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1 Introduction

The main goal of this paper is to describe the structural properties and explicit computa-

tions of 3-manifold homological invariant,

H∗,∗N (M3) (1.1)

whose graded Euler characteristic gives quantum sl(N) invariant of M3. In physics, these

spaces will be understood as Hilbert spaces of BPS states or, equivalently, as Q-cohomology

groups of various systems.

Our study of 3-manifold homologies is largely motivated by and parallels that of knot

homologies, which are fairly well understood by now. The list of new homological invariants

of knots and links is constantly growing, and by now there are many examples for knots

colored by various representations of many different groups. But on the mathematical side

the situation was rather different merely a decade ago, when the only available theories

were Khovanov homology categorifying the Jones polynomial [1] and the knot Floer homol-

ogy categorifying the Alexander polynomial [2, 3]. Both of these two theories are extremely

concrete and computation-friendly, which immediately led to a number of surprising obser-

vations [4, 5]. For example, while their definition is very different and indicates no direct

interrelation, the total dimension turns out to be equal for many knots,

dim HFK(K) = dimKh(K) , (1.2)

including all knots with up to 9 crossings, all alternating knots, etc. The discovery of

such theories was (and still is) so miraculous that it was not at all clear whether these

two theories, associated to N = 2 and N = 0, have cousins for other values of N . In

2004, a considerable hope to the categorification program was given by the seminal work

of Khovanov and Rozansky [6] who constructed the entire family of sl(N) knot homologies

using matrix factorizations.
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This breakthrough, however, led to new questions and more puzzles. Thus, it was

not clear why the family of such theories labeled by N appeared to have an extension

to the negative range (N < 0) where it also gives sl(N) knot homology [7]. Moreover,

there were a number of puzzles associated with the behavior at small values of N . For

instance, starting from N ≥ 2 and gradually decreasing its values, one would eventually

reach Khovanov homology at N = 2 and then a “trivial” theory for N = 1. This behavior

is not very surprising since decreasing the rank one would expect to find a simpler theory

and the value N = 1 at the very bottom of this tower corresponds to sl(1) group, which

indeed is trivial. What is surprising, though, is that decreasing N further, to N = 0 one

again finds a very interesting theory, HFK(K), followed again by a trivial sl(1) theory at

N = −1. What explains this peculiar behavior at N = −1, 0 and 1? And why does the

oddball HFK, “sandwiched” by two trivial theories, have unexpected relations to Khovanov

homology a la (1.2)?

The answer to these questions came a bit later, with the advent of the HOMFLY-

PT knot homology and its “colored” variants, which came as a surprise [8]. They were

motivated by independent physics developments where the HOMFLY-PT invariants were

captured by BPS Hilbert spaces associated to knots [9]. The first connection to knot ho-

mologies was then made in [10] which restored the homological grading and led to concrete

predictions for many simple knots. More importantly, it led to new structural properties

that helped to unify knot Floer homology with Khovanov-Rozansky homology [7]. More-

over, these developments helped to explain the extension to negative values of N and the

“gap” between N = −1 and N = 1 by emphasizing [11] the role of supergroups sl(n|m)

with

N = n−m (1.3)

In particular, the “gap” at small values of N is best understood by generalizing the theory

to colored knot homology, where it occurs between N = − (the longest row) and N =

(the highest column) of the corresponding Young diagram λ. For knots colored by the

fundamental representation λ = �, one recovers the familiar range −1 ≤ N ≤ 1. A

convenient way to visualize the “landscape” in figure 1 is to plot λt in the positive quadrant

of the (n,m) plane, as illustrated in figure 2. Then, different values of N correspond to

boundary points of the positive (n,m)-quadrant with λt excluded. Traversing the boundary

of the unshaded region in figure 2, one goes through the sequence of homological invariants

for sl(N |0) ∼= sl(N), sl(1|1), and sl(0|N), which will also be the list relevant to the present

paper. Indeed, these three classes can be conveniently labeled by N ∈ Z, such that N < 0

corresponds to sl(N |0), N = 0 corresponds to sl(1|1), and N > 0 corresponds to sl(0|N).

Of course, the value of the super-rank (1.3) does not uniquely specify sl(n|m), but as

long as we stay within these three special cases we can use a more economic notation and

label a theory simply by N , which is the notation we adopt in (1.1) and throughout the

paper.1

1It would be interesting to extend this work to computation of quantum (as in [12–14]) and homological

3-manifold invariants for arbitrary sl(n|m). We hope to return to this problem elsewhere.
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Figure 1. The landscape of knot homologies shows peculiar behavior at N = −1, 0 and 1.

Figure 2. The three corners (red •) correspond to the three special values of N = −1, 0 and 1 in

H∗,∗N (K) theory with color λ = �.

In the physical realization of knot homologies [10, 15–17], N enters either as the number

of fivebranes or as the Kähler modulus (stability parameter) of the conifold X:

doubly-graded

space-time: R× T ∗S3 × TN4

n M5-branes: R× S3 × R2
q

M5′-branes: R× LK × R2
q

phase←−−−−−−
transition

→
triply-graded

R×X × TN4

R× LK × R2
q

(1.4)

where the two systems are related by a geometric transition [9, 18]. In particular, inter-

polating from positive to negative values of N on the triply-graded (“resolved”) side is

realized via the flop transition, and the special theory HFK(K) corresponds to the singu-

lar limit of X. The systems (1.4) have been studied from various vantage points and in

different duality frames (see e.g. [19] for a recent summary).

In this paper, we will try to replicate some of the successes of this physical framework

to explain and predict the behavior of knot homologies in the world of 3-manifolds. The
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theory for sl(1|1) that we label by N = 0 will again play a very special role; it is the

only value of N for which 3-manifold homology currently admits a rigorous mathematical

definition. In fact, while its cousins for N 6= 0 are currently out of reach, the sl(1|1) theory

with N = 0 has three equivalent mathematical formulations:

• via symplectic geometry, “Heegaard Floer homology” HF(M3) [20],

• via gauge theory, “Seiberg-Witten Floer homology” or “monopole Floer homology”

HM(M3) based on Seiberg-Witten equations [21],

• via contact geometry, “embedded contact homology” ECH(M3) [22, 23].

All three are isomorphic2 [21] (see also [24]):

HF(M3) ∼= HM(M3) ∼= ECH(M3) (1.5)

Therefore, in order to develop a picture analogous to figure 1 and to tackle 3-manifold

homologies (1.1) by a variety of methods that were so successful for knots, we first need to

realize the N = 0 theory in the physical setup similar to (1.4):

doubly-graded

space-time: R× T ∗M3 × T ∗Σ
n M5-branes: R×M3 × Σ

phase←−−−−−−
transition

→
Z⊕ Z⊕H2(X;Z)-graded

R×X × T ∗Σ
(1.6)

In some ways this setup is simpler than (1.4); e.g. it does not require extra ingredients

(branes) associated with knots and links. But in other ways it is more complicated; one

obvious difference is that S3 is replaced by a general 3-manifold M3 in (1.6). As in the case

of knots, analyzing (1.6) in various duality frames and from various vantage points will

shed light on different aspects of 3-manifold homologies (1.1), which in all duality frames

will be realized as Q-cohomology (space of BPS states).

To categorify the Chern-Simons partition function Ẑ
U(n|m)
CS (M3) means “to restore the

t-dependence”

Ẑ
U(n|m)
CS (M3)

t=−1←−−−−−− PN (q, t) :=
∑
i,j

qitj dimH∗,∗N (M3) (1.7)

where (n|m) = (N |0) for N > 0 and (n|m) = (1|1) for N = 0. As we stress throughout

the paper — especially in sections 2 and 6 — categorification in (1.7) requires writing

the CS partition function in a new, slightly unnatural basis, which is why we put a hat

on Z
U(n|m)
CS (M3). Then, the “quantum” variable q (related to the Chern-Simons coupling

constant) and the homological variable t can be interpreted as the equivariant parameters

of the Omega-background or, equivalently, as fugacities for the rotation symmetry

U(1)t U(1)Σ
	 	

T ∗Σ

(1.8)

2As we review later in the main text, each of these theories comes in four flavors, and the isomorphisms

hold for the corresponding flavors.
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3-manifold TG[M3] HF+(M3, s)

M3 = S2 × S1 N = 2 vector multiplet

+ adjoint chiral

T +
−1/2 ⊕ T

+
1/2 , if s = s0

0 , if s 6= s0

Lens spaces:

M3 = L(p, 1)

(S3 when p = 1)

N = 2 level-p super-CS

+ adjoint chiral
T +

0 , ∀s ∈ Zp

the Poincaré sphere:

S3
−1(3`1) = Σ(2, 3, 5)

see [25, section 2.2] T +
2

Table 1. Simple examples. In the last column we use the standard notation T +
k for the module over

the ring Z[U ] abstractly isomorphic to Z[U,U−1]/Z[U ], whose lowest degree element is supported

in degree k ∈ Q [26]. Note, HF+
(
Σ(2, 3, 5)

)
is isomorphic to HF+(S3) as relatively graded Z[U ]

modules, but the absolute grading distinguishes them.

Note, in the case of sl(1|1), the variable q corresponds to the Alexander grading of (1.5),

while t keeps track of the Maslov grading. In this special case, we will be able to give a

different interpretation to the Alexander q-grading so that Σ is no longer required to enjoy

the U(1)Σ symmetry.

While the symmetry U(1)t that gives rise to the homological grading exists for arbitrary

M3, its close cousin U(1)β described in section 3.4 exists only for Seifert M3 and is very

handy for practical computations. Using this symmetry we compute 3-manifold homologies

in many concrete examples, sometimes in multiple independent ways.

The numerical and homological invariants of 3-manifolds that we are interested in can

be naturally calculated in terms of the corresponding 3d N = 2 theory TG[M3], cf. [27, 28]:

M3  TG[M3] (1.9)

For a general Lie group G this is the effective theory of 6d N = (0, 2) SCFT labeled by

a corresponding Lie algebra3 g compactified on M3 with a topological twist. In the case

when G = U(N) this is the theory describing dynamics of N = n M5 branes in the left

hand side of (1.6). The table 1 lists basic examples of such correspondence.

The rest of the paper is organized as follows:

• In section 2 we study general features of a 3d N = 2 theory on Σ × R or Σ × S1

with partial topological twist along Σ, and its relation to the corresponding A-model

on Σ. Concrete results in this section include the modular transformation of flat

GC-connections on M3 and a proposal for a categorification of the Verlinde algebra

associated to 3-manifolds; both will play an important role in the subsequent sections.

• In section 3 we explore (1.6) from the viewpoint of 3d-3d correspondence and com-

pute HF(M3) (or its Euler characteristic) as the Q-cohomology (or, respectively, its

3Of course, for a given g the choice of G is not unique in general. In most of our discussion, the issues

related to the global topology and the center of the group will not show up. However, it does not mean these

issues can be completely ignored. As will become apparent later in the text, S-duality plays an important

role and it should exchange G with its Langlands dual G∨. Also, we will often omit the explicit dependence

on G and write T [M3] instead of TG[M3].
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index) in 3d N = 2 theory T [M3] on R × Σ. In particular, we formulate a new way

to compute the Seiberg-Witten invariants of 3-manifolds and the homological invari-

ants (1.5). We illustrate the technique in explicit examples of M3 = Σ′ × S1, Lens

spaces, and more general plumbed manifolds, always finding an agreement with the

known mathematical results. This gives us confidence to move to a mathematically

uncharted territory of sl(N) 3-manifold homologies.

• In section 4 we reverse the order of compactification and consider the setup (1.6)

from the viewpoint of the effective 3d N = 4 theory on M3. This vantage point

clarifies the connection to Seiberg-Witten invariants and homology groups (1.5) and

also leads to yet another way of computing them, which we call a “refinement” of the

Rozansky-Witten theory. We illustrate it in a concrete example of M3 = S2 × S1.

• In section 5 we study the relation to 4-manifold invariants arising from fivebrane com-

pactifications. The goal of this section is twofold: it unifies various twists and vantage

points considered in earlier sections and also leads to a new physical interpretation

of the “correction terms” in the Heegaard Floer homology.

• In section 6 we propose an analogue of the Khovanov homology for 3-manifolds which

categorifies Chern-Simons partition function/quantum group invariant of M3. A key

element of this construction is an S-transform that, surprisingly, connects categorifi-

cation with Mock modular forms and somewhat mysterious role of Eichler integrals

in Chern-Simons theory. Another surprise is how various terms are grouped into

“homological blocks” which seem to be labeled only by reducible G-connections on

M3. This may be a hint of a deeper relation to Heegaard Floer homology, analogous

to the connection between HFK(K) and Khovanov homology. Explicit examples in

this section include Lens spaces, and certain more general Brieskorn spheres.

• In section 7 we discuss those 3-manifolds for which T ∗M3 admits a geometric transi-

tion analogous to the conifold,

M3  Calabi-Yau 3-fold X (1.10)

For this class of 3-manifolds, (1.1) can be computed as Q-cohomology of the right-

hand side in (1.6). The large-N duality that underlies the geometric transition unifies

3-manifold homologies for all N into a bigger Hilbert space, which is the Hilbert

space of a closed string dual and which reduces for each integer N to the 3-manifold

homology (1.1). This structural property parallels what was found for knots and

links [7, 10, 29].

Appendices contain useful supplementary material.

2 Categorification of a 2d A-model

Even though in this paper we are mostly interested in applications to 3-manifolds, some of

the structure of 3d N = 2 theories topologically twisted along a 2d spatial slice is rather

– 6 –
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general and potentially can be useful for refinement and categorification of more general

A-models. Moreover, even for the purpose of studying 3-manifold homology, a purely two-

dimensional formulation in terms of A-model is very illuminating and mathematically a lot

more accessible than formulations involving higher-dimensional systems. In the case of 3d

N = 2 theory labeled by a 3-manifold M3, the categorification of the A-model is realized

by the category of the representations of the vertex operator algebra (VOA) associated to

a 4-manifold bounded by M3. A bonus feature of this approach is a concrete description

of the modular group action on flat GC-connections on M3.

2.1 General A-model and a refinement

A general 3d N = 2 theory admits a partial topological twist on space-time R × Σ or

S1 × Σ, where Σ can be an arbitrary Riemann surface (possibly with boundary). The

partial topological twist replaces the SO(2)Σ little group in three dimensions with the

diagonal subgroup

SO(2)′Σ ⊂ SO(2)Σ ×U(1)t (2.1)

where U(1)t is the R-symmetry of the 3d N = 2 theory.

In the case when space-time is S1×Σ, compactification on S1 produces an effective 2d

N = (2, 2) theory on Σ. The partial topologial twist considered above becomes the usual

A-model twist in 2d. Let us breifly review basic facts about topologially twisted N = (2, 2)

2d theories. In two-dimensional N = (2, 2) supersymmetry, the right-moving supercharges

are usually denoted as Q+ and Q+, while the left-moving supercharges are usually denoted

as Q− and Q− (see e.g. [30, 31]). One also defines H± = (H ± P )/2, so that Q2
r = H+

with Qr = (Q± +Q±)/2. For example, in these conventions, the elliptic genus is

Tr qH−eiγJ`eiπJr (2.2)

After the topological twist, which allows to formulate the theory on a general 2-manifold

Σ, the supercharges Q− and Q+ have zero spin in the A-model, while Q− and Q+ have

zero spin in the B-model. Usually, in either case, one then defines a BRST operator Q

to be a sum of these scalar supercharges. The theory becomes effectively topological if

one restricts to cohomology of Q-operator. The elements of such Q-cohomology form a

ring R. For the A-model twist, this is the ring of anti-chiral operators in the left-moving

sector and chiral operators in the right-moving sector, the so-called (a, c) ring. Via state-

operator correspondence R, as a vector space, can be identified with the Hilbert space of

the topological A-model on a circle.

The standard textbook example of A-model is a twisted sigma-model based on a target

space X, with

R = H∗(X) (2.3)

such that a product in this Q-cohomology ring is the usual cup product in the classical

de Rham cohomology of X, (Q,Q†, H) ∼ (d, d∗,∆). In the large volume limit there are

no quantum corrections, but at finite volume the ring R gets deformed into quantum

cohomology ring QH∗(X). Here, we will mostly focus on the classical ring/large volume

limit.

– 7 –
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One of the basic ingredients in N = (2, 2) 2d theories is a free chiral superfield

Φ = φ+ θ+ψ+ + θ−ψ− + . . . (2.4)

Since it appears as a basic building block in many models, it is instructive to consider a

slight generalization where the lowest component φ carries R-charges (m,n) under U(1)V
and U(1)A symmetries, respectively.

chiral multiplet

U(1)Σ U(1)V U(1)A m = 0

φ 0 m n z

ψ− 1 m− 1 n+ 1 dz

ψ+ −1 m+ 1 n+ 1 dz

ψ− 1 m+ 1 n− 1

ψ+ −1 m− 1 n− 1

Upon the A-model twist, the generator of U(1)Σ “Lorentz symmetry” in two dimensions

is replaced by a sum of generators of U(1)Σ and U(1)V , so that the first three fields —

namely, φ, ψ− and ψ+ — transform as scalars under U(1)Σ when m = 0. Note, in this

case an observable O ∈ Hp,q(X) that corresponds to a cohomology element on X of Hodge

degree (p, q) has R-charges (m,n) = (q − p, q + p).

When A-model is obtained by a topological twist of a 2d N = (2, 2) gauge theory, the

R-symmetry U(1)V acts on the Higgs branch while the Coulomb branch parametrized by

lowest components of twisted chiral superfields can be acted upon by U(1)A. For future

reference, it is helpful to keep in mind that U(1)V R-symmetry will be identified with R-

symmetry U(1)t that was already introduced in (1.8). This symmetry will play a central role

throughout the entire paper. In the present context, its distinguished feature — compared

to U(1)A — is that U(1)V is non-anomalous. Moreover, it is abelian, which means that

U(1)V remains a symmetry of the A-model even after the topological twist. This allows to

introduce a notion of the “refined A-model” where we keep track of the U(1)V charge in

the partition function on Σ and in all other correlation functions.

From the point of view of the original 3d N = 2 theory such refinement can be realized

as follows. As a result of the partial topological twist we get a theory that associates a

vector space H(Σ) to a 2-manifold Σ, and a category C to a circle S1. The vector space

H(Σ) has a meaning of Q-cohomology (now in 3d sense, namely w.r.t. the supercharge Q−,

different from the one used to define the (a, c) ring of the A-model) of the physical Hilbert

space of the 3d theory quantized on Σ, while C has a meaning of the category of boundary

conditions. As usual, the space H(Σ) equivalently can be understood as the space of BPS

states, the states annihilated by both Q− and Q+. In other words, we obtain a 3d theory

categorifying the A-model on Σ:

3d

Σ  vector space H(Σ)

S1  category C
vs.

2d A-model

Σ  number Z(Σ) = χ
(
H(Σ)

)
S1  vector space K0(C) ∼= R

(2.5)

– 8 –
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where K0 denotes the Grothendieck group4 and χ denotes the Euler characteristic. The

consistency implies H(T 2) = K0(C) ∼= R. Since the R-symmetry of a 3d N = 2 theory

is abelian, it survives after the partial topological twist. Hence, the Q-cohomology H(Σ)

comes equipped with a Z-grading:

H(Σ) = Z-graded Q-cohomology (2.6)

such that

χ
(
H(Σ)

)
= ZA-model(Σ) (2.7)

is a partition function of a two-dimensional theory obtained by reduction from 3d to 2d.

In fact, our approach suggests a refined A-model partition function,

dimtH(Σ) =
∑
j

tj dimHj(Σ) (2.8)

defined as the Poincaré polynomial of (2.6) with respect to t-grading. Upon the reduction

to 2d, the R-symmetry of 3d N = 2 theory becomes the R-symmetry U(1)V . Note that the

partial topological twist by U(1)t symmetry has been considered in four dimensions [32]

and, more recently, in three dimensions [33, 34], but without keeping track of the remaining

U(1)t grading.

The category C and the vector space H(Σ) in the left column of (2.5) have additional

structures. In particular, the vector space H(Σ) is equipped with the action of the mapping

class group of Σ. The functor Σ 7→ H(Σ) should also satisfy particular properties with

respect to decomposition of Riemann surfaces Σ = Σ1∪Σ2. All in all, the partial topological

twist of a 3d N = 2 theory should provide us with a 2d modular functor (MF). It is known

that there is a one-to-one correspondence between 2d modular functors and modular tensor

categories (MTC) [35] (see also [36] for comprehensive lectures and more references). The

category C in (2.5) is then the MTC corresponding to this 2d MF. The MTC structure

on C induces the ring structure and the SL(2,Z) action on its Grothendieck group K0(C)
which will be important later in the text. Note that a 3d (extended) TQFT contains 2d

MF/MTC strucutre, but not every MTC defines a TQFT. This is consistent with the fact

that 3d theory here defined by a partial topological twist along Σ is fully topological (and

obeys cutting-and-gluing) along Σ, but not on a general 3-manifold. In the special case

when 3d N = 2 theory is associated to a 3-manifold via 3d/3d correspondence, there is

another vantage point on the MTC structure which will be discussed in section 2.4.

In general, a topological A-model or, in fact, any 2d TQFT is described by a Frobenius

algebra, i.e. the data of 2-point functions ηij that define the “metric” and the 3-point

functions Cijk that define the “structure constants”:

ηij = 〈φiφj〉0 = 〈i|j〉 , φi|j〉 = Ckij |k〉 (2.9)

ηijηjk = δik , Cijk = 〈φiφjφk〉0 = 〈i|φj |k〉 = ηilC
l
jk (2.10)

where φi ∈ R denotes the operator corresponding to the basis vector |i〉 in the Hilbert

space on the circle and 〈. . .〉g denotes a correlation function on genus g Riemann surface.

4In some theories, the appropriate “decategorification” functor is the Hochschild homology [11, 19].
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Thanks to this structure, inserting a complete set of states
∑

ij |i〉ηij〈j| anywhere on Σ we

get a surgery formula:

〈φa1 . . . φan〉g =
∑
ij

〈φa1 . . . φarφi〉hηij〈φjφar+1 . . . φan〉g−h (2.11)

which allows to calculate the partition function on any Riemann surface Σ.

However, to get a nontrivial result for a correlation function one has to ensure can-

cellation of the ghost number anomaly. In the A-model with a target space X, the ghost

number anomaly is

(1− g) dim(X) (2.12)

indicating that low-genus cases are most interesting.5 In particular, when g = 1 we have

〈1〉g=1 = TrR=H(T 2)(−1)F = χ(X) (2.13)

which, together with (2.3), gives an elementary example of a categorification. In this case,

2d A-model categorifies a one-dimensional QFT (namely, SUSY quantum mechanics), while

2d A-model itself is categorified by a 3-dimensional theory. Starting with section 3, we

will talk about even more sophisticated examples of categorification where topologically

twisted 3d N = 4 theory or 3d Chern-Simons TQFT is categorified by higher-dimensional

structures. The ghost number anomaly (2.12) also vanishes if dimX = 0 which will be

relevant for A-models associated to rational homology spheres that we consider later in

the text.

In order to be able to categorify a partition function with insertions, it is necessary

that the inserted operators lift to line operators in 3d, not local ones. In this case

〈φ1 . . . φn〉g = TrH(Σg,φ1,...,φn
)(−1)F (2.14)

where H(Σg,φ1,...,φn) is the (Q-cohomology of6 the) Hilbert space of 3d theory quantized

on genus-g Riemann surface with line operators φ1, . . . , φn supported at points on the

Riemann surface (times “time”).

A good illustration of a 2d topological A-model is a sigma-model with target space

X = CP1. It has a two-dimensional chiral ring R ∼= H∗(CP1) whose elements we can

suggestively denote 1 and L. They both have degree zero under U(1)t = U(1)V , but

under U(1)A transform with degree 0 and 2, respectively. Another instructive example

is the simplest instance of a vortex moduli space (space of Hecke modifications), namely

X = C×CPN−1, whose A-model (and its categorification) is related to HOMFLY-PT knot

homology [11]. In this case, we have the following non-trivial correlation functions:

=N
=1

N−1

where a dot denotes insertion of L operator.

