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1 Introduction

Bosonic string theory on three-dimensional anti-de Sitter space AdS3 with H-flux or the

superstring on AdS3 with pure NS-NS background flux has a description in terms of a

WZW model based on sl(2,R) [1–3]. The theory has two dimensionful parameters, the

string tension T and the AdS cosmological constant Λ. The dimensionless ratio T/Λ is

proportional to the WZW level k, which is a continuous real parameter for sl(2,R). The

spectrum contains massive higher spin states with mass scale set by the string tension, so

it is natural to ask whether an interacting massless higher spin theory could arise from a

tensionless limit of the string theory in AdS [4–6]. The naive tensionless string limit would

be to take k → 0, but it is also possible interesting behaviour could emerge as k approaches

a (small) critical value. In [7], the limit k → 2 was considered, corresponding to the critical

level of the sl(2,R) affine algebra, and the possibility of massless higher spins arising in

this limit was discussed.

Our purpose in this note is to examine the space-time spectrum of strings on AdS3

(tensored with an internal CFT so as to give a critical string theory) as a function of k. In

particular, we analyse whether the spectrum contains massless higher spin states at some

critical value of k, corresponding to a tensionless limit of string theory on this background.

We find that, while the k → 2 limit appears problematic, k = 3 gives a spectrum with an

infinite number of massless higher spin fields.

These massless higher spin fields are the lowest members of a continuum of physical

states. This continuum arises from the continuous representations of sl(2,R) in the so-

called spectrally flowed sector (with ‘winding number’ w = 1). Physically, for large k these

correspond to modes of a ‘long string’ near the boundary of AdS [1, 8, 9]. The tension

of these strings tends to zero in the limit k → 3, so the limit we are considering can be

thought of as that in which long fundamental strings become effectively tensionless due to

a cancellation between the contributions of the H-flux and their actual tension. Since these

are strings stretched near the boundary of AdS, they have radial momentum excitations
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which give rise to the continuum. Roughly speaking, as k becomes small, the curvature

of AdS approaches the string scale and massive states become effectively localised toward

the centre of AdS and only massless states can approach the boundary, so the only way

states associated with the long string can stay near the boundary is for the string to

become tensionless.

This is somewhat different from the tensionless limit that one sees in other AdS vacua,

in which the actual tension of the fundamental string becomes small (in comparison to the

AdS scale). In AdSd with d > 3 the tensionless limit corresponds to a free gauge theory,

which has additional conserved currents, thus implying an enhanced gauge symmetry in the

bulk. It corresponds to the leading Regge trajectory of stringy states becoming massless.

This is the subsector which is believed to be described by a Vasiliev theory [10] of higher

spin gauge fields [4–6].

For the AdS3 superstring (with R-R three-form flux), the tensionless limit is that in

which the dual CFT2 is the free symmetric orbifold theory. There, in contrast to the

higher dimensional cases, we have a stringy tower of massless higher spin fields rather

than a single Regge trajectory. This tensionless limit has been studied recently in [11–13],

and a large underlying unbroken symmetry, dubbed the “higher spin square”, has been

uncovered. The tensionless limit discussed here appears to be a more singular one in that

the continuum of states would lead to a similar continuum in the dual CFT signalling,

perhaps, a noncompact direction. However, it shares with the regular tensionless limit of

the AdS3 superstring the feature of having a stringy tower of massless states. We comment

more on these similarities and differences in the discussion section. Before that, in the next

section, we briefly review the bosonic string spectrum of Maldacena-Ooguri [1–3], and then

go on to examine the special features at small k, including the new tensionless limit.

2 The worldsheet description of the spectrum

The SL(2,R) group manifold is a three-dimensional hyperboloid with periodic time, giving

rise to a discrete energy spectrum. We will work with AdS3, which is the universal covering

space of this hyperboloid, and which has non-compact time so that the energy spectrum is

not forced to be discrete. We will investigate the critical bosonic string theory formulated

in terms of the WZW model of level k on AdS3, combined with an ‘internal’ CFT to

give a CFT with total central charge c = 26. This theory has been studied extensively

in [1–3, 14–18], and we will make extensive use of the results of [1].

