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1 Introduction

With the start of Run 2, CERN’s Large Hadron Collider (LHC) has entered the stage

of precision measurements of the Higgs couplings to the Standard Model (SM) particles.

Even though the particle physics community is focused on the search for direct signals

of beyond the SM (BSM) physics, it may happen that no such signal is detected during

Run 2. If this is the case, we need to take advantage of the precise determination of the

relevant Higgs couplings to understand if any new physics contributions can be hidden

behind those measurements. Scalar extensions of the SM have, in most cases, a decoupling

limit where, if the new scalar states are heavy enough, the model can only be probed via

– 1 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
1

radiative corrections. In fact, if we are faced with a situation where no direct hint of new

physics is found, manifestations of BSM physics can only appear through deviations in the

measured Higgs couplings.

In this work we will focus on extensions of the SM where an arbitrary number of singlets

is added to the SM field content. These are the simplest extensions of the scalar sector1 that

introduce a dark matter candidate [2–17]. These models also allow for a strong first-order

phase transition during the era of Electroweak Symmetry Breaking (EWSB) if the extension

comprises at least two singlets [18–22]. Hence, at least two of the outstanding problems of

the SM can be solved within the framework of these models, namely a candidate for dark

matter and a solution to the matter antimatter asymmetry via electroweak baryogenesis. It

should be noted that extensions with only one dark scalar singlet are basically excluded by

the latest LUX results [23] when combined with the requirement that the dark matter relic

density of the model matches the one obtained from the Cosmic Microwave background

data. We have verified that this is not the case when at least two new singlets are added

to the SM, one of them being dark and the other mixing with the SM-like Higgs.

If the LHC indeed does not find strong signs of new physics, such as new particle

states, the scale for such new physics may be as large as the GUT or the Planck scales.

This energy is unattainable by any current or planned collider experiments so we may have

to work in a framework that is a good description of the fundamental interactions up to

some high energy scale. Thus, any effective description that improves theoretical problems

of the SM is an interesting candidate. In a previous work we have shown that the complex

singlet extension of the SM also improves the stability of the SM. In fact, the presence of

a heavier scalar state, which has to be heavier than about 140 GeV, can stabilise the SM

up to the Planck scale [24].

In this article we focus on the issue of determining electroweak (EW) radiative correc-

tions in general scalar SM extensions, with emphasis on the scalar singlet models frame-

work. Our main goal is to find a general set of expressions that allow us to obtain next to

leading order (NLO) electroweak corrections to the parameters of a model with any number

of scalar singlet fields. We will go beyond the effective potential approach recently studied

in [25], which is valid only when the new degrees of freedom are heavy. Thus, though we

formulate our results to connect to that limit, they are valid for any external momentum

scale (contrarily to the effective potential approximation which is valid for small external

momenta). In our framework we obtain a set of conditions consistently truncated in an

expansion in powers of ~ which, once a number of consistent independent input parame-

ters are chosen, deliver the NLO EW corrections for the remaining parameters. A special

attention is given to the treatment of tadpoles and propagators and we provide a generic

strategy to easily transform between different schemes. In connection with the effective

potential approximation we also discuss, on general grounds, the issue of infrared diver-

gences. We then apply our method to the real scalar singlet extension (RxSM) and to the

complex scalar singlet extension (CxSM) of the SM. However, we note that the method

is ready to be applied to SM extensions with an arbitrary number of singlet fields and

1For a recent review on scalar extensions of the SM see [1].
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that many of our formulas are also useful for other scalar extensions of the SM. In par-

ticular, our approach is especially suited for the automation of the computation of higher

order corrections in general purpose numerical tools to scan the parameter space of scalar

extensions of the SM [26, 27].

Higher order corrections to real singlet extensions of the SM have been performed

in [28–30]. The corrections to the SM-like Higgs coupling to fermions and gauge bosons

was shown to be of the order of 1% [28]. Furthermore the corrections were maximal in the

decoupling limit where the model becomes indistinguishable from the SM. Electroweak

corrections to the decay H → hh were performed in [29]. With the main theoretical

and experimental constraints taken into account, it was shown that corrections to the

triple scalar vertex (Hhh) are of the order of a few percent. In [30] NLO corrections to the

electroweak precision parameter ∆r were computed and confronted with the W-boson mass

measurement. Calculations of higher order corrections in the complex singlet extension of

the SM are still not available. With this work we will not only present a set of equations

to renormalise the parameters of the theory at one loop but we will then also use them

to calculate the electroweak corrections to Higgs production via gluon fusion. This last

calculation is performed near the decoupling limit with the main purpose to understand

the contributions of the triple scalar couplings of the various scalars running in the loops

at NLO. Clearly, with all the SM-like Higgs coupling close to the SM ones, the only large

effects in the radiative corrections would have to come from such scalar-scalar interactions.

The numerical analysis in our examples will be performed for three particular cases: the

broken RxSM, with a new Higgs boson mixing with the SM-like one, and the broken and

symmetric CxSM with, respectively, three mixing Higgs bosons, and two mixing Higgs

bosons and a dark matter scalar. We will find that, consistently with earlier calculations

for the NLO corrections to the decays, the corrections are very small, of the order of a few

percent, also for production. Nevertheless, we will find that the presence of a dark matter

particle can enhance the corrections, even very close to the SM-like limit, compared with

the other models (though still in the few percent order).

The smallness of the electroweak corrections in the real singlet models calls for prudence

in the claims of measurable differences relative to SM Higgs couplings. The interference

effects for this kind of BSM scenarios was first addressed in [31] for the real singlet model,

showing that interference effects to gg → h∗, H(∗) → ZZ → 4l can be important away

from the non-SM scalar (H) peak region. Although the interference effects can be of up to

order O(1) for the integrated cross sections for the 8 TeV LHC [32], judicious kinematical

cuts can reduce the interference effects to O(10%). Interference effects at NLO QCD were

discussed in [33] for the process gg → h∗, H(∗) → hh. It was shown that the double Higgs

invariant mass can increase by up to 20% or decrease by up to 30% depending of the heavier

Higgs mass. More importantly, interference effects can significantly distort the kinematic

distribution around the resonant peak of the heavy Higgs. Recently the effects of higher

order operators in the real singlet model [34] again showed that large cancellations can

occur due to interference effects between the two sectors. In conclusion, if a significant

deviation is found in Higgs couplings, the radiative corrections have to be combined with

the interference for a proper interpretation of the results.

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
1

The structure of the paper is as follows. In the first two sections we start by defining

our strategy. We present the Lagrangians and fix the notation in section 2 and then, in

section 3, we obtain our master linear system that, given a choice of input parameters,

provides as output the remaining renormalised parameters at NLO EW. The issue of

infrared divergences in connection with the effective potential approximation is discussed

in sections 3.1 and 3.2. In section 4 we apply the procedure first to a general class of scalar

singlet extensions of the SM and then specialise to the RxSM and to the CxSM, section 4.4,

for which we provide a numerical analysis in section 4.5. Our conclusions are summed up

in section 5 and several useful formulae/derivations are provided in the appendices.

2 Definitions and notation

To define a general four dimensional gauged Quantum Field Theory (QFT) Lagrangian

we use the notation of [35] with a few adaptations [24, 25]. We assume a decomposition

of a general renormalisable Lagrangian where the gauge basis fields are such that: i) all

scalar field multiplets are decomposed as N0 canonically normalised real scalar fields, Φi

(i = 1, . . . , N0), ii) all fermion multiplets are decomposed as a set of N1/2 two-component

Weyl fermions, ΨI (I = 1, . . . , N1/2) and iii) there are N1 gauge bosons in the adjoint

representation of the gauge group, i.e. Aµa (a = 1, . . . , N1). We adopt the Einstein con-

vention where repeated indices which are one up (superscript) and one down (subscript)

are summed over. If the repeated indices are both down or both up they are not summed

over. All (non-spacetime) latin indices are assumed to be in Euclidean space — they are

lowered and raised with the identity matrix. The gauge basis interaction Lagrangian (i.e.

suppressing kinetic terms) is then composed of the following terms:

−LS = LiΦi +
1

2
LijΦiΦj +

1

3!
LijkΦiΦjΦk +

1

4!
LijklΦiΦjΦkΦl

−LF =
1

2
Y IJΨIΨJ +

1

2
Y IJkΨIΨJΦk + c.c. (2.1)

−LSG =
1

4
GabijAaµAµbΦiΦj +GaijAaµΦi∂

µΦj

−LFG = −Ga J
I AaµΨ†I σ̄µΨJ

−LG = −GabcAaµAbν∂µAνc +
1

4
GabeGcdeAµaAνbAcµAdν −GabcAaµωb∂µω̄c ,

where the ghost fields are represented by ωa and c.c. denotes complex conjugation. We call

this the L-basis following the nomenclature in [24, 25], where the pure scalar, fermionic

and gauge interaction coupling tensors are denoted, respectively by {L..., Y ..., G...} with

. . . replaced by suitable sets of indices. Note that for a simple gauge group Gabc is given

by Gabc = g fabc with g the gauge coupling constant and fabc the structure constants

of the gauge group. For a direct product group we can still encode all information in

Gabc by requiring a block structure. This can be represented using sub-ranges for the

indices a1 = 1, . . . , n1, a2 = n1 + 1, . . . , n3, etc. . . if components that have indices not

all in the same sub-range are zero. More concretely we would have Ga1b1c1 = g1f
a1b1c1
1 ,

Ga2b2c2 = g2f
a2b2c2
2 , etc. and, for example, Ga1b2c2 = 0.
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A second form of the interaction terms is obtained after shifting the scalar fields by a

general constant classical field configuration such that Φi(x) = vi + φi(x):

−LS = Λ + Λi(S)φi +
1

2
Λij(S)φiφj +

1

3!
Λijk(S)φiφjφk +

1

4!
Λijkl(S) φiφjφkφl

−LF =
1

2
M IJΨIΨJ +

1

2
Y IJkΨIΨJφk + c.c. (2.2)

−LSG =
1

2
Λab(G)AaµA

µ
b +

1

2
Λabi(G)AaµA

µ
b φi +

1

4
Λabij(G)AaµA

µ
b φiφj +GaijAaµφi∂µφj

−LFG = −Ga J
I AaµΨ†I σ̄µΨJ

−LG = −GabcAaµAbν∂µAνc +
1

4
GabeGcdeAµaAνbAcµAdν −GabcAaµωb∂µω̄c .

Here we have introduced the notation Λ...
(T ) for the interaction coupling tensors contain-

ing a field of type T and scalar fields without derivatives where the type T runs over

the three possible types of fields {S, F,G} (scalar, fermionic and gauge respectively) and

. . . represents a set of indices. These couplings appear in the calculation of the effective

potential which, at one loop in the Landau gauge, can be organised as a sum over field

types — to be discussed in section 3.1. For fermions the natural objects appearing in the

eq. (2.2) after the shift are the mass matrix M IJ and the Yukawa couplings Y IJk. How-

ever, we can also define a mass squared matrix and (effective) cubic and quartic couplings

{ΛIJ(F ),Λ
IJk
(F ) ,Λ

IJkm
(F ) }. The latter can also be found in appendix A together with all other vi

dependent parameters, Λ...
(T ) — see also [25]. Finally, we can rotate all fields to their mass

eigen-basis (named the λ-basis) through orthogonal or unitary transformations, for bosons

and fermions respectively. Using the transformations (A.6) then we have

−LS = Λ + λi(S)Ri +
1

2

(
mi

(S)

)2
R2
i +

1

3!
λijk(S)RiRjRk +

1

4!
λijkl(S)RiRjRkRl

−LF =
1

2
mIJψIψJ +

1

2
yIJkψIψJRk + c.c.

