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1 Introduction

Supersymmetric quantum field theories on curved backgrounds admitting a notion of rigid

supersymmetry have attracted considerable interest in recent years, mainly due to localiza-

tion techniques. Such techniques utilize the Q-exactness of certain operators on compact

manifolds admitting Killing spinors, and can be used to compute various observables ex-

actly, for any value of the couplings [1].
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This has motivated an extensive study of field theory backgrounds that support rigid

supersymmetry, in various spacetime dimensions [2–13] (see also [14, 15] for earlier work).

Following [2], the approach to constructing a theory possessing rigid supersymmetry on

curved backgrounds involves starting from a version of supergravity and sending Newton’s

constant to infinity, so that gravity becomes non-dynamical. Accordingly, somewhat differ-

ent versions of rigid supersymmetry on curved backgrounds exist, depending on whether one

starts from old minimal [2, 3, 6, 7], new minimal [4, 5, 11], or conformal supergravity [4, 11].

All these approaches lead to consistent theories with rigid supersymmetry, and de-

termine the classical Lagrangian, as well as the supersymmetry transformations of the

classical fields. Moreover, one can apply the Noether procedure to this Lagrangian in order

to derive the classical Ward identities that local gauge-invariant operators satisfy, reflecting

the global symmetries of the theory. However, to obtain the quantum Ward identities one

needs to compute the appropriate path integral on a general curved background in order

to determine the global anomalies. Global anomalies for N = 1 supersymmetric theories

in d = 4 have been classified using superspace cohomology arguments in [16], and have

been computed explicitly in a number of examples, both in superspace [17, 18], and in

component language [19].

However, both the rigid supersymmetry transformations on a curved background and

the general form of the Ward identities, including the quantum anomalies, can also be

determined through holographic techniques, as was done for gauge transformations and

the axial anomaly in [20], or for Weyl transformations and the trace anomaly in [21]. In

particular, starting with a suitable gauged supergravity in asymptotically AdSd+1 space,

one can derive the action of rigid supersymmetry on the sources of local gauge-invariant

operators on the d-dimensional conformal boundary, as well as the quantum Ward identities

these operators satisfy. The crucial point here is that the form of the Ward identities and of

the global anomalies is determined by symmetries and is therefore universal. In particular,

the same form of the Ward identities applies to a wider class of supersymmetric theories,

which need not admit a holographic dual.

Of course, the holographic calculation does not determine the elementary La-

grangian on any curved background, except possibly for terms that are protected by

non-renormalization theorems. Moreover, even when specifying the theory in terms of

gauge-invariant operators and their sources, there are two possible caveats in deriving the

rigid supersymmetry transformations and the quantum Ward identities using holographic

techniques. The first is that the version of rigid supersymmetry induced holographically

on the conformal boundary by bulk (minimal) gauged supergravity corresponds specifi-

cally to that obtained from conformal supergravity [23, 24] on the boundary through the

Festuccia-Seiberg argument [4, 11].1 However, this reflects the fact that the holographic

1Although the transformations of the background fields induced holographically on the boundary do

indeed correspond to those of conformal supergravity, the claim that the current multiplet induced holo-

graphically on the boundary is the conformal multiplet may not be quite correct. In fact, a simple counting

of off-shell degrees of freedom for the holographic sources on the boundary shows that fermionic and bosonic

degrees of freedom do not much. This suggests that the current multiplet induced holographically on the

boundary should be compared with the standard current multiplets with the auxiliary fields integrated out,

in which case they all coincide.
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Ward identities are expressed in terms of the operators at the ultraviolet fixed point, and

apply to both conformal and massive theories. The second is that the holographic calcu-

lation leads to specific values for the anomaly coefficients, which generically do not apply

to theories without a holographic dual, or even to holographic theories at weak coupling.

For instance, starting from two-derivative supergravity in AdS5 necessarily leads to a = c

in the resulting Ward identities on the conformal boundary [21]. However, starting from a

higher derivative supergravity theory in the bulk may lift this degeneracy.

In this paper we focus on N = 2 superconformal theories in d = 3 and N = 1 super-

conformal theories in d = 4. Starting with minimal N = 2 gauged supergravity in four and

five dimensions respectively, we use holography to derive the general form of the quantum

superconformal Ward identities on an arbitrary curved background, including an arbitrary

fermionic source for the supercurrent. A complementary analysis for N = 2 gauged su-

pergravity coupled to hypermultiplets is carried out in [25]. The minimal N = 2 gauged

supergravity describes holographically the current multiplet, consisting of the stress tensor,

T i
a , the R-symmetry current, J i, and the supercurrent Si. Their respective local sources

are the vielbein eai (0), a U(1) gauge field A(0)i, and a chiral gravitino Ψ(0)+i, whose values

specify the field theory background. Notice that in the presence of fermionic sources it is

necessary to introduce the vielbein as a fundamental source, rather than the metric g(0)ij . In

the absence of fermion sources, however, one may work exclusively with the metric g(0)ij and

its conjugate symmetric stress tensor T ij . The superconformal Ward identities we obtain

holographically are given in eq. (5.4). For N = 1 superconformal theories in d = 4 they are2

Dj(e
a
(0)iT j

a − Sj
Ψ(0)+i −Ψ(0)+iSj) + SjDiΨ(0)+j +Ψ(0)+j

←−DiSj + F(0)ijJ j = AMi,

DiJ i + i
√
3(Si

Ψ(0)+i −Ψ(0)+iSi) = AR,

DiSi +
1

2
T i
aΓ

aΨ(0)+i −
i

8
√
3
J i(Γij − 2g(0)ij)Γ

jpqDpΨ(0)+q = AS ,

ea(0)iT i
a − 1

2
Ψ(0)+iSi − 1

2
Si
Ψ(0)+i = AW ,

ΓiSi − i
√
3

4
J iΨ(0)+i = AsW ,

e
i[a
(0)T

b]
i +

1

4
(Si

ΓabΨ(0)+i −Ψ(0)+iΓ
abSi) = 0, (1.1)

where the local functions of the sources AMi, AR, AS , AW and AsW are given in eq. (5.3)

and are related to the global anomalies of the theory. We have slightly simplified the

notation here for the sake of brevity, but we refer to (5.4) and appendix A for the

precise form of the Ward identities and a guide to our notation, respectively. For N = 2

superconformal theories in d = 3 the Ward identities are of the same form, except that

the local terms AMi, AR, AS , AW and AsW are absent.

2An earlier attempt at holographically deriving the supertrace Ward identity starting from minimal

N = 2 gauged supergravity in five dimensions was made in [26]. However, both the term involving the

R-symmetry current and the contribution of the Ricci curvature to the supertrace anomaly were missed in

that analysis.
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For a generic N = 1 superconformal theory in four dimensions, the Weyl and R-current

anomalies take the form

AW ∼ cW2 − aE , AR ∼ (c− a)P [g(0)] + (5a− 3c)ǫijklF(0)ijF(0)kl, (1.2)

where

E = Rijkl[g(0)]Rijkl[g(0)]− 4Rij [g(0)]Rij [g(0)] +R2[g(0)],

W2 = Rijkl[g(0)]Rijkl[g(0)]− 2Rij [g(0)]Rij [g(0)] +
1

3
R2[g(0)]− 8F ij

(0)F(0)ij +O(Ψ2
(0)), (1.3)

are respectively the Euler density and the supersymmetrized Weyl squared conformal invari-

ant, while P [g(0)] is the topological Pontryagin density. In order to specify the numerical

factors, besides the a and c anomaly coefficients, one would need to appropriately normal-

ize the gauge field A(0)i. The precise factors for the correctly normalized gauge field can be

found e.g. in [27], which also corrected a sign in the original expressions for the anomalies

in [19]. As anticipated, our computation reproduces these anomalies but with a = c. In

particular, we obtain the full superconformal invariant W2, up to quadratic order in the

supercurrent source.

The terms AMi and AS that appear respectively in the diffeomorphism and supersym-

metry Ward identities are related to the R-symmetry anomaly AR and take the form

AMi ∼ ǫjklpF(0)ijF(0)klA(0)p, AS ∼ ǫisklF(0)skA(0)l(Γij − 2g(0)ij)Γ
jpqDpΨ+q. (1.4)

The appearance of these terms in the Ward identities simply reflects the fact that the R-

current operator J i is the consistent current (see e.g. [28] for a recent overview). Writing

the Ward identities in terms of the covariant (and gauge invariant) current J i
cov, these

terms get eliminated. In section 5 we confirm that the generating functional is invariant

under local diffeomorphisms3 and so indeed AMi does not represent an anomaly in the

diffeomorphism invariance of the theory. In contrast, the term AS does lead to a non-

invariance of the generating functional under local supersymmetry transformations, which

will play a crucial role throughout our analysis. Finally, the terms AW and AsW represent

anomalies under local Weyl and local superWeyl transformations, respectively.

Our main result concerns the consequences of the two fermionic anomalies, namely the

supersymmetry anomaly AS and the superWeyl anomaly AsW , on the transformation of

the supercurrent under rigid supersymmetry. In particular, we show that on backgrounds

admitting a (conformal) Killing spinor ζ+, which satisfies the Killing spinor equation (6.9),

the anticommutator of the corresponding supercharge with the supercurrent is generically

anomalous, namely

{Q[ζ],Si} = −1

2
T ijΓjζ+ +

i

8
√
3
Γijk

(
Γkl − 2g(0)kl

)
ζ+DjJ l +

i

2
√
3

(
Γi
l − 3δil

)
ζ−J l +Ai

ζ .

(1.5)

3I am grateful to Davide Cassani for pointing this out to me.
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The supercurrent anomaly Ai
ζ , given explicitly in (6.20), is related to the supersymmetry

and superWeyl anomalies as

Ai
ζ ∼

δ

δΨ(0)+i

∫
d4x

(
ζ̄+AS + ζ−AsW + h.c.

)
. (1.6)

Moreover, we show through explicit examples that there are backgrounds admitting Killing

spinors where all anomalies in the superconformal Ward identities are numerically zero, yet

the supercurrent anomaly Ai
ζ is non-zero. In those cases, the supercurrent anomaly poses

an obstruction to the Q-exactness of the operator

− 1

2
T ijΓjζ+ +

i

8
√
3
Γijk

(
Γkl − 2g(0)kl

)
ζ+DjJ l +

i

2
√
3

(
Γi
l − 3δil

)
ζ−J l. (1.7)

It may be useful to point out that the anomalous transformation (1.5) of the super-

current under rigid supersymmetry is reminiscent of the anticommutator of two fermionic

generators of an N = 1 superVirasoro algebra in two dimensions, namely

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm, Gr] =
1

2
(m− 2r)Gm+r,

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr+s,0. (1.8)

Although in two dimensions the anomalous term in the transformation of the supercurrent

survives in flat space, leading to a central extension of the superVirasoro algebra, in four

dimensions the anomalous term is manifest only in curved space. However, even in four

dimensions, the consequences of this anomalous transformation of the supercurrent should

be visible in flat space correlation functions.