5For a non-trivial embedding of the worldsheet Riemann surface Σ
ı→ X there is also 〈[ı(Σ)], c1(X)〉

contribution to the ghost number anomaly.
6We will omit this clarification later in the text. By default, the Hilbert space will mean the Q-

cohomology (or, equivalently, BPS part of) of the physical Hilbert space.
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2.2 A-model labeled by 3-manifolds: TA[M3]

So far, we considered a general 3d N = 2 theory. Now, let us focus more closely on

theories TG[M3] labeled by 3-manifolds (1.9). We will denote the corresponding A-model

by TA
G [M3].

A simple example of such theory is the “Lens space theory” listed in table 1. It will

be one of our working examples throughout the paper, see e.g. sections 3.5 and 6. For

the gauge group G = U(1), such 3d theory TG[M3] consists of a U(1) super-Chern-Simons

theory at level p and a free chiral multiplet. Its dimensional reduction to 2d is a theory of

a free chiral multiplet and a massive vector multiplet that can be equivalently described

by a twisted chiral multiplet with the twisted superpotential, cf. (2.48):

TA
U(1)[L(p, 1)] : 2d N = (2, 2) twisted chiral with W̃ = pσ2/2 and a free chiral (2.15)

Note, the A-model is independent on the superpotential W but depends holomorphically

on the twisted superpotential W̃ , which has charge (m,n) = (0, 2) under U(1)V × U(1)A.

The (a, c) ring of the Landau-Ginzburg model with the twisted superpotential W̃ is equal

to the Jacobi ring, which is a mirror version of a more familiar (c, c) ring in the LG B-

model. For C∗-valued fields that describe U(1) gauge multiplets, the suitable condition is

exp
(
∂W̃
∂σ

)
= 1.

If we ignore the trivial free chiral multiplet, the (a, c) ring is given by

R = C[z]/(zp − 1) ∼= C[Zp] (2.16)

where z = eσ. The non-trivial part of the 3d theory is equivalent to the usual U(1) level

p bosonic Chern-Simons theory. The elements of (2.16) are lifted to Wilson lines and the

multiplication in R agrees with the fusion rules.

Suppose we are interested in computing topologically twisted partition function of 3d

N = 2 theory TG[M3] on S1×Σ. Such partition function can be interpreted as the partition

function of 6d N = (2, 0) theory on S1×Σ×M3 with topological twists along both Σ and

M3. If we first reduce 6d theory on Σ we get an N = 2 4d theory TG[Σ] on M3×S1. As we

explain in detail in sections 3.1 and 5, the topological twist along M3 is equivalent to the

Donaldson-Witten topological twist of the 4d theory on M4 = M3×S1. Thus the partition

function of TG[M3] on Σ× S1 gives us an invariant of M3 categorified by Donaldson-Floer

homology associated with 4d N = 2 theory TG[Σ]. If, instead, we reduce 3d N = 2 theory

TG[M3] down to two dimensions we get 2d N = (2, 2) theory, whose space of vacua is the

space of complex GC connections on M3 [27]. The same invariant of M3 is then given by

the partition function of the A-model TA[M3] on Σ:

6d (0, 2) theory

on Σ× S1 ×M3

↙ ↘
2d A-model on Σ with = 4d SW/DW topological twist

target Mflat(GC,M3) of TG[Σ] on S1 ×M3
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In particular, the Seiberg-Witten invariants can be realized either by working with a su-

pergroup G = U(1|1) of (super-)rank N = 0 or, alternatively, by choosing G = U(1) and

Σ = S2
SW, a sphere with particular defects. This will be explored in more detail in section 3.

This fits very well with the analysis of topological twists that will be discussed more

fully in sections 3.1 and 5.1. Indeed, the 3d N = 4 theory T [S1 × Σ] is twisted on M3

by means of the R-symmetry SU(2)R which can be lifted to four dimensions (and, hence,

categorified) and under which the scalars in vector multiplet are singlets and scalars in

hypermultiplets transform as doublets. This twist of 3d N = 4 gauge theory was extensively

studied by Blau and Thompson [37–39], who showed that in the UV it is precisely the 3d

reduction of the SW/DW twist, while in the IR it gives a RW twist of the 3d N = 4

sigma-model on the Coulomb branch of the theory T [S1 × Σ].

In the rest of the section we will study various properties of A-model TA[M3]. For

general M3, as usual, it should be described in terms of quantum cohomology of the target

space, that is

R = QH∗
(
Mflat(GC,M3)

)
. (2.17)

In particular

R ∼= HTA[M3]G(S1) ∼= H∗
(
Mflat(GC,M3)

)
(2.18)

as vector spaces over C. In many of our examples, however,Mflat(GC,M3) will simply be a

discrete set. In particular, this is the case when M3 is a Lens space. When Mflat(GC,M3)

is a discrete set of points, the Hilbert space of TA[M3] on S1 is simply a finite dimensional

space of complex valued functions on Mflat(GC,M3):

HTA[M3](S
1) = C

[
Mflat(GC,M3)

]
(2.19)

equipped with a chiral ring structure.7 In particular, there is a product map

: C
[
Mflat(GC,M3)

]
⊗ C

[
Mflat(GC,M3)

] µ−−→ C
[
Mflat(GC,M3)

]
(2.20)

realized by point-like multiplication of functions onMflat. Physically the product map µ is

given by the partition function of TA[M3] on a pair of pants. Together with the scalar prod-

uct on HTA(S1) (or, equivalently, a unit element) it provides a Frobenius algebra structure.

As was already mentioned in section 2.1 this data is sufficient to calculate the partition

function of 2d TQFT TA[M3] on any Riemann surface with holes (but without any special

defects). When the algebra is just the ordinary algebra of functions on Mflat(GC,M3), the

result is quite simple and basically provides information about the number of flat connec-

tions. For example, the partition function of the A-model on any closed Riemann surface

with positive genus is simply given by

ZTA[M3][Σ] = #Mflat(GC,M3) . (2.21)

7To be more precise, it is actually commutative unital algebra over C.
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Many of these statements have a straightforward generalization to the case of arbitrary M3

and G.

According to (2.5)–(2.7), 3d N = 2 theory T [M3] on R× Σ with A-model twist along

Σ provides a natural categorification of (2.21). In the basic case of G = U(1), i.e. for a

single fivebrane, this theory should be regarded as a physical counterpart of the “simplest”

variant of the Heegaard Floer homology ĤF(M3) that categorifies |H1(M3)|:

χ
(
ĤF(M3)

)
= ±|H1(M3;Z)| (2.22)

where the right-hand side is defined to be zero when H1(M3;Z) is not finite, i.e. when

b1(M3) > 0. Note, for a 3-manifold with b1(M3) = 0, i.e. for a rational homology sphere,

this implies rk ĤF(M3) ≥ |H1(M3)| and the equality holds for the so-called L-spaces that

will appear among our examples in section 3.

2.3 SL(2,Z) action

Actually, there is an additional structure on (2.19) that contains non-trivial information

about M3. The Hilbert space of the A-model TA[M3] on a circle can be identified with the

Hilbert space of T [M3] on a 2-torus:

HTA[M3](S
1) = HT [M3](T

2) (2.23)

Since T 2 has a mapping class group SL(2,Z) it follows that (2.23) should be a (projective)

representation of SL(2,Z):

R : SL(2,Z) −→ End
(
HTA[M3](S

1)
)

(2.24)

which provides us with additional structure on (2.19). It was discussed in [33] in a slightly

different context. Here, we are going to look more closely at its implications for the A-

model TA[M3] and learn something interesting about the moduli space of complex flat

connection on a 3-manifold M3.

There are a few cases when the representation (2.24) is well understood. First, let us

also assume that the fundamental group π1(M3) is finite and therefore

Mflat(GC,M3) =Mflat(G,M3) (2.25)

Consider the case when G = U(1). Denote H ≡ H1(M3). Then

Mflat

(
U(1),M3

) ∼= Hom
(
H,U(1)

)
≡ Ĥ (2.26)

where Ĥ is the Pontryagin dual of H. Note that

HTA[M3](S
1) = C[Ĥ] ∼= C[H] (2.27)

as vector spaces. The one-to-one correspondence between the spaces of function C[H] and

C[Ĥ] is given by the Fourier transforms:

f̂ : Ĥ → C , f̂(q) =
∑
h∈H

f(h) q−1(h) (2.28)

f : H → C , f(h) =
1

|H|
∑
q∈Ĥ

f̂(q) q(h) (2.29)
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h2H1(M3)

Figure 3. Introducing a line operator labelled by h ∈ H along a non-trivial cycle of the solid torus

creates a state in HTA[M3](S
1) = C[H].

The isomorphism (2.27) also works at the level of rings if we treat C[H] as the group ring8

of the abelian group H. Note that if we identify Ĥ with H the Fourier transform (up to

an overall normalization) plays the role of the S-transform acting on C[H].

Note that the elements of HT [M3](T
2) are in one-to-one correspondence with (BPS)

line operators in T [M3], as illustrated in figure 3. The correspondence can be realized by

a considering a solid torus with a line operator along a non-trivial cycle of the torus. The

6d theory origin of the line operators are codimension 4 defects wrapping 1-cycles of M3.

Therefore, the elements of H play the role of charges. The multiplication on the group

ring C[H] can be then understood as fusion of line operators and is determined by charge

conservation. Let us note that for different 3-manifolds with the same H1(M3) one obtains

the same ring, but the spaces HTA[M3](S
1) can differ as representations of SL(2,Z). In

other words, the map (2.24) can still capture the difference. This happens for example for

non-homeomorphic Lens spaces L(p, q) and L(p, q′) for both of which π1(M3) = Zp.

2.4 The two bases

In general, the representation (2.24) can be constructed in the following way. Consider any

4-manifold M4 such that ∂M4 = M3. Moreover, let us pick a metric on M4 such that it

looks like M3×R near the boundary. Consider 6d theory on M4×T 2 with a topological twist

mixing the R-symmetry SO(3)R with the SU(2)` subgroup of SU(2)` × SU(2)r = SO(4)

of local rotations. As we explain more fully in section 5, this will result in Vafa-Witten

theory [40] with gauge group G on M4. The partition function of the theory will give an

element of the Hilbert space of the 4d TQFT associated to M3:

ZVW(M4)(τ) ∈ HVW(M3) (2.30)

where τ is the modular parameter of the torus, which plays the role of the coupling in

Vafa-Witten theory. The Hilbert space of Vafa-Witten theory can be related to the Hilbert

space of T [M3] on T 2:

HVW(M3) = HT [M3×T 2] = HT [M3](T
2) . (2.31)

Under the action of SL(2, Z) group, the partition function (2.30) should transform as

ZVW(M4)

(
aτ + b

cτ + d

)
= C(τ ; a, b, c, d)R

[(
a b

c d

)]
ZVW(M4)(τ) (2.32)

8Note that group ring structure is not the same as the ring of functions structure, but they get exchanged

under the Fourier transform which exchanges point-wise multiplication with convolution.
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where C is an overall anomaly-related factor and R is the same as in (2.24). The natural

boundary condition for VW theory on M4 requires gauge connection to approach a flat one

at the boundary. Therefore it provides a function of τ for each gauge equivalence class of

flat connections on M3:

ZVW(M4)ρ(τ) , ρ ∈ M̂flat(G,M3) (2.33)

The reason why we put a hat on this set is to formally distinguish it from, of course, an

isomorphic set Mflat(G,M3) that appeared earlier. It will soon become clear why we need

such a distinction. The values (2.33) can be understood as components of a vector (2.30)

in the Hilbert space, expressed in a particular basis:

ZVW(M4) ∈ C
[
M̂flat(G,M3)

] ∼= HVW(M3) = HT [M3](T
2) (2.34)

Moreover, as in [25], the components (2.33) can be interpreted as characters of modules

{Mρ} of the chiral vertex operator algebra VOA[M4] of a 2d (0, 2) theory T [M4]:

ZVW(M4)ρ(τ) = TrMρ(−1)F qL0 (2.35)

where, as usual, q = e2πiτ . From the viewpoint of VW theory, this q-series plays the role

of a generating function for the Euler characteristic of instanton moduli spaces:

ZVW(M4)ρ(τ) =
∑
n

qn χ(Minst
n,ρ ) (2.36)

where n is the instanton number, so that one expects that

Mρ =
⊕
n

H∗(Minst
n,ρ ) (2.37)

as Z-graded vector spaces. Since modules of VOA[M4] are labeled by the elements of

M̂flat(G,M3) we can expect that as a ring

HT [M3](T
2) ∼= C

[
M̂flat(G,M3)

]
= representation ring of VOA[M4] (2.38)

The ring structure as well as non-trivial part of SL(2,Z) representation (2.32) should not

depend on a particular choice of the M4 becuase it is fixed by the fact that it can be

self-consistently glued with any M ′4 such that ∂M ′4 = −M3. Note that previously we had

HT [M3](T
2) ∼= C

[
Mflat(G,M3)

]
= ring of functions on Mflat(G,M3) (2.39)

that is, the multiplication is point-wise in the basis given byMflat(G,M3). The difference is

actually expected since these two bases Mflat(G,M3) and M̂flat(G,M3) should be related

by S-transform. This can be seen for example from the fact that we need to make S-

transform to get a CS theory with coupling k = −1/τ on the the boundary of 4d N = 4

SYM with coupling τ (see e.g. [16, 41]). The S-transform between the two bases can

be understood as a Fourier transform translating point-wise multiplication in (2.39) into

more non-trivial one in (2.38). The trade-off is that the basis M̂flat should diagonalize

– 15 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
1

the action of T element of SL(2,Z). The structure constants in (2.38) are completely

fixed by the S-matrix via the Verlinde formula. Note, the relation between Mflat(G,M3)

and M̂flat(G,M3) generalizes the relation between Ĥ and H considered previously in the

abelian context.

A classic example of this structure is given by Nakajima’s result [42]. Consider the

case where M3 = L(p, p−1) = −L(p, 1) and the corresponding 4-manifold is the resolution

of Ap−1 singularity

M4 = C̃2/Zp (2.40)

and G = U(N). The VW partition function is given by the characters of ŝu(p)N affine

algebra:9

ZVW(M4)ρ(τ) = TrMρ q
L0 = χŝu(p)N

ρ (τ) (2.44)

The moduli space of flat connections on M3 is given by

Mflat

(
U(N), L(p, 1)

)
= Hom

(
Zp,U(N)

)
/U(N) = SymNZp (2.45)

Then

C
[
Mflat

(
U(N), L(p, 1)

)]
= functions on SymNZp . (2.46)

The basis M̂flat(G,M3) then can be understood as a particular basis in the ring of functions

with elements corresponding to representations of ŝu(p)N so that the product in such basis

satisfies the fusion rules:10

C
[
M̂flat(G,M3)

]
= Verlinde algebra of ŝu(p)N . (2.47)

9A few technical but conceptually not very important clarifications are due here. The explicit compu-

tations show that these are not characters of integrable representations of ŝu(p)N , but rather products of

characters of ŝu(N)1 integrable representations [43] (see also [44] and references therein):

ZVW(M4)ρ(τ) =

N∏
i=1

χ
ŝu(p)1
ρi (τ)

(q; q)∞
(2.41)

In particular, for trivial flat connection this is the character of so-called Fock space representation of

ŝu(p)N . Such characters can still be decomposed into characters of ŝu(p)N integrable representations because

ŝu(p)N ⊂ (ŝu(p)1)N . In turn, the latter affine algebra can be embedded into the algebra of Np free chiral

fermions û(1)Np1 . The relation between VW theory on Ap−1 singularity and free fermions as well as the

the physical interpretation of the embedding ŝu(p)N ⊂ (û(1)1)Np was studied in [45]. It was formally

understood as a change from descrete to continous basis in [25]. All in all different versions of the partition

function corresponding to different steps in the embedding sequence

ŝu(p)N ⊂
(
ŝu(p)1

)N ⊂ (û(1)1

)Np
(2.42)

differ by inclusion/exclusion of certain degrees of freedom living on the boundary of M4. Note that (ŝu(p)1)N

characters (unlike ŝu(p)N characters) have q-expansion of the following form:

qSCS(n1 + n2q + n3q
2 + . . .) , ni ∈ Z (2.43)

where SCS ∈ Q is the CS action of the corresponding flat connection on M3. As we will see in section 6, the

modular properties of such characters indeed provide us with the correct S-transform of the CS partition

function on M3.
10Such functions can be chosen to be polynomials in p−1 variables satisfying p−1 polynomial constraints.

The solutions the constraint equations are in one-to-one correspondence with elements of SymNZp. The

constraints can be realized as extremum equations of the so-called fusion potential [46, section 16.5].
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This is in agreement with the fact that [25, 33, 47–49]:

TU(N)[L(p, 1)] : 3d N = 2 U(N) super-CS at level p with adjoint chiral Φ (2.48)

As in [47, 49], it is often convenient to give a (real) mass β to the adjoint chiral multiplet Φ.

Then, integrating out Φ shifts the level by +N , which precisely compensates the shift −N
from integrating out gluinos. The resulting theory is, therefore, equivalent to bosonic pure

Chern-Simons at level p (which, in addition, has the usual renormalization of the level by

+N). The non-trivial line operators in this theory, as well as in the parent theory (2.48),

obey the fusion rules of û(N)p, which is level-rank dual to ŝu(p)N (note that SL(2,Z)

representations associated to 3-manifolds with opposite orientation should be conjugate to

each other).

Note, since the setup of 6d (2, 0) theory on M3 × S1 × Σ contains a circle factor, the

observables that we considered in this section can be easily categorified. For example,

from (2.35) it follows that the VW partition function is categorified by the modules Mρ

of VOA[M4]. This suggests that the ring (2.38) can be categorified by a category of

representation of VOA[M4]. We expect the categories given by different 4-manifolds M4

with the same boundary M3 to be equivalent, as it was for their Grothendieck rings. The

category of representations of a vertex operator algebra has a structure of a modular tensor

category (MTC). In particular, it contains the information about SL(2,Z) representation

of its Grothendieck ring HT [M3](T
2). This suggests that one can define an MTC-valued

invariant of three-manifolds MTC[M3]. It is the same as the category C that appeared

in (2.5) when the partially twisted 3d N = 2 theory is T [M3]. This categorification

procedure can be summarized in the following diagram:

Modules

of VOA[M4]

Ob←−−−− MTC[M3]

(= 2d MF from T [M3])yTr

yK0

ZVW(M4) ∈ HVW(M3) = HT [M3](T
2)

(2.49)

Note, although the basis Mflat(G,M3) in (2.39) makes the ring structure simple, the

categorification is natural in the basis M̂flat(G,M3), cf. (2.38), that is the elements of

M̂flat(G,M3) correspond to simple objects in MTC[M3]. It would be interesting to compare

this description of category C = MTC[M3] with the one in [50].

3 Floer homology from T [M3]

The so-called 3d/3d correspondence relates topology and geometry of 3-manifolds to physics

of supersymmetric 3d N = 2 theories labeled by 3-manifolds. It can be deduced [27] by

compactifying a 6d (0, 2) theory labeled by a Lie algebra g on 3-manifolds and one of its

basic features is the relation (2.19)–(2.23) between complex flat connections on M3 and

supersymmetric vacua of TG[M3] on a circle, a fact that already played an important role in

section 2. In later years, the duality was extended to a myriad of sophisticated observables

in TG[M3], which surprisingly did not include a much simpler partial topological twist
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on a Riemann surface Σ and its generalizations that, as we show in section 4, lead to

Seiberg-Witten invariants of M3 and their categorification (1.5). The goal of this section

is to extract these 3-manifold invariants directly from TG[M3], with suitable choices of the

background. This will lead us to completely new ways of computing the Seiberg-Witten

invariants and the Heegaard Floer homology HF+(M3).

3.1 Twists on M3

As was already pointed out in section 2.2, a large set of numerical 3-manifold invariants

allowing natural categorification can be obtained by considering 6d (0, 2) theory on

Σ×M4

M4 = S1 ×M3 or R×M3
(3.1)

where Σ is a 2-manifold (possibly, with punctures or other defects supported at points on

Σ). In particular, we are going to make contact with [15] where several choices of Σ were

considered

Σ = S2, Σ = T 2, Σ = R2
q = “cigar” (3.2)

some with partial topological twist along Σ and some with Omega-background [51].

In order to preserve a part of supersymmetry one can perform a topological twist along

both Σ and M3. In the case when M3 and Σ are of general holonomy, one can perform

topological twisting in the following way. The R-symmetry algebra of the 6d theory is (the

universal envelopping of) SO(5)R ⊃ SO(3)R × SO(2)t. Then one can identify SO(3)R with

SO(3) local rotations of the cotangent bundle of M3 and, similarly, identify SO(2)t with

local rotations of the cotangent bundle of Σ. After such twist the 6d theory should become

independent of metric on both M3 and Σ. Then, taking them to be small one obtains an

effective supersymmetric quantum mechanics along S1. The effective quantum mechanics

TG[M3 ×Σ] in general has two supercharges. The partition function of the 6d theory then

gives a certain numerical topological invariant of M3 labelled by G and Σ. Equivalently, it

is the partition function of the effective QM on a circe:

ZTG[M3×Σ] = TrHTG[M3×Σ]
(−1)F (3.3)

where HTG[M3×Σ] is the Hilbert space of the quantum mechanics. By construction

HTG[M3×Σ] provides us with a categorification of the numerical invariant (3.3). Moreover,

it can be extended to the whole functor from the category of 3-manifolds (with cobordisms

as morphisms) to the category of vector spaces. Such functor is given by the 4d TQFT

obtained by twisting 4d N = 2 theory TG[Σ].

One can also reduce 6d theory on Σ × S1 × M3 step-by-step in various ways. If

one first compactifies on M3 one finds a 3d N = 2 theory T [M3] on Σ × S1 via 3d/3d

correspondence [27]. Another possibility is to first compactify on S1. This will give us

5d N = 2 super-Yang-Mills with gauge group G on M3 × Σ. Consider in detail how the

topological twist described earlier is realized in terms of the 5d theory. In this background

the Euclidean SO(5)E rotation symmetry is broken to SO(3)M3×SO(2)Σ, and we also break

the SO(5)R R-symmetry group accordingly to SO(3)R × SO(2)t in order to implement the
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topological twist. Under this decomposition, the bosons and fermions of the 5d N = 2

super-Yang-Mills transform as

SO(5)E × SO(5)R → SU(2)M3 × SU(2)R ×U(1)Σ ×U(1)t

bosons: (5,1)⊕ (1,5)→ (3,1)(0,0) ⊕ (1,3)(0,0) ⊕ (1,1)(±2,0) ⊕ (1,1)(0,±2)

fermions: (4,4)→ (2,2)(±1,±1)

where all sign combinations have to be considered. Then, implementing the topologi-

cal twist along M3 means to replace SO(3)M3
∼= SU(2)M3 with the diagonal subgroup

SU(2)′M3
⊂ SU(2)M3 × SU(2)R. Under the symmetry group SU(2)′M3

× U(1)Σ × U(1)t the

fields of the partially twisted 5d N = 2 super-Yang-Mills transform as

bosons : (5,1)⊕ (1,5)→ 2× 3(0,0) ⊕ 1(±2,0) ⊕ 1(0,±2)

fermions : (4,4)→ 3(±1,±1) ⊕ 1(±1,±1) (3.4)

Here, one can recognize many familiar facts about 3d-3d correspondence. For instance, two

copies of 3(0,0) represent adjoint-valued one-forms on M3, which combine into a complex

gauge connection A = A+ iφ. This is the reason for the effective 2d theory on Σ to localize

on complexified flat connections on M3 [27].