−LSG =
1

2

(
ma

(G)

)2
AaµA

µ
a +

1

2
λabi(G)AaµA

µ
bRi +

1

4
λabij(G)AaµA

µ
bRiRj + gaijAaµRi∂

µRj

−LFG = −ga J
I Aaµψ

†I σ̄µψJ

−LG = −gabcAaµAbν∂µAνc +
1

4
gabegcdeA

µ
aA

ν
bAcµAdν − gabcAaµωb∂µω̄c . (2.3)

Note that all couplings in the λ-basis, eq. (2.3), whose indices are rotated according to the

transformations induced by (A.6), are now in lower case. For completeness, we provide

in appendix A the relations between the various bases including the rotation matrices to

obtain the mass eigenstates. We note that the latter can be represented collectively, for

the field type T = {S,G, F}, by U(T ) (unitary or orthogonal) with the defining relation

that all mass matrices are diagonalised:

U(T )Λ(T )U†(T ) = diag{m2
(T )a} . (2.4)

On the right hand side of eq. (2.4) we use latin indices from the beginning of the alphabet

to denote the component of the diagonal. Whenever T is not specified we follow this

– 5 –
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convention, i.e. we use lower case indices from the beginning of the latin alphabet (a, b, c, . . .)

and reserve indices from the middle of the alphabet (i, j, k, . . .) for scalar field indices.2

Note that whenever we use a matrix notation without explicit indices, Λ(T ) is assumed to

represent Λab(T ), i.e. the mass squared matrix.

In this article we will need to compute the one-loop radiative corrections to the scalar

mass eigenstates. These are determined by the poles of the radiatively corrected propaga-

tor, Gij , between scalar states i and j. It is well known that the Dyson re-summed inverse

propagator
[
G−1

]
ij

can be expressed as [36]

i[G−1]ij(p
2) = p2δij − ∂2

ijVeff −∆Σij(p
2) (2.5)

where pµ is the external 4-momentum.3 Furthermore

Σij(p
2) = δijTj(p

2) + Πij(p
2) (2.6)

where Tj and Πij , are the one-particle irreducible tadpole (1-point) and self-energy (2-point)

functions. The tadpole term can in practice be set to zero by assuming an expansion of

the theory around a minimum of the effective potential order by order in perturbation

theory [37] if one works in Landau gauge (which we assume in this work). Finally we have

defined ∆Σij(p
2) ≡ Σij(p

2) − Σij(0). The physical pole state x (labeling the N0 physical

scalar states) is defined to have an eigenvalue p2 = M2
x and an eigenvector Eix such that

the pole conditions are obeyed:

[G−1]ij(M
2
x)Eix = 0⇒ det

[
M2
x1− ∂2Veff −∆Σ(M2

x)
]

= 0 . (2.7)

Here, we have suppressed the scalar indices inside the determinant so a matrix notation

is used — see eq. (2.5). In general, for unstable particles, the eigenvalue can have an

imaginary part which relates to the width of the particle so one defines

M2
x ≡ m2

x − iΓxmx

where mx is the physical mass and Γx is the width of the particle.

Finally, we will also need to extract the wave function renormalisation factor, Zx, from

the inverse propagator. Projecting the inverse propagator along the normalised eigen-vector

this is obtained from

G−1
x ≡ [G−1]ij(M

2
x)EixE

j
x

p2→M2
x−−−−−→ −iZ−1

x (p2 −M2
x) . (2.8)

Thus, noting that the projection vectors do not depend on p2 we obtain Zx from

Z−1
x = EixE

j
x

{
i∂p2 [G−1]ij

}
p2=M2

x
= 1− EixEjx

{
∂p2∆Σij

}
p2=M2

x
. (2.9)

2The latin indices from the beginning of the Latin alphabet will also be used later for the gauge field

indices. However there is no danger of confusion because whenever we expand the expressions in the field

type T all types of indices appear explicitly (scalar, fermionic and gauge indices).
3We are using the metric signature convention (+ −−−).
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3 General loop expansion and perturbative strategy

In this section we aim to organise the perturbative strategy to obtain the one loop cor-

rections to observables. To do so we construct the loop expansions by consistently trun-

cating in powers of ~. It will be convenient to use as expansion parameter the quantity

ε ≡ ~/(4π)2.

We start with some general considerations, assuming that a renormalisation scheme

has been fixed and that, in principle, we have calculated a loop expansion for any observ-

able as a function of a given set of input parameters for the theory. The number of such

input parameters is equal to the number of running couplings appearing in the tree level

Lagrangian. However, one may want to use a different set of input parameters, for ex-

ample physical observables that are measured experimentally, to replace such Lagrangian

parameters. With that choice then the Lagrangian parameters will be functions of such

(observable) inputs. A more general and convenient approach may be to choose a mixture

of observables and Lagrangian parameters, or even other theoretical parameters such as

VEVs, as input.

To avoid choosing, a priori, a particular set of inputs, we adopt a perturbative strategy

to obtain radiatively corrected relations among the various parameters. We formally loop

expand all parameters to allow for a free choice of inputs. To specify which parameters are

input we can then simply set their correction terms to zero. An advantage of this procedure

is that we obtain a linear system of constraints that we can analyse to decide what are the

available choices of sets of input parameters.4 This flexibility is particularly well suited for

the automation of the calculation of higher order corrections in general purpose tools to

scan the parameter space of general scalar extensions of the SM [26, 27].

To organise the system, let us denote collectively the set of Lagrangian parameters,

VEVs and observables that we want to expand by QA. For example A could run over

the elements of the list {Cλ, vi,m2
x, . . .} with Cλ representing the set of all Lagrangian

parameters with5 λ = 1, . . . , Nλ; vi the VEVs and m2
x the physical masses. We assume

that all quantities (for concreteness, renormalised in the MS-scheme) are loop expanded as

QA =

+∞∑
n=0

εnQ
(n)
A , (3.1)

where Q
(n)
A is the n-loop order correction (Q

(0)
A is the tree level quantity). Furthermore

we assume that there is a set of constraints. Those can be, for example, the definition

of observables (such as pole masses) or theoretical conditions such as the vacuum (or

minimum) conditions. In general, the system of constraints is represented by

CΓ(Q) = 0 , (3.2)

4Note that, in principle, not all choices allow to invert back the system to obtain the Lagrangian

parameters so this procedure automatically displays the choices that are valid.
5For example, in the Λ-basis, it is the restriction of the list {Λ...T ,M IJ , Y IJk, Gaij , Gabc} to the set of

independent parameters after the symmetries of the tensors are taken into account.
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where CΓ denotes a constraint, with the index Γ running over all the available constraints,

and we suppress the index of QA in arguments of functions for a lighter notation. Typically

the constraints are also loop expanded as:

+∞∑
n=0

εnC
(n)
Γ (Q) = 0 . (3.3)

Expanding up to linear order we obtain

⇔ C
(0)
Γ

(
Q(0)

)
+ ε
[
∂BC

(0)
Γ

(
Q(0)

)
Q(1)B + C

(1)
Γ

(
Q(0)

)]
+ . . . = 0 . (3.4)

Equating order by order we obtain (for the first two orders){
C

(0)
Γ

(
Q(0)

)
= 0 n = 0

∂BC
(0)
Γ

(
Q(0)

)
Q(1)B = −C(1)

Γ

(
Q(0)

)
n = 1 ,

(3.5)

so once we solve the tree level constraints for Q
(0)
A we obtain a non-homogeneous linear

system of constraints for the one-loop corrections Q
(1)
A .

For concreteness we now turn to the problem we want to solve. First, we wish to

compute the one-loop corrections to the constraints that define the vacuum state and

the physical masses in the scalar sector. With this we will obtain relations among the

parameters of the scalar sector of the theory. We assume that the gauge and fermion

sector couplings are input parameters that are known at the renormalisation scale µ. As

already stated we formally allow all scalar couplings, all VEVs and all parameters defining

the mass eigenstates to be loop expanded. Later we will decide, on a model by model basis,

which parameters of the scalar sector are input. The set of constraints to impose are{
∂iVeff(vk, Cλ) = 0[
M2
xδij − ∂2

ijVeff(vk, Cλ)−∆Σij(M
2
x , Cλ)

]
Ejx = 0 ,

(3.6)

which are, respectively, the minimum conditions (tadpole equations) and the pole equa-

tions, which define the physical mass eigenstates — see also eq. (2.7). The parameters of

the theory that can, in principle, be expanded are

Cλ = C
(0)
λ + εC

(1)
λ + . . .

vk = v
(0)
k + εv

(1)
k + . . .

Ejx = E
(0)j

x + εE
(1)j

x + . . .

m2
x = m

(0)2
x + εm

(1)2
x + . . .

Γx = 0 + εΓ
(1)
x + . . .

(3.7)

where we have noted that the width is always zero at zeroth order so the Leading Order

(LO) results appears only at first order. We also note that{
Veff(vk, Cλ) = V (0)(vk, Cλ) + εV (1)(vk, Cλ) + . . .

∆Σij(M
2
x , Cλ) = 0 + ε∆Σ

(1)
ij (M2

x , Cλ) + . . .
(3.8)

– 8 –
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where V (n) is the n-loop effective potential and the self energy series only starts at first

order. Using the general expansion, eq. (3.5) and inserting the expansions, eqs. (3.7)

and (3.8), and assuming, without loss of generality, that we are in a field basis such that

the tree level scalar eigen-states are aligned along each field direction, i.e. E
(0)j

x = δjx, we

obtain the tree level conditions{[
∂iV

(0)
]
tree

= 0

m
(0)2
x δix −

[
∂2
ixV

(0)
]
tree

= 0
(3.9)

and a linear system for the one-loop corrections
[
∂2
ijV

(0)
]
tree

v(1)j +
[
∂2
iλV

(0)
]
tree

C(1)λ = −
[
∂iV

(1)
]
tree(

m
(0)2
x δij −

[
∂2
ijV

(0)
]
tree

)
E

(1)j
x +

(
m

(1)2
x − iΓ(1)

x m
(0)2
x

)
E

(0)
ix

−
([
∂3
ijkV

(0)
]
tree

v(1)k +
[
∂3
ijλV

(0)
]
tree

C(1)λ
)
E

(0)j
x =

[
∂2
ijV

(1) + ∆Σ
(1)
ij

]
tree

E
(0)j

x .