We show that the anomalous transformation (1.5) of the supercurrent under rigid su-

persymmetry provides a resolution to two paradoxes discussed recently in [29]. Firstly,

considering the class of supersymmetric backgrounds in eq. (6.1), which were originally ob-

tained in [4, 5], we revisit the argument of [30–32], according to which the supersymmetric

partition function on this class of backgrounds is independent of the complex functions

u(z, z̄) and w(z, z̄). We show that the u and w variations of the supersymmetric parti-

tion function are indeed a linear combination of certain components of the operator (1.7).

However, the fact that the supercurrent anomaly is generically non-zero on these back-

grounds means that this operator is not Q-exact, and hence the supersymmetric partition

function is not invariant under deformations of the functions u(z, z̄) and w(z, z̄). Although

our derivation of the superconformal Ward identities is holographic, the argument we use

to show the non-invariance of the supersymmetric partition function is a field theory ar-

gument, using only the supercurrent anomaly. However, the result matches precisely the

answer obtained in [29], by explicitly evaluating the bulk on-shell action. We therefore

conclude, that holographic renormalization is perfectly compatible with supersymmetry,

and it is in fact the field theory assumption that the supersymmetric partition function is

invariant that is not quite correct!

– 5 –
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The second puzzle concerns the BPS relation among the conserved charges in su-

persymmetric states and the supersymmetric Casimir energy, which has been discussed

extensively in the recent literature [29, 33–37]. The BPS relation follows again from the

Q-exactness of the operator (1.7), but the presence of a non-zero supercurrent anomaly

implies that the BPS relation is also anomalous! We show that the supercurrent anomaly

together with the Ward identities provide enough constraints to determine the one-point

functions of the stress tensor and the R-current in any supersymmetric state in terms two

arbitrary scalar functions. This general solution for the supersymmetric one-point func-

tions allows us to obtain general formulas for the conserved charges for any BPS state,

including the supersymmetric Casimir charges of the global vacuum, as well as the super-

symmetric partition function. In fact, we show that there is a one-parameter family of

consistently defined charges, all of which satisfy the (anomalous) BPS relation. Moreover,

the supersymmetric partition function is independent of the definition of the charges.

The rest of the paper is organized as follows. In section 2 we briefly review the minimal

N = 2 gauged supergravity in four and five dimensions. Section 3 sets the stage for the sub-

sequent holographic analysis and discusses the radial Hamiltonian formulation of the bulk

supergravity dynamics. Section 4 contains our main technical results, where we carry out

the procedure of holographic renormalization in order to derive all boundary counterterms,

both bosonic and fermionic. Moreover, we show that there is a two-parameter family of su-

persymmetric renormalization schemes that also preserve parity, corresponding to adding

the two possible superconformal invariants (4.19). In section 5 we use these boundary

counterterms in order to define holographically the local current operators and derive the

quantum superconformal Ward identities, including all quantum anomalies. In section 6

we discuss the anomalous transformation of the supercurrent under rigid supersymmetry,

and we revisit the dependence of the supersymmetric partition function on the functions

u(z, z̄) and w(z, z̄), parameterizing the supersymmetric backgrounds found in [4, 5]. Fi-

nally, we use the anomalous transformation of the supercurrent, together with the Ward

identities, in order to obtain general expressions for the one-point functions of the stress

tensor and the R-current in any supersymmetric state, and to derive general expressions

for the Casimir charges and the supersymmetric partition function. Our notation and a

number of technical details are presented in three appendices.

2 Minimal N = 2 gauged supergravity

Our focus in this paper is on the minimal gauged supergravities in four and five dimen-

sions [38, 39], which we briefly revisit in this section, keeping terms up to quadratic order

in the gravitino. The field content of minimal gauged supergravity in both four and five

dimensions comprises of the gravity multiplet only, consisting of the metric gµν , a com-

plex Dirac gravitino Ψµ (equivalently a pair of symplectic-Majorana gravitini) and the

graviphoton Aµ.
4

4It can be checked that the number of on-shell bosonic and fermionic degrees of freedom match in both

four and five dimensions, respectively as 2 + 2 = 2 + 2 and 5 + 3 = 4 + 4.

– 6 –
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The minimal gauged supergravity action is obtained by gauging the UR(1) subgroup

of the USpR(2)
∼= SUR(2) R-symmetry group of N = 2 Poincaré supersymmetry and takes

the form [38, 39]

S =
1

2κ2

∫
dd+1x

√−g
(
R− FµνF

µν − 2Λ + c1 ǫ
µνρσλFµνFρσAλ (2.1)

−ΨµΓ
µνρ(

←→∇ ν + 2igAν)Ψρ −
d− 1

ℓ
Ψµ (Γ

µν + ic2(Γ
µνρσFρσ + 2Fµν))Ψν

)
,

where κ2 = 8πGd+1 is the gravitational constant and

Λ = −d(d− 1)

2ℓ2
, g =

1

ℓ

√
(d− 1)(d− 2)/2, (2.2)

are respectively the cosmological constant and UR(1) gauge coupling in D = d+ 1 dimen-

sions. As we verify in appendix C, the constants

c1 = − 2ℓ

3
√
3
δd,4, c2 =

ℓ√
2(d− 1)(d− 2)

, (2.3)

are fixed by supersymmetry. Notice that c1 is zero unless d = 4, i.e.D = 5. It should be em-

phasized that although we have written the action (2.1) for generic dimension D = d+1 in

order to treat the cases D = 4 and D = 5 simultaneously, this action is not supersymmetric

in dimensions other than four or five. The covariant derivative acts on the gravitino as

∇µΨν = ∂µΨν +
1

4
ωµαβΓ

αβΨν − Γρ
µνΨρ, (2.4)

where ωµαβ is the spin connection, Γρ
µν is the Christoffel symbol of the metric gµν , and Γαβ

denotes the antisymmetrized product of two gamma matrices, as defined in appendix A,

where we explain our index notation and gamma matrix conventions.5

The bulk action (2.1) must be complemented by the Gibbons-Hawking boundary

terms [40]

SGH =
1

2κ2

∫

∂Mε

ddx
√−γ (2K +ΨiΓ̂

ijΨj), (2.5)

which are required for the Dirichlet problem of the action (2.1) to be well posed on a finite

cutoff surface ∂Mε. However, in order for the variational problem to be well posed on a non-

compact asymptotically locally AdS space, additional boundary terms are required [41]. We

will derive these systematically in section 4. Moreover, the Gibbons-Hawking terms (2.5)

are required for the action to preserve supersymmetry on the boundary.

The supersymmetry transformations that leave the action (2.1) off-shell invariant up

to boundary terms are [38, 39]

δEα
µ =

1

2

(
ǫΓαΨµ −ΨµΓ

αǫ
)
, δAµ = ic3

(
Ψµǫ− ǫΨµ

)
,

δΨµ = ∇µǫ+ ic4
(
Γµ

νρ − 2(d− 2)δνµΓ
ρ
)
Fνρǫ−

1

2ℓ
(Γµ − 2iℓgAµ) ǫ,

δΨµ = ǫ
←−∇µ + ic4ǫ

(
Γρν

µ − 2(d− 2)δνµΓ
ρ
)
Fνρ +

1

2ℓ
ǫ (Γµ − 2iℓgAµ) , (2.6)

5We hope that the distinction between the Christoffel symbols Γρ
µν and the antisymmetrized products

of gamma matrices will be clear from the context in the following.

– 7 –
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where

c3 =

√
d− 1

8(d− 2)
, c4 =

1√
8(d− 1)(d− 2)

, (2.7)

and Eα
µ is the vielbein of the metric gµν , i.e. gµν = ηαβE

α
µE

β
ν . These transformations are

correct only to linear order in the gravitino, corresponding to the fact that the action (2.1)

is specified to quadratic order in the gravitino. In appendix C we check explicitly that

the supersymmetry transformations (2.6) leave the action (2.1) invariant up to boundary

terms, which we compute.

3 Radial Hamiltonian formalism

The first step in order to construct the holographic dictionary for the supergravity the-

ory (2.1) is to formulate the dynamics in Hamiltonian language, with the radial coordinate

emanating from the conformal boundary playing the role of Hamiltonian time. This for-

mulation allows one to systematically construct the covariant local boundary counterterms

required in order to render the variational problem well posed on the conformal boundary,

and to derive the renormalized observables in the dual field theory, as well as the Ward

identities they satisfy, including all related global anomalies.

The radial Hamiltonian formulation of the dynamics singles out a radial coordinate

r emanating from the conformal boundary ∂M in M and describes the evolution of the

induced fields on the constant radius slices Σr
∼= ∂M under radial translations. This

foliation ofM need only hold in an open neighborhood of ∂M, since the variational problem

and the holographic dictionary require knowledge of the space of asymptotic solutions

only. Equivalently, the holographic dictionary and the boundary counterterms require only

ultraviolet data.

The induced fields on the radial slices Σr are obtained through a standard ADM

decomposition of the bulk fields, given in eq. (A.7) in appendix A. This decomposition is

somewhat more involved in the presence of fermion fields, since a Hamiltonian description

of fermions requires an additional decomposition of the spinors according to radiality [42],

defined in eq. (A.18). Further details on the ADM decomposition of spinor fields are

provided in appendix A.

Radial Lagrangian. Inserting the ADM decomposition (A.7) in the supergravity ac-

tion (2.1) leads to a number of bulk terms that involve only up to first order radial deriva-

tives on the induced fields, as well as a number of boundary terms that are exactly canceled

by the Gibbons-Hawking terms (2.5).6 We can therefore write

S + SGH =

∫

Σr

dr L, (3.1)

6This is in fact a constructive argument for deriving the Gibbon-Hawking terms.

– 8 –
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where the radial Lagrangian is given by

L=
1

2κ2

∫
ddxN

√−γ

{
K2−KijK

ij− 2

N2
γij(Ȧi−∂ia−NkFki)(Ȧj−∂ja−N lFlj)

−2Λ+R[γ]−FijF
ij+

1

N
c1

(
4(Ȧi−∂ia)ǫ̂

ijklFjkAl+a ǫ̂ijklFijFkl

)

+
2

N
(Ψ̇+iΓ̂

ijΨ−j+Ψ−iΓ̂
ijΨ̇+j)+(K+N−1DkN

k)ΨiΓ̂
ijΨj+

1

4N
eakė

k
b ΨiΓ{Γ̂ij ,Γab}Ψj

+
2

N
ė(ia e

j)
b ΨiΓ

abΨj+
1

2N
Kkl

((
Ψr−N iΨi

)
[Γ̂kj ,Γ̂l]Ψj−Ψj [Γ̂

kj ,Γ̂l]
(
Ψr−N iΨi

))

− 2i(d−1)c2
N2ℓ

(Ȧi−∂ia−N jFji)
(
NΨkΓΓ̂

iklΨl−Ψ
i
(Ψr−ΨlN

l)+(Ψr−N lΨl)Ψ
i
)

+
1

4N
Ψi

(
2(∂kN) [Γ̂ij ,Γ̂k]−(DkNl)Γ{Γ̂ij ,Γ̂kl}

)
Ψj−

N i

N
(ΨjΓΓ̂

jk
DiΨk−Ψj

←−
D iΓΓ̂

jkΨk)

−ΨiΓ̂
ijk

DjΨk+Ψi
←−
D jΓ̂

ijkΨk−
1

N
Ψk

←−
D jΓΓ̂

jk
(
Ψr−N iΨi

)
− 1

N

(
Ψr−N iΨi

)
ΓΓ̂jk

DjΨk

+
1

N
ΨkΓΓ̂

jk(DjΨr−N i
DjΨi)+

1

N
(Ψr

←−
D j−N iΨi

←−
D j)ΓΓ̂

jkΨk+
2ig

N
(a−NkAk)ΨiΓΓ̂

ijΨj

− d−1

Nℓ

(
NΨiΓ̂

ijΨj+(Ψr−N iΨi)ΓΓ̂
jΨj+ΨjΓ̂

jΓ(Ψr−N iΨi)
)
+2ΨiΨjF

ij

− 2ig

N
Ai

(
NΨkΓ̂

kilΨl+(Ψr−NkΨk)ΓΓ̂
ijΨj−ΨjΓΓ̂

ij(Ψr−NkΨk)

)

− i(d−1)c2
Nℓ

Fkl

((
Ψr−N iΨi

)
ΓΓ̂jklΨj−ΨjΓΓ̂

jkl
(
Ψr−N iΨi

)
+NΨiΓ̂

ijklΨj

)}
. (3.2)

In deriving this Lagrangian we have decomposed the bulk vielbein as in eq. (A.9) and have

partially fixed the SO(1, d) frame rotations by choosing the frame specified in eq. (A.13). As

we shall see shortly, this does not lead to any loss of generality since one can obtain the first

class constraint associated with frame rotations by invoking the fact that there is no torsion.