Note, fivebranes wrapped on a general 3-manifold M3 preserve 4 real supercharges

(singlets in (3.4)), i.e. N = 2 in three dimensions. Turning on Omega-background along

R2
q or L(k, 1)b as in (3.2) breaks SUSY by half, so that the resulting system has only two

real supercharges, Q and its conjugate Q†. It is one of these two supercharges, whose

Q-cohomology gives the desired 3-manifold homology (1.1).

3.2 Orders of compactification

Starting with 5d N = 2 super-Yang-Mills one can first compactify it on Σ. This will result

in a 3d N = 4 theory on M3 with a topological twist. In the UV such theory usually

has a quiver gauge theory description, while in the IR one has a sigma-model description.

After topological twisting in the IR the theory becomes Rozansky-Witten theory [52] on

the Coulomb branch. This can be illustrated with the following diagram:

6d (2, 0) theory on Σ× S1 ×M3

↙ ↘
3d N = 2 theory T [M3] twisted 3d N = 4 theory on M3

on S1 × Σ • UV: gauge theory

• IR: Rozansky-Witten

In the next sections we will consider these two different points of view in greater detail.

In the case G = U(N) the setup can be realized in M-theory as follows (1.6):

space-time: S1 × T ∗M3 × Y4

‖ ∪ ∪
N M5-branes: S1 × M3 × Σ

(3.5)
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where Y4 is a hyper-Kähler four-manifold in which Σ is embedded as a calibrated cycle,

so that in the neighborhood of Σ it looks like T ∗Σ. The ordinary choice is to take just

Y4 = T ∗Σ but we would like to keep the setup more general. The global structure of Y4

and how Σ is embedded in it can encode additional information about the 4d N = 2 theory

TG[Σ].

One can also introduce the following supersymmetry preserving defects:

defect support in S1 × T ∗M3 × Y4

M5′ S1 × M3 × T ∗pt∈ΣΣ

M2 ∩M5 S1 × (1-cycle ∈M3) × (pt ∈ Σ)

KK-monopole S1 × T ∗M3 × (pt ∈ Y4)

(3.6)

where the first and the second cases correspond to the usual codimension-2 and -4 defects

in 6d (2, 0). The third defect can occur if Y4 has a circle fibration structure. The defect is

a KK monopole and will modify topology and metric of Y4 in its vicinity. All these defects

contribute to the effective quantum mechanics on S1. The insertion of a single M2-brane

will lead to 3-manifold invariants, such as e.g. Seiberg-Witten invariants, labeled by an

element of H1(M3).

The spectrum of BPS states (or, equivalently, Q-cohomology) can be studied from the

viewpoint of the effective 3d N = 2 theory T [M3] on the fivebrane world-volume after

compactification on M3.

In the rest of the paper we will consider particular choices of Σ which realize well

known 3-manifold invariants (and their categorification): Chern-Simons partition function

and the Seiberg-Witten invariants.

3.3 SW invariants from T [M3]

The Seiberg-Witten invariant of 3-manifolds are computed by topologically twisted 3d

N = 4 SQED. Let us start with the standard Hanany-Witten brane realization of the this

theory in flat space:

D3: 123 7

D5: 123 456

2×NS5: 123 890

(3.7)

where the numbers denote space-time directions of type IIB string theory. Denote the

positions of the two NS5 branes along directions 890 by log qin and log qout, as depicted in

figure 4. The difference log qin − log qout has the meaning of a FI-parameter (a 3-vector).

When it is non-zero the position of NS5 branes along the direction x7 does not really matter

and we can pull them to ±∞.

Now let us introduce a non-trivial three-manifold M3 along directions 123. After

topological twisting the directions 456 become directions of T ∗M3 fibers. Far from D5

ans NS5 branes the theory on the world-volume of D3 brane is topologically twisted 4d

N = 4 U(1) super-Yang-Mills on M3×R. The path integral of the theory thus localizes on

solutions to Vafa-Witten equations on M3×R, the gradient flow of complex CS functional
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log qout

log qin

D5

NS5

NS5

D3

D3

Figure 4. The brane realization of N = 4 3d SQED in type IIB string theory.

KK

£

St
1

'

qin

SW

£

qout qin qout
§SW

Figure 5. The space-time of T [M3]: ΣSW × S1 where ΣSW is the Seiberg-Witten curve.

on M3. The stationary solutions are given by complex flat connections. Therefore, the

boundary conditions for D3 brane at x7 → ±∞ are given by two elements

qin , qout ∈Mflat

(
U(1)C,M3

)
= Ĥ . (3.8)

As in the case of M3 = R3, the partition function should depend only on the ratio

qout/qin = q.

The brane construction can be lifted to M-theory setup of type (3.5) where Y4 = TN4,

the Taub-NUT space with one center [11, 16, 53]. The curve Σ = ΣSW embedded into Y4

is a cylinder split into two cigars by a KK monopole, the Taub-NUT center (see figure 5).

Asymptotically, when x7 → ±∞, we have T [M3] theory on T 2 × R. The addition of the

KK monopole can be understood as insertion of a certain operator, which we denote SW,

acting on the Hilbert space of T [M3] on a torus. The partition function computes the

matrix element of this operator:

ZT [M3](ΣSW × S1) = 〈qout|SW|qin〉 ≡ ŜW(qout/qin) (3.9)

where ŜW is a function on Ĥ. The action of SW on HT [M3](T
2) ∼= C[H] ∼= C[Ĥ] can be

realized by multiplication by the element ŜW ∈ C[Ĥ]:

(SW f̂)(qout) = ̂(SW · f)(qout) =
∑
qin

ŜW(qout/qin)f̂(qin) (3.10)

which means that the cylinder with a KK monopole insertion can be replaced by a cylinder

with an extra hole labeled by a state SW ∈ C[H], see figure 5. This transition has the

following physical meaning. Consider type IIA brane description of the corresponding 4d
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D4

NS5 NS5

D4

D4

NS5 NS5

D6
-1

a) b) c)

Figure 6. a) Type IIA brane construction of 4d N = 2 SQED with zero FI-parameter. b) Equiv-

alent description achieved by pulling D6 brane to x7 = −∞. c) The curve appearing in M-theory

lift.

codim-2 
on M3£S 1

£

codim-4 
on h£S 1

SW(h) =

(h2H1  (M3))

T [M3] on

S 2

SW,h´

Figure 7. SW invariants of M3 as the index of T [M3] on S2 × S1 with certain line operators

inserted. In what follows we will use notation S2
SW,h (or just S2

SW) to denote sphere with such

insertions.

N = 2 SQED shown in figure 6(a). This can be achieved by decompactifying S1 into R.

One can obtain an equivalent description with a semi-infinite D4-brane by pulling D6-brane

to x7 = −∞ (figure 6(b)). This brane configuration can be lifted to M-theory with an M5-

brane wrapping the curve shown in figure 6(c). The addition of a semi-infinite D4-brane

is equivalent to replacing the left cylindrical end with a pair of pants where one of the

in-states corrsponds to insertion of codim-2 defect in 6d theory supported on M3 × R. It

follows that the state SW ∈ C[H] as line operator has the following interpretation:

HT [M3](T
2) ∼= C

[
{line ops in T [M3]}

]
3 SW = codim-2 defect on M3 (3.11)

The question of finding SW invariants can then be translated into a question of decomposing

the line operator given by codim-2 defect into basis line operators labelled by H and

corresponding to codim-4 defects, cf. [54]. The coefficients of such decomposition are

calculated by the partition function of T [M3] on a sphere with codim-2 and codim-4 defects

inserted (see figure 7). The goal of the next few sections is to describe the line operator

corresponding to the codim-4 defect purely in terms of T [M3] for a particular class of

3-manifolds.

3.3.1 Deformations and spectral sequences

Here and in what follows, we often identify the Seiberg-Witten curve ΣSW with a super-

symmetric (i.e. calibrated) submanifold in the Taub-NUT space Y4 = TN4. As a complex
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Figure 8. Deformation of the pinched ΣSW to a smooth curve that admits a circle action with no

fixed points.

manifold, the latter, in turn, can be identified with a complex 2-plane,

Y4 = TN4
∼= C2 (3.12)

with complex coordinates z and w. In this complex structure, the Seiberg-Witten curve

can be described by the equation

ΣSW : zw = 0 (3.13)

and the two copies of the “cigar” illustrated in figure 5 correspond to complex lines z = 0

and w = 0, respectively.

Note, they meet at a single point z = w = 0, which is also a fixed point of the

U(1)t × U(1)Σ symmetry (1.8), which in these coordinates simply acts by phase rotations

on variables z and w. It has to be compared with another choice of Σ ∼= R2
q which consists

of a single cigar, say Σ : {w = 0}, and which also plays an important role in this paper.

As notation Σ ∼= R2
q indicates, in this latter choice the rotation symmetry of the cigar,

U(1)Σ, gives rise to the q-grading on the space of BPS states, while the rotation symmetry

of the complex plane transverse to the fivebranes (parametrized by w in our notations) is

the symmetry we call U(1)t that gives rise to the homological t-grading. When a fivebrane

is supported on ΣSW which includes both z = 0 and w = 0, both factors in U(1)t ×U(1)Σ

act non-trivially on its world-volume. Moreover, the singular Seiberg-Witten curve (3.13)

has a natural deformation

Σdef : zw = µ (3.14)

which preserves the property that Σ is a supersymmetric (calibrated) cycle in TN4
∼= C2.

The parameter µ can be interpreted as the mass of the monopole field in the Seiberg-Witten

theory, which now in the IR is described by a pure U(1) Maxwell theory (with no charged

fields). Equivalently, turning on µ can be interpreted as moving onto the Coulomb branch

of the original SW theory. The deformed curve (3.14) is a smooth cylinder, illustrated

in figure 8, which looks as the right-hand side of figure 5 but without a KK monopole

(codimension-2 defect). How does Q-cohomology of the fivebrane on M3 ×Σ change upon

µ-deformation?
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In general, upon deformations the Q-cohomology may jump. And, in our present case,

the spectrum of BPS states also changes from the monopole Floer homology at µ = 0

to a much simpler homology of M3 associated to µ 6= 0. To be more precise, these two

3-manifold homology theories (before and after the deformation) are related by a spectral

sequence. Reversing the orders of compactification — which will be discussed in section 4

— the simpler homology in the final page of the spectral sequence can be identified with

the Floer homology of a 4d TQFT obtained by a topological Donaldson/SW twist of 4d

N = 2 Maxwell theory with gauge group U(1). With the monopole field removed, this

theory is almost “trivial” and has one-dimensional Q-cohomology in every class h ∈ H.

A curious feature of the deformed theory (that is easy to see in the deformed geome-

try (3.14)) is the relation between q-grading and t-grading, which become identified after

the deformation. Indeed, the diagonal subgroup of U(1)t × U(1)Σ that rotates z and w

with opposite phase is still a symmetry of (3.14),

z → eiϑz , w → e−iϑw , (3.15)

while the “anti-diagonal” combination that rotates z and w by the same phase is not.

Furthermore, the deformed curve (3.14) has no fixed points with respect to the action of

the diagonal subgroup of U(1)t×U(1)Σ. Hence, even the q-grading (now identified with the

t-grading) must be trivial at least for those 3-manifolds which have T [M3] with an extra

flavor symmetry U(1)β . Indeed, as we explain in the next section, one can often extract

information about the Q-cohomology for such M3 by applying localization techniques to a

suitable partition function of T [M3] with an extra fugacity y for the symmetry U(1)β . A

version of this argument will be used throughout the paper. In particular, here it shows

that, at least for a class of 3-manifolds whose T [M3] admits a description with an extra

flavor symmetry U(1)β , the Floer homology of the deformed theory associated with (3.14)

has no non-trivial grading and does not lead to an interesting concordance invariant. Since

one grading is collapsed in the spectral sequence, it is natural that the original, undeformed

theory has one non-trivial grading and the differential carries the opposite t-degree and q-

degree.

Let us also briefly mention a relation between the Seiberg-Witten theory discussed

here and Chern-Simons theory with U(1|1) gauge group.11 As in [55, 56] (see also [53]

for a related discussion), the simplest way to see the connection is to engineer U(1|1)

Chern-Simons theory on the world-volume of one “positive” and one “negative” fivebrane

that wrap M3 and one copy of the cigar (namely, w = 0 in our complex coordinates on

TN4
∼= C2). If we now imagine adding to this system a positive fivebrane wrapped on (3.14)

— that, as we saw earlier, gives a very simple homology theory — and then deforming it by

taking the limit µ→ 0 (see figure 9(a)) in the end of this process it effectively “annihilates”

the negative brane supported on w = 0 and adds an extra positive brane supported on

11Although in this paper we do not really talk about Chern-Simons theory with supergroups as gauge

groups — because U(N |0) and U(0|N) reduce to ordinary Chern-Simons theory with G = U(N), and even

the theory with super-rank N = 0 only appears in the form of Seiberg-Witten gauge theory rather than

Chern-Simons theory with gauge group G = U(1|1) — we plan to study quantum and homological U(n|m)

invariants of M3 in a future work.
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a) b)

Figure 9. In the limit, a deformation of the system of positive and negative branes (a) gives the

Seiberg-Witten curve (b). Solid blue lines represent positive branes, while dashed red stands for

negative branes.

the other cigar (z = 0 in our notations) resulting precisely in the configuration (3.13)

shown in figure 5. As we saw earlier, one needs to be careful since Q-cohomology can

change under continuous deformations. However, modulo spectral sequences (that will be

discussed elsewhere), this suggests that a categorification of U(1|1) Chern-Simons theory

on M3 is, roughly speaking, the monopole Floer homology studied here plus the Floer

homology associated with the topological twist of 4d N = 2 super-Maxwell theory which

effectively describes the theory on the Coulomb branch. However, one needs to take into

account that the Coulomb branch is actually curved in the vicinity of the origin. From the

point of Rozansky-Witten theory on M3 the curvature on the Coulomb branch is needed

to reproduce Casson-Walker invariant, the mismatch between the torsion (computed by

U(1|1) CS) and SW invariants in the case b1(M3) = 0 (cf. (3.80)). Note, in the higher-rank

version of this argument, the 4d Maxwell theory is replaced by 4d N = 2 super-Yang-

Mills Floer homology. In such generalizations to U(n|m) homological invariants of M3, the

curve (3.13) should be replaced by

Σ : znwm = 0 (3.16)

3.4 R-symmetry U(1)t versus flavor symmetry U(1)β

Here we wish to emphasize a simple yet important point regarding symmetries of the

fivebrane systems (1.6) and the definition of “refinement”, which in the literature some-

times means slightly different things. The symmetry U(1)t that equips the space of BPS

states (1.1) with the homological t-grading is an R-symmetry and acts on supercharges in

a non-trivial way, cf. (1.8).

For general M3, the theory T [M3] has only U(1)t R-symmetry. Its close cousin, the

symmetry that we call U(1)β exists only for certain 3-manifolds, but makes life a lot easier

as we explain momentarily. The nature of such symmetry is quite different from that of

U(1)t. In particular, from the viewpoint of the fivebrane theory it is a flavor symmetry, not

an R-symmetry. It can be related, however, to the R-symmetry in a way that also sheds
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light on the existence of U(1)β . Namely,

U(1)β = U(1)S −U(1)t (3.17)

where U(1)S is the Cartan of SU(2)R used in topological twist along M3. In particular, the

existence of U(1)β requires the existence of an extra R-symmetry U(1)S after the topological

twist. Thus, for M3 = Σ′ × S1 the R-symmetry of T [M3] is enhanced to SU(2) × SU(2),

so that U(1)t and U(1)S are their diagonals. The case of Seifert M3 is intermediate in the

sense that R-symmetry is U(1)t × U(1)S or, equivalently, U(1)t R-symmetry plus U(1)β
flavor symmetry. In [57] it was argued that such extra U(1)S R-symmetry exists for Seifert

manifolds. Seifert manifolds have nowhere vanishing vector field associated to semi-free

U(1) action on M3. The U(1)S is the subgroup of SO(3)R acting on the fibers of T ∗M3

which keeps the vector field invariant.

Note, we really need U(1)t R-symmetry for applications to knot and 3-manifold ho-

mologies, but we can’t easily formulate path integral (a partition function) which localizes

only to the BPS sector and keeps track of the U(1)t grading. On the other hand, grading by

U(1)β is easier to implement in the path integral and was heavily explored in [49, 57, 58].

For example, one can calculate the index of T [M3] on R2
q refined by U(1)β fugacity y:

IT [M3](q, y) = Tr(−1)F qL0−RtyRS−Rt (3.18)

This can be compared to the Poincaré polynomial of the space of BPS states (1.7):

P (q, t) = Tr qL0−RttRt (3.19)

It was shown in [57] that for torus knot complements one can recover (3.19) from (3.18).

This should be possible e.g. if RS acts trivially on the BPS spectrum and there are no can-

celations in the index (3.18) due to the (−1)F factor. Then, (3.18) will coincide with (3.19)

up to some signs in front of coefficients if we replace y → t−1.

In many concrete examples of T [M3] that enjoy an extra symmetry U(1)β , this sym-

metry manifests as a flavor symmetry acting (by phase rotations) on the adjoint chiral

multiplet, cf. table 1. Weakly gauging this symmetry leads to a mass deformation of T [M3]

discussed e.g. below (2.48) in the case of Lens space theory that will be our next topic.

As in the case of knots [59], the basic building blocks of 3-manifold homologies (1.1)

will be bosonic and fermionic Fock spaces over a single-particle Hilbert space H:

bosonic:
∞⊕
n=0

Symn(H) (3.20a)

fermionic:

∞⊕
n=0

Λn(H) (3.20b)

For example, if H is generated by a single boson φ, the corresponding Fock space

T + := 1⊕ φ⊕ φ2 ⊕ . . . = Sym∗(φ) (3.21)
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is the Hilbert space of a single harmonic oscillator that we give a special name T +. Simi-

larly, the Fock space of a single fermion ψ is

1⊕ ψ = Λ∗(ψ) (3.22)

In the effective quantum mechanics (3.3) obtained by reducing the fivebrane theory on

M3×Σ or, equivalently, 3d N = 2 theory T [M3] on the “cigar” Σ = R2
q , the single-particle

Hilbert space H contains all Fourier modes ∂nφ and ∂nψ, so that the corresponding Fock

spaces graded by the U(1)t ×U(1)Σ symmetry (1.8) are

boson:

∞⊗
n=0

1

1− tRtqn+1/2x
(3.23a)

fermion:
∞⊗
n=0

(1⊕ tRtqn+1/2x) (3.23b)

In particular, a free chiral multiplet contains a boson with Rt = 1 and a fermion with

Rt = 0.

3.5 Example: M3 = L(p, 1)

3.5.1 Turaev torsion

The Lens space M3 = L(p, 1) can be understood as an O(p) circle bundle over S2. Let us

consider the Hopf fiber S1
Hopf as M-theory circle. In type IIA string theory the information

about non-triviality of the Hopf fibration will translate into the fact that there are p units

of RR flux through the base. We will denote the base sphere by S2
p to make the dependence

on p explicit and the Hopf fiber by S1
Hopf in order to destinguish it from another S1. The

M5-brane in the setup (3.5) then becomes a D4-brane on S2
p × S2

SW × S1. The presence of

RR flux through S2
p will have two effects. First, as expected, there will be a Chern-Simons

term: ∫
S2
p×S2

SW×S1

C1 ∧ F ∧ F = p

∫
S2

SW×S1

A ∧ F (3.24)

where C1 is the RR 1-form. Second, the flux of F through S2
p will be quantized in Zp

instead of Z. If we formally write L(p, 1) ∼= S2
p × S1

Hopf, then there should be the following

relation which arises from the exchange S2
p ↔ S2

SW in type IIA where we “forgot” about

S1
Hopf:

ISW
T [L(p,1)] ≡ ZT [S2

p×S1
Hopf]

[S2
SW × S1] = ZT [S2

SW×S
1
Hopf]

[S2
p × S1] (3.25)

and where by T [S2
SW or p × S1

Hopf] we mean the D4-brane theory compactified on S2
SW or p.

Consider first the case p = 0, that is M3 = S2 × S1
Hopf. Using that

TU(1)[S
2
SW × S1] : 3d N = 4 U(1) theory with 1 hypermultiplet (3.26)

and we obtain

ZT [S2
SW×S

1
Hopf]

[S2
0 × S1] =

(
y−1

1− y−2

)∑
h∈Z

∫
dz

2πiz

(
z1/2y1/2

1− zy

)h(z−1/2y1/2

1− z−1y

)−h
(−q)−h

=
1

y − y−1

∑
h∈Z

∫
dz

2πiz

(
y − z
1− zy

)h
q−h (3.27)
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where we twisted U(1) R-symmetry under which the scalars in the hypermultiplet have

charge 1 and scalars in the vectormultiplet are uncharged (i.e. this is the correct twist to

obtain theory described by SW equations on M3). The fugacity q ∈ Ĥ = C∗ counting

different fluxes h ∈ Z of the gauge field through S2
0 is the (exponential of) FI parameter

that will be discussed in detail in section 4.

The choice of h ∈ H = Z corresponds to the choice of Spinc structure on M3 =

S1
Hopf × S2

0 . The contribution for a given h is easily calculated using Jeffrey-Kirwan (JK)

contour prescription [34]. Picking “negative” residues we obtain:

ISW,h
T [S2×S1]

=

{
0 , h ≥ 0
yh−y−h
y−y−1 , h < 0

(3.28)

which agrees with the fact that SW invariants are trivial in this case:

SW(h) = 0 (3.29)

The result also agrees with the known expression for the Heegaard Floer homology with

Spinc structure sh such that c1(sh) = h 6= 0:

HF+(S2 × S1, sh) = 0 (3.30)

HF−(S2 × S1, sh) = HF∞(S2 × S1, sh) ∼= Z[U ]/(U |h| − 1) (3.31)

if we identify the homological grading with the grading by the flavor symmetry U(1)β , for

which y is the corresponding fugacity. When h = 0 the result is zero, as expected from the

Euler characteristic of

HF+(S2 × S1, sh) ∼= H∗(S
1)⊗ T +, (3.32)

where T + represents a copy of a bosonic Fock space (3.21). Note, one needs to be careful

taking the Euler characteristic of the infinite-dimensional space HF+(M3). For integral

homology spheres HF+(M3) decomposes into Z[U ]-submodules as

HF+(M3) ' T +
∆(M3) ⊕HFred(M3) (3.33)

where HFred(M3) is finitely generated and T +
∆(M3) is a copy of Z[U,U−1]/U · Z[U ] with

minimal degree ∆(M3). For integral homology sphere, the Heegaard Floer homology cat-

egorifies the Casson invariant,

χ
(
HFred(M3)

)
= λ(M3) +

∆(M3)

2
, (3.34)

where ∆(M3) is the “correction term” [60]. If M3 is an integral homology 3-sphere that

bounds a smooth, negative-definite 4-manifold M4, then ∆(M3) ≥ 0.

Similarly, for a 3-manifold M3 with b1(M3) > 0 and non-torsion Spinc structure s,

χ
(
HF+(M3, s)

)
= ±τ(M3, s) (3.35)

where τ : Spinc(M3) → Z is the Turaev torsion function. However, the case b1 = 1,

closely related to the case of b+2 (M4) = 1 in Donaldson theory, is more delicate. In this

– 28 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
1

case, τ(s) should be computed in the “chamber” containing c1(s), i.e. with respect to the

component of H2(M3;R)− 0 containing c1(s). For a 3-manifold with H1(M3;Z) = Z, such

as M3 = S2 × S1, the set of Spinc structures is indexed by Z. Hence, we can write

HF+(M3) ∼=
⊕
h∈Z

HF+(M3, h) (3.36)

such that HF+(M3, h) ∼= HF+(M3,−h) is endowed with a relative Z2h grading, which

becomes Z-grading for h = 0. For all h 6= 0, HF+(M3, h) is a finite dimensional vector

space, and it makes sense to take its Euler characteristic (with respect to the Z2h-valued

Maslov grading):

χ
(
HF+(M3,−h)

)
= q−h coefficient of τ(q) (h > 0) (3.37)

For example, if M3 = S1 × S2, according to (3.30) we have HF+(M3, h) = 0 for all h 6= 0.