2.1 Conventions and setup

Let us begin by fixing our notation and conventions, mostly following [1]. For general level

k, the commutation relations of the sl(2,R) algebra are

[J3
m, J

±
n ] = ± J±m+n (2.1)

[J+
m, J

−
n ] = −2 J3

m+n + kmδm,−n (2.2)

[J3
m, J

3
n] = −k

2
mδm,−n . (2.3)
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For k 6= 2, the Sugawara construction is well defined,

Ln =
1

k − 2

∞∑
m=0

(
J+
n−mJ

−
m + J−n−mJ

+
m − 2J3

n−mJ
3
m

)
(n 6= 0)

L0 =
1

k − 2

[
1

2

(
J+
0 J
−
0 + J−0 J

+
0

)
− J3

0J
3
0 +

∞∑
m=1

(
J+
−mJ

−
m + J−−mJ

+
m − 2J3

−mJ
3
m

)]
,

(2.4)

and the resulting Virasoro generators satisfy the commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m (m2 − 1) δm,−n (2.5)

[Lm, J
a
n ] = −nJa

m+n , (2.6)

where the central charge takes the value

c =
3 k

k − 2
. (2.7)

For this to satisfy c ≤ 26 requires k ≥ 52/23, which in particular excludes k = 2, so that

the k = 2 WZW model cannot be part of a conventional critical string theory.

The critical level is kcrit = 2 since then the Virasoro generators (2.4) are ill-defined.

For this reason, it will be useful to define also the generators ln ≡ (k − 2)Ln, i.e.

ln =
∞∑

m=0

(
J+
n−mJ

−
m + J−n−mJ

+
m − 2J3

n−mJ
3
m

)
(n 6= 0) (2.8)

l0 =

[
1

2

(
J+
0 J
−
0 + J−0 J

+
0

)
− J3

0J
3
0 +

∞∑
m=1

(
J+
−mJ

−
m + J−−mJ

+
m − 2J3

−mJ
3
m

)]
. (2.9)

They satisfy the commutation relations

[lm, ln] = (k − 2) (m− n) lm+n +
(
3 k (k − 2)

)
m (m2 − 1) δm,−n (2.10)

[lm, J
a
n ] = −(k − 2)nJa

m+n . (2.11)

In particular, for k = 2, the lm generators are central, i.e. they commute both with the

current modes Ja
n , and with themselves. The existence of these commuting charges suggests

that the theory at k = 2 could be integrable.

At k = 2, the conventional Virasoro constraints involving Ln cannot be imposed, giving

the possibility of evading the exclusion of k = 2 [7]. Moreover, at the critical level of k = 2,

affine representations have a large number of null states of the form [19]

ln1 ln2 . . . lnp |φ〉 , (2.12)

where ni > 0 are positive integers and |φ〉 is any state satisfying Ja
n |φ〉 = 0 for n > 0.

One may take this as evidence that also the space-time theory will develop a large gauge

symmetry at k = 2, and a natural idea could be that this gauge symmetry is related to a

higher spin theory or a tensionless string theory [7].1 However, this expectation does not

seem to be born out by a careful analysis of the spectrum. Instead, it seems that something

special happens for k = 3.

1Similar ideas have been pursued in [20, 21], see also [22].
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2.2 Affine representations

We shall be interested in representations of the affine sl(2,R) algebra based on Virasoro

highest weight representations (which, however, need not be affine highest weight). In

section 2.4 we will look also at more general classes of representations that arise as the

spectrally flowed images of these representations and which are not even Virasoro highest

weight [1]; however, let us first consider this simpler setting.

We will denote the Virasoro highest weight states by |ĉ,m〉, where ĉ is the eigenvalue

of the quadratic Casimir C of sl(2,R)

C =
1

2

(
J+
0 J
−
0 + J−0 J

+
0

)
− J3

0J
3
0 , (2.13)

while m is the eigenvalue of J3
0 , i.e.