Canonical momenta. As mentioned above, in order to define the symplectic variables

associated with the gravitino we need to use the radiality projectors (A.18) to decompose

its transverse components as [43]

Ψi = Ψ+i +Ψ−i. (3.3)

The variables Ψ+i and Ψ−i are symplectic conjugates and so one radiality can be treated as

a generalized coordinate, while the other as the corresponding canonical momentum. We

will adopt the convention that Ψ+i is the generalized coordinate and Ψ−i is (proportional

to) the corresponding canonical momentum.

The canonical momenta conjugate to the vielbein eai on Σr, the gauge field Ai, and

the induced fermion fields Ψ+i and Ψ+i can be read off the radial Lagrangian (3.2) and are
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given by

π i
a =

δL

δėai
=

√−γ

2κ2

(
2ea(jδ

i
k)

(
2γj[kγl]mKlm − Y jk

)
− (ebiZab + eajP

ji)

)
,

πi =
δL

δȦi

=
2
√−γ

κ2

(
− 1

N
(γij(Ȧj − ∂ja)−NjF

ji + U i) + c1 ǫ̂
ijklFjkAl

)
,

πi
Ψ = − δL

δΨ̇+i

= L

←−
δ

δΨ̇+i

=

√−γ

κ2
Ψ−jΓ̂

ji, πi
Ψ
=

δL

δΨ̇+i

=

√−γ

κ2
Γ̂ijΨ−j , (3.4)

where we have defined for convenience the fermion bilinears

U i =
i(d− 1)c2

2ℓ

(
NΨjΓΓ̂

jkiΨk + (Ψr −NkΨk)Ψ
i −Ψ

i
(Ψr −NkΨk)

)
,

P ij = Ψ
i
Γ̂jkΨk +ΨkΓ̂

kjΨi, Zab =
1

4
ΨiΓ{Γ̂ij ,Γab}Ψj ,

Y ij = −1

2
γijΨkΓ̂

klΨl +
1

4N

(
Ψk[Γ̂

ik, Γ̂j ](Ψr −N lΨl)− (Ψr −N lΨl)[Γ̂
ik, Γ̂j ]Ψk

)
. (3.5)

Notice that the Lagrangian L does not contain any radial derivatives of the variables N ,

Ni, a, Ψr and Ψr, and hence their conjugate momenta vanish identically.

As we shall see momentarily, these non-dynamical Lagrange multipliers lead to a set of

first class constraints, each associated with a local symmetry of the action (2.1). In partic-

ular, the lapse and shift functions N and Ni reflect the diffeomorphism invariance of (2.1),

a corresponds to local U(1) gauge transformations, while Ψr and Ψr reflect the local super-

symmetry invariance. Notice, however, that there is no Lagrange multiplier associated with

local frame rotations, although the action (2.1) is clearly invariant under such transforma-

tions. The reason for this is that the spin connection here is not an independent field and

so there is no torsion. In a first order formalism, where the spin connection is treated as

an independent field, the Lagrange multiplier associated with local frame rotations would

be the spin connection component ωrab, while the phase space of the theory would include

the generalized coordinate ωiab and its conjugate momentum. However, as can be seen in

eq. (A.29), here ωrab is completely determined in terms of the vielbein eai on Σr, as well

as the lapse and shift functions, and hence it is not an independent Lagrange multiplier.

Moreover, ωiab and its conjugate momenta are not independent phase space variables.

Nevertheless, the fact that the torsion vanishes implies that the extrinsic curvature

Kij , which can be identified with a certain component of the bulk Christoffel symbol (see

eq. (A.26)), is symmetric, i.e. K[ij] = 0. It follows that canonical momenta (3.4) satisfy

the algebraic constraint

κ2√−γ

(
eajπ i

a − eaiπ j
a

)
= P [ij] + eaiebjZab, (3.6)

or equivalently,

ei[aπb]i =
1

4

(
πi
ΨΓabΨ+i −Ψ+iΓabπ

i
Ψ

)
, (3.7)

and hence, on the reduced phase space where the fermion variables are set to zero the

canonical variables eia and πi
a can be replaced by the induced metric γij and its conjugate

momentum πij . As we shall see later, this ensures that on a background where all the

fermion sources are set to zero, the dual field theory possesses a symmetric and relativistic

stress tensor.
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Radial Hamiltonian. The radial HamiltonianH corresponds to the Legendre transform

of the Lagrangian (3.2) with respect to all dynamical variables, namely

H =

∫
ddx

(
ėaiπ

i
a + Ȧiπ

i + πi
ΨΨ̇+i + Ψ̇+iπ

i
Ψ

)
− L. (3.8)

Introducing the gauge invariant momentum

P i = πi −
√−γ

κ2
2c1 ǫ̂

ijklFjkAl, (3.9)

and the gauge-covariant derivative (see also (A.32))

DiΨ+j = DiΨ+j + igAiΨ+j , (3.10)

we find that the Hamiltonian takes the form

H =

∫
ddx

(
NH+NiHi + aX + (Ψr −N iΨi)F + F(Ψr −N iΨi)

)
, (3.11)

where

H=
κ2

2
√−γ

[(
1

d−1
eai e

b
j−eaj e

b
i

)
πi
aπ

j
b−

1

2
PiPi+

(
1

d−1
γijγkl−γikγjl

)
ea(iπaj)(Ψ+kπΨl+πΨkΨ+l)

− 1

d−1
ea(iπj)

a

(
πk
Ψ(Γ̂ki−(d−2)γki)Γ̂j

lΨ+l+Ψ+kΓ̂
k
j(Γ̂il−(d−2)γil)π

l

Ψ

)

− 1

d−1
πi
Ψ

(
(Γ̂ij−(d−2)γij) /D−

←−
/D (Γ̂ij−(d−2)γij)

)
πj

Ψ

]

+
d−1

2ℓ

(
Ψ+iπ

i

Ψ+πi
ΨΨ+i

)
− i(d−1)c2

2ℓ
PkΨ+iΓ̂

ikjΨ+j

+

(
κ2

√−γ

)2
ic2

2(d−1)ℓ
Pkπ

i
Ψ

(
Γ̂i

k
j−(d−1)(d−2)Γ̂kγij−(d−2)(2Γ̂[iδ

k
j]+Γ̂kΓ̂ij)

)
πj

Ψ

+
ic2
2ℓ

Fkl

[
πi
Ψ

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−(d−2)δki )

)
Ψ+j

+Ψ+i

(
−2Γ̂ikl

j+3(d−3)Γ̂[ikδ
l]
j +2γik(Γ̂l

j−(d−2)δlj)
)
πj

Ψ

]
(3.12a)

−
√−γ

2κ2

(
R[γ]−2Λ−FijF

ij+Ψ+i

←−D jΓ̂
ijkΨ+k−Ψ+iΓ̂

ijkDjΨ+k+2Di(Ψ+[iΓ̂
jΨ+j])

)
,

Hi=−Dj(e
aiπj

a+πj
ΨΨ

i
++Ψ

i

+π
j

Ψ
)+πj

ΨDiΨ+j+Ψ+j

←−D iπj

Ψ
+F ijPj , (3.12b)

X =−Diπ
i−ig

(
πi
ΨΨ+i−Ψ+iπ

i

Ψ

)
−
√−γ

2κ2
c1 ǫ̂

ijklFijFkl, (3.12c)

F+=
1

2ℓ
Γ̂iπ

i

Ψ+
κ2

2
√−γ

(
1

d−1
γijγkl−γikγjl

)
ea(iπj)

a Γ̂kπl

Ψ− i(d−1)c2
2ℓ

PiΨ+i

+
ic2
2ℓ

Fjk

(
(d−2)Γ̂jkΓ̂i−(d−1)Γ̂jki

)
πΨi+

√−γ

κ2
Γ̂ijDiΨ+j , (3.12d)

F−=−Diπ
i

Ψ+
1

2
πi
aΓ

aΨ+i− κ2

√−γ

ic2
2ℓ

(Γ̂ij−(d−2)γij)Piπj

Ψ

−
√−γ

κ2

(d−1)

2ℓ

(
Γ̂iΨ+i+ic2Γ̂

ijkΨ+iFjk

)
, (3.12e)

and we have defined F± ≡ Γ±F so that F = F+ + F−.

Since the momenta conjugate to the variables N , Ni, a and Ψr vanish identically, the

form (3.11) of the Hamiltonian leads, via Hamilton’s equations, to the first class constraints

H = Hi = a = F+ = F− = 0. (3.13)
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We will see in the following that these constraints are directly related to the Ward identities

of the dual field theory. An important observation is that the Hamiltonian constraint

H = 0, as well as the supersymmetry constraints F± = 0, are quadratic in the canonical

momenta, while all other constraints are linear. This reflects the fact that the symmetries

associated with the Hamiltonian and supersymmetry constraints are spontaneously broken

by the radial slice Σr and hence realized non linearly, while those associated with the

remaining first class constraints are preserved. The non-linear constraints corresponding

to the symmetries broken by the cutoff result in global anomalies in the dual quantum field

theory. This is completely analogous to the way quantum anomalies appear in standard

quantum field theory, through symmetry breaking by the ultraviolet regulator.