Note, when b1(M3) = 1, the Turaev torsion is not symmetric in h, but HF+(M3, h) is. On

the other hand, the invariant HF−(M3, h) is asymmetric in the same way as the Turaev

torsion, and the relationship holds for both positive and negative h:

χ
(
HF−(M3, sh)

)
= τ−ξ(sh) (3.38)

where ξ is the component of H2(M3,Z) − 0 containing c1(sh) = h. The Turaev torsion

obeys the wall crossing formula [61]:

τ−ξ(M3, sh)− τξ(M3, sh) = h (3.39)

which, in the case of M3 = S1 × S2, relates τ(h) = h for h > 0 and τ(h) = 0 for h < 0,

cf. (3.28). When h = 0, the group HF+(M3, 0) is infinitely generated and extra care is

needed to define its Euler characteristic. One can either use twisted coefficient or simply

write

χ
(
HF+(M3, 0)

)
=
∑
n>1/2

(−1)n dim HF+
n (M3, 0)

+
∑
n≤1/2

(−1)n
(

dim HF+
n (M3, 0)− 1

)
(3.40)

rigged so that we get χ
(
HF+(M3, 0)

)
= 0 for M3 = S1 × S2.

In our example of M3 = S1 × S2, one can also consider the total sum12 (3.27) of the

invariants (3.28). The result is the Turaev-Milnor torsion of M3 = S2 × S1 as a function

of q ∈ Ĥ and refined by the U(1)β fugacity y:

ISW
T [S2×S1](q) =

∑
h∈H
ISW,h
T [S2×S1]

q−h =
q

(1− q/y)(1− qy)

y→1−→ q

(1− q2)
= τS2×S1(q) (3.41)

12Note that, while the result for individual h depends on the choice between “positive” and “negative”

poles, the total sum, as a meromorphic function of q, does not [34].
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Now let us consider a Lens space with p > 0. As mentioned earlier, the fluxes h and

h + pm for any m ∈ Z should be indistinguishable. This is achieved by summing over all

m, that is (3.27) should be modified as:

ISW
T [L(p,1)](q) = ZT [S2

SW×S
1
Hopf]

[S2
p × S1] =

1

y − y−1

∑
h∈Zp

∑
m∈Z

∫
dz

2πiz

(
y − z
1− zy

)k+mp

q−h

(3.42)

where now h ∈ H ∼= Zp and q ∈ Ĥ ∼= Zp. Let us make the following change of variables

(which, of course, is one-to-one on a complex sphere):

x =
y − z
1− zy

. (3.43)

After the change of variables the integral takes the following form:

ISW
T [L(p,1)](q) ≡

∑
h∈H
ISW,h
T [L(p,1)]q

−h = y
∑
h∈Zp

∑
m∈Z

∫
dx

2πix

xh+mp

(1− xy)(1− y/x)
q−h (3.44)

The integral has a form of the topologically twisted index of the theory TU(1)[L(p, 1)] on

S2 with insertion of defects described in figure 7. The defect contribution reads

fSW,h(x) =
y

(1− xy)(1− y/x)
· xh (3.45)

where h is the choice of Spinc structure. One could also obtain this result directly. In-

deed, the second factor in (3.45) is the contribution of the basic Wilson line built from

a codimension-4 defect. The first factor is the contribution of the codimension-2 defect.

After compactification on S1
Hopf the codimension-2 defect can be realized by intersection

of two D4-branes along S1 × S2
p . The theory living on the intersection is the theory of

a hypermultiplet. Compactifying it further on S2
p gives a hypermultiplet in the effective

quantum mechanics on S1 charged with respect to U(1) gauge symmetry of T [M3]. The

first factor in (3.45) is precisely the index of this hypermultiplet.

The result (3.45) will be used in section 3.6 to write the S2
SW × S1 index of T [M3] for

general plumbed 3-manifolds.

3.5.2 HF+(M3) from T [M3] and the physics of T + towers

If all of HF+(M3) is supported in the same mod 2 homological grading, there are no

cancellations in the index and one can try to reconstruct HF+(M3, h) from the index

ISW,h
T [M3], especially when the flavor symmetry U(1)β discussed in section 3.4 is available.

For example, when M3 is a Seifert homology sphere oriented so that it bounds a positive

definite plumbing (see section 3.6 for a definition), then HF+(M3) is supported in even

degrees only. In particular, in such examples χ
(
HFred(M3)

)
= rank HFred(M3). Here, we

shall apply this principle and walk the reader through the details of the calculation for

Lens spaces M3 = L(p, 1) in a way that parallels our example M3 = S2 × S1 considered in

section 3.5.1.
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For the Lens space M3 = L(p, 1), there are p states on a torus labelled by h ∈ Zp with

the following wave functions:

Ψh(x) =
∑
n∈Z

q
1
2p

(pn+h)2

xpn+h (3.46)

In section 3.5.1, we calculated SW invariants and torsion by considering the index of T [M3]

on S2
SW,h, a sphere S2 with the defect SW and a basic Wilson line labeled by h ∈ H. Instead,

one can consider the partition function on a solid torus with the defect SW inserted along

a non-contractible cycle and a boundary state |h〉, similar to the one illustrated in figure 3.

The partition function of this system has the following expression:

ISW,h =

∫
dx

2πix
Ψh(x) fSW(x) (3.47)

where Ψh(x) are given by (3.46) and

fSW(x) =
y

(1− y/x)(1− yx)
(3.48)

is the character corresponding to codim-2 defect refined by U(1)β symmetry. The two

factors in the denominator can be interpreted as the contributions of zero-modes of the

charged fields φ and φ̃ that compose a hypermultiplet associated with the codim-2 defect;

they carry charges (+1,−1) under U(1) gauge symmetry and charges (+1,+1) under U(1)β
flavor symmetry. Note that when q is equal to 1 we get the same expression as (3.44).

If we set y = 1/t and q = t2 and calculate (3.47) the result has a surprisingly simple

structure:

ISW,0 = t
(h−p/2)2

p
− p

4
+1

(1 + t2 + t4 + t6 + t8 + . . .) (3.49)

It can be interpreted as the Poincaré polynomials of

HF+
(
L(p, 1), sh

) ∼= ĤM
(
L(p, 1), sh

) ∼= T +
0 (3.50)

where t plays the role of fugacity for the homological grading. Up to an overall h-

independent shift, the gradings coincide with the ones in [62, lemma 3.2]. The identifi-

cation of U(1)q with U(1)t that we performed corresponds to topological twisting. The

identification of U(1)β with U(1)t (up to normalization of charges) is possible when U(1)S
discussed in (3.17) acts trivially.

A general feature of 3-manifold homology that we already encountered in table 1, in

eq. (3.32), and now in (3.50) is that it is often infinite-dimensional.13 This is a general

feature of colored/unreduced knot homology [11, 28] which, as we shall see later, also

persists in “non-abelian” variants of 3-manifold homology (1.1) for N > 1, that is for 3-

manifold analogues of Khovanov-Rozansky homology. Moreover, the infinite-dimensional

knot homology turns out to be a module over an algebra (of BPS states). In our present

context, HF+(M3) is also a module over the ring Z[U ], where U lowers degree by two and

13In Floer theory, the origin of infinite-dimensionality has to do with reducible solutions, while in physics

it can often be traced to the Fock space structure of the space of BPS states [59].
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every element of HF+(M3) is annihilated by a sufficiently large power of U . The simplest

such module is the Heegaard Floer homology of the 3-sphere14

T +
0
∼= HF+(S3) ∼= Z[U,U−1]/U · Z[U ] , (3.51)

which, according to (3.21), can be identified with a Fock space of a single boson. Its natural

generalization, which often appears as a building block of HF+(M3) for more general 3-

manifolds, is a Q-graded Z[U ]-module which is abstractly isomorphic to Z[U,U−1]/Z[U ],

T +
k
∼= HF+(S3) (3.52)

where the bottom-most non-zero homogeneous element has Maslov (homological) degree

k ∈ Q. In particular, rational homology spheres whose Heegaard Floer homology in every

Spinc structure has the form (3.50) are called L-spaces. Such 3-manifolds can be charac-

terized by any of the following conditions [20]:

• ĤF(M3) is a free abelian group of rank |H1(M3;Z)|

• HF−(M3) is a free Z[U ]-module of rank |H1(M3;Z)|

• HF∞(M3) is a free Z[U,U−1] module of rank |H1(M3;Z)|, and the map

U : HF+(M3) −−→ HF+(M3) (3.53)

is surjective.

Since Lens spaces are special examples of L-spaces, for every Spinc structure s we

have, cf. (3.50):

ĤF(M3, s) = Z ,
HF−(M3, s) ∼= T − = U · Z[U ] ,

HF+(M3, s) ∼= T + = Z[U,U−1]/U · Z[U ] ,

HF∞(M3, s) ∼= T ∞ = Z[U,U−1] ,

HFred(M3, s) = 0

More generally, if M3 is a rational homology sphere, there is a spectral sequence

starting at ĤF(M3, s)⊗ T + and converging to HF+(M3, s).

The Z[U ] module structure on the Heegaard Floer homology has the following physcial

meaning. The multiplication by U can be realized as insertion of the “meson” φφ̃ composed

of two fields in the hypermultiplet originating from codimension-2 defect. The meson is

uncharged with respect to the gauge field of T [M3] but carries U(1)β charge 2. There-

fore, if T [M3] on R × S2
SW,h with defects as in figure 7 provides a physical realization of

HF+(M3, sh), the same theory on R× S2
h·h−1 with the codimension-2 defect replaced by a

simple codimension 4-defect labeled by h−1 should be viewed as a physical counterpart of

ĤF(M3, sh), cf. (2.22).

14We often forget about the Z[U ]-module structure on HF+(M3), but still think of it as having a Maslov

grading with respect to which U−n has degree 2n. More generally, for manifolds with b1 > 0, HF+(M3)

is a module over a larger ring Z[U ]⊗Z Λ∗H1(M3;Z), examples of which will appear e.g. in section 3.7 and

other places throughout the paper. We plan to say more about the physical interpretation of the module

structure in future work.
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Graph M3 TG[M3]

b

[g]

O(b)

π

y
genus g RS

N = 4 vector multiplet

w/ level-b Chern-Simons

(breaking to N = 2)

+ g adjoint hypers

S3\ Hopf link

T [G] theory

(S-duality wall in N = 4 4d SYM)

w/ G×G flavor symmetry

excise π−1(pt),

glue along T 2 boundary
gauge G flavor symmetry

Table 2. The rules for plumbing graphs. O(b) denotes a circle bundle with Chern class b.

a1 a2 ak

...  

Figure 10. The plumbing graph realizing T 2 mapping cylinder associated to the word

ST a1ST a2S . . . ST akS in SL(2,Z).

3.6 Invariants for general plumbed 3-manifolds

3.6.1 T [M3] for plumbed three-manifold

The wild world of 3-manifolds contains a very tame class of 3-manifolds described by what

is called a plumbing graph. Such manifolds generalize the notion of Seifert manifolds. In

this section we review some of the results of [25, 63, 64] about 3d/3d correspondence for

3-manifolds of this type.

A plumbing graph is a graph colored by integer numbers {ai ∈ Z}i∈vertices. In general,

one can also add extra non-negative integer labels {gi ∈ Z+}i∈vertices to vertices, but by

default gi are zero and such labels are not shown. Non-zero gi are depicted by integers in

brackets. The vertices and edges correspond to basic building blocks of a 3-manifold M3

glued together. The rules are summarized in the first two columns of the table 2. The

third column describes the corresponding 3d theory and how attaching vertices to edges is

realized in terms of T [M3]. In particular, any linear part of a plumbing graph, such as the

one depicted in figure 10, corresponds to a certain element in the mapping class group of

the torus, SL(2,Z), realized as a word of S and T generators. The 3d theory T [M3] in this

case is the corresponding duality wall in N = 4 4d SYM with gauge group G. Let us note

that in the case G = U(1) the theory T [G] associated to an edge is just a supersymmetric

version of mixed CS interation for two U(1)’s. In the case when G = SU(N) it has a quiver

description, but for one of the two SU(N)’s only its maximal torus is explicitly visible in

the UV, which is however enough to calculate the index/sphere partition functions.
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b

a1 a2 ak1

(1) (1) (1)

a1 a2
akn

(n) (n) (n)

...  

...  

...  

[g]

Figure 11. A plumbing graph for a Seifert manifold.

As we already mentioned earlier, the family of plumbed 3-manifolds contains all Seifert

3-manifolds (of orientable type). A Seifert 3-manifold is usually realized as a circle fibration

over a genus g Riemann surface, possibly with exceptional fibers. Such fibration can be

described by the following data:(
g; b; (q1, p1), (q2, p2), · · · , (qn, pn)

)
(3.54)

where g is the genus of the base, b ∈ Z is the “integer part”15 of the first Chern class of the

circle bundle, and {(pi, qi)} are the pairs of coprime integers charaterizing the exceptional

fibers. It can be realized by the plumbing shown in figure 11 where the numbers {a(j)
i }

should realize continued fraction representation for pj/qj :

pj
qj

= a
(j)
1 −

1

a
(j)
2 −

1

a
(j)
3 − · · ·

(3.55)

We will be mostly interested in the case where all extra labels are trivial: gi = 0, ∀i.
In this case one can interpret the plumbing graph as the resolution graph of a complex

singularity. The plumbed 3-manifold M3 is then realized as the link of a singularity. Such

class of 3-manifolds is a natural home for rational homology spheres. The resolution of

the singularity provides us with a smooth 4-manifold M4 such that ∂M4 = M3. The

plumbing graph is also the plumbing graph of M4. Note that different plumbing graphs

can give different M4 but homeomorphic 3-manifold M3. The equivalence relations between

plumbing graphs giving three-manifolds of the same homeomorphism and orientation type

are given by 3d Kirby moves shown in figure 12. Any topological invariant of 3-manifold

defined in terms of the plumbing data obviously should be invariant under such moves.

Theories constructed using the rules in table 2 for graphs related by moves should be dual

to each other. In particular supersymmetric partition function of T [M3] on any space

provides us with a combinatorial invariant of M3 calculated in terms of the plumbing

data. In the next few sections we consider a particular case of such partition function:

topologically twisted index on S2 × S1.

The first homology group H ≡ H1(M3) can be easily computed from the graph data.

Let the total number of vertices be b2. The plumbing graph defines a bilinear form Q on

15It can be absorbed into redefinition of (qi, pi)’s.
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a1+a2

a2a1 0

'

a2§1a1§1 §1

'

a1 a2

a1§1 §1

'
a1

Figure 12. 3d Kirby moves that relate plumbings giving homeomorphic 3-manifolds.

Z[vertices] ∼= Zb2 via its adjacency matrix:

Qij =

{
1 , (i, j) connected by edge ,

ai , i = j
(3.56)

One can associate basis elements of H2(M4) with vertices of the plumbing graph. Then

Q plays the role of the intersection form on the lattice Λ = H2(M4). The abelian group

H = H1(M3) then enters into the following short exact sequence:

0 −→ H2(M4)
Q−→ H2(M4,M3) −→ H1(M3) −→ 0 (3.57)

where H2(M4,M3) ∼= H2(M4) can be canonically identified with the dual lattice Λ∗. Sup-

pose the intersection form is negative definite. Then H ≡ Λ∗/Λ ∼= CokerQ is a finite

abelian group and M3 is a rational homology sphere. The non-trivial part of T [M3] is

U(1)b2 CS theory with levels specified by the bilinear form Q and has the following action:

SCS =
1

2

∑
i,j∈vertices

Qij
∫
AidAj (3.58)

See [25] for more details.

3.6.2 S2 × S1 topologically twisted index of T [M3]

The S2×S1 topologically twisted index for general 3d N = 2 gauge theories was considered

in detail in [33, 34] and reviewed in appendix B. From the rules in table 2 it follows that

for a general group G the index of T [M3] for plumbed M3 can be constructed from the

basic pieces associated to graph elements:

IT [M3] ≡ ZT [M3][S
2 × S1]

=
∑

mi∈ZrankG

∫ ∏
i∈vertices

dxi
2πixi

IGai (xi,mi)
∏

α∈edges

IT [G](xα1 ,mα1 ;xα2 ,mα2) (3.59)

For each vertex i the integrand has a factor

IGai (xi,mi) , (3.60)

the index of the N = 2 level ai Chern-Simons theory with adjoint chiral multiplet. It

depends on the gauge fugacity xi (an element of the maximal torus of GC) and numbers
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mi ∈ ZrankG (the fluxes through S2). For each edge α connecting vertices (α1, α2) there is

a factor

IT [G](xα1 ,mα1 ;xα2 ,mα2) , (3.61)

the index of T [G] depending on fugacities and fluxes of G×G flavor symmetry.

For G = U(1) we have the following simple explicit expressions:

IU(1)a(x,m) =

(
y−1

1− y−2

)−2s−1

xam, (3.62)

IT [U(1)](x1,m1;x2,m2) =

(
y−1

1− y−2

)2s+1

x−m2
1 x−m1

2 , (3.63)

where y is the fugacity for U(1)β flavor symmetry of adjoint chiral multiplet, which de-

couples in the abelian case. For completeness we included dependence on the integer

parameter s, the flux of the U(1)β background field through S2. In the above formulae,

the U(1) R-symmetry which is used to make the topological twist is the Cartan subgroup

of SU(2)R.

For G = SU(N), it is possible to calculate explicitly (3.60) and (3.61) using their

gauge theory descriptions in the UV. The formulae for G = SU(2) are presented in the

appendix C.1.

However if we compute ITU(1)[M3], the result is extremely simple. For any negative

definite plumbing graph the result is

ITU(1)[M3] =

(
y−1

1− y−2

)−2s−1

(3.64)

Such simple answer is expected from two points of view. First, in the U(1) case the theory is

equivalent to topological quiver CS (up to some decoupled free fields) and its Hilbert space

on S2 is trivial. The theory only contains non-trivial line operators (which provide states

on T 2) but no local operators. Second, the corresponding Rozansky-Witten theory is also

trivial, becuase there is no Coulomb branch (i.e. XS2 = pt in the notations of section 4.2).

To get an interesting observable one can insert defects on S2.

3.6.3 S2 with defects

Now let us consider S2 with some decoration D, which can be understood as a collection of

defects supported at points on the sphere. In terms of S2×S1 these are defects supported at

(pts)×S1 ⊂ S2×S1, so they are line operators in the space-time of T [M3]. We will denote

such decorated S2 as S2
D. We mostly will be interested in the “monopole” decoration16

D = SW defined in figure 7 which should provide us with SW invariants of M3. But for now

let us consider some general abstract collection of defects D. In the case of Chern-Simons

theory any collection of line operators can be decomposed into combination of Wilson lines

and thus can be encoded by a function of gauge fugacities fD(x). When one computes the

16We will often suppress the additional label h ∈ H.
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index it appears as a factor in the integrand:

IDT [M3] ≡ ZT [M3][S
2
D × S1]

=
∑

mi∈ZrankG

∫ ∏
i∈vertices

dxi
2πixi

IGai (xi,mi)
∏

α∈edges

IT [G](xα1 ,mα1 ;xα2 ,mα2)fD(x)

(3.65)

We want fD(x) to have a universal description in terms of plumbing data. Since we can

geometrically/physically decompose plumbed M3 into basic building blocks associated to

the vertices and edges, the function fD(x) should factorize correspondingly. That is, in the

G = U(1) case, we can write

IDT [M3] ≡ ZT [M3][S
2
D × S1]

=
∑
mi∈Z

∫ ∏
i∈vertices

dxi
2πixi

IDU(1)ai
(xi,mi)

∏
α∈edges

IDT [U(1)](xα1 ,mα1 ;xα2 ,mα2) (3.66)

where we introduced defect-modified versions of elementary contributions (3.62) and (3.63):

IDU(1)a
(x,m) = xam fDa (x) , (3.67)

IDT [U(1)](x1,m1;x2,m2) = x−m2
1 x−m1

2 fDS (x1, x2) (3.68)

We absorbed constant factors appearing in (3.62) and (3.63) in the definition of fDa (x) and

fDS (x1, x2). The set of functions {fDa , fDS } cannot be arbitrary; the index IDT [M3] should be

invariant under the moves depicted in figure 12. For example, it is possible to solve this

constraint by the following ansatz:

fDa (x) =
(
gD(x)

)−2
, fDS (x1, x2) = gD(x1)gD(x2) (3.69)

3.6.4 Torsion of negative definite plumbed 3-manifolds from T [M3]

Instead of understanding directly what is S2
SW let us “bootstrap” {fSW

a , fSW
S } using their

properties described in the previous section and some additional input data. Consider

unrefined case y = 1. From (3.45) it follows that the contribution of defects on S2
SW for

each vertex of the plumbing graph reads

fSW,h
a (x) =

xh+1

(1− x)2
. (3.70)

Where h encodes a choice of Spinc structure. It is easy to see that the requirement of

invariance under moves in figure 12 implies that

fSW
S (x1, x2) = (1− x1)(1− x2) . (3.71)

The integral (3.66) then can be written in the following form:

ISW,h
T [M3] =

∑
mi∈Z

∫ ∏
i∈vertices

dxi
2πixi

x
∑
j Q

ijmj
i (1− xi)δi−2xhii (3.72)
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Where Q is the intersection form associated with the plumbing graph and δi is the degree

of the vertex i (the number of adjacent edges). The collection of integers {hi ∈ Z}i∈vertices

defines a vector h =
∑

i hie
i ∈ Λ∗ ∼= Zb2 where ei are basis elements. However the index

actually depends only on h modulo the image of Q. Therefore, h can be considered as an

element of CokerQ ∼= H1(M3) ≡ H which defines a choice of Spinc structure on M3.

Taking into account that Q is negative definite and using the JK contour prescription

we can sum over fluxes mi:

ISW,h
T [M3] =

∫ ∏
i∈vertices

dxi
2πixi

1

1−
∏
j x
−Qji
j

(1− xi)δi−2xhii (3.73)

The integral (3.73) can be evaluated by residues:

ISW,h
T [M3] =

1

| detQ|
∑

∏
j x

Qji

j =1

(1− xi)δi−2xhii (3.74)

It is clear that the whole H = Λ∗/Λ can be generated by basis elements ei of Λ∗. The

characters q ∈ Ĥ can be naturally identified with the solutions of∏
j

xQ
ji

j = 1 , i = 1 . . . b2 (3.75)

by

q(ei) = xi (3.76)

Then (3.74) can be written as

ISW,h
T [M3] =

1

|H|
∑
q∈Ĥ

∏
i

(
1− q(ei)

)δi−2
q(h) (3.77)

which has a form of the Fourier transform (2.29). As in section 3.5.1 one can consider the

partition function as a function of q ∈ Ĥ, fugacity corresponding to the FI parameter of

SW theory:

ISW
T [M3](q) =

∑
h∈H
ISW,h
T [M3] q

−1(h) =
∏
i

(
1− q(ei)

)δi−2
(3.78)

This agrees with the known result for torsion of negative definite plumbed 3-manifolds [65]:

ISW
T [M3](q) = τM3(q) , q ∈ Ĥ (3.79)

In order to get SW invariants for a particular choice of h one needs to perform a

Fourier transform of the torsion, that is, to calculate the sum (3.77). The problem arises

because τM3(q) is singular at q = 1 and needs regularization. The regularization problem

can be translated into regularization of the original integral (3.72). The regularized value

of τM3(1) provides an h-independent shift of SW invariants and related to Casson invariant

λ(M3) [65]:

SW(h) = ISW,h
T [M3] =

1

|H|
∑
q∈Ĥ

τM3(q)q(h) = −λ(M3)

|H|
+

1

|H|
∑
q∈Ĥ

′
τM3(q)q(h) (3.80)

where
∑′ denotes the sum with the q = 1 term omitted.
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3.6.5 Heegaard Floer homology HF+(M3) from T [M3]

Classically, the abelian CS theory is specified by the quadratic action (3.58). However, as

a quantum theory, it is not completely trivial (though relatively simple and has a com-

binatorial description) and can provide us with interesting information about plumbed

three-manifolds M3. Abelian CS theory is usually defined in the case when the bilinear

form Q is even. In the case when it is not, the quantization of Chern-Simons theory is

more involved and requires a choice of Spin structure on the space-time 3-manifold. Such

theory is usually called Spin CS and was considered in detail in [66].

