spread out on a circle of radius ρ, while compactified on a circle of

radius τ with transverse space an A-type orbifold. The proposed duality that we discussed

in the paper indicates that, as a consequence of this double compactification, this system

of branes is dual to a setup with NM
k M5-branes probing ALEAk−1

(for k = gcd(N,M)).

Notice, however, that this new set of branes is compactified with new parameters (ρ′, τ ′),

which are related to (ρ, τ) according to the duality map proposed in section 5. We recall

that the duality does not hold in the limit ρ → ∞ (i.e. the case that the M5-branes are

arranged on R rather than S1).

The M5-brane system was studied using a dual description in terms of toric Calabi-

Yau threefolds XN,M . These Calabi-Yau threefolds realise little string theories via F-theory

compactification. We have indeed shown explicitly for a number of examples that XN,M

and XNM/k,k can be related to each other through a series of flop transitions. They are thus

just two different points in the extended moduli space and therefore the theories labelled by

(N,M) and (NM/k, k), with k = gcd(N,M), are dual to each other. This duality relates

different members of the two-parameter class of N = (1, 0) little string theories studied

in [9, 10]. However, it should be noted that the theories labelled by (N,M) and (NMk , k)

live in different points of the parameter space of little string theories: indeed, as we have

already seen in the dual description through M5-brane webs, the parameters ρ and τ are

different in the two cases.18 Furthermore, the little string partition function is invariant

under flop transitions and, therefore, relates the BPS states of the two dual theories. We

have generalised an emergent pattern of these examples to the generic case and have made

a conjecture how to obtain the full duality map between the parameters of the two theories.

The duality we discussed has consequences for other systems as well which are related

to little string theories. The partition function of the (N,M) little strings is related to the

18Notice in this regard, while the parameters (ρ, τ) are simply two Kähler parameters from the perspective

of the Calabi-Yau manifold, the rather play the role of external parameters from the perspective of the LST.

See [8, 10] for more explanations.
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elliptic genus of a (0, 2) sigma model with target space which is the product of M U(N)

instanton moduli spaces of rank (of various charges) [25, 27, 28]. The duality between XN,M

and XNM/k,k again implies that there are relations between sigma-models with different

(N,M). However, since the duality map is rather complex and mixes in a non-trivial

fashion the distances of the M5-branes, the duality relation at the level of the sigma-models

is non-perturbative and will be explored elsewhere [56].
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