Hamilton-Jacobi formalism and flow equations. The Hamiltonian determines the

radial evolution of the induced fields eai , Ψ+i and Ai through Hamilton’s equations

ėai =
δH

δπi
a

, Ȧi =
δH

δπi
, Ψ̇+i =

δH

δπi
Ψ

. (3.14)

In the gauge (A.8) only the Hamiltonian constraint contributes to these equations, which

read

ėai =
κ2

2
√−γ

[
2

(
1

d−1
eai e

b
j−eaj e

b
i

)
πj
b+

(
1

d−1
γpqγkl−γpkγql

)
ea(pγq)i(Ψ+kπΨl+πΨkΨ+l)

− 1

(d−1)
ea(pδ

q)
i

(
πk
Ψ(Γ̂kp−(d−2)γkp)Γ̂q

lΨ+l+Ψ+kΓ̂
k
q(Γ̂pl−(d−2)γpl)π

l
Ψ

)]
, (3.15a)

Ȧi=− κ2

2
√−γ

Pi−
i(d−1)c2

2ℓ
Ψ+kΓ̂

k
i
lΨ+l (3.15b)

+

(
κ2√−γ

)2
ic2

2(d−1)ℓ
πk
Ψ

(
Γ̂kil−(d−1)(d−2)Γ̂iγkl−(d−2)(2Γ̂[kγl]i+Γ̂iΓ̂kl)

)
πl
Ψ
,

Ψ̇+i=
κ2

2
√−γ

1

d−1
×

×
[(

γpqδ
l
i−(d−1)γipγ

l
q−(Γ̂ip−(d−2)γip)Γ̂q

l

)
ea(pπq)

a Ψ+l−2(Γ̂ip−(d−2)γip)/Dπp

Ψ

]

+

(
κ2√−γ

)2
ic2

2(d−1)ℓ
Pk

(
Γ̂i

k
j−(d−1)(d−2)Γ̂kγij−(d−2)(2Γ̂[iδ

k
j]+Γ̂kΓ̂ij)

)
πj

Ψ
,

+
d−1

2ℓ
Ψ+i+

ic2
2ℓ

Fkl

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−(d−2)δki )

)
Ψ+j . (3.15c)

Moreover, inverting the expression for πi
Ψ
in (3.4) we find that Ψ−i is given by

Ψ−i =
κ2√−γ

1

d− 1
(Γ̂ij − (d− 2)γij)π

j

Ψ
. (3.16)

These equations allow us to determine the radial evolution of the induced fields without

invoking the second order field equations, or equivalently the other half of the Hamilton

equations, by using instead the Hamilton-Jacobi expressions

πi
a =

δS

δeai
, πi =

δS

δAi
, πi

Ψ = − δS

δΨ+i
= S

←−
δ

δΨ+i
, πi

Ψ
=

δS

δΨ+i

, (3.17)
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where S[e,A,Ψ+] is Hamilton’s principal function. In particular, inserting the expres-

sions (3.17) for the canonical momenta in the first class constraints (3.13) leads to a set of

functional differential equations for the functional S[e,A,Ψ+]. Given a solution S[e,A,Ψ+]

of the these Hamilton-Jacobi equations, the flow equations (3.15) become first order equa-

tions for the induced fields. In the next section we will obtain the general asymptotic so-

lution of the Hamilton-Jacobi equations. In combination with the relations (3.17) and the

flow equations (3.15) this solution allows us to determine the general asymptotic Fefferman-

Graham expansions for the induced fields eai , Ψ+i and Ai, without solving the second order

field equations. Since Hamilton’s principal functional S[e,A,Ψ+] coincides with the on-shell

action evaluated with a radial cut-off ro, the asymptotic solution of the Hamilton-Jacobi

equations also determines the divergences of the on-shell action, and hence the covariant

boundary counterterms. Hence, the complete holographic dictionary can be obtained from

a single object, namely the asymptotic solution of the Hamilton-Jacobi equations.

4 Recursive solution of the Hamilton-Jacobi equations

In this section we determine the asymptotic solution of the Hamilton-Jacobi equations,

corresponding to the constraints (3.13), with the canonical momenta expressed as gradi-

ents of Hamilton’s principal function S[e,A,Ψ+]. As we will see, our algorithm requires

solving only the Hamiltonian constraint H = 0, with all other constraints being automat-

ically satisfied, up to the corresponding order in the asymptotic expansion. The resulting

asymptotic solution for Hamilton’s principal function will allow us to obtain the asymptotic

Fefferman-Graham expansions for the bulk fields, and will be the basis for constructing the

holographic dictionary in the next section.

4.1 Covariant expansion and recursive algorithm

Since the conformal dimensions of the operators dual to the fields in the Lagrangian (2.1)

are known and fixed, we can obtain the general asymptotic solution of the Hamilton-Jacobi

equation H = 0 by using the dilatation operator method [44]. From the leading asymptotic

form of the fields in eq. (B.11) follows that the dilatation operator takes the form

δD =

∫
ddx

(
eai

δ

δeai
+

1

2
Ψ+l

δ

δΨ+l

+
1

2

←−
δ

δΨ+l
Ψ+l

)
. (4.1)

This operator allows us to look for a solution S[e,A,Ψ+] =
∫
ddx L of the Hamilton-

Jacobi equation H = 0 in the form of a formal expansion

S = S(0) + S(1) + S(2) + · · · , (4.2)

where S(n) =
∫
ddx L(n) are eigenfunctions of the dilatation operator, i.e. δDS(n) = (d −

n)S(n). By construction, S(n) are covariant functionals of the induced fields eai , Ai and

Ψ+i and higher order eigenfunctions, i.e. larger n, are asymptotically subleading relative to

lower order ones. The formal expansion (4.2) is therefore a covariant asymptotic expansion.
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In order to utilize the expansion (4.2) we observe that the Hamilton-Jacobi rela-

tions (3.17) imply that for a generic variation of the induced fields [45]

πi
aδe

a
i + πiδAi + δΨ+iπ

i
Ψ
+ πi

ΨδΨ+i = δL+ ∂iv
i, (4.3)

where ∂iv
i indicates a generic total derivative term. Applying this identity to local scaling

transformations generated by the dilatation operator (4.1) gives

eai π
i
a(n) +

1

2
Ψ+iπ

i
Ψ(n) +

1

2
πi
Ψ(n)Ψ+i = (d− n)L(n), (4.4)

where we have used the fact that L(n) are only defined up to a total derivative and hence

∂iv
i
(n) can be absorbed in L(n).

The final ingredient necessary to set up the recursive algorithm for determining the

terms S(n) in the expansion (4.2) is the leading asymptotic behavior of the fields in

eq. (B.11). Together with the flow equations (3.15)–(3.16) and the expressions (3.17)

for the canonical momenta, this leading asymptotic form of the fields determines the zero

order solution S(0) to be

S(0) =
1

κ2

∫
ddx

√−γ
(d− 1)

ℓ
. (4.5)

The corresponding canonical momenta are7

πi
a(0) =

√−γ

κ2
(d− 1)

ℓ
eia, πi

(0) = 0, πi
Ψ(0) = πi

Ψ(0) = 0. (4.6)

Inserting the expansion (4.2) in (3.12a) and using the identity (4.4) and the leading

solution (4.5) of the Hamilton-Jacobi equation, the Hamiltonian constraint H = 0 reduces

to a tower of linear equations for L(n), n > 0, namely

(d− n)

ℓ
L(n) = R(n), n ≥ 1, (4.7)

where the inhomogeneous terms up to order n = 4 are given by

R(1)=0, (4.8a)

R(2)=

√−γ

2κ2

(
R[γ]+Ψ+i

←−D jΓ̂
ijkΨ+k−Ψ+iΓ̂

ijkDjΨ+k+2Di(Ψ+[iΓ̂
jΨ+j])

)
, (4.8b)

R(3)=0, (4.8c)

R(4)=− κ2

2
√−γ

[(
1

d−1
eai e

b
j−eaj e

b
i

)
πi
a(2)π

j
b (2)

+

(
1

d−1
γijγkl−γikγjl

)
ea(iπaj)(2)(Ψ+kπΨl(2)+πΨk(2)Ψ+l)

− 1

d−1
ea(iπj)

a (2)

(
πk
Ψ(2)(Γ̂ki−(d−2)γki)Γ̂j

lΨ+l+Ψ+kΓ̂
k
j(Γ̂il−(d−2)γil)π

l
Ψ(2)

)

− 1

d−1
πi
Ψ(2)

(
(Γ̂ij−(d−2)γij) /D−

←−
/D (Γ̂ij−(d−2)γij)

)
πj

Ψ(2)

]

7The subscript in the canonical momenta indicates the dilatation weight of the corresponding potential

S(n) and not that of the momenta themselves.
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− ic2
2ℓ

Fkl

[
πi
Ψ(2)

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−2(d−2)δki )

)
Ψ+j

+Ψ+i

(
−2Γ̂ikl

j+3(d−3)Γ̂[ikδ
l]
j +2γik(Γ̂l

j−(d−2)δlj)
)
πj

Ψ(2)

]
−
√−γ

2κ2
FijF

ij . (4.8d)

In writing these expressions we have again ignored terms higher than quadratic in the

gravitino.

From (4.7) and (4.8) follows that the first subleading term in the covariant expan-

sion (4.2) is

S(2) =
ℓ

2(d− 2)κ2

∫
ddx

√−γ
(
R[γ] + Ψ+i

←−D jΓ̂
ijkΨ+k −Ψ+iΓ̂

ijkDjΨ+k

)
. (4.9)

Varying this expression with respect to each of the induced fields gives the canonical mo-

menta

πp
a(2)=

√−γ

κ2
ℓ

(d−2)

[(
1

2
γpjR−Rpj

)
eja

+
1

2
epa

(
Ψ+i

←−D jΓ̂
ijkΨ+k−Ψ+iΓ̂

ijkDjΨ+k

)
− 1

2
eia

(
Ψ+i

←−D jΓ̂
pjkΨ+k−Ψ+iΓ̂

pjkDjΨ+k

)

− 1

2
eja

(
Ψ+i

←−D jΓ̂
ipkΨ+k−Ψ+iΓ̂

ipkDjΨ+k

)
− 1

2
eka

(
Ψ+i

←−D jΓ̂
ijpΨ+k−Ψ+iΓ̂

ijpDjΨ+k

)

+
1

4
Dj

(
Ψ+i(eqaΓ̂

ijkpq+4Γ̂[iγk]peja+2Γ̂jγp[iek]a )Ψ+k

)
+epaD

[i(Ψ+iΓ̂
k]Ψ+k)

+
1

2
e[iaD

k](Ψ+iΓ̂
pΨ+k)+

1

2
γp[iDk](Ψ+iΓ̂aΨ+k)

]
,

πi
Ψ(2)=−

√−γ

κ2
ℓ

(d−2)
Γ̂ijkDjΨ+k, πi

Ψ(2)=

√−γ

κ2
ℓ

(d−2)
Ψ+k

←−D jΓ̂
kji, (4.10)

where we have used the identities (see e.g. (7.96) in [46])

eape
b
qδωjab = (D[jδe

a
p])eqa − (D[pδe

a
q])eja + (D[qδe

a
j])epa, (4.11)

and

{Γ̂pq, Γ̂
ijk} = 2Γ̂ijk

pq + 4Γ̂iδj[qδ
k
p] + 4Γ̂kδi[qδ

j
p] + 4Γ̂jδk[qδ

i
p], (4.12)

in order to obtain the expression

eape
b
qδωjabΨ+i{Γ̂pq, Γ̂ijk}Ψ+k = Ψ+i

[
2(Djδe

a
p)eqaΓ̂

ijkpq (4.13)

+
(
8Γ̂[iγk]peja + 4Γ̂jγp[iek]a

)
Djδe

a
p +

(
8epaΓ̂

[kDi] + 4Γ̂pe[iaD
k] + 4Γ̂lealγ

p[iDk]
)
δeap

]
Ψ+k.