On the other hand, the Heegaard Floer homology of plumbed 3-manifolds was studied

in [60] (see also [67]) where the authors obtained combinatorial description of HF+ in

terms of the plumbing data. Since in this case both sides, T [M3] and HF+(M3), have a

combinatorial description in terms of plumbing data one can hope to see a relatively simple

dictionary between the two. Let us stress, though, that T [M3] is not the only data one

needs in order to reproduce HF+; one also has to provide a distinguished line operator17 in

T [M3] that we denote SW. Line operators of U(1)b2 CS theory always can be decomposed

into Wilson lines. Therefore, defining a line operator is equivalent to defining a character

of U(1)b2 which can be analytically continued to a meromorphic function on (C∗)b2 . In

terms of plumbing data, such character was found in section 3.6.4:

fSW(x) =
∏

i∈vertices

(1− xi)δi−2 (3.81)

where δi is the degree of the vertex and xi belongs to U(1) associated to vertex i. The

Seiberg-Witten invariants can be understood as the coefficients of (3.81) decomposed into

basic Wilson lines ∏
i∈vertices

xhii , h = hie
i ∈ Λ∗ (3.82)

with the equivalence relation∏
i∈vertices

xhii ∼
∏

i∈vertices

x
h′i
i ⇔ h− h′ ∈ ImQ (3.83)

If we combine together equivalent Wilson lines the expansion will have the following form:

fSW(x) =
∑
λ∈Λ∗

nλx
λ =

∑
h∈H

∑
λ∈Λ+h

nλx
λ (3.84)

where

xλ ≡
∏
i

xλii . (3.85)

17A natural question is whether such line operator admits a canonical definition purely in terms of 3d

N = 2 theory without referring to M3 itself. That is, if one presents an explicit description of T [M3] but

does not tell us anything about M3 itself, is it possible to define this operator and then calculate HF+(M3)?

The answer is probably “no” since the abelian T [M3] by itself essentially sees only the linking form of M3,

which is a very weak invariant.
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Note, the expression (3.81) is singular at xi = 1 and, hence, there is an ambiguity in such

a decomposition: one can expand either in |xi| > 1 or |xi| < 1. It follows that

SW(h) =
∑

λ∈Λ+h

nλ . (3.86)

The sum is infinite for rational homology spheres and needs regularization. The zeta-

function regularization of such an infinite sum in general gives a rational number (3.80).

The coefficients n
(h)
λ are integers and can be understood as Euler characteristics of

finite dimensional spaces:

nλ = χ(Vλ) (3.87)

The Heegaard Floer homology categorifying (3.86) is then given by

HF+(M3, sh) =
⊕

λ∈Λ+h

Vλ (3.88)

However, without specifying any gradings on Vλ the right-hand side of (3.88) is merely an

infinite dimensional space for any plumbed 3-manifold and does not provide any non-trivial

invariant.

Note that in the case of lens spaces, all δi ≤ 2 in (3.81) and there are no cancelations

in the expansion, so it is possible that

nλ = dim(Vλ) (3.89)

which is indeed what happened in the case of M3 = L(p, 1) as we have seen earlier.

3.7 A different type of example: M3 = Σ′ × S1

Twists on M3 = Σ′ × S1. In (3.1) we introduced topological twists of the 6d theory

on general background of the form

Σ× S1 ×M3 (3.90)

and established that we have the A-model twist along Σ, and the SW = RW twist on M3.

The vantage point of the A-model on Σ was the subject of section 2, while the SW = RW

twist on M3 will be discussed in more detail in sections 4 and 5.

If, furthermore, M3 = S1×Σ′ for yet another Riemann surface Σ′ then 3d twist along

M3 reduces to the standard A-model twist on Σ′ and our 6d setup (3.1) looks like

Σ× S1 × S1 × Σ′ (3.91)

where Σ and Σ′ now appear on the same footing and can be exchanged. Indeed, in both

cases, we end up with an A-model on one of the Riemann surfaces whose target space is

determined by the other (= Coulomb branch of 3d N = 4 theory). Yet another vantage

point on the system (3.91) is the 4d N = 4 SYM compactified on a product of two Riemann

surfaces with A-model twist along each one.

– 40 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
1

Torsion refined by U(1)β. It is easy to extend the expression (3.44) to the case M3 =

S1 × Σ′ where Σ′ is a closed Riemann surface of genus g. The theory T [M3] remains

essentially the same as in the case of M3 = S2 × S1: namely, pure U(1) N = 4 gauge

theory, because all g adjoint hypermultiplets are decoupled. The main modification is the

index of codimension-2 defect compactified on M3 = Σ′ × S1. For general g it will be[
y

(1− xy)(1− y/x)

]1−g
(3.92)

Therefore, the combined index on S2
SW reads

ISW
T [Σ′×S1](q) =

∑
h∈Z

∫
dx

2πix

[
y

(1− xy)(1− y/x)

]1−g
xh q−h =

[
y

(1− yq)(1− y/q)

]1−g
.

(3.93)

When y = 1, the result coincides with the known expression for the torsion of Σ′ × S1

where q is the U(1)C holonomy along the S1.

This should be compared with the Heegaard Floer homology of M3 = Σ′ × S1, which

is non-trivial (by adjunction inequality) only for Spinc structures sh with c1(sh) = 2h[S1],

|h| ≤ g−1 (or k = 0 when g = 0). For h 6= 0 in this range, HF+(Σ′×S1, sh) is isomorphic [2]

to cohomology of the symmetric product of Σ′, a fact that has a nice explanation in terms of

vortex equations which result from reduction of SW equations on the S1 (cf. appendix A):

HF+(Σ′ × S1, sh) = H∗
(
Symd(Σg);Z

)
[−g] (3.94)

∼=
d⊕
i=0

ΛiH1(Σg;Z)⊗ T0/(U
i−d−1)

where [−g] denotes the grading shift down by g units, the factor ΛiH1(Σg;Z) is in degree

i− g, and d = g − 1− |h|.
When h = 0, the calculation of HF+(Σ′ × S1, s0) is more subtle [60, 68–70], and its

Euler characteristic needs to be taken as in (3.40).

3.8 Triangulations

In triangulation-based approaches, one tries to circumvent the problem of compactifying

6d (0, 2) theory on M3 by guessing the basic building blocks of T [M3] associated to ideal

tetrahedra in a way consistent with gluing and Pachner moves, see e.g. [48, 71]. Usually,

this approach leads to a 3d N = 2 theory that does not account for all reducible flat

connections on M3 which, as we shall see in section 6, are in a sense the most important ones

for categorifying RTW invariants. (Including reducible flat connections was also important

for realizing Khovanov homology and its colored variants via 3d/3d correspondence [64].)

The advantage of this approach, however, is that refinement or categorification can be

easily achieved by passing from supersymmetric indices to spaces of refined BPS states,

where the “refinement” means counting with spin with respect to both the little group in

three dimensions that we call U(1)Σ and the R-symmetry U(1)t.
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In particular, in this approach one usually associates a 3d N = 2 chiral multiplet to

an ideal tetrahedron in a triangulation of M3. Then, various partition functions of a 3d

N = 2 chiral multiplet give the corresponding variants of the quantum dilogarithm, which

can be categorified by a vector space

∞⊗
n=0

1⊕ tRtqn+1/2x

1− tRt+1qn+1/2x
(3.95)

that simply lists all elements in the cohomology of a supercharge Q. Here, the denominators

should be understood as power series expansions in x (or q) representing bosonic Fock

spaces, cf. (3.21). Implementing this in the refined 3d/3d correspondence that includes

contributions of all flat connections, one could try to construct homological invariants of

various 3-manifolds e.g. obtained by surgeries on knots, cf. [64], and compare the results

to the ones here. We plan to explore this elsewhere.

4 Reversing the order of compactification

While 3d/3d correspondence provides novel ways of computing Seiberg-Witten invariants

and the Heegaard Floer homology HF+(M3), it does not give an a priori explanation why

these invariants are encoded in the physics of 3d N = 2 theory T [M3] the way we described

them in section 3. This becomes crystal clear if we look at the system (1.6) from the vantage

point of the 3-manifold M3 by first compactifying fivebranes on the Riemann surface Σ; it

will directly lead us to more traditional formulation of Seiberg-Witten invariants, Turaev

torsion, and their categorification (1.5).

By doing so, we introduce an easily computable “refinement” of the Rozansky-Witten

theory, which shares many features with the homological invariants HF(M3), HM(M3),

ECH(M3), and in certain cases completely determines the latter.

4.1 UV: SW invariants and Floer Homology

In order to look at the system (1.6) from the viewpoint of the 3-manifold M3, one first

needs to compactify the fivebranes on the Riemann surface Σ (possibly with defects and

punctures). This gives a 4d N = 2 theory with SU(2)R ×U(1)t R-symmetry, see e.g. [72].

Keeping track of this R-symmetry helps to describe the topological twist along M3, under

which the R-symmetry SU(2)R is mixed with the SO(3) group of local rotations on M3. As

a result, three out of five scalars in the fivebrane theory, which are charged under SU(2)R,

no longer transform as scalars on M3 and can instead be thought of as parameterizing the

cotangent bundle of M3, cf. (1.6). Upon reduction of 4d N = 2 theory on S1, we get a 3d

N = 4 theory T [Σ× S1]. And, after the reduction R-symmetry is enhanced to

SU(2)R ×U(1)t → SU(2)R × SU(2)N . (4.1)

In three dimensions, SU(2)R can be distinguished from SU(2)N by saying that the former

acts trivially on the scalars in the vector multiplet. The partition function of the twisted 3d

N = 4 theory gives a numerical topological invariant of M3. If instead of S1 we considers
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a non-compact time direction, R, this will give us a twisted 4d N = 2 theory T [Σ] on

M3 × R. Its Hilbert space,

HT [Σ](M3) = HT [M3](Σ) , (4.2)

will then provide a categorification of the numerical invariant:

TrHT [Σ](M3)(−1)F = Ztwisted T [Σ×S1](M3) (4.3)

Consider a particular case when G = U(1) and Σ = ΣSW such that

ΣSW : TU(1)[ΣSW] = {4d N = 2 U(1) with 1 hypermultiplet} (4.4)

After the topological twist, the scalars of the hypermultiplet become a complex spinor on

M3 charged with respect to the U(1) gauged group. To define such spinor one needs to

pick a Spinc structure s on M3. The U(1) gauge bundle then can be identified with det(s).

The partition function is then expected to give Seiberg-Witten invariants of M3 for a given

s ∈ Spinc:

sw(s) = ZT [ΣSW×S1](M3; s) (4.5)

The space of Spinc structures is isomorphic to H2(M3) ∼= H1(M3) ≡ H as an affine

space over H. By fixing a reference Spinc structure s0 (the canonical choice is such that

c1(s0) = 0) one can instead define a Seiberg-Witten invariant as a function on H:

SW ∈ Q[H] ⊂ C[H] , SW(h) = sw(s0 + h) . (4.6)

It is often also useful to consider a Fourier-transformed SW invariant, a function on the

Pontryagin dual group:18

ŜW ∈ C[Ĥ] , ŜW(q) =
∑
h∈H

SW(h)q−1(h) (4.7)

From the gauge theory point of view, c1(s) ∈ H2(M3), s ∈ Spinc, can be interpreted as

the flux of the U(1) gauge field. Therefore the dual variable q has the meaning of (the

exponential of) the FI-parameter. This correspondence will be considered in more detail

in the next section.

From (4.3) it follows that (4.2) should categorify SW invariants and give monopole

Floer homology which is isomorphic [21] to the Heegaard Floer homology (and the corre-

sponding version of the ECH theory, as in (1.5)):

HT [ΣSW](M3) = ĤM(M3) ∼= HF+(M3) . (4.8)

This homology naturally splits according to Spinc structures:

HF+(M3) ∼= ⊕s∈Spinc(M3)HF+(M3, s) (4.9)
18Let us note that the space of Spinc structures is isomorphic to H1(M3) for general M3. However only

for rational homology spheres it can be identified with flat connections modulo gauge equivalence, i.e. the

spaceMflat(U(1)C,M3). This happens because when b1(M3) = 0 the first Chern class c1(s) of any s ∈ Spinc

is torsion and there is a unique flat connection in det(s). For b1(M3) > 0 this is not the case. However, the

Pontryagin dual Ĥ, which in this case we define as Hom(H1,C∗), is still the same asMflat

(
U(1)C,M3

)
. By

C[Ĥ] we then understand meromorphic functions on Ĥ.
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4.2 IR: 3d N = 4 Rozansky-Witten theory

In the IR a 3d N = 4 gauge theory T [Σ × S1] considered in section 4.1 has a geometric

description in terms of Higgs and Coulomb branches which are both Hyper-Kähler and

exchanged under 3d mirror symmetry. The SU(2)R symmetry acts trivially on the scalars

parametrizing the Coulomb branch while SU(2)N acts trivially on the scalars parametrizing

the Higgs branch. When SU(2)R is twisted, the theory becomes a topologically twisted

sigma model on the Coulomb branch19

XΣ ≡MCoulomb

(
T [Σ× S1]

)
(4.10)

where X• can be considered as a functor from Riemann surfaces to hyper-Kähler spaces.

This theory is known as the Rozansky-Witten theory [52]. Therefore we have:

Ztwisted T [Σ×S1](M3) = ZRW[XΣ](M3) (4.11)

The Rozansky-Witten (RW) theory computes the same type of perturbative 3-manifold

invariants as in the perturbative expansion of CS theory around the trivial flat connection.20

However, sometimes it can be possible to consider more refined invariants by turning on

certain background fields.

Indeed, suppose XΣ has a U(1)b tri-holomorphic (that is respecting hyper-Kähler struc-

ture) symmetry. In the UV description such symmteries can appear as topological U(1)

symmetries coupled to U(1) gauge fields. This means that one can couple the sigma-model

to b copies of topologically twisted N = 4 U(1) vector multiplets. The scalars of such

multiplets transform in a triplet representation of the SU(2)R symmetry.21 In the UV, the

scalars in a vector multiplet have meaning of real and complex FI-parameters. After topo-

logical twisting the triplet of scalars together with the vector becomes a complex 1-form on

M3. This, again, can be understood as the Blau-Thompson twist [37, 38] of the mirror 3d

N = 4 theory, which in the present case localizes on flat U(1)C connections. The partition

function refined by the background values of such flat connections depends on an element

of Ĥb ≡
b copies
× Mflat

(
U(1)C,M3

)
:

ZRW [XΣ](M3)(q1, . . . , qb) , qi ∈ Ĥ (4.12)

Consider in more detail the case when Σ = ΣSW as in (4.4), so that T [Σ × S1] is 4d

N = 4 abelian gauge theory with gauge group U(1) and one charged hypermultiplet. The

19In the sigma model description the R-symmetry should act trivially on the target space itself and only

rotate the fermionic fibers.
20To be precise, both CS theory and Rozansky-Witten theory produce a system of weights for LMO

universal perturbative invariant [73] valued in the algebra A of trivalent Feynman diagrams modulo IHX

relations. A weight system can be understood as an element of the dual algebra A∗. The setup arising from

6d theory compactification provides us with a map {Riemann surfaces Σ} → A∗.
21Note, in order to weakly gauge the U(1)b isometry of XΣ it is convenient to realize XΣ as a Higgs

branch of the mirror 3d N = 4 theory. Since, as we mentioned earlier, 3d mirror symmetry exchanges

SU(2)R and SU(2)N , the twist by SU(2)R of the original theory in the notations (4.1) is equivalent to the

twist by SU(2)N of the mirror 3d N = 4 theory.
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relation between SW and RW invariants of M3 was proposed in a beautiful paper of Blau

and Thompson [39] by interpreting these as UV and IR TQFTs, respectively. A topological

twist of theN = 4 SQED with Nf = 1 hypermultiplet gives the abelian monopole equations

on M3 whose signed count of solutions yields SW invariants of M3. In the IR this theory

flows to a sigma-model whose target space is the Coulomb branch of N = 4 SQED, namely

TN4, the Taub-NUT space with one center. And the same kind of topological twist of this

IR theory gives RW invariants of M3:

UV IR

SW twist of 3d N = 4 SQED = RW twist of σ-model with target TN4

(4.13)

The relevant twist of both UV and IR theories here involves mixing the Lorentz symmetry

group with the SU(2) subgroup of R-symmetry under which scalars in a vector multiplet are

singlets and scalars in a hypermultiplet transform as 2. In type IIB brane setup shown in

figure 4, scalars in vector multiplets correspond to motion of D3-branes along directions of

NS5-branes, that is x8,9,0 in our conventions. Hence, RW and SW theories are obtained by

mixing SO(3)123
∼= SU(2)E with SO(3)456

∼= SU(2)R. As a complex manifold, the Coulomb

branch is isomorphic to the complex plane:

XΣSW
= TN4

complex∼= C2 (4.14)

The UV theory has one topological U(1) symmetry that can be coupled to a U(1) vector

multiplet. In the IR, this symmetry rotates two C factors of (4.14) with opposite charges.

The refined RW theory then should give a SW invariant labeled by a corresponding flat

connection:

ŜWM3(q) = ZRW[XΣSW
](q) , q ∈ Ĥ (4.15)

Consider the case when b1(M3) = 1 in more detail. In this case RW theory calculates

the value of a certain characteristic class on XΣ [39, 74]:

ZRW[XΣ](M3) =

∫
XΣ

1
2

dimCXΣ∏
i

λ2
i τM3(eλi) (4.16)

where (λ1,−λ1, λ2,−λ2, . . .) are the eigenvalues of the holomorphic curvature and τM3 is

the Milnor torsion of M3. In the case b1(M3) = 1 the latter has the following form:

τM3(q) =
q∆M3(q)

(1− q)2
(4.17)

where ∆M3(q) is the Alexander polynomial of M3. A large class of 3-manifolds with

b1(M3) = 1 and, moreover, H = H1(M3,Z) = Z is given by zero-surgeries on knots

in S3.

In general, a p/q Dehn surgery along a knot K ⊂ S3 is the operation of removing a

tubular neighborhood of K and regluing it back in a way that takes the meridian of the
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Knot K Signature Alexander polynomial HF+
(
S3

0(K)
)

unknot σ(K) = 0 ∆K(q) = 0 T +
−1/2 ⊕ T

+
1/2

3r1 σ(K) = −2 ∆K(q) = −1 + q−1 + q T +
−1/2 ⊕ T

+
−3/2

41 σ(K) = 0 ∆K(q) = 3− q−1 − q Z
[
− 1

2

]
⊕ T +
−1/2 ⊕ T

+
1/2

Table 3. Simple 0-surgeries on knots. In all these examples HF+(S3
0(K), sh) ∼= 0 unless h = 0.

knot to a linear combination of the longitude and the meridian with coefficients q and p,

which are assumed to be relatively prime integers. For example, a Lens space L(p, q) can

be realized as a surgery on the unknot with the coefficient −p/q and, in fact, for any knot

M3 = S3
p/q(K) has H1

(
S3
p/q(K)

)
= Z/pZ, and

S3
r (K) ∼= −S3

−r(K) (4.18)

where K is a mirror of K.

In particular, the 0-surgery gives H1(M3) = Z supplying lots of examples for our

discussion here. The simplest 0-surgery is the surgery along the unknot which, according to

the “Property R” conjecture, is believed to be the only knot that produces S3
0(K) = S2×S1

which we already discussed earlier. Table 3 contains some other examples of 0-surgeries. In

this class of examples, Ĥ = C∗ which means that there is a continuous deformation of the

background vector multiplet starting from 0. In other words, there is only one q parameter

and ∆M3(q) = ∆K(q) is the Alexander polynomial of K,

∆K(q) = a0 +
∑
h>0

ah(qh + q−h) (4.19)

In general, the (logarithms of the) corresponding values qi ∈ Ĥ can be understood

as equivariant parameters for U(1)b symmetry acting on XΣ. In the presence of such

symmetries the equivariant version of the integral (4.16) can often be easily calculated

using the Atiyah-Bott localization. For example, in the case Σ = ΣSW, XΣSW
= C2 there

is only one fixed point and the result is just the value of the torsion:

ZRW[XΣSW
](q) = τM3(q) , (4.20)

in perfect agreement with the Meng-Taubes theorem [75]. Note that localization can be

easily done also for G = SU(N) when Σ is of genus ≥ 1 with regular punctures, that is

when T [Σ] is in class S. This is due to the fact that the Coulomb branch of T [Σ× S1] has

a hyper-Kähler quotient description [76].

4.3 A “refinement” of the Rozansky-Witten theory

Let us note that the Coulomb branch (4.14) also has a holomorphic symmetry U(1) with

respect to which both C factors have the same charge. This is the “anti-diagonal” subgroup

U(1) of SU(2)R × SU(2)N R-symmetry. The possibility of turning on the corresponding
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background 3d N = 2 vector multiplet in a supersymmetric way is equivalent to the

existence of an extra symmetry U(1)β discussed in detail in section 3.4.

For example, this extra symmetry exists in the case of M3 = S2 × S1 that we already

encountered in (3.41). Since

τS2×S1(q) =
q

(1− q)2
(4.21)

the corresponding characteristic class in (4.16) is the (complex) Â-genus:22

τS2×S1(eλ) =
λ

2 sinh(λ/2)
· −λ

2 sinh(−λ/2)
(4.23)

Then, the equivariant localization of the integral (4.16) gives the following refined torsion

of M3 = S2 × S1:

ZRW[XΣSW
](M3) =

∫
C2

Â =
q

(1− qy)(1− q/y)
(4.24)

where y is the fugacity associated to the U(1)β flavor symmetry, cf. (3.18). This agrees

with the Heegaard Floer homology of M3 = S2 × S1 discussed in section 3.5.1.

5 4-manifold invariants from 5-branes

In the earlier sections, a few times we already found it useful to answer questions about

3-manifolds by considering gauge theory on 4-manifolds and the corresponding 2d theory

on Σ, cf. (3.1). More generally and more conceptually, the study of homological invari-

ants of knots and 3-manifolds provides a window into a remarkable world of 4-manifolds

with embedded surfaces. Indeed, every cobordism M4 between 3-manifolds M−3 and M+
3

induces a map between the corresponding homological invariants, possibly with suitable

extra data:23

ZT [Σ](M4) : HT [Σ](M
−
3 ) −→ HT [Σ](M

+
3 ) , (5.1)

and similarly for knots. In particular this generalizes relation (2.30). (See also [11, 15, 25]

for previous discussion of such cobordisms from physical perspective.)

In this section, our goal will be to revisit the topological twists starting with 6d (0, 2)

theory on M4 × Σ and then to explore (5.1) and its variants. Even at a practical level,

4-manifolds with boundary M3 help us to understand the SL(2,Z) action onMflat(GC,M3)

and to calculate the so-called correction terms in the Heegaard Floer homology HF+(M3).