(3.10)

Here we use the notation [. . .]tree to denote a quantity evaluated with tree level arguments

and ∆Σ
(1)
ij is evaluated at s = m

(0)2
x . Taking the real and imaginary parts of the second

constraint, and noting that, in the tree level basis, the tree level mass squared matrix is

diagonal, we obtain the final result
m

2(0)
i v

(1)
i +

[
∂2iλV

(0)
]
tree

C(1)λ = −
[
∂iV

(1)
]
tree(

m
2(0)
x −m2(0)

i

)
E

(1)
ix+m

2(1)
x δix−

[
∂3ixkV

(0)
]
tree

v(1)k−
[
∂3ixλV

(0)
]
tree

C(1)λ=
[
∂2ixV

(1)+<
(
∆Σ

(1)
ix

)]
tree

Γ
(1)
x m

(0)2
x δix = −=

[
∆Σ

(1)
ix

]
tree

.

(3.11)

To this, we can add the conditions that the eigenstates are normalised which, up to one-loop

order, translates to

EixEix = 1⇒ 1 + 2εE(1)
xx +O(ε2) = 1⇒ E(1)

xx = 0 . (3.12)

Now that we wrote the general system, eq. (3.11), we discuss some possible choices

of inputs. If, for example, one chooses to take as input parameters the set of running

Lagrangian parameters Cλ, we set C
(i>0)
λ ≡ 0. Then the one-loop shifts of all other quan-

tities are computed using the system in eq. (3.11). Within that choice, using the one-loop

tadpole equation in the first line of eq. (3.11) we obtain directly that, for consistency, for

states that are massless at tree level, the first derivative of the one-loop effective potential

evaluated at the tree level couplings must be zero and the corresponding VEV shift remains

undetermined. Denoting the field space directions associated with the massless states by

the sub-indices ε1, ε2, . . . and the ones associated with massive states with barred indices

ī, j̄ . . ., then the remaining VEVs are obtained from

v
(1)

ī
= −

(
m

2(0)

ī

)−1[
∂īV

(1)
]
tree

. (3.13)

All that is left in this case is to solve the pole equations, eq. (3.11) with C
(1)
λ ≡ 0.

Other possible choices consist of perturbative inversions of the one-loop relations in

eq. (3.11). In our examples in section 4 we will choose some input parameters to be physical
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quantities (such as masses) and others such as the Higgs VEV, mixing matrix elements and

a few Lagrangian parameters. This is convenient, for example, to fix the one-loop Higgs

mass to the experimental value of 125 GeV and the Higgs VEV to 246 GeV. Then the one-

loop shifts of the remaining parameters are computed, ensuring that the relations among

all parameters are correct to one-loop order.

A particularly choice that is useful, is one that decouples directly the corrections to

the mass eigenstates states. Taking the anti-symmetric part of the second condition in

eq. (3.11) for i 6= x we obtain

E
(1)
ix = −E(1)

xi +
<
[
∆Σ

(1)
ix −∆Σ

(1)
xi

]
tree

m
2(0)
x −m2(0)

i

. (3.14)

So, assuming that the system allows the choice E
(1)
ix = 0 with i > x, we get the solution

for all the corrections to the mass eigen-state expansions.

Finally, another set of quantities that we will need are the wave function renormalisa-

tion factors. Expanding eq. (2.9) perturbatively we find

Z−1
x = 1− ε

[
∂p2∆Σxx

]
tree

+O(ε2) . (3.15)

3.1 Coleman-Weinberg potential and self energies

The quantities we will need to evaluate in eq. (3.11) are: the Coleman-Weinberg potential,

its first and second derivatives and the variation in the self-energy functions. In the pole

conditions one could, equivalently, simply compute the full self-energy functions. However,

in eq. (2.7) we have written the result in terms of the effective potential to separate out

the p2-independent part and the p2-dependence. This is useful to connect to the p2 → 0

approximation, which can be used if the dominant contributions to the radiative corrections

are from heavy particles in the loops [25]. In that limit the effective potential encodes all

the necessary information.

The general one-loop effective potential in the MS scheme is given by the Coleman-

Weinberg potential. Recently [25] we have analysed the Coleman-Weinberg potential and

obtained a closed form master formula for its one-loop derivatives with any number of

external scalar field legs for a general theory as described in section 2. Here we only review

the two expressions that we need, i.e. the first and the second derivatives of the effective

potential, respectively,

∂iV
(1) =

∑
T

(−1)2sT (1 + 2sT )

2
m2

(T )aλ
a

(T )a i

(
logm2

(T )a − kT +
1

2

)
(3.16)

and

∂2
ijV

(1) =
∑
T

(−1)2sT (1 + 2sT )

2
S{ij}

[
λab(T )iλ

ba
(T )j

(
f

(1)
(T )ab − kT +

1

2

)
+ λa(T )aijm

2
(T )a

(
logm2

(T )a − kT +
1

2

)]
. (3.17)
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Here log (x) ≡ log(x/µ2), with µ being the renormalisation scale; sT = 0, 1
2 or 1 is the spin

of the field of type T and the λ...(T ) couplings have been defined in eq. (2.3); S{ij} denotes

symmetrisation of the indices; and

f
(1)
(T )a1...aN

≡
N∑
x=1

m2
(T )ax

logm2
(T )ax∏

y 6=x
(
m2

(T )ax
−m2

(T )ay

) . (3.18)

Observe that the latin indices a, b, . . . in the λ...(T ) tensors are to be replaced by scalar,

fermionic or vector indices respectively according to T . The constant kT depends on the

renormalisation scheme (for MS it is 3/2 for scalars and fermions and 5/6 for vector bosons).

Regarding the self-energies, they have been computed in [37]. Here we present the

variation that we need, which is (s ≡ p2)

∆Σ
(1)
ij (s) =

1

2
λkl(S)iλ

kl
(S)j∆BSS(m2

k,m
2
l ) + <

[
yKLiy

?
KLj

]
∆BFF (m2

K ,m
2
L)

+ <
[
yKLim

?
KK′m?

LL′yK
′L′

j

]
∆BF̄ F̄ (m2

K ,m
2
L) (3.19)

+ gakig
ak
j∆BSV (m2

k,m
2
a) +

1

2
λab(G)iλ

ab
(G)j∆BV V (m2

a,m
2
b) .

The various loop function variations can be obtained directly from the results in [37, 38]

and are provided in appendix B.

3.2 Infrared behaviour

It is well known [39, 40] that the derivatives of second and higher orders of the (one-

loop) Coleman-Weinberg potential can contain infrared divergences originating from the

massless states running in the loops. However this is not a problem if all the p2 dependent

contributions are included because all such infrared divergences must cancel out.

In this section we verify this general cancellation explicitly and write the final result

in a manifestly regular form suitable for numerical evaluation. First let us introduce an

infrared regulator mass squared scale, ε. The second derivatives of the effective potential

can be split as

∂2
ijV

(1) = ∂2
ijV

(1)
finite + ∂2

ijV
(1)

IR (3.20)

where the second term contains the contributions with internal sums over the indices a, b

corresponding to two internal massless states — see eq. (3.17). We recall that, in our

notation, indices corresponding to massless state components are denoted by ε1, ε2, . . .

when the type of the field, T , is not specified. Whenever T is specified, we use the indices

ε1, ε2, . . . for scalar indices, E1, E2, . . . for fermionic indices and e1, e2, . . . for vector indices.
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With this notation, the IR-divergent piece is

∂2
ijV

(1)
IR =

∑
T

(−1)2sT (1+2sT )

2
S{ij}

[
λε1ε2(T )iλ

ε2ε1
(T )j

(
f

(1)
(T )ε1ε2

−kT +
1

2

)
+λε1(T )ε1ij

ε

(
log ε−kT +

1

2

)]
= log ε

{
1

2
λε1ε2(S) iλ(S)ε2ε1j −<

[
λE1E2

(F ) i λ(F )E2E1j

]
+

3

2
λe1e2(G) iλ(G)e2e1j

}
+
∑
T

(−1)2sT (1 + 2sT )

4

[
λε1ε2(T )iλ(T )ε2ε1j + c.c.

](3

2
− kT

)
≡ ∂2

ijV
(1)

IR,div + ∂2
ijV

(1)
IR,finite , (3.21)

where, on the second line, we have series expanded in the cutoff, ε, and kept only the

divergent and constant terms, respectively denoted by ∂2
ijV

(1)
IR,div and ∂2

ijV
(1)

IR,finite. In the

divergent term, ∂2
ijV

(1)
IR,div, we have explicitly expanded over spins.

Moving on to the self-energies, we define a similar split

∆Σ
(1)
ij (s) = ∆Σ

(1)
ij,finite(s) + ∆Σ

(1)
ij,IR(s) (3.22)

where now

∆Σ
(1)
ij,IR(s) =

1

2
λε1ε2(S) iλ(S)ε1ε2j∆BSS(ε, ε) + <

[
yE1E2

iy
?
E1E2j

]
∆BFF (ε, ε)

+ <
[
yE1E2

im
?
E1K′m?

E2L′yK
′L′

j

]
∆BF̄ F̄ (ε, ε) (3.23)

+ ge1ε2ige1ε2j∆BSV (ε, ε) +
1

2
λe1e2(G) iλ(G)e1e2j∆BV V (ε, ε) .

Finally, using the fact that, in the mass-squared eigenbasis, mIJ only has non-zero el-

ements between states I, J with the same mass, using eq. (C.1) in appendix C and

eqs. (B.10), (B.13) and (B.18) in appendix B we find that

∆Σ
(1)
ij,IR(s) = − ∂2

ijV
(1)

IR,div +

{
1

2
λε1ε2(S) iλ(S)ε1ε2j −<

[
λE1E2

(F ) i λ(F )E2E1j

]}
(log s− 2− iπ)

+
3

2
λe1e2(G) iλ(G)e1e2j

(
log s− 3

2
− iπ

)
+ ge1ε2ige1ε2j∆BSV (0, 0) + <

[
yE1E2

iy
?
E1E2j

]
∆BFF (0, 0)

≡ −∂2
ijV

(1)
IR,div + ∆Σ

(1)
ij,IR,finite(s) . (3.24)

Therefore the divergent pieces cancel precisely. The final, explicitly finite, result for the

full one loop contributions appearing in the pole equations is then

∂2
ijV

(1) + ∆Σ
(1)
ij (s) = ∂2

ijV
(1)

finite + ∂2
ijV

(1)
IR,finite + ∆Σ

(1)
ij,finite(s) + ∆Σ

(1)
ij,IR,finite(s) . (3.25)

4 Application to general scalar singlet extensions of the SM

In this section we will apply the results of the previous section to the most general scalar

singlet extension of the SM (GxSM) and then we specialise to a real (RxSM) and a complex

(CxSM) singlet extensions. For simplicity we work in the MS scheme, so we replace the kT
by their numerical values.
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4.1 Definition of the GxSM