To proceed to the next order we insert the canonical momenta (4.10) in the expression

for R(4) in (4.8). After some algebra we obtain

R(4)=−
√−γ

2κ2

ℓ2

(d−2)2

{
d

4(d−1)
R2−RijR

ij+
(d−2)2

ℓ2
FijF

ij

− 1

2(d−1)
R
(
Ψ+i

←−D jΓ̂
ijkΨ+k−Ψ+iΓ̂

ijkDjΨ+k

)
+

d

d−1
RD[i(Ψ+iΓ̂

j]Ψ+j)
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− (2d−3)

d−1
Rk

l

(
Ψ+i

←−D jΓ̂
ijlΨ+k−Ψ+kΓ̂

ljiDjΨ+i

)
+2Rj[kDj(Ψ+iΓ̂

i]Ψ+k)+2R
[i
kD

j](Ψ+iΓ̂
kΨ+j)

− 2

d−1
Rik

(
Ψ+[i

←−D j]Γ̂
jΨ+k−Ψ+[iΓ̂

jDj]Ψ+k

)
− 2

d−1
R
(
Ψ+[i

←−D j]Γ̂
iΨj

+−Ψ+[iΓ̂
iDj]Ψ

j
+

)

+2Ri
k

(
Ψ+[i

←−D j]Γ̂
kΨj

+−Ψ+[iΓ̂
kDj]Ψ

j
+

)

+
1

d−1
Ψ+k

←−D lΓ̂
kli

(
(Γ̂ij−(d−2)γij) /D−

←−
/D (Γ̂ij−(d−2)γij)

)
Γ̂jpqDpΨ+q

}

−
√−γ

2κ2

ic2
(d−2)

Fkl

[
Ψ+p

←−D qΓ̂
pqi

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−(d−2)δki )

)
Ψ+j

−Ψ+i

(
−2Γ̂ikl

j+3(d−3)Γ̂[ikδ
l]
j +2γik(Γ̂l

j−(d−2)δlj)
)
Γ̂jpqDpΨ+q

]
, (4.14)

and from (4.7) follows that

L(4) =
ℓ

d− 4
R(4). (4.15)

If the boundary dimension d is not specified, the above procedure can be repeated in-

definitely in order to determine the terms L(n) to arbitrary order. However, the recursion

procedure stops at the term of zero dilatation weight. In particular, we only need to deter-

mine the terms L(n) for n ≤ d. Since we are interested in the cases d = 3 and d = 4 here, the

above results suffice. However, as is clear from the above expressions, there is a significant

difference between the two cases, due to the fact that for d = 4 one needs to go up to the

term L(4), which contains a pole when d = 4. This pole indicates the presence of a conformal

anomaly and should be removed through the dimensional regularization prescription [44, 45]

1

d− 4
→ ro/ℓ, (4.16)

where ro is the radial cutoff in the Fefferman-Graham coordinates (A.7)–(A.8). More

specifically, one replaces L(4) in the expansion (4.2) according to the rule

L(4) =
ℓ

d− 4
R(4) → L̃(4) log(e

−2ro/ℓ) = − ℓ

2
R(4) log(e

−2ro/ℓ). (4.17)

The fact that the resulting asymptotic solution of the Hamilton-Jacobi equation de-

pends explicitly on the radial cutoff is the holographic manifestation of the conformal

anomaly [21] and implies that the implicitly covariant and local expansion in (4.2) is not

a fully consistent asymptotic solution in this case. Alternatively, one could have started

instead with a formal expansion that contains the logarithmically divergent term L̃(4),

in which case the recursion procedure would not produce any poles at d = 4. The two

approaches are equivalent and an explicit comparison can be found in the recent review [47].

The punchline of the above analysis is that the general asymptotic solutions of the

Hamilton-Jacobi equation for d = 3 and d = 4 take the form

S =





S(0) + S(2) + S(3) + · · · , d = 3,

S(0) + S(2) + S̃(4) log(e
−2ro/ℓ) + S(4) + · · · , d = 4,

(4.18)
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where S(d) is undetermined but finite (has dilatation weight zero), while S(0), S(2) and

S̃(4) = − ℓ
2

∫
d4x R(4) correspond to the divergent part of the solution S and are given in

equations (4.5), (4.9) and (4.14), respectively. The ellipses in (4.18) stand for terms with

negative dilation weight that asymptotically go to zero, and hence are not relevant for the

subsequent analysis. As we show next, this asymptotic solution of the Hamilton-Jacobi

equation can be used to determine the Fefferman-Graham asymptotic expansions of bulk

fields, and to derive the holographic dictionary.

4.2 Finite local counterterms and the supersymmetric renormalization

scheme

The first implication of the asymptotic solution (4.18) of the Hamilton-Jacobi equation is

that it determines the local and covariant boundary counterterms necessary to render the

variational problem on the conformal boundary well posed, and consequently to renormalize

the on-shell action.

Hamilton-Jacobi theory identifies Hamilton’s principal function S with the on-shell ac-

tion, and so the divergences of the on-shell action are in one-to-one correspondence with the

divergences of the asymptotic solution (4.18) of the Hamilton-Jacobi equation [48]. Hence,

the counterterms can be defined as minus the divergent parts of the solution (4.18). The

resulting renormalized action is invariant under boundary U(1) gauge transformations,

diffeomorphisms, local Weyl transformations, as well as supersymmetry and superWeyl

transformations, up to specific anomalies in the case d = 4. We will discuss these symme-

tries and derive the corresponding anomalies in section 5. In this subsection, however, we

would like to specify the most general form of the boundary counterterms compatible with

the above symmetries, including supersymmetry.

In the case d = 4, besides the divergent part of the solution (4.18), one may include in

the boundary counterterms certain finite, local, and covariant terms that do not cancel any

divergences, but may contribute to the value of the renormalized on-shell action, as well as

to the value of certain one-point functions derived thereof. Such terms must preserve all

local symmetries on the cutoff, since otherwise they would give rise to spurious anomalies,

i.e. anomalies that are trivial cocycles and can be removed by the very same finite bound-

ary terms. An example of a finite local boundary term that explicitly breaks local Weyl

invariance (as well as supersymmetry) is the R2 term, which leads to a total derivative

contribution to the conformal anomaly. By construction, this contribution to the confor-

mal anomaly is a trivial cocycle, that can be eliminated by removing the R2 term from the

action. Since we are interested in minimizing the possible contributions to the anomalies,

in the following we will strictly insist that any candidate finite counterterm must be a local

superconformal invariant, such that only non-trivial cocycles contribute to the anomalies.

Given the field content in the bulk, or equivalently the spectrum of local gauge invari-

ant operators in the dual quantum field theory, the local superconformal invariants in any

dimension can be classified. This amounts to a classification of the possible (non-trivial)

contributions to the Weyl anomaly, since the Wess-Zumino consistency condition implies

that the Weyl anomaly is itself a conformal invariant. For N = 1 supersymmetric theories

in d = 4 this classification has been done using superspace techniques in [16]. Explicit cal-
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culations of the Weyl anomaly have been carried out in superspace in [17, 18] and in compo-

nents in [19]. The result that is relevant for us here is the general form of the bosonic part of

the Weyl anomaly in eq. (4.3) of [19], which is the sum of the only two non-trivial supercon-

formal invariants corresponding to our field content.8 These superconformal invariants are

E = RijklRijkl − 4RijRij +R2, (4.19a)

W2 = RijklRijkl − 2RijRij +
1

3
R2 − 8

ℓ2
F ijFij +O(Ψ2). (4.19b)

E is the Euler density, which is a topological density and therefore does not receive

fermionic corrections. The bosonic part of W2 is a linear combination of the square of

the Weyl tensor and FijF
ij . Notice that even though the square of the Weyl tensor and

FijF
ij are separately Weyl invariant, only the specific linear combination in W2 preserves

supersymmetry. This means that there is a two-parameter family of supersymmetric

renormalization schemes in this case.9

The term S̃(4) in the solution (4.18) of the Hamilton-Jacobi equation is proportional

to the linear combination

W2 − E = 2RijRij −
2

3
R2 − 8

ℓ2
FijF

ij +O(Ψ2) =
2κ2√−γ

2

ℓ2
R(4), (4.20)

which, as we will discuss in section 5, corresponds to the holographic Weyl anomaly for

d = 4 and can be shown to be a superconformal invariant. Since the Euler density does

not receive any contribution from the gravitino, it follows that the expression (4.14) deter-

mines the fermionic part of the superconformal invariant W2, up to quadratic order in the

gravitino. To our knowledge, this is the first instance where this superconformal invariant,

including the fermionic part, has been determined, at least in component language.

Combining the observations of this subsection with the general asymptotic solution of

the Hamiton-Jacobi equation in (4.18), we conclude that the most general form of the local

boundary counterterms compatible with supersymmetry (and parity), and which do not

add trivial cocycles of the Wess-Zumino consistency conditions to the anomalies, is

Sct=





−
∫
d3x

(
L(0) + L(2)

)
, d=3,

−
∫
d4x

(
L(0)+L(2)+L̃(4) log(e

−2ro/ℓ)+s1
√−γ E+s2

√−γ W2
)
, d=4,

(4.21)

where s1 and s2 are arbitrary parameters, corresponding to a choice of renormalization

scheme. In particular, the holographic renormalization scheme for d = 3 is unique, while

8The Pontryagin density and the four-form F ∧ F are also finite, local and superconformal invariants,

and so they can in principle be added as part of the specification of the renormalization scheme. However

these terms are parity odd, and so we do not include them as finite counterterms here.
9It may be useful to emphasize the distinction between a ‘regularization scheme’ or ‘ultraviolet regula-

tor’, and a ‘renormalization scheme’, both of which may break the symmetries of the theory in different

ways. In holography the regularization scheme is the radial cutoff, which as we have seen above, breaks

both supersymmetry and Weyl symmetry, leading to genuine anomalies (i.e. non-trivial cocycles) for the

corresponding symmetries, which we will derive below. The renormalization scheme, however, corresponds

to the choice of finite local and covariant boundary terms, which, by construction, can only break symme-

tries through trivial contributions to the anomalies. Choosing a renormalization scheme that breaks the

least symmetries –possibly none– removes all trivial cocycles from the anomalies.
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for d = 4 there is a two-parameter family of supersymmetric schemes. Once a choice of

scheme has been made, the renormalized on-shell action is defined through the limit

Sren = lim
ro→∞

(S + SGH + Sct). (4.22)

The holographic dictionary identifies this quantity with the renormalized generating func-

tional of the dual gauge-invariant operators, as we will review in section 5.