C|ĉ,m〉 = ĉ |ĉ,m〉 , J3
0 |ĉ,m〉 = m |ĉ,m〉 . (2.14)

Here ‘Virasoro highest weight’ means that

Ja
n |ĉ,m〉 = 0 , for n > 0 (2.15)

since this implies, in particular, that Ln|ĉ,m〉 = 0 for n > 0; however, we do not assume

that any of the states is annihilated by J+
0 (or indeed J−0 ), i.e. we do not assume that it is

‘affine highest (or lowest) weight’.

There are five classes of unitary affine representations, and of these only two play a

role in the spectrum of [1]. The two classes of (Virasoro) highest weight representations

that appear in the spectrum of [1] are: (i) the discrete lowest weight representations D+
j

for which m = j, j + 1, j + 2, . . . and ĉ = ĉ(j) ≡ −j(j − 1) (with j positive), and (ii)

the continuous representations C(p, α) labelled by p, α ∈ R for which the J3
0 spectrum is

unbounded both from below and above — m takes the values m ∈ α+Z — and ĉ = 1
4 +p2.

Without loss of generality, the real parameter α can be taken to be in the range 0 ≤ α < 1.

For k 6= 2, we can immediately read off the conformal dimension of the ground states;

indeed it follows from (2.4) that

L0 |ĉ,m〉 =
ĉ

k − 2
|ĉ,m〉 =⇒ hSL(2,R) =

ĉ

k − 2
. (2.16)

The full affine representation is then obtained from these Virasoro highest weight states

by the action of the negative current modes, modulo null vectors. The physical states are

characterised by the condition that they are annihilated by Ln with n > 0. In addition,

they have to satisfy the mass-shell condition

hSL(2,R) + hint +N =
ĉ

k − 2
+ hint +N = 1 , (2.17)

where ĉ is the value of the Casimir operator C on the ground states, while hint is the

conformal dimension of the internal CFT (making up the additional directions of the full

string theory, in addition to AdS3), and N is the excitation number of the state. In the
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following we shall concentrate on the case hint = 0, and take N to arise entirely from

sl(2,R) excitations, i.e. we take the ‘internal’ CFT to be in its trivial ground state. (It will

become obvious from the following discussion that our conclusions will not be changed if

we included excitations in the internal CFT.)

We can now relate these worldsheet quantities to spacetime variables. Physical states

in AdS3 fit into unitary representations of the anti-de Sitter group SL(2,R)L × SL(2,R)R,

and for lowest-weight representations the energy is bounded below. The spacetime energy

E and spin s of a state with J3
0 eigenvalue m and J̄3

0 eigenvalue m̄ are

E = m+ m̄ , s = m− m̄ . (2.18)

The AdS3 mass is given by the quadratic Casimir and is defined by

m2
AdS3 = (E − |s|)(E + |s| − 2) . (2.19)

There is a Breitenlohner-Freedman (BF) bound m2
AdS3

≥ −(|s| − 1)2.

Massless higher spin fields correspond to states for which E = |s|. For a lowest weight

representation of SL(2,R)L×SL(2,R)R with lowest weights given by jL = mL = (E+ s)/2

and jR = mR = (E−s)/2, the representation becomes reducible if E = |s|; if this is the case

the representation contains a sub-representation of null states that describe longitudinal

(pure gauge) modes which decouple. The corresponding spacetime fields are then massless

higher spin gauge fields.

The conformal dimension of the spacetime CFT, hCFT, is to be identified with the J3
0

eigenvalue m, and likewise for the right-movers, i.e. h̄CFT = m̄, the eigenvalue of J̄3
0 . The

Breitenlohner-Freedman (BF) bound follows from the requirement of unitarity of the dual

CFT, i.e. hCFT, h̄CFT ≥ 0.

2.3 Massless higher spin states: the spectrally unflowed case

Returning to the worldsheet, let us now see whether there exist massless higher spin states

in the spectrum for some (small) value of k. We will first discuss the so-called spectrally

unflowed sector corresponding to the two classes of Virasoro highest weight representa-

tions of the previous subsection. We will discuss the spectrally flowed versions of these

representations in the following subsection.