The most general scalar singlet extension of the SM is obtained by adding to the Lagrangian

a set Sk (k = 1, . . . , NS) of real scalar hypercharge zero singlet fields with a general renor-

malisable scalar potential. The Lagrangian density of the model for the interaction terms

is then

− Lint = −Lint,SM + ∆(S)H†H + V (S) (4.1)

where ∆(S) and V (S) are polynomials that are, respectively, up to quadratic and quartic

in the fields Sk (without constant terms) and H is the SM Higgs doublet. In this framework

the full scalar potential is then

VGxSM =
m2

2
H†H +

λ

4
(H†H)2 +H†H∆(S) + V (S) . (4.2)

One or more of the singlet fields can mix with the Higgs boson provided that ∂k∆(vi) 6= 0

for at least one value of k at the electroweak symmetry breaking vacuum with a choice of

VEVs v, vk such that

H =
1√
2

(
G+

v + h+ iG0

)
and Sk = vk + sk . (4.3)

Here h is the SM Higgs field fluctuation, G0, G
+ are the Goldstones and sk are the singlet

field fluctuations around the vacuum. The new scalar singlet fields, Sk, do not couple

directly to other SM fields. As a consequence, the tree level coupling of the scalar mass

eigenstates that are a mixture of singlet field fluctuations, sk, with the Higgs boson fluc-

tuation, h, to the other SM particles is simply scaled by a mixing factor (compared with

the Higgs couplings in the SM). We note that, at tree level, the Higgs field fluctuation is

decomposed in terms of scalar mass eigenstates as (see eq. (A.6))

h = [O(S)]1jR
j ≡ κjRj (4.4)

where we have ordered the set of scalar fields after the VEVs shift as

φT =
(
h, s1, s2, . . . , G

0,<[G+],=[G+]
)
.

Here κj is the scaling factor to apply to the SM coupling of an SM-like Higgs of the same

mass as the state Rj , to obtain the coupling of that state in the GxSM. Due to the

orthogonality of the mixing matrix we have that, at tree level,∑
j

κ2
j = 1 (4.5)

which means that the SM-like coupling is shared among the Higgs like states [41]. As a con-

sequence the one-loop radiative corrections to the scalar mass eigenstates will contain some

SM-like contributions suitably suppressed by the dilution factors κj and also contributions

exclusively due to the new scalar sector.
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4.2 NLO parameter shifts

In this section we compute the NLO shifts of the parameters in the GxSM.

One-loop tadpoles. The contributions to the tadpole conditions, eqs. (3.16) all contain

a coupling factor λ(T )aai. For fermions and vector bosons we know that, for the GxSM,

the couplings to the massive scalars are simply scaled by a κj factor and the couplings to

Goldstone bosons are precisely the same as in the SM. Thus, noting that from now on we

no longer deal with space-time indices, if we use Greek indices α = 1, . . . , 4 to denote the

four scalar degrees of freedom in the SM and define a dilution tensor Dα
i (ns is the number

of non-Goldstone real scalars)

Dα
i =

{
κi α = 1 (h)

δα+ns−1
i α = 2, 3, 4 (goldstones)

(4.6)

then

yIJi = Dα
i y

SM
IJα

λ(T 6=S)abi = Dα
i λ

SM
(T )abα (4.7)

λ(T 6=S)abij = Dα
i D

β
j λ

SM
(T )abαβ

gaij = Dα
i D

β
j g

SM
(T )aαβ ,

where we have denoted the SM couplings on the right hand side with the superscript SM.

Then one can check that (see also appendix D)

∂iV
(1) =

1

2
λk(S)kim

2
k(logm2

k−1) +Dα
i

∑
T 6=S

(−1)2sT (1+2sT )

2
m2

(T )aλ
a

(T )a α

[
logm2

(T )a−kT +
1

2

]
' 1

2
λk(S)kim

2
k(logm2

k − 1)− 6κim
2
t y

2
t v(logm2

t − 1) (4.8)

+ 2κi
m4
W

v
(3logm2

W − 1) + κi
m4
Z

v
(3logm2

Z − 1)

where, in the last line, we have evaluated the result keeping only the dominant top quark

contribution in the fermion sector and the electroweak vector boson contributions — see

appendix D.

One-loop poles and wave function renormalisations. From the pole equations,

eq. (3.11) and using eq. (4.7) one can show that

∂2
ijV

(1)+∆Σ
(1)
ij (4.9)

=
[
∂2
ijV

(1)+∆Σ
(1)
ij

]
scalars

+Dα
i D

β
j

∑
l

κ2
l

[
∂2
αβV

(1)
SM + ∆Σ

(1)
αβ,SM

]
(T 6=S),m2

h=m2
l

'
[
∂2
ijV

(1)+∆Σ
(1)
ij

]
scalars

+Dα
i D

α
j

[
S(t)
α (s) + S(g,1)

α (s) +
∑
l

κ2
l S

(g,2)
α (m2

l , s)

]
,

where we use the approximation with only the top quark contribution in the fermion sector

and where the SM quantities are evaluated with the Higgs mass replaced with the mass
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m2
l . The vectors S

(...)
i are defined in appendix D. The function Bs(x, y) can be found in

appendix B, eq. (B.1). The scalar contributions can also be simplified using the IR safe

expression, eq. (3.25),[
∂2
ijV

(1) + ∆Σ
(1)
ij

]
scalars

=
1

2

[
− λk̄l̄(S)iλ

k̄l̄
(S)jBs(m

2
k̄,m

2
l̄ )− 2λεk̄(S)iλ

k̄
(S)εjBs(0,m

2
k̄)

+ λk̄(S)k̄ijm
2
k̄(logm2

k̄ − 1) + λε1ε2(S)iλ(S)ε1ε2j(log s− 2− iπ)
]
,

(4.10)

where, again, the barred indices run only over eigenstates with a non-zero mass. In practice

we will be interested in the components i, x such that s = m2
x so we have

∂2
ixV

(1) + ∆Σ
(1)
ix (4.11)

'
[
∂2
ixV

(1) + ∆Σ
(1)
ix

]
scalars

+Dα
i D

α
x

[
S(t)
α (m2

x) + S(g,1)
α (m2

x) +
∑
l

κ2
l S

(g,2)
α (m2

l ,m
2
x)

]
.

The other quantity that we will use are the one-loop wave function renormalisation

factors for the massive states given by

Z−1
x − 1

= −ε{∂s∆Σxx}s=M2
x

+O(ε2) (4.12)

' −ε
{
∂s
[
∆Σ(1)

xx

]
scalars

+ κ2
x

[
∂sS

(t)
h (s) + ∂sS

(g,1)
h (s) +

∑
l

κ2
l ∂sS

(g,2)
h (m2

l , s)

]}
s=m2

x

,

which, we can check, also involves ∂sBs. The term that will be most relevant is

∂s
[
∆Σ(1)

xx

]
scalars

= −1

2
λk̄l̄(S)xλ

k̄l̄
(S)x∂sBs(m

2
k̄,m

2
l̄ )−λεk̄(S)xλ

k̄
(S)εx∂sBs(0,m

2
k̄)+

1

2s
λε1ε2(S)xλ(S)ε1ε2x

(4.13)

evaluated at s = m2
x.

With all these ingredients, we will specialise these formulas in section 4.5 to obtain the

parameter shifts in particular scalar singlet models.

Corrections to mixing sums. In the GxSM, generically, there is a mixing of the SM

Higgs field fluctuation with singlet fields. This typically results, at tree level, in a block n

by n mixing matrix with n the number of non-dark scalar mass eigenstates with the tree

level sum rule, eq. (4.5), for the suppression factors of each scalar x to other SM particles.

If we denote the tree level suppression factor by κ
(0)
x , at one loop using eq. (3.7), the one

loop mass eigenstates in the gauge basis are (with j, x running over the mass eigenstates)

Eix = [OS ]ij
(
δjx + εE

(1)j
x

)
⇒ κx = κ(0)

x + εκ
(0)
j E

(1)j
x (4.14)

where now we denote by κx the one loop corrected mixing factor. From this, and using

eq. (3.14), we obtain the order ε correction to this sum, which is given by∑
x

κ2
x − 1 =

ε

2
κ(0)jκ(0)x

(
E

(1)
jx + E

(1)
xj

)
+O(ε2) (4.15)

=
ε

2

∑
j 6=x

κ(0)jκ(0)x
<
[
∆Σ

(1)
jx −∆Σ

(1)
xj

]
tree

m
2(0)
x −m2(0)

j

+O(ε2) .
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κh κhhi

κi

κi

λijh

κi

κj

Figure 1. Feynman diagrams for LO gluon fusion Higgs production (left) and NLO diagrams

involving Higgs bosons (centre and right) in GxSM models.

This result is in fact independent of our choice of one-loop input parameters within the

choice we made to normalise the mass eigenstates such that E
(1)
xx = 0. Thus, though we

will evaluate eq. (4.15) in a specific scheme, the result is fixed within our class of schemes.

In our numerical results we will be interested in assessing the importance of the one

loop corrections to the parameters of the theory. The quantity in eq. (4.15) is a good

one to test the importance of these corrections as it is a shift of a tree level value that is

1, and that does not depend on other choices within our class of schemes. Finally, this

quantity is also of interest because it will contribute to the NLO sum rule that is expected

to exist among the effective couplings of the mixing Higgs bosons to SM particles such

as to preserve unitarity. A complete computation of such effective couplings is, however,

beyond the scope of this study.