22On a formal level the question about possibility of refinement by holomorphic symmetries seems to

be equivalent to the question about extending multiplicative characteristic class appearing in (4.16) and

a priori defined only for hyper-Kähler manifolds to Kähler manifolds. That is, finding its “square root”,

which means representing it in the following way:

τM3(eλ) = f(eλ)f(e−λ) (4.22)

such that f(q) has expansion valued in Z[[q]]. Interestingly enough such factorization naturally exists for

0-surgeries on slice knots for which there exists Laurent polynomial g such that ∆K(q) = g(q−1)g(q). Then

one can take f(q) = g(q)/(1− q).
23For instance, if s is a Spinc structure on M4, we get a map from HF+(M−3 , s|M−

3
) to HF+(M+

3 , s|M+
3

).
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5.1 Twists on M4

In six-dimensional space-time of the form M4×Σ, the Euclidean rotation symmetry SO(6)E
of the fivebrane theory decomposes as SO(4)E×SO(2)Σ, and we further identify SO(4)E ∼=
SU(2)` × SU(2)r. The R-symmetry group of the 6d (0, 2) theory is SO(5)R, under which

self-dual 2-form, scalars and Weyl fermions transform as 1, 5, and 4, respectively. The Weyl

fermions have positive chirality, i.e. transform as 4+ under SO(6)E , and obey symplectic

reality conditions. The following branching rules will be useful to us:

SO(6)E → SU(2)` × SU(2)r ×U(1)Σ

4+ → (2,1)+1 ⊕ (1,2)−1

4− → (2,1)−1 ⊕ (1,2)+1

6→ (2,2)0 ⊕ (1,1)+2 ⊕ (1,1)−2

and

SO(5)R → SU(2)R ×U(1)t

5→ 30 ⊕ 1±2

4→ 2+1 ⊕ 2−1

The topological twist of 6d (0, 2) theory on general background of the form M4 × Σ

that was studied in [25] corresponds to embedding the fivebrane world-volume M4×Σ into

a product of G2-manifold and a local K3 geometry, which locally look like

Λ2
+M4 × T ∗Σ (5.2)

For this twist and other applications discussed in the present paper, we decompose the

R-symmetry group as SO(5)R → SO(3)R× SO(2)t. To summarize this symmetry breaking

pattern, let us describe the transformation of the fermions in 6d (0, 2) theory:

SO(6)E × SO(5)R → SU(2)` × SU(2)r × SU(2)R ×U(1)Σ ×U(1)t

fermions: (4+,4)→ (2,1,2)(1,±1) ⊕ (1,2,2)(−1,±1)

Now we can consider various topological twists of this system. Note, when M4 = R×M3

or M4 = S1 × M3, the rotation symmetry on M3 is a diagonal subgroup SU(2)M ⊂
SU(2)` × SU(2)r.

Keeping these facts in mind, we can consider a partial topological twist on general M4

by replacing SU(2)r with the diagonal subgroup SU(2)′r ⊂ SU(2)r × SU(2)R. This gives

partial Vafa-Witten twist of the 6d (0, 2) theory, with the new transformation rules:

SO(6)E × SO(5)R → SU(2)` × SU(2)′r ×U(1)Σ ×U(1)t

fermions: (4+,4)→ (2,2)(1,±1) ⊕ (1,3)(−1,±1) ⊕ (1,1)(−1,±1)

Note, from the viewpoint of 2d theory on Σ, the two preserved supercharges are chiral,

which corresponds to 2dN = (0, 2) supersymmetry along Σ. Also note that if M4 = R×M3,
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then before the twist we have

SO(6)E × SO(5)R → SU(2)M × SU(2)R ×U(1)Σ ×U(1)t

fermions: (4+,4)→ (2,2)(±1,±1)

which agrees, as it should, with the transformation rules of fermions in 5d N = 2 super-

Yang-Mills, cf. section 3.

Instead of twisting along M4 (or M3) we can start with a partial topological twist

along Σ, replacing U(1)Σ with a diagonal subgroup U(1)′Σ ⊂ U(1)Σ × U(1)t. Note, since

these groups are abelian, U(1)t is still a symmetry after this twist, so that

SO(6)E × SO(5)R → SU(2)` × SU(2)r × SU(2)R ×U(1)′Σ ×U(1)t

(4+,4)→ (2,1,2)(2,1) ⊕ (2,1,2)(0,−1) ⊕ (1,2,2)(0,1) ⊕ (1,2,2)(−2,−1)

where we underlined the terms which transform as singlets under U(1)′Σ. Their significance

is that they correspond to unbroken supersymmetries of 6d (0, 2) theory partially twisted

along Σ; they transform precisely as supercharges of 4d N = 2 theory on M4, with the

R-symmetry group SU(2)R ×U(1)t.

As we explain next, a further twist along M4 is the standard Donaldson-Witten (or

Seiberg-Witten) twist of this 4d N = 2 theory. Replacing SU(2)r with the diagonal sub-

group SU(2)′r ⊂ SU(2)r × SU(2)R, we get

SO(6)E×SO(5)R → SU(2)` × SU(2)′r ×U(1)′Σ ×U(1)t

(4+,4)→ (2,2)(2,1)⊕ (2,2)(0,−1)⊕ (1,3)(0,1)⊕ (1,1)(0,1)⊕ (1,3)(−2,−1)⊕ (1,1)(−2,−1)

There is only one supercharge Q, which is a complete singlet under the symmetries of both

M4 and Σ. If we denote the generators of U(1)′Σ and U(1)t by P and Rt, respectively, then

from the above transformation rules we can easily read off

Q2 = 0 , [Rt,Q] = Q , [P,Q] = 0 (5.3)

When M4 = R ×M3 or M4 = S1 ×M3, we have two scalar supercharges; the second one

arises from the decomposition 2⊗2 = 3⊕1 with respect to SU(2)M or, equivalently, from

implementing the twist along Σ in (3.4).

We can compare the above sequence of twists U(1)Σ → U(1)′Σ and SU(2)r → SU(2)′r
with the standard Donaldson-Witten (or Seiberg-Witten) twist in 4d N = 2 theory24

SU(2)` × SU(2)r × SU(2)R ×U(1)t → SU(2)` × SU(2)′r ×U(1)t

Aµ (2,2,1)0 → (2,2)0

scalars: (1,1,1)±2 → (1,1)±2

fermions: (2,1,2)−1 ⊕ (1,2,2)1 → (2,2)−1 ⊕ (1,3)1 ⊕ (1,1)1

In the last line one can recognize the U(1)′Σ invariant fermions of 6d (0, 2) theory before

and after the SU(2)r twist.

24Sometimes in the literature the role of SU(2)` and SU(2)r is exchanged or, equivalently, the sign of the

U(1)t R-charge is flipped.
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Finally, we note that the Vafa-Witten and Marcus/GL twists of 4d N = 4 super-Yang-

Mills reduce to the same Blau-Thompson twist in 3d, a theory that localizes on complex

flat connections. On the other hand, the third twist of 4d N = 4 SYM, namely the theory

of adjoint non-abelian monopoles, reduces to 3d version of DW twist.

5.2 VW partition function as a CS wave function

In section 3.6 we already used the fact (from [25]) that TU(1)[M3] for plumbed M3 has a

description in terms of quiver abelian CS theory, so that the role of quiver is played by the

plumbing graph. There we also mentioned that the plumbing graph naturally describes

not only M3 but a 4-manifold M4 such that ∂M4 = M3. In this section we will explore

this relation further.

Consider quantization of abelian Chern-Simons theory on T 2 × R. Quantization pro-

cedure requires to choose a complex structure τ on T 2 (though the Hilbert spaces for

different structures are equivalent). There are |CokerQ| = |H| states on the torus and

they correspond to basic Wilson lines of the form

∏
ivertices

xhii ∈ C[x1, . . . , xb2 ]/

{∏
j

xQ
ji

j − 1

}
, h ∈ H (5.4)

inserted in the solid torus bounded by T 2. One can also specify a wave function of such

states as a function of U(1)b2 holonomies along one of the cycles. That is, let |x〉 ∈
HT [M3](T

2) be a state with given holonomies and |h〉 ∈ HT [M3](T
2) a state created by a

Wilson line. Up to an overall h-independent normalization25

〈h|x〉 ≡ Ψh(x) =
∑

λ∈Λ+h+w2/2

q−
1
2

(λ,λ)−b2/8xλ (5.5)

where q = e2πiτ and (·, ·) is a bilinear form on Λ given by Q and extended to Λ∗ ⊂ Q⊗Z Λ.

The parameter w2 is an extra data one needs to introduce in order to quantize abelian spin

CS theory (see [66, 77] for details). The element w2 ∈ Λ∗ has to be chosen such that

w2(λ) = (λ, λ) mod 2 , ∀λ ∈ Λ (5.6)

which fixes the class [w2] ∈ Λ∗/2Λ∗.

This is in perfect agreement with what is going on the 3- and 4-manifold side [25]. The

class [w2] ∈ H2(M4,Z2) is the second Stiefel-Whitney class and reflects the presence of the

Freed-Witten anomaly in the U(1) gauge theory on M4. The choice of representative w2

corresponds to a choice of a reference Spinc structure s0 in (4.6) which is needed to identify

the set of Spinc structures with H (see e.g. [65]). When Q is even (that is M4 is spin) one

can choose w2 = 0.

25The quantization of spin CS on T 2 requires to choose Spin structure ∈
(

1
2
Z2

)2
on a torus. Here we use(

1
2
, 1

2

)
choice.
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The overall factor q−b2/8 is chosen so that the wave function has nice properties with

respect to the moves in figure 12. In particular the T matrix acting on HT [M3](T
2) is

given by

Thh′ = δhh′ e
−πi[(h+w2/2,h+w2/2)−b2/4] (5.7)

and is an invariant of M3.

Up to an overall factor (5.5) is equal to the partition function of abelian VW theory

on M4 with a boundary condition labeled by h ∈ H1(M3) [25]:

ZVW[M4](q;x)h ∝
∑

[F/2π]∈Λ+h+w2/2

q
1

8π2

∫
F∧Fx[F/2π] ∝ Ψh(x) (5.8)

On the 4-manifold side, the fugacities xi are the (exponentiated) chemical potentials for

the first Chern class of the gauge connection on M4. The label h, that is a choice of vacuum

of T [M3] on T 2, labels the choice of a flat connection ρ on M3. As in section 2.4, on can

think of the VW partition function as a vector

ZVW[M4](q;x) ∈ HVW(M3) ≡ HT [T 2](M3) = HT [M3](T
2) (5.9)

so that

ZVW[M4](q;x)h = 〈h|ZVW[M4](q;x) . (5.10)

From (5.8) it follows then that

ZVW[M4](q;x) ∝ |x〉 . (5.11)

As in the case of M3 = L(p, 1) considered in section 3.5.2, the expressions (5.5) are

wave-functions of T [M3] for states on T 2 surrounding codimension-4 defects labeled by h

which appear in S2
SW,h × S1 (see figure 7). The partition function (5.8) can be interpreted

as the index (partition function on T 2) of the 2d (0, 2) theory T [M4]. Therefore in the

categorified setup, the effective quantum mechanics T [M3 × S2
SW,h] (with Hilbert space

HT [M3](S
2
SW,h) ∼= HF+(M3, sh)) can be obtained by coupling (via T [M3] on S2) of boundary

CFT T [M4] on S1 (with states counted by (5.8)) and the effective quantum mechanics of

the codimension-2 defect compactified on M3 and inserted on S2.

The wave-functions (5.5) have the following q-expansions:

Ψh(x) = q−∆(h)/2 + . . . (5.12)

The rational numbers ∆(h) can be interpreted as conformal dimensions of primaries of

the boundary CFT, chiral U(1)b2 WZW theory. Their values can be determined in the

following way:

∆(h) = max
λ∈Λ+h+w2/2

[(λ, λ)Q + b2/4] (5.13)

This coincides with the formula for “correction terms” in the Heegaard Floer homology [60].

Note,

SW(h) = −∆(h)

2
mod Z (5.14)
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so that

SW(h) =
1

2πi
log Thh mod Z (5.15)

and the corresponding operator SW appeared in section 3.3 which acts on HT [M3](T
2) can

be identified with

SW =
1

2πi
log T mod Z (5.16)

6 Khovanov homology for 3-manifolds

As in the landscape of knot homologies unified by BPS states, in our study of 3-manifold

homologies the U(1|1) theory plays a central role, literally and figuratively (cf. figure 1).

This is the reason why a fair portion of this paper is devoted to a physical realization of

this homology theory in the fivebrane setup (1.6) with a topological twist along Σ, see

also (3.1).

Here, we return to another option listed in (3.2), namely Σ = R2
q , which is more relevant

to categorification of U(N) (or SU(N)) 3-manifold invariants (1.1) with N > 1. Although

rather different at first sight, there are many parallels between 3-manifold homologies (1.1)

with N = 0 and N > 1. Thus, as in section 2, the SL(2,Z) action on flat connections will

play an important role. In particular, as we show very concretely, categorification of the

Chern-Simons partition function on M3 requires writing it in a new basis, which is related

to a more familiar basis of flat connection on M3 by an S-transform.

6.1 Categorification of U(N) Chern-Simons from T [M3] on (time)× (cigar)

As a warm-up example, consider the partition function of U(N)k Chern-Simons theory26

on L(p, 1). It can be decomposed into a sum over different flat connections,

ZU(N)k CS[L(p, 1)] = e
− 2πi
pk
ρ2 ∑

n∈ZN/pZN /SN

e
2πik n2

2p ZU(N)k CS[L(p, 1)]n (6.1)

where the contribution of the flat connection labelled by n ∈ ZN/pZN (modulo permuta-

tion) can be represented by the following integral [78]:

ZU(N)k CS[L(p, 1)]n =
1∏p

k=1N
(n)
k !

∫ N∏
i=1

dσi
2π

e
pki
4π

(σi−2πini/p)
2
∏
i 6=j

2 sinh
σi − σj

2
(6.2)

where N
(n)
k = #{j|nj = k}. One can rewrite this expression as

ZU(N)k [L(p, 1)]n =
(τ)N/2∏p
k=1N

(n)
k !

∑
m∈ZN/pZN

SZN ,p
n,m

∫
|xi|=1

N∏
i=1

dxi
2πixi

∏
i 6=j

(
1− xi

xj

)
ΘZN ,p

m (x; q)

(6.3)

26Here, k denotes the renormalized level k = k0 +N .
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where x = {xi}Ni=1 ∈ (C∗)N is the element of the maximal torus of U(N)C and

τ =
1

k
, q = e2πiτ (6.4)

ΘZN ,p
m (x; q) =

∑
r∈pZN+m

q
r2

2p xr, (6.5)

SZN ,p
n,m = p−

N
2 e2πim·n/p (6.6)

and ρ is the Weyl vector. Note that e
2πik n2

2p is the classical contribution. Although the

theta-function in the integrand of (6.3) has an infinite number of terms, only a finite number

of them give a non-trivial contribution after integration over x. As a function of τ , the

contribution of a given flat connection has the following form

q−ρ
2/pe

2πik n2

2p ZU(N)k CS[L(p, 1)]n = τN/2e
πin2

pτ Pn

(
q

1
p
)

(6.7)

where Pn is a Laurent polynomial whose coefficients are algebraic numbers. In particular,

ZU(N)k CS[L(p, 1)]0 = ZU(N)k CS[S3]0|
q→q

1
p

(6.8)

It is not quite clear how to categorify this quantity directly since, unlike the Jones

polynomial, it is not a polynomial in q with integer coefficients. However, using modular

properties of the theta-function, one can rewrite it in a more promising way:

e
2πik n2

2p ZU(N)k CS[L(p, 1)]n =

1∏p
k=1N

(n)
k !

∫
|xi|=1

N∏
i=1

dxi
2πixi

∏
i 6=j

(
1− xi

xj

)
e−

pi(log x)2

4πτ ΘZN ,p
n (x̃; q̃) q̃

−n2

2p (6.9)

where, as usual,

q̃ = q2πiτ̃ , τ̃ = −1

τ
, (6.10)

x̃i = e2πiξi/τ , xi = e2πiξi . (6.11)

Note that the classical factors and τN/2 are all absorbed into a nice q̃-series by S-transform

of the theta-functions.

Using the 3d/3d correspondence, we can formulate the partition function of analytically

continued U(N) Chern-Simons theory on M3 as the partition function of the fivebrane

system (3.5) on S1×R2
q×M3 where Σ = R2

q is a “cigar” embedded in Y4 = TN4
∼= R2

q×R2
t ,

and τ plays the role of the equivariant parameter rotating the cigar. Equivalently, it can

be expressed as the so-called vortex partition function [27] of the 3d N = 2 theory T [M3]

on R2
q times a time circle, which sometimes is denoted by D2 ×q S1,

S1 × R2
q
∼= D2 ×q S1 (6.12)

where the disk D2 is rotated by the angle Re τ as one goes around S1, and with a certain

boundary condition labelled by n. The latter way of writing the vortex partition function
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is sometimes called the “half-index” since it computes roughly half of the index on S2×S1

(and since the space-time itself is roughly half of S2 × S1).

We wish to apply this to M3 = L(p, 1) and to express ZU(N)k CS[L(p, 1)] as the the

partition function of the “Lens space theory” (2.48). The latter looks like [79]:

ZT [L(p,1)][D
2 ×q S1]n =

1∏p
k=1N

(n)
k !

∫
|xi|=1

N∏
i=1

dxi
2πixi

Z3d(x)Zn
2d(x) (6.13)

where

Z3d =
(q; q)N∞

(qy2; q)N∞

∏
i 6=j

(xi/xj ; q)∞
(xi/xjy2q; q)∞

e−
pi(log x)2

4πτ (6.14)

combines the bulk one-loop contributions of the vector multiplet, of the adjoint chiral

multiplet with R-charge 2 (we pick only the traceless part) and a classical contribution

of the CS action. The extra parameter y is the U(1)β fugacity, as in section 3.4. The

boundary contribution should be chosen in a way that cancels the anomaly inflow. This

condition can be reformulated as a requirement for Z2d(x) to satisfy a certain difference

equations with respect to x. Equivalently, Z2d(x) should be a section of p-th power of

the prequantum line bundle overMflat(T
2,U(N)C). The theta-functions or form a natural

basis of such sections:

Zn
2d(x) =

ΘZN ,p
n (x̃; q̃)

(q; q)N∞
(6.15)

The partition function (6.18) with y = 1 then matches with (6.9) up to a universal simple

factor:

ZT [L(p,1)][D
2 ×q S1]n =

ZU(N)k CS[L(p, 1)]n

(q; q)N∞
. (6.16)

As will be seen later it is often convenient to use “reduced” index of T [M3] with contribution

of the Cartan part of the chiral multiplet in the adjoint representation factored out:

Z
(red)
3d ≡ (q; q)N∞

∏
i 6=j

(xi/xj ; q)∞
(xi/xjy2q; q)∞

e−
pi(log x)2

4πτ (6.17)

Z
(red)
T [L(p,1)][D

2 ×q S1]n ≡
1∏p

k=1N
(n)
k !

∫
|xi|=1

N∏
i=1

dxi
2πixi

Zred
3d (x)Zn

2d(x) (6.18)

Turning on y 6= 1 gives the refined Chern-Simons theory on L(p, 1). For example, if we

take L(1, 1) = S3, and factor out the contribution of the Cartan part of the chiral multiplet

in the adjoint represenation:

Z
(red)
T [L(1,1)][D

2 ×q S1]0 ∝
N−1∏
j=1

( (
(qy2)j ; q

)
∞(

(qy2)j+1; q
)
∞

)N−j
=

(qy2; q)N−1
∞∏N

k=2

(
(qy2)k; q

)
∞
. (6.19)

The result coincides with the refined CS partition function from [57]. In particular, if

y2 = qβ−1 with β ∈ Z+ (as in loc. cit.) we get and

Z
(red)
T [L(1,1)][D

2 ×q S1]0 ∝
β−1∏
k=0

N−1∏
j=1

(
1− (qy2)jqk

)N−j
(6.20)
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Note, the factor
N∏
i=1

dxi
2πixi

∏
i 6=j

(xi/xj ; q)∞
(xi/xjy2q; q)∞

(6.21)

in (6.18) can be understood as the measure orthogonalized by the MacDonald polynomials.

6.2 Mock modularity and homological blocks

Up to the anomalous 2d factor, the bulk contribution (6.14) can be understood as the trace

over the Hilbert space of 3d theory T [M3] on the “cigar” D2 (with Neumann boundary

conditions for the adjoint chiral), where the time direction runs along the S1 factor in

D2 ×q S1. On the other hand, the boundary contribution (6.15) can be understood as the

trace (over the integrable representation of U(1)Np ) only if we treat S̃1 ≡ ∂D2 as the time

circle, not the S1. This is the source of difficulties with categorifying (6.7) directly.

Instead, one can perform an S-transformation (i.e. exchange S1 and S̃1) of the bound-

ary piece only. This will lead us to different quantities

ẐU(N)k CS[L(p, 1)]n ≡ Ẑ(red)
T [L(p,1)][D

2 ×q S1]n

≡
∫

|xi|=1

N∏
i=1

dxi
2πixi

Z
(red)
3d (x)Ẑn

2d(x)

≡
∫

|xi|=1

N∏
i=1

dxi
2πixi

∏
i 6=j

(xi/xj ; q)∞
(xi/xjy2q; q)∞

ΘZN ,p
n (x; q) (6.22)

related to the original ones in (6.3) via a linear transformation, whose (n,m) matrix ele-

ments appear in front of the integral (6.3). Namely,

ZU(N)k CS[L(p, 1)]n =
τN/2∏p

k=1N
(n)
k !

∑
m∈ZN/pZN

SZN ,p
n,m ẐU(N)k [L(p, 1)]m (6.23)

The S-matrix defined in (6.6) is the same as the S-transform of û(1)Np characters. Note,

here we consider the set of representations ∼= ZNp modulo SN permutations. Since û(1)Np
is level-rank dual to ŝu(p)N1 , the S-matrices transforming their characters are inverse of

each other. Therefore the S-transform (6.23) is consistent with modular properties of

VW partition function on the resolution of Ap−1 singularity whose boundary is ∂M4 =

L(p, p− 1) = −L(p, 1), cf. footnote 9.

The S-transform in (6.23) has also the following physical interpretation. Take V ∈
U(N), V p = 1 to be a representative corresponding to n ∈ ZNp /SN . That is V is the

holonomy along the generator H1(M3) in a particular flat connection background. Denote

by R a linear representation of U(N). Then, by analogy with [9] one expects the following

decomposition of the Chern-Simons partition function in a particular background:

ZU(N)k CS(V ) ∝
∑

R

TrR(V )ẐR(q) (6.24)
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where ZR is a contribution of multi-particle states produced by M2-branes in representation

R wrapping a non-trivial cycle in M3 (that is R is the “total” effective representation of the

multiparticle state). When V is unconstrained the characters TrR(V ) can be realized as

symmetric polynomials in {vi}Ni=1, eigenvalues of V . The condition V p = 1 implies vpi = 1.

The ring of such polynomials is

HT [M3][T
2] ∼= C[v1, . . . , vN ]/{vpi = 1}Ni=1

∼= C[ZNp /SN ] (6.25)

so they can be labelled by m ∈ ZNp /SN so that their values coincide with the values of the

S-matrix in (6.23) given vi = e2πini/p.

As usual, the integral over xi in the expressions like (6.22) or (6.46) corresponds to

taking gauge-invariant combinations of the operators accounted by the integrand. The

latter, in turn, contains q-Pochhammer factors

(x; q)∞ =
∞∏
n=0

(1− xqn) (6.26)

that correspond to bosonic and fermionic Fock spaces (3.23) in 3d N = 2 theory T [M3],

depending on whether they appear in the denominator or numerator. Finally, the theta-

functions in the integrals like (6.22) or (6.46) correspond to 2d degrees of freedom at the

boundary of the 3d space-time D2 ×q S1, cf. [80].

The new expressions (6.22) have the advantage that now they can be interpreted as

traces over certain vector spaces. In particular, unlike (6.7), the new expression (6.22) has

expansion in y and q with integer powers (up to an overall rational power of q) and integer

coefficients. In the unrefined case (y = 1) we have:

ẐU(N)k CS[L(p, 1)]n ∈ q
n2

2p Z[q] (6.27)

For example:

ẐT [L(p,1)][D
2 ×q S1]0 = N !