For the continuous representations, the first term in (2.17) is positive for k > 2, and

the only possible solution is N = 0 (since hint ≥ 0). These representations have space-

time energies unbounded from below — they violate the BF bound. The corresponding

spacetime state is a tachyon; such a state was to be expected for bosonic string theory.

For the discrete (lowest weight) representations labelled by j, the Casimir ĉ = ĉ(j) ≡
−j(j − 1) is negative, and there are more interesting solutions. First we solve (2.17) for j

(as a function of N), to conclude that

j =
1

2
+

√
1

4
+ (k − 2)(hint +N − 1) . (2.20)

The no-ghost theorem [14, 15] implies that j has to be bounded by

0 ≤ j ≤ k

2
. (2.21)
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Actually, in the analysis of [1] a somewhat stronger bound is imposed, namely

1

2
< j <

k − 1

2
. (2.22)

Here the reason for the lower bound 1
2 < j comes from the requirement that the correspond-

ing ground state sl(2,R) representation should lead to square-integrable wave-functions,2

and this, via spectral flow, then also leads to the stronger upper bound j < k−1
2 . Further-

more, it seems from the analysis of [2] that the MO-bound (2.22) is required for modu-

lar invariance.

As we have seen, massless higher spin fields correspond to states for which E = |s|. In

terms of the conformal dimensions of the spacetime CFT, this means that either hCFT = 0

or h̄CFT = 0, so that the operators describe chiral fields. Thus we need to investigate

whether the physical string spectrum contains states with hCFT = m = 0, say.

Given the ground state spin j together with the excitation number N , the possible

sl(2,R) lowest weights ̂ lie in the range j − N ≤ ̂ ≤ j + N — this just follows from the

fact that the oscillators sit in the adjoint representation of sl(2,R), and tensoring with the

adjoint representation can change the spin at most by ±1. Thus the minimal value of m

that can appear is mmin = j − N . The question is then whether j − N = 0 is possible,

provided that j is given by (2.20) and j obeys the unitarity bound (2.21) or the Maldacena-

Ooguri bound (2.22). [Since hCFT = ̂ is the conformal dimension of the dual CFT, the

no-ghost theorem (i.e. unitarity) guarantees that hCFT ≥ 0 — so the only way hCFT = 0

can arise is for h = j −N = 0.]

One solution is obvious: if we take N = 1 (with hint = 0), then j = 1 and j −N = 0.

Tensoring this state together with the corresponding right-mover with ̄ = j+N = 2 gives

then the helicity two component of the graviton. This state is allowed by unitarity for

k ≥ 2, whereas the MO-bound (2.22) only allows the massless graviton for k ≥ 3.

In the following we want to study whether there are other solutions for N ≥ 2, corre-

sponding to higher spin. Going back to the original equation (2.17) for hint = 0 and with

ĉ(j) = −j(j − 1), we have to solve3

− j(j − 1)

k − 2
+N = 1 , (2.23)

which we can rewrite as

j2 − j − (k − 2)(N − 1) = 0 . (2.24)

In order for h = j−N = 0, this has to be solved for j = N . Provided that N ≥ 2, plugging

j = N into (2.24) leads to

N2 −N − (k − 2)(N − 1) = 0 =⇒ N = k − 2 . (2.25)

2This conclusion may be relaxed by considering an alternate quantisation of modes with 0 < j < 1
2
, see

page 18 of [1].
3It is clear that there can be no solutions with non-zero hint: if hint > 0, the relevant j in (2.20) is larger

than the value for hint = 0, and hence j − N cannot be zero — unitarity of the dual CFT (which follows

from the no-ghost theorem) implies that already the original j−N was non-negative, so increasing j cannot

make it zero.

– 6 –
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For N = 2, 3, . . ., corresponding to k = 4, 5, . . ., it then follows that

j = N = k − 2 ≥ k − 1

2
, (2.26)

in violation of the upper bound on j from (2.22). We note in passing that if we were to

relax the upper bound on j to the unitary bound (2.21), then we have the solution k = 4

with N = 2 = j. However, the corresponding state

J−−1J
−
−1|j = 2〉 (2.27)

is null since it is a descendant of the null-state J−−1|j = 2〉 at level k = 4.