4.3 NLO gluon fusion cross section

In section 4.5, we will evaluate the NLO electroweak corrections to the SM-like Higgs

production cross-section in the gluon fusion channel that are due to the new scalar sector

couplings. The current collider data already sets the suppression factor for the SM-like

Higgs to be very close to unity and the suppression factors of the other new Higgs bosons

to be very close to zero, i.e. κ2
h ∼ 1 and κ2

i 6=h � 1. Therefore we will focus on this limit by

systematically dropping terms that are suppressed by κi 6=h or higher powers. Furthermore,

using the standard assumption of factorisation of the QCD higher order corrections (see

for example [42]), we focus only on the NLO electroweak corrections. The NLO amplitude

for gluon fusion in the GxSM is of the form:

A
(NLO)
ggF = ε

√
Zh

[
κhA

(LO)
ggF +ε

(∑
i

κ2
iκhA

(NLO)
iff +

∑
ij

κiκjλijhA
(NLO)
ijf +κhA

(NLO)
EW

)]
(4.16)

where Zh is the SM-like Higgs wave function renormalisation factor and the four amplitudes

factors are (see also figure 1): i) A
(LO)
ggF , the one-loop function for gluon fusion as computed

for an SM-like Higgs boson; ii) A
(NLO)
iff , the two-loop function with a Higgs boson line

inserted vertically inside the one-loop diagram connecting the two fermion lines; iii) A
(NLO)
ijf ,

the two-loop function with a fermion box, two Higgs boson lines radiating and connecting

to the final state Higgs boson; and iv) A
(NLO)
EW is the two-loop function containing all the

pure SM electroweak NLO corrections. Dropping out terms that are multiplied by the

suppression factors of the non-SM like Higgs and keeping only κh we obtain a simplified
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expression

A
(NLO)
ggF ' εκh

√
Zh
[
A

(LO)
ggF + ε

(
A

(NLO)
hff + κhλhhhA

(NLO)
hhf +A

(NLO)
EW

)]
. (4.17)

Squaring the amplitude and replacing κ2
h = 1 (we are keeping here terms linear in κh

because the sign can be important depending on the convention) we obtain

σ
(NLO)
ggF ' |Zh|

(
σ

(LO)
ggF + σ

(NLO)
hff + κhλhhhσ

(NLO)
hhf + σ

(NLO)
EW

)
, (4.18)

where the σ
(LO)
ggF is the leading order cross-section as computed in the SM and all the other

σ
(NLO)
X come from the interference between the LO amplitude, A

(LO)
ggF , with the correspond-

ing A
(NLO)
X amplitude. Re-arranging terms, defining the ratios

CX ≡
σ

(NLO)
X,SM

σ
(LO)
ggF,SM

(4.19)

and defining |Zh| = 1 + δZh we obtain

σ
(NLO)
ggF = σ

(LO)
ggF (1 + δSM + δGxSM) (4.20)

where

δSM = Chff + Chhf + CEW + δZSM
h (4.21)

δGxSM '
(
κhλhhh
λSM
hhh

− 1

)
Chhf + δZh − δZSM

h . (4.22)

Here we denote SM limit quantities with the superscript SM so that we can separate out

δSM, which are the NLO correction as in the SM, and the new contributions due to the

extended scalar sector δGxSM. The factor Chhf was computed6 in [43, 44], so we use the

value Chhf = 0.0066, which is independent of the centre of mass energy. Note that the

κh dependence is important because both signs are allowed in the conventions used in our

scans.

We are interested in observing if there are scenarios where the new scalar contributions

can correct considerably the cross-section. It is well known [42] that the SM corrections

are small, δSM ' 5%. Our aim is to compute the new factor δGxSM. Finally, note that

the SM-like parts in δZh − δZSM
h , for T 6= S cancel out exactly in the difference, in the

limit we are using, so we only have to evaluate the difference over the scalar contributions

without Goldstones [δZh − δZSM
h ]scalars using eq. (4.9). One can check that, at one loop,

δZh = <(1 − Z−1
h ), which we can obtain from eq. (4.12). In particular we get that in the

SM limit the corresponding contribution is

δZSM
h = −9m2

h

2v2

(
2π

3
√

3
− 1

)
(4.23)

in agreement with [43].

6In [43] Chhf is denoted by C
σggF
1 .

– 17 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
1

Another important issue relates to the crossing of thresholds. In particular when a

threshold for the Higgs boson to decay to a pair of a lighter bosons is crossed the wave

function renormalisation contains a singularity at the threshold if evaluated with a real

pole mass [45, 46]. This problem can be cured by working with the full complex pole mass

where the width of the Higgs boson in included in the imaginary part of p2 [45]. In our

calculations — see e.g. eq. (3.15) — we expand around the real tree level masses. Thus, to

avoid these unphysically large deviations, we will ignore scenarios close to these thresholds,

within a 5 GeV mass window. Away from these thresholds this approximation is known

to work well — see for example figures 6 and 7 of [46] for the EW corrections to gluon

fusion around the WW threshold in the SM. The near threshold cases have the potential

to produce extra enhancements. This limit is beyond the scope of our study and will be

left for future work.

In our numerical analysis we use the following values for the relevant SM parameters

(consistently with the code sHDECAY used to generate the tree level samples [47]):

mZ = 91.153 GeV

mW = 80.358 GeV

yt = 0.97192

v = 246.22 GeV. (4.24)

Note also that, in our normalisation, the SM-like Higgs triple coupling is given by

λSM
hhh = 3

m2
h

v
. (4.25)

4.4 Particular models

In section 4.5 we analyse samples for two benchmark models to illustrate the size of the

EW NLO corrections. Here we provide a brief summary of the models.

4.4.1 The real singlet model (RxSM)

The potential for the model is

VRxSM =
m2

2
H†H +

λ

4
(H†H)2 +

λHS
2
H†HS2 +

m2
S

2
S2 +

λS
4!
S4. (4.26)

Here the (real) couplings of the theory are m2, λ, λHS ,m
2
S and λS and S is a real singlet

field with a Z2 symmetry (S → −S). In this model S is a dark matter candidate if

vS ≡ 〈S〉 = 0, or it is a new scalar mixing with the Higgs if vS 6= 0. We will focus

on the latter because the former seems to be very close to being ruled out except in the

region around mh125/2 and for very large dark matter masses (see for instance [48–50]).

The model has five independent input parameters which we choose to be {α,m1,m2, v, vS}
both at tree level and at one loop. Here m1 < m2 are, respectively, the masses of the scalar

eigenstates h1 and h2 decomposed as(
h1

h2

)
=

(
cosα sinα

− sinα cosα

)(
h

s

)
+ ε

(
E

(1)2
1[− sinα cosα]

E
(1)1

2[cosα sinα]

)(
h

s

)
+ . . . (4.27)
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where α ∈ [−π/2, π/2] and where we indicate the form of the the one loop correction

(second term). This follows from the definitions in eqs. (3.7) and (3.12). Furthermore, one

can check that the one loop system, eq. (3.11), in this model allows us to make the choice

that one of the mass eigenstates is not corrected, i.e. it is input. Thus, we either set E
(1)2

1

or E
(1)1

2 to zero, respectively when h1 ≡ h125 or when h2 ≡ h125. In this way, we guarantee

that there is an SM-like Higgs boson in our one-loop corrected samples that is compatible

with the observed Higgs boson. In sum, the one loop shifted parameters are then all the

Lagrangian parameters, {m2, λ, λHS ,m
2
S , λS}, and the eigenstate hi 6= h125. The VEVs

were also chosen to be input, so their shift is set to zero. The shifts of the parameters for

this model can be found in appendix E.

4.4.2 The complex singlet model (CxSM)

The potential for the model is

VCxSM =
m2

2
H†H +

λ

4
(H†H)2 +

δ2

2
H†H|S|2 +

b2
2
|S|2 +

d2

4
|S|4

+

(
b1
4
S2 + a1S + c.c.

)
. (4.28)

Here S = (S + iA)/
√

2 with S,A real fields. This model has a dark phase if vA ≡ 〈A〉 = 0

and vS 6= 0, with A the dark matter candidate and two Higgs bosons mixing. In this phase

the A→ −A symmetry is preserved. In the broken phase vA 6= 0 and we have three Higgs

bosons which may be visible at colliders. We will investigate both phases of this model.

Dark phase. In the dark phase, vA = 0, the set of inputs is similar to the RxSM. We

choose {α, v, vS , a1,m1,m2,mD} where m1 < m2 are, respectively, the masses of the scalar

eigenstates h1 and h2, and mD is the mass of the dark matter particle. The mass eigenstates

are now decomposed ash1

h2

hD

 =

 cosα sinα 0

− sinα cosα 0

0 0 1


hs
A

+ ε

E
(1)2

1 [− sinα cosα 0]

E
(1)1

2 [cosα sinα 0]

0 0 0


hs
A

+ . . . (4.29)

where we note that, again, we can choose to shift only the state that is not the SM like

Higgs boson. After analysing the one loop system, eq. (3.11), one concludes that the set

of shifted parameters can be given again by all the Lagrangian parameters except a1, i.e.

{m2, λ, δ2, b2, d2, b1}, and the eigenstate hi 6= h125. The VEVs were also chosen to be input,

so their shift is zero. The shifts of the parameters for this phase of the model can be found

in appendix E.

Broken phase. Regarding the broken phase of the model, when vA 6= 0, the input

parameters are now chosen to be {α1, α2, α3, v, vS ,m1,m3}. The three mass eigenstates

h1, h2, h3 and their masses m1 < m2 < m3 are decomposed ash1

h2

h3

 =

 c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3


hs
a

+ . . . (4.30)

– 19 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
1

Scan parameter
Broken phase

Min Max

mh125
(GeV) 125.1 125.1

mhother
(GeV) 30 1000

v (GeV) 246.22 246.22

vS (GeV) 1 1000

α −π/2 π/2

Table 1. Parameter ranges used for the input parameters of the broken phase of the RxSM : the

mass of one of the two visible scalars was fixed to the measured Higgs mass value mh125
, whereas

the other mass mhother
is scanned over.

Input parameter
Broken phase

Min Max

mh125 (GeV) 125.1 125.1

mhother
(GeV) 30 1000

v (GeV) 246.22 246.22

vS (GeV) 1 1000

α1 −π/2 π/2

α2 −π/2 π/2

α3 −π/2 π/2

Input parameter
Dark phase

Min Max

mh125 (GeV) 125.1 125.1

mhother
(GeV) 30 1000

mD (GeV) 30 1000

v (GeV) 246.22 246.22

vS (GeV) 1 1000

α −π/2 π/2

a1 (GeV3) −108 0

Table 2. Parameters ranges used for the input parameters for each phase of the CxSM : in both

phases, we denote by mh125
the visible state which is the SM-like Higgs state, and fix its mass to

the experimental value. In the broken phase (left), mhother
denotes one of the other visible scalars.

In the dark phase (right), all three masses are input parameters, and mD refers to the dark matter

scalar.

where αi ∈ [−π/2, π/2] and now we do not display explicitly the choice of one loop correc-

tions to the mass eigenstates for brevity. In this case the one loop system, eq. (3.11), forces

us to introduce shifts for more than one mass eigenstate. Nevertheless, it still allows us

to fix one of the mass eigenstate so, again, we choose to keep the SM-like Higgs mass and

eigenstate as input. In addition we choose three corrections to the other mass eigenstates

to be non-zero, such that we can solve eq. (3.14) directly. For example, if the Higgs boson

is h1 and the other two Higgs bosons are h2 and h3, we can choose E
(1)
i1 = 0, and E

(1)
23 = 0

and the non-zero one loop shifts will be E
(1)
13 , E

(1)
12 , E

(1)
32 . Finally, all the Lagrangian param-

eters, {m2, λ, δ2, b2, d2, b1, a1}, are shifted and the VEVs are not (they are again chosen to

be input). In this case, the expressions for the parameter shifts are much longer and not

more informative so we do not provide them in appendix E.

Both the RxSM and the CxSM were recently analysed, in light of the LHC run-1

data, and compared with the NMSSM to determine if they could be distinguished from

the latter in the Higgs sector [24, 47]. We use the samples that were generated in [47],

which are compatible with all the latest theoretical and phenomenological constraints. In

tables 1 and 2 we provide the ranges for the input parameters in the scans. Here we
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also briefly summarise the applied constraints, that are available in the RxSM and CxSM

model implementations of ScannerS, and refer the reader to [47], and references therein,

for further details:

• Theoretical constraints. We impose: i) that the potential is bounded from below;

ii) that the chosen vacuum is a global minimum, and iii) that tree level unitarity

holds.