N−p∏
j = 1

j=N mod p

(1− qN−j)j (6.28)

One can also consider corresponding “unreduced” quantities produced by (6.22) but with

kept contribution of the Cartan part of the chiral multiplet in adjoint representation:

Ẑ
(unred)
U(N)k CS[L(p, 1)]n ≡

1

(qy2; q)N∞
ẐU(N)k CS[L(p, 1)]n (6.29)

At the end of this section we will give explicit examples of how integrality can be

restored in CS partition function for various 3-manifolds. In order to do this, we now wish

to formulate a general proposal for what should be the S-transform for arbitrary rational

homology spheres.27 We verify in various examples that it produces “categorifiable” quan-

tities similar to (6.27) from the original “non-categorifiable” CS partition function. Along

27The proposal was generalized to manifolds with b1(M3) > 0 in [81].
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the way, we put in a natural context (of the categorification program) various explicit

expressions for the CS partition function obtained previously in the literature and their

intriguing properties, including connection to Mock modular forms and Eichler integrals.

Specifically, in [82] it was proposed (based on many examples from loc. cit. and [83–

85]) that for rational homology spheres the SU(2) Chern-Simons partition function (a.k.a.

RTW invariant28) has the following decomposition:

ZSU(2)k CS[M3] =
q∆

√
8k

∑
a∈H1(M3)/Z2

e2πikSaZa(q)|τ↘1/k (6.32)

where Sa = λM3(a, a) are the diagonal values of the linking form29 on H1(M3), Za(q) are

q-series convergent for τ in the upper-half plane, and τ ↘ 1/k means taking a limit from

above. Note, that the values Sa can also be interpreted as values of Chern-Simons action

for reducible flat connections. Reducible flat connections correspond to representations of

π1(M3) into U(1) subgroup of SU(2). They are labeled by elements of H1(M3) modulo

Z2 Weyl symmetry action. The latter will result in technical differences between the cases

where 2 is a divisor of 0 in H1(M3) or not. For the sake of simplicity in what follows we

consider the case when it is not.30 The quantities Za(q) in general are contributions to

CS path integral from the corresponding reducible flat connection plus the contributions

of irreducible flat connections. This structure will be discussed in more detail at the end

of this section.

In general, i.e. when M3 is not an integer homology sphere, the q-series Za(q) have

algebraic coefficients and contain powers of q with exponents which differ by rational num-

bers and, therefore, still not suitable for categorification. However, we want to make the

following conjecture: there exists a k-independent S-matrix such that:

Za(q) =
∑
a

SabẐa(q) (6.35)

28The SU(2) CS parition that usually appears in the physics literature and that we use here has a different

normalization compared to RTW invariant τk(M3) which usually apears in the math literature:

ZSU(2)k CS(M3) =
τk(M3)

τk(S2 × S1)
(6.30)

where

τk(S2 × S1) =

√
2

k

1

sin π
k

(6.31)

29For general M3 the linking form is a bilinear part on the torsion part of H1(M3,Z):

λM3 : TorsH1(M3)⊗ TorsH1(M3)→ Q/Z (6.33)

For a rational homology sphere M3 it can be defined as follows. Consider a ∈ TorsH1(M3) and s ∈ Z, such

that sa = 0. Then, there exists a 2-chain B such that ∂B = sa. The value of the linking form between a

and a′ ∈ TorsH1(M3) then equals

λM3(a, a′) =
#(B ∩ a′)

s
. (6.34)

For plumbed rational homology spheres considered in section 3.6, the linking form on H1(M3) = Λ∗/Λ is

given by extension of the intersection form on lattice Λ to Λ∗ ⊂ Q⊗Z Λ.
30In practical, 2 is not a divisor of zero iff H1(M3) ∼= Zp1 ⊕ Zp2 ⊕ . . . where all pi are odd.
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where31

Ẑa(q) ∈ q∆aZ[[q]] , ∆a ∈ Q (6.37)

and, moreover, the S-matrix depends only on H1(M3).

For example, in the case when H1(M3) = Zp and p is odd, the S-matrix given by the

appropriate Z2 reduction of the û(1)p S-matrix already appeared earlier in the text:

Sab =
e

2πiab
p + e

− 2πiab
p

1 + δa,0
=

2 cos 2πab
p

1 + δa,0
, a, b ∈ 0, . . . , (p− 1)/2 (6.38)

It is easy to check that the matrix (6.38) squares to the identity. In general, H1(M3)

is a product of cyclic groups and the S-matrix is the corresponding tensor product of

matrices (6.38). Similarly to the case of lens spaces considered in the previous section on

can introduce unreduced quantities, which may be more appropriate for categorificarion:

Ẑ(unred)
a (q) ≡ Ẑa(q)

(q; q)∞
∈ q∆aZ[[q]] (6.39)

We support this conjecture by verifying it explicitly in various examples of spherical

Seifert fibered 3-manifolds. For many such examples, M3 can be realized as a link of

a singularity f(x, y, z) = 0, and the corresponding expression for ZSU(2)k CS is explicitly

written in [82, 84]. Using these expressions we find a perfect agreement with our general

conjecture.

The fact that the structure of the decomposition (6.32) and the S-transform (6.35)

is essentially dictated only by H1(M3) is quite mysterious but might have the following

physical interpretation. When one considers multiparticle states from several M2 branes

wrapping non-trivial cycles in M3 one expects them to be labelled by elements of H1(M3),

not (conjugacy classes of) π1(M3), since there is no natural order between different particles.

Before we proceed to examples, let us introduce the following q-series convergent for

τ in the upper-half plane:

Ψ̃(a)
p (q) =

∞∑
n=0

ψ
(a)
2p (n)q

n2

4p ∈ q
a2

4p Z[[q]] (6.40)

where

ψ
(a)
2p (n) =

{
±1 , n ≡ ±a mod 2p

0 , otherwise
(6.41)

These q-series are Eichler integrals of certain weight-3/2 modular forms

Ψ(a)
p (q) =

1

2

∑
n∈Z

nψ
(a)
2p (n)q

n2

4p (6.42)

31When 2 is a divisor of 0 in H1(M3) we expect

Ẑa(q) ∈ q∆aZ[[q1/2]] , ∆a ∈ Q (6.36)

– 58 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
1

and exhibit Mock modular properties (see e.g. [84]). For the 3-manifolds that we are going

to consider, the q-series Za(q) in (6.32) can be expressed as a linear combinations (with

algebraic coefficients) of Ψ̃
(a)
p (q) for a fixed p. In what follows, we use the same notation

for 3-manifolds and the corresponding surface singularities.

We first list examples with H1(M3) = Z3. The S-matrix (6.38) reads

S =
1√
3

(
1 1

2 −1

)
(6.43)

1. The simplest example of a 3-manifold with H1(M3) = Z3 is a Lens spaceM3 = L(3, 1),

which can be thought of as the link of a surface singularity f(x, y, z) = x3 + yz. The

S-transform of the Chern-Simons partition function

√
2k ZSU(2)k CS[L(3, 1)] =

1√
3

(q1/3 − 1) +
e2πik/3

√
3

(−2− q1/3) (6.44)

gives

Ẑ0 = −2 , Ẑ1 = 2q1/3 (6.45)

The corresponding quantities refined by the U(1)β fugacity y can be obtained from

the SU(2) analogue of the formula (6.22):

Ẑa = −
∫
|x|=1

dx

2πix

(x2; q)∞
(x2y2q; q)∞

(x−2; q)∞
(x−2y2q; q)∞

∑
n∈Z

q
(3n+a)2

3 x2(3n+a) (6.46)

To obtain “naive Poincaré polynomials” of the Khovanov homology (3.19), it is con-

venient to write these q-expansions in terms of the variable t = −y2, which can be

interpreted as a fugacity for the U(1)t R-symmetry, cf. section 3.4. For the Lens

space L(3, 1) we find

Ẑ0 = −2
(
1 + q(1 + t) + q2(2 + 3t+ t2) + . . .

)
(6.47)

Ẑ1 = 2q1/3
(
1 + q(2 + 2t) + q2(2 + 4t+ 2t2) + . . .

)
As this example ideally illustrates, the refined “homological blocks” (6.47) have a lot

more terms compared to their unrefined cousins (6.45). The fact that all coefficients

are positive integers supports hypothesis that they indeed can give us Poincaré poly-

nomials. However, to be more conservative, one should only say that they provide

lower bounds on the homology dimensions for a given U(1)q grading. The way the

specialization to t = −1 works is that many terms cancel in pairs a la [29]:

Ẑa = Ẑa|t=−1 + (1 + t) · Pa,+(q, t) (6.48)

where Pa,+(q, t) ∈ Z+[[q, t]]. This seems to be a part of the general structure of

categorification (1.7).

One can also keep the contribution of the Cartan part of the chiral in adjoint repre-

sentationconsider corresponding unreduced refined “blocks” defined as

Ẑ(unred)
a =

Ẑa
(−qt; q)∞

(6.49)
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These quantites are more natural from the index of TSU(2)[M3] and, as we will see in

the next section, from the M-theory point of view after geometric transition. However

their unrefined limit reproduces blocks Za in the CS partition function with an extra

factor:

Ẑ(unred)
a |t=−1 =

Ẑa
(q; q)∞

(6.50)

The denominator can be interpreted as the contribution of point-like instantons in

twisted N = 4 SYM on R+ ×M3 realizing CS on its boundary. This extra factor

in (6.49) will not affect positivity of the coefficients in the q-expansion:

Ẑ
(unred)
0 = −2

(
1 + q + q2(2 + t+ t2) + q3(3 + 2t+ 2t2) + . . .

)
(6.51)

Ẑ
(unred)
1 = 2q1/3

(
1 + q(2 + t) + q2(2 + t+ t2) + . . .

)
and therefore can be naively interpreted as Poincaré polynomials. The same holds for

any M3 = L(p, 1) in the case G = SU(2). Further research should answer questions

about mathematical meaning of these two versions, reduced or unreduced one.

2. The Brieskorn sphere M3 = Σ(2, 3, 4) corresponds to f(x, y, z) = x4 + y3 + z2 and

has the following set of invariants

√
2k q25/24ZSU(2)k CS[Σ(2, 3, 4)] =

1 + 2e2πik/3

√
3

q1/24

− 1+2e2πik/3

2
√

3

(
Ψ̃

(1)
6 (q)+Ψ̃

(5)
6 (q)

)
− 1−e2πik/3

√
3

Ψ̃
(3)
6 (q)

(6.52)

Ẑ0 = 2q1/24 − Ψ̃
(1)
6 (q) + Ψ̃

(5)
6 (q) ∈ q1/24Z[[q]] ,

Ẑ1 = −2Ψ̃
(3)
6 (q) ∈ q3/8Z[[q]] (6.53)

3. Another Brieskorn sphere with H1(M3) = Z3 is M3 = Σ(2, 3, 8), the link of a surface

singularity f(x, y, z) = x8 + y3 + z2:

√
2k q−1/48 ZSU(2)k CS[Σ(2, 3, 8)] =

1

2
√

3

(
Ψ̃

(1)
12 (q)− Ψ̃

(7)
12 (q)− 2Ψ̃

(9)
12 (q)

)
+
e2πik/3

√
3

(
Ψ̃

(1)
12 (q)− Ψ̃

(7)
12 (q) + Ψ̃

(9)
12 (q)

)
(6.54)

Ẑ0 = Ψ̃
(1)
12 (q)− Ψ̃

(7)
12 (q) ∈ q1/48Z[[q]] ,

Ẑ1 = −2Ψ̃
(9)
12 (q) ∈ q11/16Z[[q]] (6.55)
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4. The link of a surface singularity f(x, y, z) = x4 + y3 + xz2 is M3 = Q10, with the

following invariants:

√
2k q71/72 ZSU(2)k CS[Q10] =

1

2
√

3

(
Ψ̃

(1)
18 (q)− Ψ̃

(5)
18 (q)− Ψ̃

(13)
18 (q) + Ψ̃

(17)
18 (q)

)
+
e−2πik/3

2
√

3

(
2Ψ̃

(1)
18 (q) + Ψ̃

(5)
18 (q) + Ψ̃

(13)
18 (q) + 2Ψ̃

(17)
18 (q)

)
(6.56)

Ẑ0 = Ψ̃
(1)
18 (q) + Ψ̃

(17)
18 (q) ∈ q1/72Z[[q]] ,

Ẑ1 = −Ψ̃
(5)
18 (q)− Ψ̃

(13)
18 (q) ∈ q25/72Z[[q]] (6.57)

We now consider examples with H1(M3) = Z5:

S =
1√
5

1 1 1

2 1
2(−
√

5− 1) 1
2(
√

5− 1)

2 1
2(
√

5− 1) 1
2(−
√

5− 1)

 (6.58)

5. The simplest example of a 3-manifold with H1(M3) = Z5 is the Lens space M3 =

L(5, 1), which can be realized as a link of a surface singularity f(x, y, z) = x5 + yz.

It has

√
2k q−1/2 ZSU(2)k CS[L(5, 1)] =

1√
5

(q1/5 − 1) +
e2πik/5

2
√

5

(
(−1−

√
5)q1/5 − 4

)
+
e−2πik/5

2
√

5

(
(−1 +

√
5)q1/5 − 4

)
(6.59)

Ẑ0 = −2 , Ẑ1 = 2q1/5, Ẑ2 = 0 (6.60)

The corresponding refined quantities read

Ẑ0 = −2
(
1 + q(1 + t) + q2(2 + 3t+ t2) + . . .

)
, (6.61)

Ẑ1 = 2q1/5
(
1 + q(2 + 3t) + q2(3 + 5t+ 2t2) + . . .

)
, (6.62)

Ẑ2 = −2q4/5
(
0 + q(1 + t) + q2(1 + 3t+ 2t2) + . . .

)
, (6.63)

while their unreduced versions are

Ẑ
(unred)
0 = −2

(
1 + q + q2(2 + t+ t2) + q3(3 + 2t+ 2t2) + . . .

)
, (6.64)

Ẑ
(unred)
1 = 2q1/5

(
1 + q(2 + t) + q2(3 + 2t+ t2) + . . .

)
, (6.65)

Ẑ
(unred)
2 = −2q4/5

(
0 + q(1 + t) + q2(1 + 2t+ t2) + . . .

)
(6.66)

6. The Brieskorn sphere M3 = Σ(2, 4, 5) corresponds to f(x, y, z) = x5 + y4 + z2 and

has quantum invariants
√

8k q19/40 ZSU(2)k CS[Σ(2, 4, 5)] = Z0(q) + e4πik/5Z1(q) + e−4πik/5Z2(q) (6.67)

Ẑ0 = Ψ̃
(1)
10 (q) + Ψ̃

(9)
10 (q) ∈ q1/40Z[[q]] ,

Ẑ1 = 0 , Ẑ2 = −2Ψ̃
(5)
10 (q) ∈ q5/8Z[[q]] (6.68)
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Now let us make a few comments about contribution of irreducible flat connections.

As was exploited in [82–85], the large-k asymptotics of the CS partition function can be

easily found starting from decomposition (6.32) and using mock-modular properties of

functions (6.40):

Ψ̃(a)
p (q) = −

√
k

i

p−1∑
b=1

MabΨ̃
(b)
p (e−2πik) +

∞∑
n=0

L(−2n, ψ
(a)
2p )

n!

(
πi

2pk

)n
(6.69)

where

L(−n, ψ(a)
2p ) = − (2p)n

n+ 1

2p∑
m=1

ψ
(a)
2p Bn+1

(
n

2p

)
, (6.70)

Mab =

√
2

p
sin

πab

p
(6.71)

and

Ψ̃(a)
p (e−2πik) = (1− a/p) e

πika2

2p (6.72)

for integer k. It follows that Ẑa(q), their linear combinations, will have asymptotics k →∞
of the following form:

Ẑa(q) =

√
k

i
M ′ab

∑
b

e2πikCa + Ŵa(q) (6.73)

where M ′ab are algebraic k-independent numbers, Ca ∈ Q and

Ŵa(q) ∈ q∆aQ[[q − 1]] (6.74)

Therefore the asymptotics of the total partition function has the following form:

√
8k

q∆
ZSU(2)k CS[M3] =

∑
a∈H1(M3)/Z2

e2πikSa

( ∑
b∈H1(M3)/Z2

SabŴb(q)

)
+

√
k

i

∑
c

e2πikScAc

(6.75)

where the sum over a correspond to the sum over reducible flat connections and the sum

over c is the sum over irreducible flat connections. Again, Ac are algebraic k-independent

numbers.

The contribution from the trivial flat connection (the a = 0 term) is an element

of Q[[q − 1]] and is known as Ohtsuki series (perturbative RTW invariant) in the math

literature (see e.g. [86]). For integer homology spheres, it is an element of Z[[q−1]] [87, 88].

Let us stress an important difference between decompositions (6.75) and (6.32) of the

Chern-Simons partition function. The right-hand side of (6.75) is an asymptotic expression

in the k →∞ limit with coefficients in front of each e2πikSa being asymptotic series in 1/k,

or, equivalently in q−1, while the right-side of (6.32) is an exact expression with coefficients

being the convergent series in q.

As an example, consider the Poincaré sphere M3 = Σ(2, 3, 5) which has only one re-

ducible flat connection (the trivial one) and two irreducible flat connections. The partition
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function is given by [85]:

√
2k q181/120 ZSU(2)k CS[Σ(2, 3, 5)] =

q1/120 − 1

2

(
Ψ̃

(1)
30 (q) + Ψ̃

(11)
30 (q) + Ψ̃

(19)
30 (q) + Ψ̃

(29)
30 (q)

)
∈ 1

2
q1/120Z[[q]] (6.76)

and has the following asymptotic expansion:

√
2k q1/2 ZSU(2)k CS[Σ(2, 3, 5)] =

∞∑
n=0

qn(qn)n + S′11e
−πik/60 + S′21e

−49πik/60 (6.77)

Where (x)n ≡ (1 − x) . . . (1 − xqn−1). The first term in (6.77) is the contribution of the

trivial flat connection and S′ is the S-matrix

S′ =

√
k

i

2√
5

(
sin π

5 sin 2π
5

sin 2π
5 − sin π

5

)
(6.78)

acting on the vector (
Ψ̃

(1)
30 (q) + Ψ̃

(11)
30 (q) + Ψ̃

(19)
30 (q) + Ψ̃

(29)
30 (q)

Ψ̃
(7)
30 (q) + Ψ̃

(13)
30 (q) + Ψ̃

(17)
30 (q) + Ψ̃

(23)
30 (q)

)
(6.79)

according to (6.69). That is the S-transform of the contributions from irreducible flat

connections with the matrix S′ gives integer valued vector (1, 0). This property is general

for Brieskorn integer homology spheres [83].

6.3 Back to Heegaard Floer homology

In this section we show that similarly to the case of knots it might be possible to reconstruct

Heegaard Floer homology starting from Khovanov homology. Let us start with the (reduced

version of) proposed Poincaré polynomial for S3:

ẐSU(2)k CS[S3]0 =
(−qt; q)∞
(q2t2; q)∞

=
(−qt; q)∞
(at2; q)∞

(6.80)

where we naively restored an extra fugacity a = qN with N = 2 which corresponds to the

choice of SU(2) gauge group. This is the fugacity for U(1)a grading similar to the extra

U(1)a grading that appears in the triply graded HOMFLY-PT homology for knots. As will

be evident in the next section this way to resore the extra grading, or equivalently, the way

a appears in the right hand side of (6.80) agrees with counting of BPS states of M-theory

in the resolved conifold background.

First let us consider a spectral sequence from SU(2) Khovanov-Rozansky homology

to its SU(1) version, which should be a trivial one. It can be realized by deforming a

differential (or Q operator in the physical language) by the following one:

d1 : (−1, 1,−1)a,q,t (6.81)
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where 3 numbers on the right denote its U(1)a, U(1)q and U(1)t gradings correspondingly.

In case of Khovanov homology for knots, the analogous differential to N = 1 theory was

constructed by Lee [89]. Since

ẐSU(2)k CS[S3]0|a=−q/t = 1 (6.82)

The Poincaré polynomial of the new homology w.r.t. to the deformed differential is then

given by the first term in the right hand side of the following decomposition formula and

indeed corresponds to a trivial space:

ẐSU(2)k CS[S3]0 = 1 + (1 + at/q) (. . .) (6.83)

where (. . .) has expansion with positive coefficients.

Now consider deformation by the following differential:

d0 : (−1, 0,−1)a,q,t (6.84)

One can similarly decompose (6.80) as follows:

ẐSU(2)k CS[S3]0 =
1

1− at2
+ (1 + at)(. . .) (6.85)

The first term agrees with the Poincaré polynomial of HF+(S3) (cf. formula (3.49)). It

would be interesting to a similar spectral sequence that relates categorification of WRT

invariant with HF+ for some other rational homology spheres.

7 Homology/BPS spectrum from M-theory

In this section, we approach the space of BPS states (1.1) in the setup (1.6) from the vantage

point of the Calabi-Yau 3-fold. Since (closed) refined BPS invariants now have a rigorous

mathematical definition [90], this gives an opportunity to define mathematically 3-manifold

homologies, at least on the resolved/triply-graded side, as motivic (= refined [91]) invariants

of the Calabi-Yau 3-fold (1.10) labeled by M3. Of course, as we already mentioned in the

introduction, the map (1.10) is expected to exist only for a certain class of 3-manifolds and

identifying this class will be one of the goals in the present section.

Studying the BPS Hilbert space associated for each manifold M3 for each fixed N

would be cumbersome. Instead it would be helfpul if there is some regularity property that

the existence of the large N dual predicts for this. This has beed used effectivly in the

context of knot homology invariants [10]. It would be natural to ask for its extension to

the BPS Hilbert space associated with closed 3-manifold.

Consider the simplest case of closed 3-manifold M3 = S3. It is known [92] that large

number of A-branes wrapped around S3, is dual to the topological string on the resolved

condifold O(−1)+O(−1)→ P1. This duality which was orignially studied in the context of

large N Chern-Simons theory continues to hold for refined version as well [57]. Moreover,

this duality can be viewed as the statement of equality even for fixed finite N in the refined

case [93].

In what follows we review this connection and try to generalize it. We also discuss its

implications for the structural properties of the Hilbert space associated with the refined

Chern-Simons theory, by the existence of the large N dual theory.
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7.1 BPS spectrum for resolved conifold

Consider the case when Calabi-Yau threefold X is resolved conifold in more detail. We

are interested in studying BPS spectra of M-theory in R× TN4 ×X background. Denote

by q1,2 fugacities32 for U(1)q1 × U(1)q2 symmetry acting on TN4
∼= Cq1 × Cq2 . They are

related as follows to the fugacities appeared in section 6:

q1 = q q2 = −tq = y2q (7.1)

The BPS states are realized as M2-branes or, via reduction to type IIA, as D0-D2

bound states. The contribution from D2 branes to the partition function of refined top

strings on resolved conifold (in the large volume chamber) is given by

ZD2
top = exp

{
−
∞∑
k=1

Qk

k(q
k/2
1 − q−k/21 )(q

k/2
2 − q−k/22 )

}
(7.2)

where logQ is complexified Kähler modulus of the base P1. The full partition function

which takes into account the contribution of D0 branes then reads:

Ztop =
ZD2

top

ZD2
top|a=q

1/2
2 q

−1/2
1

. (7.3)

After introducing a rescaled fugacity a = Qq
1/2
1 q

−1/2
2 the numerator can be rewritten as

follows:

ZD2
top = exp

{
−
∞∑

k=1,i

i

k

ak q−ik2 (1− qk2 )

(1− qk1 )

}
=

∞∏
i=1

(
(aq−i2 ; q1)∞

(aq−i+1
2 ; q1)∞

)i
=
∞∏
i=0

1

(aq−i2 ; q1)∞
(7.4)

The full topological string partition function (7.3) then reads

Ztop(a, q1, q2) =

∞∏
i=0

(q−i2 ; q1)∞

(aq−i2 ; q1)∞
(7.5)

Now, if one sets a = qN2 where N is a positive integer it agrees with the “unreduced”

version of the refined CS partition function on S3 (6.19):

Ztop|a=qN2
=

∞∏
i=0

(q−i2 ; q1)∞

(qN−i2 ; q1)∞
=

N−1∏
i=0

1

(qN−i2 ; q1)∞
=
ẐU(N) CS[S3]0

(q2; q1)N∞
≡ Ẑ(unred)

U(N) CS[S3]0 (7.6)

The fact that it reproduced the unreduced version is expected since the latter is the answer

given by the index of the full, unreduced T [M3] on D2 ×q S1 (see section 6). Then both

sides of this equality are direct M-theory calculations, one of which is done before geometric

transition, another is after. At the same time the precise (that is including all normalization

factors) relation to the CS partition function on M3 a priori is not so clear.