2.4 The spectrally flowed representations

It was seen in [2] that, as well as the positive energy representations discussed above, the

formulation of string theory in AdS3 also requires spectrally flowed representations that are

not Virasoro highest weight.4 One way to describe the spectrally flowed representations

is as follows. We start with the vector space corresponding to a Virasoro highest weight

representation of sl(2,R)k — in our case, this will either be a lowest weight representation

D+
j or a continuous representation C(p, α). On this vector space we then define the action

of sl(2,R)k and the Virasoro algebra by the action of the hatted operators defined via

Ĵ±n = J±n∓w

Ĵ3
n = J3

n +
k

2
wδn,0

L̂n = Ln − wJ3
n −

k

4
w2δn,0 . (2.28)

With respect to the hatted operators the vector space is then not a conventional (Virasoro)

highest weight representation. However, provided that w > 0, the representation (with

respect to the hatted modes) consists of lowest weight representations of the global sl(2,R)

algebra — this is the case of physical interest, since then the energy spectrum in AdS3 is

bounded from below (and so the spectrum of dimensions in the dual CFT will be bounded

from below).

With respect to this hatted action we impose the usual mass-shell condition, which

now takes the form (from now on we are setting hint = 0)

ĉ

k − 2
− wm− k

4
w2 +N = 1 , (2.29)

wherem is the J3
0 eigenvalue of the state in question. Furthermore, the conformal dimension

of the state in the dual CFT is now hCFT = m+ k
2w. As before the presence of a massless

higher spin state requires hCFT = m+ k
2w = 0, i.e. that we take m = −k

2w. Plugging this

into (2.29) leads to
ĉ

k − 2
+
k

4
w2 +N = 1 . (2.30)

4The relevance of these representations for string theory on AdS3 was already observed in [23].
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Let us now consider the two classes of representations in turn. For the discrete repre-

sentations ĉ = −j(j − 1) and, since j still has to satisfy the unitarity bound (2.21), we

conclude that

− j(j − 1)

k − 2
≥ −k

4
, (2.31)

and hence that

1−N − k

4
(w2 − 1) ≥ 0 . (2.32)

Thus the only cases to consider are w = 1 with N = 0, 1. Furthermore, since m = −k
2w =

−k
2 , but j ≥ 0 and the minimal value of m is j − N = −1 (for j = 0, N = 1), the only

possible solution is k = 2, which is not allowed — at k = 2 the denominator in the stress

energy tensor blows up.5 Thus there are no massless higher spin fields from the spectrally

flowed discrete representations.

For the continuous representations ĉ = p2 + 1
4 . Since all three terms are non-negative,

the only possible solution arises for N = 0 and w = 1, for which we obtain the equation

p2 +
1

4
= −k

2

4
+

3

2
k − 2 . (2.33)

It is not difficult to show that the only solution arises for k = 3 and p = 0. For these

values, i.e. k = 3, p = 0, and w = 1, the solution to the mass-shell condition (2.29) is then

−m− 1

2
+N = 1 , (2.34)

which leads to m = N − 3
2 . Thus, in addition to the massless states, we get a whole tower

of states (each at the bottom of a continuum labelled by p) with hCFT = N and h̄CFT = N̄ ,

where we recall that hCFT = m + k
2w = m + 3

2 , and similarly for the right-movers. To

summarise, the infinite tower of massless higher spin fields are given by considering the

continuous representation with p = 0 in the w = 1 sector at k = 3, where we take

m = −3

2
+N , m̄ = −3

2
+ N̄ , (2.35)

with N, N̄ ∈ N0 and either N = 0 or N̄ = 0. Note that these states (for any N , N̄), satisfy

the level matching condition [1], for non-zero spectral flow, which requires that w(m− m̄)

be an integer.

We should also note that the graviton which was part of the w = 0 discrete spectrum

merges at this point with the continuum since it has j = 1 = (k−1)
2 and thus can be

identified with the state in the w = 1 continuous representation with N = 0, N̄ = 2 (as

well as the state where N and N̄ are interchanged), cf. the comments around page 25 of [1].