• Dark matter constraints. In the dark phase of the CxSM, we compute dark matter

observables with micrOMEGAS [51]. Then we impose that the computed relic den-

sity ΩDh
2 is smaller than the combination of the measurements from the WMAP and

Planck satellites [52, 53] plus three standard error deviations. The experimental value

is Ωch
2 = 0.1199± 0.0027. As for bounds on the direct detection of dark matter, we

impose that the spin-independent scattering cross section of weakly interacting mas-

sive particles (WIMPS) on nucleons, computed with micrOMEGAS, is compatible

with the latest bounds from the LUX experiment [23] (using the procedure described

in [27]).

• Electroweak precision observables. We compute the S, T, U [54, 55] variables and

apply a 95% exclusion limit as implemented in ScannerS (see [24] for details).

• Collider constraints. We require an SM like Higgs to be present with a mass of

125.1 GeV and check that its signal rates are compatible, within two standard devia-

tions, with the combination of the ATLAS and the CMS LHC run 1 measurements,

i.e. µ125 = 1.09 ± 0.11 [56]. We also check for bounds from null collider searches at

the Tevatron, LEP and the LHC, by applying a 95% C.L. exclusion limits using the

ScannerS interface to HiggsBounds [57].

4.5 Numerical results

In this section we use the specific models presented in the previous section to illustrate

the importance of the NLO EW corrections for the the parameters of the theory and for

the gluon fusion production cross-section of the observed 125 GeV SM-like Higgs boson. In

section 1 we have noted that, according to previous studies [28, 29], the NLO corrections

to decay widths in the RxSM model are small, typically in the order of a few percent. Here

we go beyond the simplest scalar singlet extension to compare the various models and, at

a phenomenological level, focus on the production rather than the decay.

In figure 2 we first present the corrections to the tree level mixing sum relation. We

have observed, eq. (4.15), that the correction to this tree level relation is, in fact, a good

proxy to evaluate the importance of the NLO corrections to the input parameters because

it does not depend on further choices specific to the scheme (other than the normalisation

condition of the mass eigenstates).

We start by discussing the RxSM model (top left panel). The simplicity of this model

allows us to interpret the distribution of points in the scan more straightforwardly. It

is also useful to interpret the distribution of points for the other models because it is a
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Figure 2. Mixing sum corrections : in all panels we present the one-loop mixing sum correction

(vertical axis), versus the mass of one of the new non-SM like Higgs bosons (horizontal axis), for

three models. Top left, the RxSM; top right, the CxSM dark phase with the non-SM like Higgs

boson mass in the horizontal axis and the dark matter mass in the colour scale; bottom, the CxSM

broken phase with either the lighter (left) or the heavier (right) of the non-SM like Higgs masses in

the horizontal axis.

limiting case of those models. We separate the two scenarios where the SM-like Higgs is

the lighter (grey) and the heavier (purple) of the two mixing Higgs bosons. We observe

that the magnitude of the correction to the tree level value of 1 for the mixing sum,

ranges approximately between +4% and −0.5%. The various features of the distribution

of points are due to the combination of theoretical and phenomenological constraints. One

can see that for small masses the mixing sum correction is small and rises sharply from

∼ mh125/2 GeV to ∼ 100 GeV as the decay channel h125 → h1 + h1 closes. This is due to

stronger constraints from negative searches at colliders which force the model to be more

SM-like7 so that the new scalar is more decoupled (hence it also contributes less in the

loops). For masses larger than ∼ 125 GeV, the collider constraints become progressively

more restrictive up to the opening of the decay of the heavy Higgs to a pair of SM-like

7This can also be observed in the coloured layers of figure 5 left of [24] where the mixing Higgs spectrum

and open decay channels are the same.
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Higgs bosons (h125) where there is again a sharp rise. The top boundary for large masses

is due to the electroweak precision data constraints. For the lower boundary, we observe

that negative corrections become possible at about ∼ 350 GeV, i.e. the threshold for decay

to a pair of top quarks.

For the CxSM dark phase (right panel), we observe a distribution of points that is

similar to the RxSM with the difference that larger magnitude negative values are allowed.

The colour scale, which represents the dark matter mass, shows that this is only possible

in scenarios where the dark matter particle running in the loops is lighter than about

∼ 500 GeV. Observing the yellow points, corresponding to large dark matter masses,

we recover the lower boundary observed for the RxSM. This is expected because the

contributions from the dark matter loop propagators are suppressed for large masses.

Regarding the CxSM broken phase (bottom panels) the distribution of points is more

complicated because we have three mixing Higgs bosons. Nevertheless, from the vertical

axes, we see that the magnitude of the upper and lower ranges of the mixing sum correction

is similar. In the two panels we indicate the scenario where the SM-like Higgs is the lightest,

next to lightest and heaviest of the three mixing Higgs bosons, respectively with grey, purple

and yellow points. In the left panel we have the smallest mass in the horizontal axis and in

the right panel the largest mass. In the two scenarios of the left panel (yellow and purple

points) we observe that the points distribute similarly to the RxSM. This is consistent

with the observation, in the RxSM, that a light scalar in the loop corrections produces

positive corrections. The only difference is that the yellow points in the peak region for

masses larger than ∼ 62 GeV are more suppressed. This is consistent with the fact that

the SM coupling is diluted over two small mixing factors for each of the two light scalars,

which further suppresses each contribution. The yellow points stop at ∼ 118 GeV because

we have applied a cut to avoid degenerate scenarios with a distance of 3.5 GeV between any

two scalar states. This is why the purple layer (h125 ≡ h2) stops at ∼ 121 GeV in the left

panel. In the right panel we can observe the scenario h125 ≡ h1 in the grey points. There

we see that for scenarios where h3 is heavier than about 350 GeV we can have a negative

correction. This is consistent with the RxSM observation that negative corrections are

possible in this scenario when the heavy scalar is above this mass. The main difference

with the RxSM is that the lower boundary is not so sharply defined. This is simply due

to loss in density in the scan for the CxSM, which has more parameters making it harder

to collect large amounts of points. Finally, note that for the purple points, where the SM-

like Higgs is the next to lightest, it is not possible to obtain a negative correction, which

indicates that the positive contributions from one lighter Higgs are enough to push the

correction to positive values. Also note that, contrarily to the RxSM plot, we cannot see

any sharp rise at mh3 ∼ 2mh125 because it is always possible, for fixed mh3 , to have decays

involving a lighter non-SM like Higgs with a different mass. This extra free parameter in

the scan dilutes such a boundary.

Now we turn to the discussion of the NLO EW scalar contributions to the corrections

to gluon fusion in the limit, already discussed in section 4.3, where the mixing factor of

the SM-like Higgs boson is close to the SM limit κ2
h125
→ 1. In our numerical analysis we

have evaluated, for each model, the quantity δGxSM, in eq. (4.22) specialised to the RxSM
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Figure 3. Gluon fusion corrections : in all panels we present the NLO EW scalar contribution

to the correction to gluon fusion production of the SM-like Higgs (vertical axis), versus the mass

of one of the new non-SM like Higgs bosons (horizontal axis), for the three models. Top left, the

RxSM; top right, the CxSM dark phase with the non-SM like Higgs boson mass in the horizontal

axis; bottom, the CxSM broken phase with either the lighter (left) or the heavier (right) of the

non-SM like Higgs masses in the horizontal axis.

and CxSM models using the samples already discussed. In addition, we have selected the

points within 10%, 5% and 2% of the limiting case κ2
h125
→ 1. Close to this limit our

approximation is then reliable. Furthermore, applying this increasingly tighter constraint

simulates the experimental situation where the SM-like Higgs boson couplings are measured

to be SM-like with an increasingly higher accuracy. Understanding how large the new scalar

corrections are allowed to be, when such tight experimental constraints become available,

may then provide improved bounds on each model. Finally, in all plots, we have applied a

5 GeV mass window exclusion around thresholds for the opening of SM-like Higgs to scalars

decays to avoid the singular behaviour of the wave function renormalisation discussed at

the end of section 4.3.

In figure 3 we can first observe, by inspecting the vertical axes for each model, that the

NLO EW scalar contributions to the corrections for the two models without dark matter
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(top left and bottom panels) are always negative, whereas for the CxSM dark (top right)

positive values are possible as we move away from the limit κ2
h125
→ 1 (blue and red points).

Focusing first on the RxSM (top left) we observe that the distribution of points away from

the SM-limit and the various peaks and thresholds follow closely the same patterns already

observed in figure 2. For masses of the new Higgs in the range ∼ 70 GeV to ∼ 100 GeV we

observe that the corrections can deviate away from the SM by about −1.6%, −1.1% and

−0.8% for the red, blue and green points respectively. For larger masses, above the SM-like

Higgs mass, we observe well defined boundaries for the three layers and the correction can

be at most about −1%, −0.5% and −0.2%, respectively for the red blue and green points.

For the broken phase of the CxSM (bottom panels), the ranges of values for the corrections

are similar. In the bottom left panel, with the lightest Higgs boson mass on the horizontal

axis, we can see more clearly the exclusion mass window we have applied around mh125/2

to avoid dealing with the singular limit. In the bottom right panel we represent the same

points as a function of the largest mass. By observing the two bottom panels we do not

recover directly the light and the heavy region of the RxSM plot since the points spread

down not only for small values of the masses. This is because we have more than one

Higgs boson coexisting with the SM-like Higgs. For the bottom right panel, we can have

one scenario where h1 ≡ h125 and another one where h2 ≡ h125. In the latter scenario

we have checked that we can have h1 in the mass region around 100 GeV to contribute

to the correction with a larger negative value in a way similar to the RxSM, whereas the

other scenario is very similar to the RxSM. This mixture of scenarios and the fact that

the CxSM has more free parameters explains the distribution of points and the absence of

sharply defined boundaries in the scatter plots.

Finally, we discuss the dark phase of the CxSM which is the one that allows for larger

deviations even for the scenarios closest to the SM-like limit. In the top right panel of

figure 3 we see that there are points where the correction can be positive. More interestingly,

the green points can spread down to negative values as negative as the other two layers. In

this case, even in the limit very close to the SM, these negative corrections are possible due

to contributions from light to intermediate mass dark matter in the region mD . 500 GeV

similarly to figure 2 (top panel). This behaviour can be understood more clearly in figure 4

where we restrict to the case κ2
h125

> 0.98. There, we observe the same projection with

an added colour scale for other physical parameters (top row) and for the remaining input

parameters (bottom row). In the top row we observe that, for the points with the largest

corrections, we have a lighter dark matter particle. This avoids a suppression from the

dark propagators in the corresponding loop contribution. We also observe a large coupling

h125DD for the vertices. The latter is given by

ghDD = κh125

√
2a1 + vSm

2
h125

v2
S

' ±
√

2a1 + vS(125.1)2

v2
S

, (4.31)

where we have approximated κh125 ' ±1 and noted that the Higgs mass is fixed. The

bottom panels show the dependence on the two remaining input parameters. The result

can be understood by resorting to eq. (4.31) where we note that for ghDD to be large

enough we cannot have a large singlet VEV, since it appears as a suppression factor.
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Figure 4. Parameters dependence of gluon fusion correction in the CxSM-dark : in all panels we

present the NLO EW scalar contribution to the correction to gluon fusion production of the SM-

like Higgs (vertical axis), versus the mass of the new non-SM like non-dark Higgs boson (horizontal

axis), for the dark phase of the CxSM. In the colour scale we have, top left, the dark matter mass;

top right, the coupling of the SM-like Higgs to a dark matter pairs; bottom left, the singlet VEV;

and bottom right, the linear term.