Note that the expression in the middle of (7.6) can be interpreted as the index of

N free chiral multiplets on D2 ×q S1 with Neumann boundary condition imposed on the

32Compared to the notations of [57] q1 = tthere, q1 = qthere.
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1
Á
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Figure 13. A visualization of the single-particle states in HBPS for the resolved conifold. Three

axes correspond to Z3 gradings corresponding to fugacities q1, q2 and a. One particle states φi,j and

ψi,j span two quadrants in (q1, q2) plane shifted by 1 along a axis. Dashed arrows show the action

of d4 differential which has U(1)q1 charge zero and maps Z-graded towers to Z-graded towers.

boundary. This is not surprising since N = 2 3d U(N) Chern-Simons theory with level

one is conjectured to be dual to a theory of N free chiral multiplets [94–96]. Therefore the

3-manifold analog of U(N) Khovanov-Rozansky homology for S3 is conjecturelly given by

a Fock space of N bosons (and all their rotational modes). Since there are no cancellation

in the refined partition function (7.6) it can be understood as the corresponding Poinceré

polynomial. The SU(N) version has one less boson and the corresponding refined partition

function has (q2; q1)−1 factor removed.

Let us describe how the formula

∞∏
i=0

(q−i2 ; q1)∞

(aq−i2 ; q1)∞

∣∣∣∣
a=qN2

=

N−1∏
i=0

1

(qN−i2 ; q1)∞
(7.7)

can be understood on the level of Hilbert spaces. It has meaning analogous to the spectral

sequence from HOMFLY-PT knot homology to U(N) Khovanov-Rozansky knot homology.

The space of BPS states in M-theory is Z2⊕Z3-graded. Two of three Z-gradings correspond

to charges with respect of U(1)q1,q2 rotational symmetries. The third grading counts the

number of times that M2-branes wrap the non-trivial two-cycle P1 in the resolved conifold.

It has a meaning of U(1)a gauge symmetry charge in terms of the effective 5d theory

on R × C2
q1,q2 (see section 7.4). The refined topological string partition function then

counts BPS states weighted with ±1 according to the Z2-grading. In the particular case of

conifold (7.5) counts multiparticle states generated by the following single particle states

(see figure 13):

φi,j : (0, 1, i,−j)Z2,a,q1,q2 ,

ψi,j : (1, 0, i,−j)Z2,a,q1,q2 ,
i, j ≥ 0 (7.8)

where the numbers in parentheses denote their Z2 ⊕ Z3 gradings. That is

HBPS = Sym∗C[{φi,j}i,j≥0]⊗ Λ∗C[{ψi,j}i,j≥0] (7.9)
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The formula (7.7) at the level of then lifts to the following relation

H∗(HBPS, dN ) = HN = Sym∗C[{φi,j}i≥0, N−1≥j≥0] (7.10)

where HN in the right-hand side is U(N) Khovanov-Rozansky homology for S3 and the

left-hand side is homology of HBPS with respect to a differential acting as follows:

dNφi,j = ψi,j−N . (7.11)

It has the following charges:

dN : (1,−1, 0, N)Z2,a,q1,q2 (7.12)

We expect that the similar structure will hold for homological invariant of other 3-manifolds

that admit large N duals.

7.2 Generalizations

The large-N duality for N fivebranes wrapping M3 × R × Σ should have a generalization

to geometric transition for positively curved M3. When M3 is not positively curved, such

as hyperbolic 3-manifold, we still expect a large-N transition, but as we will discuss in

the end of this section we expect the transition in the R× Σ. Most of this section will be

devoted to the geometric transition for positively curved M3.

It has already been argued, and checked [97–100] that this large N duality extends at

least to the case where we quotient both sides of the duality by a discrete group, which

preserves S3. In particular if we choose a discrete subgroup Γ ⊂ SO(4) and mod out, we

can get an arbitrary spherical 3-manifold

M3 = S3/Γ (7.13)

instead of S3 and on the right hand side we get a resolved geometry with more Kähler

classes.

Let us discuss how this works. Consider for example modding S3/Zp where Zp acts on

the conifold geometry xy − zt = µ by

(x, y, z, t)→ (ωx, ω−1y, ωz, ω−1t) , ωp = 1 (7.14)

Passing this through duality one finds that one can choose the action so that P1 is fixed

but the fiber of the resolved conifold
(
O(−1)+O(−1)

)
|pt
∼= C2 is modded out by Zp giving

P1 as the locus of Ap−1 singularity. We thus obtain a singular geometry on the resolved

side which can be blown up giving p − 1 additional moduli, leading to the closed string

side with a total of p Kähler classes. These classes were interpreted from the open Chern-

Simons perspective as follows. Consider U(N) Chern-Simons theory on L(p, 1) = S3/Zp.
The saddle points for CS theory are captured by choices of the holonomy of flat U(N)

connection, which amounts to picking a homomorphism

ρ : π1(S3/Zp) = Zp → U(N) (7.15)
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This in turn can be labeled by the decomposition of ρ into irreducible representations which

are one dimensional and corrspond to a choice of p-th root of unity:

e2πini/p, i = 1 . . . N (7.16)

The corresponding vector n ∈ ZNp (modulo permutations) has already appeared in section 6

as the label for U(N) flat connections on L(p, 1). As in section 6 let us denote N
(n)
k =

#{j|nj = k}, the number of times the k-th representation appears. Then
∑p

k=1N
(n)
k = N .

We expect the following generalization of (7.6):

Ztop(a1, . . . , ap; q1, q2)
∣∣
ai=q

N
(n)
i

2

=
ẐU(N) CS[L(p, 1)]n

(q2; q1)N∞
(7.17)

where the right-hand side is computed by (6.22) and ai are fugacities for H2(X) gradings

(with appropriate rescaling by powers of q1,2). The equality makes sense since both sides

have epansions with integer coefficients. It would be interesting to verify this explicitly. The

left-hand side can be calculated using refined topological vertex or K-theoretic Nekrasov

partition function of pure U(p) super-Yang-Mills.

One can express the right-hand side of (7.17) via contributions to CS partition function

corresponding to a particular flat connection by inverting (6.23):

Ztop(a1, . . . , ap; q1, q2)|
ai=q

N
(n)
i

2

∝
∑

m∈ZNp / SN

SZN ,p
n,m ZU(N)k [L(p, 1)]m (7.18)

This formula can be interpreted as the discrete analog of the Fourier-like transform relating

topological string partition function and Chern-Simons partition function in the large N

limit. Let us review this point briefly. Consider unrefined case q1 = q2 = q for simplicity

and denote gs = log q = 2πi/k, Ti = log ai (Kähler parameters of X) and ti = gsN
(n)
i

(partial ’t Hooft parameters in Chern-Simons gauge theory). In the large N/large volume

limit one can consider both topological string partition function and CS partition function

for a given flat connection as asymptotic series in string coupling constant gs:

logZtop =
∑
g≥0

g2g−2
s F

(g)
top(T1, . . . , Tp) , (7.19)

logZCS =
∑
g≥0

g2g−2
s F

(g)
CS (t1, . . . , tp) . (7.20)

Both ZCS and Ztop can be interpreted as wave-functions on the Kähler moduli space so that

{Ti} and {ti} are natural coordinates near large volume and conifold points respectively.

The relation between asymptotic expansions in gs then should be given by a Fourier-like

transform [101] (which follows from [102, 103]):

Ztop(T1, . . . , Tp; gs) =

∫
e

1

g2
s
S(t,T )

ZCS(t1, . . . , tp; gs) (7.21)

where S(t, T ) is a quadratic function. In genus zero it reduces to a symplectic transform

between periods of mirror Calabi-Yau threefold (that is solutions of the Picard-Fuchs equa-

tions) and the integral formula above realizes its unambiguous lift to the quantum level.

In the case M3 = L(2, 1) the explicit form of such transform was found in [104, 105]
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Suppose we consider the Chern-Simons theory on general M3 and ask under what

conditions we expect there to be a large N dual. The above examples show that if there is a

large N dual the number of its Kähler classes should be given by the number of inequivalent

representations of π1(M3). The reason for this is that from the CS side the relevant saddle

points are given by flat connections which are in turn captured by homomorphisms33

ρ : π1(M3)→ U(M) (7.22)

and this map is characterized by the number of times Ni where the Ri irreducible repre-

sentation of π1(M3) occurs in this map. Moreover we have the relation∑
i

Ni dimRi = N (7.23)

Again we would identify ti = Nigs with coordinates on the Kähler moduli space of the closed

string dual. Since the number of irreducible representations are related to the number of

conjugacy classes of π1(M3) we thus predict that

h1,1 = |Conj
(
π1(M3)

)
| (7.24)

If π1(M3) has infinitely many conjugacy classes, then we would not expect there to exist a

meaningful large N dual because that would have suggested that the local CY dual would

have infinitely many Kähler classes. In particular M3 would need to be a rational homology

3-sphere. The number of conjugacy classes is automatically finite if the fundamental group

π1(M3) is finite. In this case the 3-manifold can always be realized as (7.13) so that

Γ = π1(M3). It is hard to imagine a 3-manifold with infinite fundamental group that have

a finite number of conjugacy classes. Although there are examples of infinite groups with

finitely many conjugacy classes, there are no known examples of finitely presented infinite

groups with such property. And from any surgery-like construction one is always bound

to obtain a 3-manifold with a finitely presented fundamental group. This is in agreement

with general experience with geometric transitions which strongly suggests that we must

have a positively curved three manifolds if it were to shrink.

Let us point out that the large N behavior is very different for hyperbolic and spherical

3-manifolds. In the case when M3 hyperbolic the backreaction happens not along the M3

directions of fivebranes, but on the other part which becomes a boundary of AdS4 (see

e.g. [106]). It would be interesting to study in detail large N limit for three-manifolds with

“intermediate” geometry, for example the ones which are modeled on hyperbolic plane

times R or even with more exotic nil- or solv- geometries.

7.3 BPS states and grid diagrams

In the five-brane system (1.6), the N = 0 case corresponds to the most singular limit of

the conifold. Whether we start on resolved or deformed side, setting N = 0 means taking

33However, observations made in section 6 in the case of SU(2) gauge group suggest that one might be

able to use decomposition of the CS partition function into a smaller set of terms. This will be explored

further elsewhere.
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the size of P1 to zero. While this limit looks pretty singular, it actually is precisely the

kind of orbifold/conifold limit where one often finds an alternative description — typically,

algebraic, in terms of quivers — of the space of BPS states. And the space of BPS states

is precisely what we are after:

HN=0 = HF+(M3) (7.25)

A toy version of such relation was considered at the end of section 6. So, just from knowing

the standard five-brane system on the conifold and the fact that HF+ theory corresponds to

N = 0, we could predict from physics that HF(M3) should have a combinatorial description

in terms of quiver representations or something similar, where a quiver would be associated

to a given CY singularity (obtained by shrinking M3 inside T ∗M3 or its resolved version,

if we start on the resolved side).

Let us compare this “prediction” with mathematics. It comes extremely close! Namely,

there is a nice formulation of the Heegaard Floer homology in terms of the so-called grid

diagrams [107], which is very reminiscent of dimer tilings and similar models that appear

in the description of quiver representations/BPS states at Calabi-Yau singularities (see

e.g. [108] for a review).

Moreover, as we pointed out earlier, the volume on the resolved side is related to the

super-rank (1.3), so that the singular conifold limit corresponds to the entire collection of

U(n|n) theories, of which (7.25) is only a special case. It would be interesting to understand

the BPS spectra for different U(n|n) and their relation to grid diagrams.

7.4 Surface operators in 5d theories labeled by 3-manifolds

The goal of this section is to mention that there is yet another physical way to look at

3-manifold invariants produced by fivebrane compactifications. Compactification of eleven-

dimensional M-theory on T ∗M3 or X (when the latter exists) from setup (1.6) leads to a

5d N = 2 theory that captures all the relevant physics, in particular, the spectrum of

BPS states we are interested in. The two phases of the CY 3-fold geometry, deformed

and resolved, are realized in this 5d effective low-energy theory as different branches. For

instance, in the basic case of M3 = S3 the effective 5d theory is N = 2 SQED, namely

abelian N = 2 vector multiplet coupled to a hypermultiplet and deformed (resp. resolved)

phase of the conifold geometry corresponds to the Higgs (resp. Coulomb) phase of 5d

N = 2 SQED [109]. On the Coulomb branch the v.e.v. of the scalar in the vector multiplet

gives mass to the hypermutliplet and the 5d theory can be effectively described as pure

U(1) 5d SYM.

Incorporating N fivebranes wrapped on M3 ⊂ T ∗M3 then gives rise to 3-dimensional

defect a la codimension-2 surface operator in 5d N = 2 theory. The theory on this

codimension-2 defect should flow to 3d N = 2 SCFT T [M3]. Note, in particular, that even

when 5d theory is non-conformal the 5d/3d coupled system enjoys 3d N = 2 superconformal

symmetry, whose bosonic subgroup is SO(3, 2) × U(1)R. The corresponding homological

invariants 3-manifolds than can be computed by studying the spectrum of this 5d/3d

coupled system.
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Figure 14. A toric diagram for Calabi-Yau threefold X obtained by geometric transition from

T ∗L(4, 1). It can be intepreted as a (p, q) brane web relizing effective 5d N = 2 U(4) SYM.

Consider for example the case of M3 = L(p, 1). In the resolved phase the 5d theory

can be effectively described as 5d N = 2 U(p) SYM [97]. This is easy to see from the toric

diagram of the Calabi-Yau threefold X, which can be dualized into a web of (p, q)-branes

in type IIB string theory (see figure 14). Apart from the U(1)q,t gradings the spectrum of

BPS states will have p extra gradings corresponding to p generators of H2(X). From the

point of view of 5d theory these gradings can be interpreted as charges with respect to the

U(1)p diagonal subgroup of U(p).
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A Heegaard Floer homology of M3 = Σ′ × S1 and vortices

In section 3.7, we encountered a natural module over the ring Z[U ]⊗Z Λ∗H1(M3;Z) in the

case of M3 = Σ′ × S1, namely [2]:

HF+(Σ′ × S1, sh 6=0) ∼= H∗
(
Symd(Σg)

)
(A.1)

∼=
d⊕
i=0

ΛiH1(Σg)⊗ T0/(U
i−d−1)

where, as usual, U has degree −2, and sh denotes the Spinc structure with

〈c1(sh), [Σ′]〉 = 2h and 〈c1(sh), γ × S1〉 = 0 (A.2)

for all closed curves γ on the genus-g Riemann surface Σ′. This result has a simple and

direct derivation via reduction of the Seiberg-Witten theory to two dimensions.
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On M3 = R×Σ′ the spinor bundle W splits into two eigen-bundles, W ∼= E⊕F , which

correspond to spinors of positive and negaitve chirality, respectively. In fact, we have E =

(KΣ′⊗L)1/2 and F = K−1
Σ′ ⊗E. Correspondingly, we decompose Ψ = (φ, ρ) ∈ Γ(E)×Γ(F ),

on which the Dirac operator /DA acts as

/DAΨ =

(
−i ∂∂t ∂

∗
B

∂B i ∂∂t

)(
φ

ρ

)
Here, t is the coordinate on R and B is a connection on E (equal to a linear combination of

the connection A on L and the natural connection on the canonical bundle KΣ′). Under this

decomposition, the three-dimensional Seiberg-Witten equations become vortex equations

∗FA = i
(
|φ|2 − |ρ|2

)
∂Bφ = 0 , ∂

∗
Bρ = 0

φρ = 0

A solution to these equations with φ = 0 (resp. ρ = 0) will be called a positive (resp.

negative) vortex. Indeed, according to the first equation, the vortex number is given by

deg(L) =
i

2π

∫
Σ′
FA =

1

2π

∫
Σ′

(
|ρ|2 − |φ|2

)
so that positive and negative vortices have deg(L) ≥ 0 and deg(L) ≤ 0, respectively.

Solutions that have φ = 0 and ρ = 0 are reducible; these are flat connections on Σ′. In

what follows, we consider only irreducible solutions with either φ 6= 0 or ρ 6= 0.

Excluding reducible solutions, we denote by M+(E) and M−(E) the moduli spaces

of positive and negative vortices in a line bundle E over Σ′. Since these moduli spaces are

related,

M+(E) =M−(KΣ′ ⊗ E−1)

without loss of generality we can consider only one of them, say, the moduli space of

negative vortices with ρ = 0. (To simplify notations, sometimes we denote this moduli

space asM(E) or simply asM.) Then, using FB = 1
2(FA+FKΣ′ ), we can write the vortex

equations in the familiar form

2ΛFB − ΛFKΣ′ = i|φ|2

∂Bφ = 0 (A.3)

where Λ denotes the contraction with the Kähler form on Σ′. These equations are a special

case of the τ -vortex equations (with τ = iΛFKΣ′ ):

ΛFA =
i

2

(
|φ|2 − τ

)
∂Aφ = 0 (A.4)

which minimize the action of the abelian Higgs model

S =

∫
Σ′
|FA|2 + |dAφ|2 +

1

4

(
|φ|2 − τ

)2
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The vortex in this theory is a generalization of the Nielsen-Olesen vortex in the abelian

Higgs model, which can be recovered by taking Σ′ = R2 and τ = 1.

Now, let us consider the vortex moduli spaceM. The second equation says that φ must

be a holomorphic section of E. For example, on Σ′ = C it is solved with φ =
∏d
i=1(z− zi),

so that M = Symd(C). More generally, the vortex moduli space M can be identified with

the space of divisors of degree d = deg(E) on Σ′ via zeroes of φ. It is a Kähler manifold,

isomorphic to the d-th symmetric product

M = Symd(Σ′) (A.5)

when

0 ≤ deg(E) ≤ deg(KΣ′)

2
(A.6)

and is empty otherwise. In particular, we conclude that if h = deg(L) satisfies

−2g + 2 ≤ h ≤ 2g − 2

then the vortex moduli space M is non-empty and is isomorphic to the d-th symmetric

product with d = g − 1 − |h|2 . This is precisely the moduli space that appears in the

construction of the Heegaard Floer homology.

B S2 × S1 topologically twisted index of 3d N = 2 theories

In this section we give a brief summary of rules for computing topologically twisted S2×S1

index of 3d N = 2 theories from [33, 34, 49].

Let us denote the collection of flavor and gauge fugacities by {xi ∈ C}. They param-

etrize the maximal torus of the total gauge (G) and flavor (F ) symmetry group G × F .

Let {mi ∈ Z} denote the fluxes through S2 of the corresponding U(1) subgroups. The

vector m belongs to the weight lattice of G× F . The contribution of a chiral multiplet in

represetation R of G×F and R-charge r (w.r.t. the U(1) R-symmetry used to perform the

topological twist along S2) to the index reads:∏
ρ∈R

(
xρ/2

1− xρ

)ρ(m)+1−r
(B.1)

where ρ denotes a weight of the representation R and x is treated as the element of the

maximal torus of G × F . The gauging operation together with the contribution of the

vector multplets is given by∫
JK

∏
i∈G fugacities

dxi
2πixi

∏
α∈roots of G

(1− xα) · · · (B.2)

The integral should be performed according to Jeffrey-Kirwan residue prescription. For

each simple or U(1) subgroup Gs ⊂ G × F one can introduce Chern-Simons coupling ks.

The index will have the following classical contribution from CS action:∏
i∈Gs fugacities

xksmii . (B.3)
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For a pair of U(1) groups Ga and Gb one can also introduce mixed CS coupling kab:

xkabmba xkabmab . (B.4)

C 3d/3d correspondence for plumbed 3-manifolds: extras

C.1 S2 × S1 topologically twisted index of T [M3]: G = SU(2) case

In this section we write SU(2) analogs of vertex and edge contributions (3.62)–(3.63) to

the topologically twisted index of T [M3] with M3 given by a plumbing graph.

ISU(2)a(x,m) =
1

2
(1− x2)(1− 1/x2)x2am

×
(

xy−1

1−x2y−2

)2m−2s−1( x−1y−1

1−x−2y−2

)−2m−2s−1( y−1

1−y−2

)−2s−1

,

(C.1)

IT [SU(2)](x1,m1;x2,m2) =

(
y−1

1− y−2

)−2s−1∑
n∈Z

∫
dz

2πiz
zm1xn1

×
(
z1/2x

1/2
2 y1/2

1− zx2t

)n+m2+s+1(z1/2x
−1/2
2 y1/2

1− zx−1
2 y

)n−n2+s+1

×
(
z−1/2x

1/2
2 y1/2

1− z−1x2y

)−n+n2+s+1(z−1/2x
−1/2
2 y1/2

1− z−1x−1
2 y

)−n−n2+s+1

(C.2)

where y is the fugacity for U(1)β flavor symmetry of adjoint chiral multiplet. The integer

parameter s is the flux of U(1)β through S2. It can be also understood as the U(1) fugacity

associated to the puncture on the T 2 torus on which SL(2,Z) elements T a and S act. In

the N = 4 3d language U(1)β is the anti-diagonal of SU(2)R × SU(2)N R-symmetry. The

supersymmetry is actually broken to N = 2 by Chern-Simons terms, but U(1)y flavor

symmetry still survives and N = 2 U(1) R-symmetry can mix with it. In the formulas

above the U(1) R-symmetry which is used to make the topological twist is the diagonal

of SU(2)R, that is the R-charge of the adjoint chiral is 2 while the R-charge of hypers is

zero. Twisting the diagonal of SU(2)N instead is equivalent to changing s → s − 1. The

expression (C.2) has self-mirror property:

IT [SU(2)](x1,m1;x2,m2) = IT [SU(2)](x2,m2;x1,m1)|y→1/y, s→−s−1 (C.3)

C.2 S3 partition function

The aim of this section is to show that S3 parition function of T [M3], where M3 is given

by a plumbing graph share many structural properties with S2 × S1 topologically twisted

index. Consider the case G = SU(2) and S3 without squashing for simplicity. In the case

M3 = L(p, 1) squashed 2-sphere partition function of T [M3] was studied in detail in [96].

For the vector multiplet with level p CS term the contribution is the folowing:

ZSU(2)a [S3](u) = 2(sinh πu)2 e
πiau2

2 (C.4)
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The contribution from T [SU(2)] reads [110]

ZT [SU(2)][S
3](u, v) =

sinπuv√
8i sinhπu sinhπv

. (C.5)

Then

ZT [M3] =

∫ ∏
i∈vertices

duiZSU(2)ai
[S3](ui)

∏
α∈edges

ZT [SU(2)][S
3](uα1 , uα2) (C.6)

where α1,2 are two different vertices in ∂α. Then one can check if from the different

Seifert fibration data realizing homeomorphic 3-manifolds (preserving orientation) we get

the same answer. For example the following linear plumbings all give the same lens space

L(7, 2) ∼= L(7, 4):

(4, 2)

(1, 5, 2)

(3, 1, 5)

· · ·

(C.7)

The answer is indeed the same up to in∈Z which is most likely related to the framing

dependence of the complex Chern-Simons theory on M3.

Open Access. This article is distributed under the terms of the Creative Commons
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