4.3 Fefferman-Graham asymptotic expansions from flow equations

Besides the boundary counterterms, the asymptotic solution (4.18) of the Hamilton-Jacobi

equation also determines the general Fefferman-Graham expansions of the bulk fields. In

particular, inserting the solution (4.18) in the expressions (3.17) for the canonical momenta,

and these in turn into the Hamilton equations (3.15), results in a set of first order flow

equations that can be integrated to obtain the asymptotic expansions of the fields. Up to

the order necessary to obtain both the normalizable and non-normalizable modes of the

asymptotic expansions, the first order equations take the form

ėai =
1

ℓ
eai +

ℓ

d−2

(
eakR

k
i −

1

2(d−1)
Reai

)

+loge−2r/ℓ

[
ℓ3

4(d−2)2

(
3

d−1
eai

(
RpqR

pq− d

4(d−1)
R2+

1

3
�R

)

+eaj

(
d−2

d−1
DjDiR+

d

d−1
RRj

i−2�Rj
i−4RpqR

pjq
i

))
+ℓ

(
eajF

jpFip−
3

4(d−1)
eai F

pqFpq

)]

+

(
1

d−1
eai e

b
j−eaj e

b
i

)
κ2π̂j

(4)b(x)e
−5r/ℓ+··· ,

Ȧi=
ℓ

2
loge−2r/ℓDjF

j
i+c1ǫ̂i

jklFjkAl−
κ2

2
π̂(4)i(x)e

−2r/ℓ+··· ,

Ψ̇+i=
1

2ℓ
Ψ+i+

ℓ

2(d−2)

(
Rj

i−
1

2(d−1)
Rδji

)
Ψ+j

+
ℓ

2(d−1)(d−2)
(Γ̂ip−(d−2)γip)

[
2Γ̂qΓ̂pkjDqDkΨ+j+

(
Rpq− 1

2
γpqR

)
Γ̂q

jΨ+j

]

+
ic2
2ℓ

Fkl

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−(d−2)δki )

)
Ψ+j+··· ,

Ψ−i=− ℓ

(d−1)(d−2)
(Γ̂ij−(d−2)γij)Γ̂

jklDkΨ+l

+
1

d−1
log(e−2r/ℓ)(Γ̂ij−(d−2)γij)

{
ℓ3

16

[
1

6
(DkR)Γ̂jklΨ+l+

1

3
RΓ̂jklDkΨ+l

− 1

3
(D[jR)Γ̂k]Ψ+k+

5

3

(
(DkR

p
l )Γ̂

iklΨ+p+2R
[p
l Γ̂

j]klDkΨ+p

)
+2(D[jR

k]
l )Γ̂lΨ+k

+
2

3
(DkR

l[j)Γ̂k]Ψ+l+
4

3
Rl[jΓ̂k]DkΨ+l+

2

3
(DkR)Γ̂[jΨ

k]
++

4

3
RΓ̂[jDkΨ

k]
+

−2(DkR
[j
l )Γ̂

lΨ
k]
+−4R

[j
l Γ̂

lDkΨ
k]
+− 2

3
Γ̂jkl(Γ̂ls−2γls)Dk /DΓ̂spqDpΨ+q

]
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− iℓ2

4
√
3

[
(DsFkl)Γ̂

jsp
(
−2Γ̂p

qkl+3δ[qp Γ̂
kl]+2γlq(Γ̂p

k−2δkp )
)
Ψ+q

+2Fkl

(
−2Γ̂jkl

s+3Γ̂[jkδl]s +2γjk(Γ̂l
s−2δls)

)
Γ̂spqDpΨ+q

]}

+
κ2

d−1
(Γ̂ij−(d−2)γij)π̂

j

Ψ(4)
(x)e−

9r

2ℓ +··· , (4.23)

where the ellipses stand for asymptotically subleading terms that only affect the asymptotic

expansions beyond the normalizable mode. We have written these equations explicitly for

the case d = 4, but kept the coefficients generic so that one can also apply them to the

simpler case d = 3. Notice that the unspecified quantities π̂j
(4)b(x), π̂(4)i(x), π̂j

Ψ(4)
(x)

correspond to the contribution to the flow equations from the undetermined finite part

S(4) (or S(3) in the case d = 3) in the solution (4.18) of the Hamilton-Jacobi equation.

As we will see in section 5, these quantities are directly related to the corresponding local

operators in the dual field theory.

The first order equations (4.23) can be solved either recursively (see [47] for a step by

step example), or by making an ansatz for the asymptotic form of the fields. The resulting

asymptotic solutions for d = 4 and d = 3 are as follows.

Fefferman-Graham expansions for d = 4. The asymptotic solutions take the form

eai = er/ℓeai (0)(x) + e−r/ℓeai (2)(x) + e−3r/ℓ
(
log e−2r/ℓẽai (4)(x) + eai (4)(x)

)
+ · · · ,

Ai = A(0)i(x) + e−2r/ℓ
(
log e−2r/ℓÃ(4)i(x) +A(4)i(x)

)
+ · · · ,

Ψ+i = e
r
2ℓΨ(0)+i(x) + e−

3r
2ℓΨ(2)+i(x) + · · · ,

Ψ−i = e−
r
2ℓΨ(2)−i(x) + e−

5r
2ℓ

(
log e−2r/ℓΨ̃(4)−i(x) + Ψ(4)−i(x)

)
+ · · · , (4.24)

where eai (0)(x), A(0)i(x) and Ψ(0)+i(x) are arbitrary, while the remaining coefficients are

given by

eai (2)=−ℓ2

4
eak(0)

(
Rk

i [g(0)]−
1

6
R[g(0)]δ

k
i

)
,

ẽai (4)=− ℓ

4

[
ℓ3

16

(
eai (0)

(
Rpq[g(0)]R

pq[g(0)]−
1

3
R2[g(0)]+

1

3
�(0)R[g(0)]

)

+eaj (0)

(
2

3
Dj

(0)D(0)iR[g(0)]+
4

3
R[g(0)]R

j
i [g(0)]−2�(0)R

j
i [g(0)]−4Rpq[g(0)]R

pjq
i[g(0)]

))

+ℓ

(
eaj (0)F

jp
(0)F(0)ip−

1

4
eai (0)F

pq
(0)F(0)pq

)]
,

eai (4)=− ℓ

4

(
1

3
eai (0)e

b
j(0)−eaj (0)e

b
i (0)

)
κ2π̂j

(4)b−
1

2
ẽai (4)

− ℓ

4

[
eak(0)

(
Rl[k[g(0)]g(2)i]l−Rkp

i
q[g(0)]g(2)pq+D

(k
(0)D

l
(0)g(2)li)−

1

2
�(0)g

k
(2)i−

1

2
Dk

(0)D(0)ig(2)

− 1

6
δki (−Rpq[g(0)]g(2)pq+Dp

(0)D
q
(0)g(2)pq−�(0)g(2))

)
+eak(2)

(
Rk

i [g(0)]−
1

6
R[g(0)]δ

k
i

)]
,
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Ã(4)i=−ℓ2

4
D(0)kF(0)

k
i,

A(4)i=
κ2ℓ

4
π̂(4)i+

ℓ2

4
D(0)kF(0)

k
i+

ℓ2

3
√
3
ǫ̂(0)i

jklF(0)jkA(0)l,

Ψ(2)+i=−ℓ2

8

(
Rj

i [g(0)]−
1

6
R[g(0)]δ

j
i

)
Ψ(0)+j

− ℓ2

24
(Γ̂(0)ip−2g(0)ip)

[
2Γ̂q

(0)Γ̂
pkjD(0)qD(0)kΨ(0)+j+

(
Rpq[g(0)]−

1

2
gpq(0)R[g(0)]

)
Γ̂(0)q

jΨ(0)+j

]

− iℓ

8
√
3
F(0)kl

(
−2Γ̂(0)i

jkl+3δ
[j
i Γ̂

kl]
(0)+2glj(0)(Γ̂(0)i

k−2δki )
)
Ψ(0)+j ,

Ψ(2)−i=− ℓ

6
(Γ̂(0)ij−2g(0)ij)Γ̂

jkl
(0)D(0)kΨ(0)+l,

Ψ̃(4)−i=
1

3
(Γ̂(0)ij−2g(0)ij)

{
ℓ3

16

[
1

6
(D(0)kR[g(0)])Γ̂

jkl
(0)Ψ(0)+l+

1

3
R[g(0)]Γ̂

jkl
(0)D(0)kΨ(0)+l

− 1

3
(D

[j
(0)R[g(0)])Γ̂

k]
(0)Ψ(0)+k+

5

3

(
(D(0)kR[g(0)]

p
l )Γ̂

ikl
(0)Ψ(0)+p+2R

[p
l [g(0)]Γ̂

j]kl
(0) D(0)kΨ(0)+p

)

+2(D
[j
(0)R

k]
l [g(0)])Γ̂

l
(0)Ψ(0)+k+

2

3
(D(0)kR

l[j [g(0)])Γ̂
k]
(0)Ψ(0)+l+

4

3
Rl[j [g(0)]Γ̂

k]
(0)D(0)kΨ(0)+l

+
2

3
(D(0)kR[g(0)])Γ̂

[j
(0)Ψ

k]
(0)++

4

3
R[g(0)]Γ̂

[j
(0)D(0)kΨ

k]
(0)+−2(D(0)kR

[j
l [g(0)])Γ̂

l
(0)Ψ

k]
(0)+

−4R
[j
l [g(0)]Γ̂

l
(0)D(0)kΨ

k]
(0)+− 2

3
Γ̂jkl
(0)(Γ̂(0)ls−2g(0)ls)D(0)k /D(0)Γ̂

spq
(0)D(0)pΨ(0)+q

]

− iℓ2

4
√
3

[
(D(0)sF(0)kl)Γ̂

jsp
(0)

(
−2Γ̂(0)p

qkl+3δ[qp Γ̂
kl]
(0)+2glq(0)(Γ̂(0)p

k−2δkp )
)
Ψ(0)+q

+2F(0)kl

(
−2Γ̂jkl

(0)s+3Γ̂
[jk
(0)δ

l]
s +2gjk(0)(Γ̂

l
(0)s−2δls)

)
Γ̂spq
(0)D(0)pΨ(0)+q

]}
,

Ψ(4)−i=
κ2

3
(Γ̂(0)ij−2g(0)ij)π̂

j

Ψ(4)
+
ℓ

6

{[
eia(2)Γ̂

akl
(0) +2eaj (2)

(
e[ka (0)Γ̂(0)i

l]j+2δ
[k
i el]a (0)Γ̂

j
(0)

)]
D(0)kΨ(0)+l

+(Γ̂(0)i
kl−4δ

[k
i Γ̂

l]
(0))

[
D(0)kΨ(2)+l

+
1

4

(
(D(0)[ke

a
p](2))eqa(0)−(D(0)[pe

a
q](2))eka(0)+(D(0)[qe

a
k](2))epa(0)

)
Γ̂pq
(0)Ψ(0)+l

]}
. (4.25)

In these expressions g(0)ij = eai (0)eja(0) is the boundary metric and the notations gi(2)j and

g(2) stand respectively for gik(0)g(2)kj and gij(0)g(2)ij . Notice that the normalizable modes eai (4),

A(4)i and Ψ(4)−i are related respectively to the undetermined canonical momenta π̂j
(4)b(x),

π̂(4)i(x), π̂
j

Ψ(4)
(x) obtained from the finite part S(4) in (4.18). Since the latter are directly

related to the dual operators, the expressions for eai (4), A(4)i and Ψ(4)−i in (4.25) provide the

explicit relation between the dual operators and the coefficients of the Fefferman-Graham

expansions. Finally, although the solution (4.18) allows one to determine the Fefferman-