For fixed vS we may also increase this coupling by increasing the magnitude of a1. This

explains the bottom panels of figure 4 where we observe, precisely, that the points with

largest corrections have a smaller vS and a larger |a1|
1
3 . Finally we note that for heavier

dark matter scenarios (top left), as the dark matter decouples, we recover an RxSM like

distribution of points as expected (see yellow points).

5 Conclusions

In this work we have developed a general framework for the calculation of NLO EW cor-

rections in scalar extensions of the SM with focus on models with an arbitrary number

of scalar singlet fields added to the SM field content. The derived set of equations can

be applied for a wide class of choices of renormalisation scheme with the only restriction

that the chosen input parameters consistently allow for a solution of the truncated linear
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system — see also eq. (3.11) and related discussion. Our results go beyond the effective

potential approach since they are valid for any external momentum in the inverse propa-

gators. We also point out that our general procedure is well suited for the automation of

such corrections within a general purpose numerical tool such as ScannerS [26, 27].

We then applied our method to specific models: the real scalar singlet extension and the

complex scalar singlet extension of the SM. First, in order to assess the importance of the

NLO EW corrections to the parameters of the theories, we calculated the NLO correction to

the mixing sum
∑

x κ
2
x, which is one at tree-level. Other than the normalisation condition

for the one-loop mass eigenstates this quantity is scheme independent. Thus it provides a

good measure of the general trend for the magnitude of the one-loop corrections (in this

case to a tree level mixing sum relation). The correction we found for this sum was at most

4%, already hinting that, for physical processes, the NLO EW corrections are small.

Thus, we then moved on to the evaluation of the NLO EW corrections for a physical

process: gluon fusion production of the SM-like Higgs. We worked in the limit where the

SM-like Higgs has couplings to SM particles close to the SM values. This is the preferred

region of the allowed parameter space given the latest Higgs signal measurements from

the LHC. We separated out the new contributions due to the extended scalar sector from

the fixed SM-like NLO EW contributions (∼ 5%). We found that, similarly to earlier

results for the decays in the real singlet model, the NLO EW corrections to gluon fusion

production are of the order of a few percent in all models. In fact, even though we have

examined three different scenarios, one in the RxSM and two in the CxSM, the general

conclusion is similar: the new scalar sector corrections range between about ∼ −2% and

∼ 0.1% (or between about ∼ 3% and ∼ 5% if we sum the SM-like contribution). In all

scenarios without dark matter, we also observe that the more we approach the SM-like

limit, the smaller the new scalar sector corrections, thus consistently recovering the SM

NLO EW correction. The exception is the dark matter phase of the CxSM where the dark

matter particle can produce a non-zero correction even in that limit. Nevertheless, in this

model the overall effect is to shift the SM correction from 5% to about 4%. The main

conclusion of this study is then that future improvements in the measurements of gluon

fusion production of the SM-like Higgs in these singlet models will, likely, not be able to

probe radiative effects due to the new scalars. Combined with previous results in real

singlet studies for the decay, where small corrections were also found, and with the fact

that interference effects can be large, such minimal scalar singlet extensions will not be

easily probed in future Higgs boson precision measurements. Thus, these minimal scalar

singlet extended models have to be probed through direct searches for the new particles in

their spectrum.

Despite the smallness of the corrections that we have found there are a few open ques-

tions. With a new dark scalar in the spectrum we have found that the corrections can

deviate from the SM. In scenarios with multi-singlet dark matter, could the corrections

be large enough to shift the Higgs boson properties visibly within the precision of future

measurements? On the other hand we have not studied the mass region near the thresh-

old where the SM-like Higgs can decay to a pair of scalars. Can we have a considerable

enhancement of the corrections close to this threshold? This could be particularly inter-
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esting because the corresponding Higgs decay channel to a pair of scalars is kinematically

suppressed near the threshold making it unlikely to be observed directly. But in the dark

case this is precisely the region where the Higgs-dark-dark coupling is allowed to be larger

by the dark matter relic density constraints.8 These, and other questions, will be left for

future investigations.
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A Relations between bases

The L-basis relates to the Λ-basis as follows. The field dependent scalar couplings are

Λ ≡ Livi +
1

2!
Lijvivj +

1

3!
Lijkvivjvk +

1

4!
Lijklvivjvkvl = V (0)(vi) ,

Λi(S) ≡ Li + Lijvj +
1

2
Lijkvjvk +

1

6
Lijklvjvkvl ,

Λij(S) ≡ L
ij + Lijkvk +

1

2
Lijklvkvl , (A.1)

Λijk(S) ≡ L
ijk + Lijklvl ,

Λijkl(S) ≡ L
ijkl ,

and the field dependent gauge couplings are

Λab(G) ≡
1

2
Gabijvivj ,

Λabi(G) ≡ Gabijvj , (A.2)

Λabij(G) ≡ G
abij .

We have defined the mass-squared matrices, Λij
(S), and Λab(G). For fermions it is a hermitian

matrix

ΛIJ(F ) ≡M∗ILM J
L (A.3)

with the (symmetric) fermion mass matrix

M IJ = Y IJ + Y IJkvk . (A.4)

8This is because a larger coupling allows for a more efficient dark matter annihilation in the early

Universe through this channel, thus avoiding over-shooting the measured value from the Planck satellite

data.
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We also define fermionic cubic and quartic effective vertices, involving two scalars and two

fermions, which are hermitian with respect to fermionic indices:

ΛIJk(F ) ≡ Y ∗ILkM J
L +M∗ILY Jk

L

ΛIJkm(F ) ≡ Y ∗ILkY Jm
L + Y ∗ILmY Jk

L . (A.5)

The matrices used to rotate from the Λ-basis to the λ-basis are defined through

Ri =
[
O(S)

]j
i
φj

Aaµ =
[
O(G)

]b
a
Abµ (A.6)

ψI =
[
U∗(F )

]J
I
ΨJ .

B Loop functions

Here we present a summary of the loop functions that we have used, which can be obtained

from [38]. The basic scalar loop function that we use is9

Bs(x, y) ≡ −
∫ 1

0
dtlog [tx+ (1− t)y − t(1− t)s− iε] (B.1)

= 2− log s+


∑

k=±{(tk − 1) log |1− tk| − tk log |tk|}+ iπδt , ∆ > 0√
|∆|
(

arctan
[

2c√
|∆|

]
− arctan

[
2(1+c)√
|∆|

])
+c log

(
|∆|
4 + c2

)
− (1 + c) log

(
|∆|
4 + (1 + c)2

)
, ∆ ≤ 0

where

∆ ≡ s2 + x2 + y2 − 2(sx+ sy + xy)

s2
(B.2)

t± ≡
s− x+ y ± s

√
∆

2s
(B.3)

c ≡ x− y − s
2s

(B.4)

δt ≡



1− t− , (t+ > 1) ∧ (0 < t− < 1)

1 , (t+ > 1) ∧ (t− < 0)

t+ , (0 < t+ < 1) ∧ (t− < 0)
√

∆ , 0 < t− < t+ < 1

0 , otherwise

. (B.5)

The various limits that are necessary are:

B0(x, y) = 1− f (1)(x, y) (B.6)

Bs(x, 0) = Bs(0, x) = 2− log x+

(
x

s
− 1

)[
log

∣∣∣∣1− s

x

∣∣∣∣− iπθ(1− x

s

)]
(B.7)

Bs(0, 0) = 2− log s+ iπ (B.8)

9Here the factor iε is an infinitesimal quantity to define the integration contour on the complex plane.
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The scalar loop function is

∆BSS(x, y) =

∫ 1

0
dt log

[
tx+ (1− t)y − t(1− t)s

tx+ (1− t)y

]
= B0(x, y)−Bs(x, y) ≡ −∆Bs(x, y)

(B.9)

We can also obtain the limiting case ε→ 0

∆BSS(ε, ε)→ −2 + log s− log ε− iπ . (B.10)

The fermionic functions are

∆BFF (x, y) = (x+ y)∆Bs(x, y)− sBs(x, y) (B.11)

∆BF̄ F̄ (x, y) = 2∆Bs(x, y) (B.12)

and the corresponding ε→ 0 limits are

∆BFF (ε, ε) = s(−2 + log s− iπ) (B.13)

∆BF̄ F̄ (ε, ε) = −2(−2 + log s− log ε− iπ) . (B.14)

Finally, the loop functions involving vector bosons are

∆BSV (x, y) = (2x− y)∆Bs(x, y) + 2sBs(x, y)− s

y
A(y) (B.15)

+
s(2x− s)

y
[Bs(x, y)−Bs(x, 0)]− x2

y

(
∆Bs(x, y)−∆Bs(x, 0)

)
and

∆BV V (x, y) = −5

2
∆Bs(x, y) +

1

4xy

[
s(2x+ 2y − s)Bs(x, y)− (x2 + y2)∆Bs(x, y)

− s(2x− s)Bs(x, 0) + x2∆Bs(x, 0)
]

− 1

4xy

[
s(2y − s)Bs(0, y)− y2∆Bs(0, y) + s2Bs(0, 0)

]
, (B.16)

with

A(x) ≡ x(log x− 1) . (B.17)

One can check that ∆BSV (0, 0) is finite and that, as ε→ 0,

∆BV V (ε, ε)→ −3

(
3

2
− log

s

µ2
+ log

ε

µ2
+ iπ

)
. (B.18)

Finally, the derivatives of the loop functions that are necessary to obtain the wave

function renormalisation factors can all be expressed in terms of the following derivative

∂sBs(x, y) ≡
∫ 1

0
dt

t(1− t)
tx+ (1− t)y − t(1− t)s− iε (B.19)

=


−1
s + 1√

∆s

∑
k=± tk(1− tk)

[
k log |1− t−1

k |+ πiθ(1− tk)θ(tk)
]
, ∆ ≥ 0

−1
s + 1

s

(
c+ 1

2

)
log
(

(1+c)2−∆
4

c2−∆
4

)
−1
s

(
c(1 + c) + ∆

4

)
2√
−∆

[
arctan

(
2(1+c)√
−∆

)
− arctan

(
2c√
−∆

)]
, ∆ < 0 .

(B.20)
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C Some useful identities

In this section we prove a few useful identities. We first want to relate a contraction

between the effective cubic fermion-fermion-scalar couplings, with a contraction of the

Yukawa couplings with the mass matrices for massless fermion states as follows:

λE1E2

(F ) iλ(F )E2E1j + c.c. =
(
y?E1

Lim
LE2 +m?E1Ly E2

L i

)(
y? K
E2 jmKE1 +m?