3 Discussion

We have found, from a close examination of the bosonic string spectrum on AdS3 with

H-flux, that there is a novel kind of tensionless limit at small k. This happens at k = 3,

5In addition, j = 0 is not allowed by the Maldacena-Ooguri bound, eq. (2.22).
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rather than the critical value k = 2 which one might have expected. In fact, as we have

seen, according to the Maldacena-Ooguri bound (2.22), the massless graviton (with j = 1)

is only part of the physical spectrum for k ≥ 3. Therefore, the meaning of the theories with

2 ≤ k < 3 is somewhat unclear. (For k = 2, there is a massless spin-two state consistent

with the unitarity bound (2.21), but it is not normalisable. It is possible that an alternative

approach to the quantisation of the k = 2 case, perhaps with a non-standard norm on the

space of states, could be useful here.)

It will be interesting to study the physics of this tensionless limit further, and un-

derstand the similarities and differences with the limit corresponding to the symmetric

orbifold point. Seiberg and Witten [9], in work preceding that of Maldacena and Ooguri,

studied long fundamental strings in AdS3 and argued that a long string is effectively de-

scribed, for k > 3, by a Liouville theory with background charge Q and central charge

c = 1 + 3Q2, where

Q = (k − 3)

√
2

k − 2
. (3.1)

The Liouville field is associated with the distance of the long string from the boundary of

AdS3. The Liouville theory has a spectrum that is discrete up to a threshold energy

∆0 =
Q2

8
=

(k − 3)2

4(k − 2)
, (3.2)

and continuous above this, see eq. (4.15) of [9]. This is exactly the behaviour that we find

from the microscopic analysis of Maldacena and Ooguri — if we put p = 0, w = 1, and N =

0, and solve for m from the on-shell condition (2.29), we find that hCFT = m+ k
2 = (k−3)2

4(k−2) .

In the limit k → 3, the threshold tends to zero and we obtain a continuous spectrum.

The discussion of Seiberg and Witten [9] suggests that this continuous spectrum could be

associated with a limit of Liouville theory in which the background charge Q→ 0 giving a

c = 1 CFT. A natural hypothesis is that this could be a free scalar field, corresponding to

an extra non-compact dimension emerging in this limit.6

Seiberg and Witten [9] also considered the supersymmetric case, resulting from the

near horizon limit of a system of Q1 fundamental strings inside Q5 NS 5-branes, finding a

similar behaviour with a threshold energy of

∆0 =
Q2

8
=

(Q5 − 1)2

4Q5
, (3.3)

so that Q5 → 1 is the limit in which ∆0 → 0 and there are extra massless states.7 Further,

it is conjectured in [9] that the dual CFT has a (R4)Q1/SQ1 factor. The spectrum of the

superstring case is treated in more detail in [26].

6Note, however, that taking this limit directly in Liouville theory is tricky since the theory is only

conformally invariant if the charge Q is related to the parameter γ in the exponential Liouville potential

µ2eγφ by Q = γ + 2/γ (see [24] and references therein). Therefore, taking Q < 2
√

2 is not possible for

real γ. An accurate comparison with a candidate dual non-compact CFT will therefore need to go beyond

the effective Liouville description (which breaks down for k ≈ 8) and be based on the microscopic analysis

of [2].
7See also [25], where it was argued that Q5 = 1 separates two phases of quantum gravity. This was

based on examining the behaviour of the high energy density of states.
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The appearance of a continuum in the dual CFT is also somewhat reminiscent of the

light states in the vicinity of the (Vasiliev) tower of higher spin currents in the WN minimal

models in the large N limit, see [27, 28]. It would be useful to see whether this can be

made more precise.

We have seen that there is a stringy tower of massless higher spin states that become

massless in the limit k → 3. One may ask about the unbroken gauge symmetry that

they generate. Naively, it seems to be similar in structure to that of the Higher Spin

Square [12, 13] that is seen at the symmetric orbifold point. This would indeed be so if

we can identify these states in the dual CFT with the single particle states in a symmetric

product of free non-compact bosons of the kind mentioned above.
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