Graham expansions of the bosonic fields up to quadratic order in the gravitino, we only

give explicitly these expansions to zero order in the gravitino in (4.25). These expansions

generalize earlier results for the case of flat boundary metric and vanishing gauge field [40].
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Fefferman-Graham expansions for d = 3. The asymptotic expansions for d = 3 do

not contain any logarithmic terms and therefore take simpler form

eai = er/ℓeai (0)(x) + e−r/ℓeai (2)(x) + e−2r/ℓeai (3)(x) + · · · ,
Ai = A(0)i(x) + e−r/ℓA(3)i(x) + · · · ,

Ψ+i = e
r
2ℓΨ(0)+i(x) + e−

3r
2ℓΨ(2)+i(x) + · · · ,

Ψ−i = e−
r
2ℓΨ(2)−i(x) + e−

3r
2ℓΨ(3)−i(x) + · · · , (4.26)

where eai (0)(x), A(0)i(x) and Ψ(0)+i(x) are again arbitrary and the remaining coefficients are

eai (2)=−ℓ2

2
eak(0)

(
Rk

i [g(0)]−
1

4
R[g(0)]δ

k
i

)
,

eai (3)=− ℓ

3

(
1

2
eai (0)e

b
j(0)−eaj (0)e

b
i (0)

)
κ2π̂j

(3)b,

A(3)i=
κ2ℓ

2
π̂(3)i,

Ψ(2)+i=−ℓ2

4

(
Rj

i [g(0)]−
1

4
R[g(0)]δ

j
i

)
Ψ(0)+j

− ℓ2

8
(Γ̂(0)ip−g(0)ip)

[
2Γ̂q

(0)Γ̂
pkjD(0)qD(0)kΨ(0)+j+

(
Rpq[g(0)]−

1

2
gpq(0)R[g(0)]

)
Γ̂(0)q

jΨ(0)+j

]

− iℓ

8
F(0)kl

(
−2Γ̂(0)i

jkl+2glj(0)(Γ̂(0)i
k−δki )

)
Ψ(0)+j ,

Ψ(2)−i=− ℓ

2
(Γ̂(0)ij−g(0)ij)Γ̂

jkl
(0)D(0)kΨ(0)+l,

Ψ(3)−i=
κ2

2
(Γ̂(0)ij−g(0)ij)π̂

j

Ψ(3)
. (4.27)

Notice that in this case the relation between the normalizable modes eai (3), A(3)i and Ψ(3)−i

and the undetermined momenta π̂j
(3)b(x), π̂(3)i(x), π̂

j

Ψ(3)
(x) obtained from the finite part

S(3) is very simple. These asymptotic expansions are in agreement with those obtained

in [49] in a similar setup.

5 Local operators, Ward identities and superconformal anomalies

In this section we use the boundary counterterms (4.21) in order to construct the holo-

graphic dictionary for the theory (2.1). In particular, we define the local operators dual to

the bulk fields and derive the Ward identities these operators satisfy, including all bosonic

and fermionic anomalies. These anomalies play a central role in our analysis of supersym-

metric backgrounds in section 6.

The operators dual to the bulk fields correspond to the renormalized canonical mo-

menta, namely

T i
a = − lim

ro→∞

(
e(d+1)ro/ℓ

√−γ

(
πi
a +

δSct

δeai

))
, J i = lim

ro→∞

(
edro/ℓ√−γ

(
πi +

δSct

δAi

))
, (5.1)

Si = lim
ro→∞

(
e(d+1/2)ro/ℓ

√−γ

(
πi
Ψ
+

δSct

δΨi

))
, Si

= lim
ro→∞

(
e(d+1/2)ro/ℓ

√−γ

(
πi
Ψ + Sct

←−
δ

δΨi

))
.
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These relations are the holographic version of the local renormalization group definition

of local operators [50], which is why we omit the bracket notation 〈·〉. Each of these

operators is a function of arbitrary sources and so correlation functions can be computed

by further differentiating these operators with respect to the sources. Notice that for

d = 4, these operators depend on the value of the parameters s1 and s2 that parameterize

the supersymmetric renormalization schemes. Specifically, the definition (5.1) of the local

operators implies that they are identified respectively with the quantities π̂j
(3)b, π̂(3)i and

π̂j

Ψ(3)
appearing in the Fefferman-Graham expansions for d = 3, while for d = 4 they

correspond to π̂j
(4)b, π̂(4)i and π̂j

Ψ(4)
, up to terms proportional to the parameters s1 and s2

coming from the finite local counterterms parameterizing the renormalization scheme.

The Ward identities that the local operators (5.1) satisfy can be derived by inserting

the covariant expansion (4.2) in the constraints (3.12) and (3.7) and isolating the terms of

dilatation weight zero. This leads to the identities

Dj(−eai π
j
a(d)−πj

Ψ(d)Ψ+i−Ψ+iπ
j

Ψ(d))+πj
Ψ(d)DiΨ+j+Ψ+j

←−D iπ
j

Ψ(d)+Fijπ
j
(d)=

√−γAMi, (5.2a)

Diπ
i
(d)+ig

(
πi
Ψ(d)Ψ+i−Ψ+iπ

i
Ψ(d)

)
=
√−γAR, (5.2b)

Diπ
i
Ψ(d)−

1

2
πi
a(d)Γ

aΨ+i−
ic2

2(d−2)
πi
(d)(Γ̂ij−(d−2)γij)Γ̂

jpqDpΨ+q=
√−γAS , (5.2c)

−eai π
i
a(d)−

1

2
Ψ+iπ

i
Ψ(d)−

1

2
πi
Ψ(d)Ψ+i=−ℓR(d)=

√−γAW , (5.2d)

Γ̂iπ
i
Ψ(d)−

i(d−1)c2
2

πi
(d)Ψ+i=

√−γAsW , (5.2e)

ei[aπ
b]
i (d)−

1

4
(πi

Ψ(d)Γ
abΨ+i−Ψ+iΓ

abπi
Ψ(d))=0, (5.2f)

where the expressions on the r.h.s. vanish identically for d = 3, while for d = 4 are local in

terms of the induced fields and take the form10

AMi=
2c1
κ2

ǫ̂jklpFijFklAp, (5.3a)

AR=− c1
2κ2

ǫ̂ijklFijFkl, (5.3b)

AsW =
ℓ

2κ2

[
ℓ2

(d−2)2

(
Rij−

1

2(d−1)
Rγij

)
Γ̂iΓ̂jklDkΨ+l−

2i(d−1)c1c2
ℓ

ǫ̂ijklFjkAlΨ+i

+
ic2
d−2

Fjk

(
(d−2)Γ̂jkΓ̂i−(d−1)Γ̂jki

)
Γ̂i

pqDpΨ+q

]
, (5.3c)

AS=− 1

κ2

ic1c2
(d−2)

ǫ̂isklFskAl(Γ̂ij−(d−2)γij)Γ̂
jpqDpΨ+q, (5.3d)

AW =
ℓ3

2κ2(d−2)2

{
d

4(d−1)
R2−RijR

ij+
(d−2)2

ℓ2
FijF

ij

− 1

2(d−1)
R
(
Ψ+i

←−D jΓ̂
ijkΨ+k−Ψ+iΓ̂

ijkDjΨ+k

)
+

d

d−1
RD[i(Ψ+iΓ̂

j]Ψ+j)

− (2d−3)

d−1
Rk

l

(
Ψ+i

←−D jΓ̂
ijlΨ+k−Ψ+kΓ̂

ljiDjΨ+i

)
+2Rj[kDj(Ψ+iΓ̂

i]Ψ+k)+2R
[i
kD

j](Ψ+iΓ̂
kΨ+j)

− 2

d−1
Rik

(
Ψ+[i

←−D j]Γ̂
jΨ+k−Ψ+[iΓ̂

jDj]Ψ+k

)
− 2

d−1
R
(
Ψ+[i

←−D j]Γ̂
iΨj

+−Ψ+[iΓ̂
iDj]Ψ

j
+

)

10Although these anomalies apply specifically to the case d = 4, for technical reasons we keep d generic.
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+2Ri
k

(
Ψ+[i

←−D j]Γ̂
kΨj

+−Ψ+[iΓ̂
kDj]Ψ

j
+

)

+
1

d−1
Ψ+k

←−D lΓ̂
kli

(
(Γ̂ij−(d−2)γij) /D−

←−
/D (Γ̂ij−(d−2)γij)

)
Γ̂jpqDpΨ+q

}

+
ic2ℓ

2κ2(d−2)
Fkl

[
Ψ+p

←−D qΓ̂
pqi

(
−2Γ̂i

jkl+3(d−3)δ
[j
i Γ̂

kl]+2γlj(Γ̂i
k−2(d−2)δki )

)
Ψ+j

−Ψ+i

(
−2Γ̂ikl

j+3(d−3)Γ̂[ikδ
l]
j +2γik(Γ̂l

j−(d−2)δlj)
)
Γ̂jpqDpΨ+q

]
. (5.3e)

Combining the definitions (5.1) of the dual operators with the identities (5.2) (taking

into account the fact that the finite local counterterms in (4.21) parameterizing the super-

symmetric renormalization scheme by construction obey the identities (5.2) without the

anomaly terms) and removing the radial cutoff results in the Ward identities

D(0)j(e
a
(0)iT j

a −Sj
Ψ(0)+i−Ψ(0)+iSj)+SjD(0)iΨ(0)+j+Ψ(0)+j

←−D(0)iSj+F(0)ijJ j=AM(0)i, (5.4a)

D(0)iJ i+ig(Si
Ψ(0)+i−Ψ(0)+iSi)=AR(0), (5.4b)

D(0)iSi+
1

2
T i
aΓ

aΨ(0)+i−
ic2

2(d−2)
J i(Γ̂(0)ij−(d−2)g(0)ij)Γ̂

jpq
(0)D(0)pΨ(0)+q=AS(0), (5.4c)

ea(0)iT i
a−

1

2
Ψ(0)+iSi− 1

2
Si

Ψ(0)+i=AW (0), (5.4d)

Γ̂(0)iSi− i(d−1)c2
2

J iΨ(0)+i=AsW (0), (5.4e)

e
i[a
(0)T

b]
i +

1

4
(Si

ΓabΨ(0)+i−Ψ(0)+iΓ
abSi)=0, (5.4f)

where the local terms on the r.h.s. of these identities are identical to the expressions on

the radial cutoff in (5.3), except that the induced fields are appropriately replaced with

the corresponding sources on the boundary of AdS. Analogous Ward identities, but with

flat metric g(0)ij , were obtained for the N = 1 theory dual to the Klebanov-Strassler

background in [51]. It cannot be overemphasized that the Ward identities (5.4) and the

related anomalies (5.3) apply to generic N = 2 superconformal quantum field theories in

three and generic N = 1 superconformal quantum field theories four dimensions, except

that the form of the anomalies (5.3) in the four dimensional case holds for theories with

a = c only, and the value of these anomaly coefficients may be different in a generic theory.