E2Ky
K
E1j

)
+ c.c.

= y?E1
Lim

LE2y? K
E2 jmKE1 + y?E1

Lim
LE2m?

E2Ky
K
E1j

+m?E1Ly E2
L iy

? K
E2 jmKE1 +m?E1Ly E2

L im
?
E2Ky

K
E1j + c.c.

= y?E1
Lim

LE2y? K
E2 jmKE1 + y?E1

Lim
LE2m?

E2Ky
K
E1j

+mE1Ly?E2
L iy

K
E2 jm

?
KE1

+mE1Ly?E2
L im E2Ky

?K
E1j + c.c.

= y?E1
Lim

LE2y? K
E2 jmKE1 + y?E1

Lim
LE2m?

E2Ky
K
E1j

+mE2Ly?E1
L iy

K
E1 jm

?
KE2

+mE2Ly?E1
L im E1Ky

?K
E2j + c.c.

= 2y?E1
Lim

LE2y? K
E2 jmKE1 + 2y?E1

Lim
LE2m?

E2Ky
K
E1j + c.c. .

In the third equality we have use the fact that the c.c. allows us to complex conjugate its

second line (which is equivalent to swapping with the terms hidden in the c.c.). In the

fourth equality we have relabeled the dummy indices E1 → E2 and E2 → E1. In the last

line we have used the symmetry of of the involved tensors under exchange of the fermionic

indices. Now noting that, in the mass-squared eigenbasis, the mAB can be nonzero only if

mA = mB:10

λE1E2

(F ) iλ(F )E2E1j + c.c. = 2mE4E1y
?E1
E2i
mE2E3y? E4

E3 j + 2y?E1
E2i
mE2E3m?

E3E4
yE4

E1j
+ c.c.

= 2mE4E1y
?E1
E2i
mE2E3y? E4

E3 j + 2y?E1
E2i

[m2
(F )]

E2
E4
yE4

E1j
+ c.c.

= 2mE4E1y
?E1
E2i
mE2E3y? E4

E3 j + 2y?E1
E2i
εδE2
E4
yE4

E1j
+ c.c.

= 2y?E1
E2i
mE2E3y? E4

E3 jmE4E1 + c.c.+O(ε)

From which we finally obtain

<
[
λE1E2

(F ) iλ(F )E2E1j

]
= 2<

[
y?E1

E2i
mE2E3y? E4

E3 jmE4E1

]
+O(ε) . (C.1)

D Top quark and gauge contributions in the SM

In this section we show how to obtain the top-quark couplings to the Higgs boson in the

notation set in section 2 in the SM. The Yukawa coupling between the Higgs doublet and

the top Quark is given by (using Weyl fermion notation)

−LYukawa,top = yttR(Hc)†TL + c.c. (D.1)

=
yt

2
√

2

[
vtRtL + tRtL(h+ iG0)− tRbL(G1 + iG2)

]
+ c.c.

10This is a consequence of the fact that Λ(F ) = MM† (using matrix notation both for Λ(F )AB and MAB),

so the invariant subspace associated with each eigenvalue of Λ(F ) is also an invariant subspace of M .

– 31 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
1

where we have used

TL ≡
(
tL
bL

)
, Hc ≡ iσ2H

∗ =
1√
2

(
v + h− iG0

−G+

)
=

1√
2

(
v + h− iG0

−G1 + iG2

)
. (D.2)

Here tL, bL and tR are the left handed Weyl fermions which give, respectively, the left

handed part of the top and bottom quarks, and the right handed part of the top quark.

Since each fermion is a triplet of colour there is an extra colour contraction between each

fermion/anti-fermion pair. If we organise the three sets of left handed Weyl fermions in a

vector

ψI → (ψ1, . . . , ψ9) = (t1L, t
2
L, t

3
L, t

1
R, t

2
R, t

3
R, b

1
L, b

2
L, b

3
L) (D.3)

and the real scalars in a another vector

Ri → (h,G0, G1, G2) , (D.4)

and note that in the SM this decomposition is already in the mass eigenbasis, we can read

mIJ and yIJk directly from eq. (D.1) with the definitions in eqs. (2.3). We can also obtain

λ(F )IJk and λ(F )IJkm using, eqs. (A.5).

The one-loop corrections from the yt couplings to the pole equations in the SM that

are used in the text are written in terms of the following vector, which depends on the

momentum-squared scale s:

S(t)
α (s)→ 3y2

t


(4m2

t − s)Bs(m2
t ,m

2
t )− 2A(m2

t )

−m2
t∆BF̄ F̄ (m2

t ,m
2
t )−∆BFF (m2

t ,m
2
t )− 6y2

tA(m2
t )

∆BFF (0,m2
t )− 6y2

tA(m2
t )

−∆BFF (0,m2
t )− 6y2

tA(m2
t )

 (D.5)

The scalar-gauge couplings used in the main text result from the following term in the

SM Lagrangian

−LV,term =
1

4
H†(gσiAµi + g′Bµ)(gAµi σ

i + g′Bµ)H , (D.6)

where g, g′ are respectively the SU(2) and U(1) couplings in the SM and Aµi , B
µ are the

corresponding gauge fields. From this we can then read off the scalar-gauge couplings.

Then, we obtain

S
(g,1)
1 (s) =

6m4
W

v2
(3logm2

W + 1) +
3m4

Z

v2
(3logm2

Z + 1)

+
2m2

W

v2

[
∆BSV (0,m2

W ) + 2m2
W∆BV V (m2

W ,m
2
W )
]

+
m2
Z

v2

[
∆BSV (0,m2

Z) + 2m2
Z∆BV V (m2

Z ,m
2
Z)
]

(D.7)

S
(g,1)
2 (s) =

2m4
W

v2
(3logm2

W − 1) +
m4
Z

v2
(3logm2

Z − 1)

+
2m2

W

v2
∆BSV (0,m2

W ) +
m2
Z

v2
∆BSV (0,m2

Z) (D.8)
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S
(g,1)
3 (s) = S

(g,1)
4 (s) =

2m4
W

v2
(3logm2

W − 1) +
m4
Z

v2
(3logm2

Z − 1)

+
m2
W

v2

[
4

(
1− m2

W

m2
Z

)
∆BSV (0, 0) + ∆BSV (0,m2

W )

+ 4m2
W

(
1− m2

W

m2
Z

)
∆BV V (m2

W , 0)

+ 4m2
Z

(
1− m2

W

m2
Z

)2

∆BV V (m2
W ,m

2
Z)

]
+
m2
Z

v2

(
1− 2m2

W

m2
Z

)2

∆BSV (0,m2
Z) (D.9)

and

S(g,2)
α (m2

h, s)→


0

0
m2
W
v2 ∆BSV (m2

h,m
2
W )

m2
W
v2 ∆BSV (m2

h,m
2
W )

 (D.10)

E Parameter shifts for particular models

Here we present the parameter shifts that we obtained for the RxSM and for the CxSM

dark phase. The expressions are very lengthy in the CxSM broken phase, and do not add

much more information, so we omit that case.

For the RxSM broken phase, in the scenario where h1 ≡ h125, the shifts are

(m2)(1) =
(v sin 2α− vS cos 2α)

(
P

(1)
hs − P

(1)
sh

)
+ 2vP

(1)
hh + 6T

(1)
h + vS

(
P

(1)
hs + P

(1)
sh

)
2v

λ(1) = −
2
(
v sinα cosα

(
P

(1)
hs − P

(1)
sh

)
+ vP

(1)
hh + T

(1)
h

)
v3

λ
(1)
HS = −P

(1)
hs sin2 α+ P

(1)
sh cos2 α

vvS

(m2
S)(1) =

−(v cos 2α+ vS sin 2α)
(
P

(1)
hs − P

(1)
sh

)
+ v
(
P

(1)
hs + P

(1)
sh

)
+ 2vSP

(1)
ss + 6T

(1)
s

4vS

λ
(1)
S = −

3
(
− vS sinα cosα

(
P

(1)
hs − P

(1)
sh

)
+ vSP

(1)
ss + T

(1)
s

)
v3
S

E
(1)1

2 =
P

(1)
sh − P

(1)
hs

m2
1 −m2

2

E
(1)2

1 = 0 (E.1)

where we have defined, for ease of notation, the following rotated (i.e. in the gauge basis)

tadpole and pole tensors respectively

T
(1)
i ≡

[
OT(S)

]k
i
∂kV

(1)

P
(1)
jk ≡

[
OT(S)

]i
j

[
OT(S)

]x
l

[
∂2
ixV

(1) + ∆Σ
(1)
ix

]
. (E.2)
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The latter are obtained by using eqs. (4.8) and (4.9). For our numerical codes we export

expressions for all shifts and for all the tree level cubic and quartic couplings from Math-

ematica directly to C++ and then evaluate all the involved sums numerically for each

point in our scans.

When h2 ≡ h125 the parameter shifts are similar and they are obtained by preforming

the following replacements in eq. (E.1):

P
(1)
hs − P

(1)
sh → P

(1)
sh − P

(1)
hs

E
(1)1

2 = 0 (E.3)

E
(1)2

1 =
P

(1)
sh − P

(1)
hs

m2
1 −m2

2

For the CxSM dark, in the scenario where h1 ≡ h125 the parameter shifts, are

(m2)(1) =
(v sin 2α− vS cos 2α)

(
P

(1)
hs − P

(1)
sh

)
+ 2vP

(1)
hh + 6T

(1)
h + vS

(
P

(1)
hs + P

(1)
sh

)
2v

λ(1) = −
2
(
v sinα cosα

(
P

(1)
hs − P

(1)
sh

)
+ vP

(1)
hh + T

(1)
h

)
v3

δ
(1)
2 = −2

(
P

(1)
hs sin2 α+ P

(1)
sh cos2 α

)
vvS

b
(1)
2 =

−(v cos 2α+ vS sin 2α)
(
P

(1)
hs −P

(1)
sh

)
+v
(
P

(1)
hs +P

(1)
sh

)
−2vSP

(1)
aa +2vSP

(1)
ss +4T

(1)
s

2vS

d
(1)
2 = −

2
(
− vS sinα cosα

(
P

(1)
hs − P

(1)
sh

)
+ vSP

(1)
ss + T

(1)
s

)
v3
S

b
(1)
1 =

T
(1)
s

vS
+ P (1)

aa

E
(1)1

2 =
P

(1)
sh − P

(1)
hs

m2
1 −m2

2

. (E.4)

Otherwise, when h2 ≡ h125, the parameter shifts are similar and they are obtained by

preforming the following replacements in eq. (E.4):

P
(1)
hs − P

(1)
sh → P

(1)
sh − P

(1)
hs

E
(1)1

2 = 0 (E.5)

E
(1)2

1 =
P

(1)
sh − P

(1)
hs

m2
1 −m2

2
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