Crucially, the form of the Ward identities (5.4) applies to any such theory, irrespectively of

whether it admits a holographic dual. In particular, the alternative derivation of the Ward

identities discussed in the following subsection is entirely field theoretic and allows one to

extrapolate the results of section 6 beyond holographic theories.

5.1 Boundary supersymmetry and current anomalies

The Ward identities (5.4) reflect the local bulk symmetries surviving on the conformal

boundary, including those broken by anomalies arising from the regularization and renor-

malization procedure. An alternative derivation of these identities, therefore, may be

achieved by identifying the bulk symmetries acting on the boundary sources and consider-

ing how the renormalized generating functional transforms. From a bulk perspective, such

symmetries correspond to all local bulk transformations preserving the Fefferman-Graham
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gauge (A.8). In the case of bulk diffeomorphisms these are known as Penrose-Brown-

Henneaux (PBH) transformations [52–54]. In appendix B we derive the most general

bulk symmetry transformations of the supergravity action (2.1) preserving the Fefferman-

Graham gauge. We will refer to these as generalized Penrose-Brown-Henneaux transfor-

mations.

One of the main results of the analysis in appendix B is the identification of the

local symmetries on the conformal boundary and their action on the field theory sources.

Specifically, we find that the local symmetry transformations on the boundary are generated

by the arbitrary bosonic parameters σ(x), ξio(x), λ
ab
o (x), as well as the fermionic variables

ǫo+(x) and ǫo−(x), all of which are functions of the boundary coordinates only. Removing

the radial cutoff in the asymptotic relations (B.16) we determine that these transformations

act on the field theory sources as

δσ,ξo,λo,θo,ǫo+,ǫo−e
a
i (0)=

σ

ℓ
eai (0)+ξjo∂je

a
i (0)+(∂iξ

j
o)e

a
j (0)−λa

obe
b
i (0)

+
1

2
(ǫo+Γ

aΨ(0)+i−Ψ(0)+iΓ
aǫo+), (5.5a)

δσ,ξo,λo,θo,ǫo+,ǫo−A(0)i=ξjo∂jA(0)i+(∂iξ
j
o)A(0)j+∂iθo

+ic3
(
Ψ(0)+iǫo−+Ψ(2)−iǫo+−ǫo+Ψ(2)−i−ǫo−Ψ(0)+i

)
, (5.5b)

δσ,ξo,λo,θo,ǫo+,ǫo−Ψ(0)+i=
σ

2ℓ
Ψ(0)+i+ξjo∂jΨ(0)+i+(∂iξ

j
o)Ψ(0)+j−

1

4
λab
o ΓabΨ(0)+i−igθoΨ(0)+i

+D(0)iǫo+−
1

ℓ
Γ̂(0)iǫo−, (5.5c)

where from (3.16) and (4.10)

Ψ(2)−i = − ℓ

(d− 1)(d− 2)
(Γ̂(0)ij − (d− 2)g(0)ij)Γ̂

jkl
(0)D(0)kΨ(0)+l. (5.6)

Notice that, although these transformations are derived holographically here, they should

apply to any N = 2 superconformal theory in d = 3 and any N = 1 superconformal theory

d = 4.

Given the general variation of the renormalized on-shell action

δSren =

∫
ddx

√−g(0)

(
−T i

a δe
a
i (0) + J iδA(0)i + Si

δΨ(0)+i + δΨ(0)+iSi
)
, (5.7)

the Noether procedure for the transformations (5.5) leads to an alternative derivation of

the Ward identities (5.4). In particular, inserting the transformations (5.5) for the sources

in (5.7) and parameterizing the anomalies such that

δσ,ξo,λo,θo,ǫo+,ǫo−Sren =

∫
ddx

√−g(0)

(
− σ

ℓ
AW (0) − θoAR(0) (5.8)

− ǫo+AS(0) −AS(0)ǫo+ +
1

ℓ
ǫo−AsW (0) +

1

ℓ
AsW (0)ǫo−

)
,

reproduces the Ward identities (5.4). However, the anomalies must be computed indepen-

dently in this case, either holographically as above, or through field theory arguments. Note
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that the term AM(0)i in (5.4a) cancels out in the variation of the generating function (5.8),

implying that the theory is invariant under local diffeomorphisms.

Even though the field theory sources transform as tensors under the local symmetries,

the corresponding operators do not, due to the anomalies. The simplest way to obtain

the transformation of the currents under the local symmetries is by introducing a suit-

able Poisson bracket on the symplectic space of sources and local operators as discussed

in appendix B. In particular, the general transformation of the current densities is given

in (B.26), with the anomalous part of the transformation shown in terms of the anomaly

densities in (B.27). For our purpose of studying supersymmetric backgrounds in section 6

it suffices to determine explicitly the transformations of the supercurrent under bound-

ary supersymmetry and superWeyl transformations, generated respectively by ǫo+(x) and

ǫo−(x). The general transformation identities (B.26) for the currents and the explicit form

of the anomalies in (5.3) determine

δǫo+Si = −1

2
T i
aΓ

aǫo+ (5.9a)

+
ic2

2(d− 2)
Γ̂ijk
(0)

(
Γ̂(0)kl − (d− 2)g(0)kl

)
D(0)j

[(
J l − 2c1

κ2
ǫ̂lpqsF(0)pqA(0)s

)
ǫo+

]
,

δǫo−Si = − i(d− 1)c2
2ℓ

(
J i − 2c1

κ2
ǫ̂ipqsF(0)pqA(0)s

)
ǫo− (5.9b)

− ℓ2

2(d− 2)2κ2
Γ̂ijk
(0) Γ̂

l
(0)D(0)j

[(
Rkl[g(0)]−

1

2(d− 1)
R[g(0)]g(0)kl

)
ǫo−

]

− ic2
2(d− 2)κ2

Γ̂ij
(0)k

(
(d− 2)Γ̂k

(0)Γ̂
pq
(0) − (d− 1)Γ̂kpq

(0)

)
D(0)j(F(0)pqǫo−).

Notice that, besides the tensorial part involving the currents, these transformations contain

additional local terms due to the anomalies. This result will be central to our analysis of

supersymmetric backgrounds in the next section. Another observation that will play an

important role in the subsequent analysis is that the anomalous supersymmetry transfor-

mations (5.9) of the supercurrent can be obtained in a third way, namely from the bulk

supersymmetry transformation of the gravitino. Finally, it should be stressed that the

anomalous transformations (5.9) of the supercurrent are independent of the choice of super-

symmetric renormalization scheme, i.e. of the choice of the parameters s1 and s2 in (4.21).

6 Fermionic anomalies and supersymmetry breaking

The anomalous transformation (5.9) of the supercurrent under local supersymmetry and

superWeyl transformations is our main result. In this section we explore some of the

consequences of this result for N = 1 superconformal theories in four dimensions. In

particular, we show that even if a field theory background admits a Killing spinor and all

anomalies are numerically vanishing, supersymmetry can still be broken by the anomalous

transformation of the supercurrent.
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6.1 Field theory backgrounds admitting conformal Killing spinors

In order to explore the consequences of the anomalous supercurrent transformation we

consider a simple class of field theory backgrounds admitting Killing spinors that were

originally obtained in [4, 5] and were the subject of the recent analysis of [29].

Setting the AdS5 radius to ℓ = 1, this class of rigid four-dimensional supersymmetric

field theory backgrounds takes the form11

ds2(0) = −dt2 + (dψ + a)2 + 4ewdzdz̄,

A(0) = − 1√
3

(
− 1

8
udt+

1

4
u(dψ + a) +

i

4
(∂z̄wdz̄ − ∂zwdz) + γ′dt+ γdψ + dλ

)
, (6.1)

where w(z, z̄) is a local function on the compact Riemann surface Σ2 parameterized by the

complex coordinates (z, z̄), a = az(z, z̄)dz + az̄(z, z̄)dz̄ is a local one-form on Σ2 satisfying

the condition

da = iuewdz ∧ dz̄, (6.2)

for a globally defined function u(z, z̄) on Σ2, and ∂ψ is a nowhere vanishing Killing vector.

The real constants γ and γ′, as well as the function λ = λ(z, z̄) on Σ2 are locally pure

gauge, but their values are determined by the requirement that A(0) be a globally defined

one-form. In particular, global considerations require that γ′ = 0 and γ be proportional

to the first Chern class of Σ2. For an extensive discussion of the global properties the

backgrounds (6.1) and explicit expressions for these parameters in terms of topological

invariants we refer the reader to [29].

In the following it will be convenient to slightly reparameterize the background (6.1)

in order to solve explicitly the constraint (6.2). In particular, writing the components of

the one-form a in terms of a local function µ(z, z̄) as

az = − i

2
∂zµ, az̄ =

i

2
∂z̄µ, (6.3)

the condition (6.2) is automatically satisfied provided u(z, z̄) is expressed in terms of w(z, z̄)

and µ(z, z̄) through the relation

u = e−w∂z∂z̄µ. (6.4)

This allows us to parameterize the supersymmetric backgrounds (6.1) in terms of the two

unconstrained functions w(z, z̄) and µ(z, z̄) as

ds2(0) = −dt2 +

(
dψ +

i

2
∂z̄µdz̄ −

i

2
∂zµdz

)2

+ 4ewdzdz̄,

A(0) = − 1√
3

[
− 1

8
e−w∂z∂z̄µdt+

1

4
e−w∂z∂z̄µ

(
dψ +

i

2
∂z̄µdz̄ −

i

2
∂zµdz

)

+
i

4
(∂z̄wdz̄ − ∂zwdz) + γ′dt+ γdψ + dλ

]
. (6.5)

11Notice that the gauge field in (6.1) is the one obtained from background conformal supergravity [23, 24]

and not that of new minimal supergravity [22] used in [5]. It is the former that is induced on the conformal

boundary by the bulk graviphoton in holography [4, 11].
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Conformal Killing spinors and vectors. A Killing vector Ki of a generic bosonic

background specified by the sources ea(0)i and A(0)i corresponds to a diffeomorphism that

leaves the sources invariant, up to local frame rotations and U(1) gauge transformations.

The general local transformations of the sources (5.5) imply that in terms of the metric

and the gauge invariant fieldstrength the conditions for Ki to be a Killing vector are

LKg(0)ij = 0, LKF(0)ij = 0, (6.6)

where LK denotes the Lie derivative with respect to Ki. Similarly, a conformal Killing

vector corresponds to a combined diffeomorphism and Weyl transformation that leaves the

sources invariant up to the same transformations. In this case (5.5) give

LKg(0)ij + 2
σK
ℓ
g(0)ij = 0, LKF(0)ij = 0, (6.7)

and so the Weyl factor σ is determined in terms of the vector Ki as

σK = − ℓ

d
D(0)iKi. (6.8)

Killing spinors and conformal Killing spinors on a bosonic background are defined

analogously. Namely, from the transformations (5.5) follows that a conformal Killing spinor

ζ+ satisfies12

D(0)iζ+ =
1

ℓ
Γ̂(0)iζ−, ζ+

←−D (0)i = −1

ℓ
ζ−Γ̂(0)i, (6.9)

where

ζ− =
ℓ

d
Γ̂j
(0)D(0)jζ+, ζ− = − ℓ

d
ζ+

←−D (0)jΓ̂
j
(0). (6.10)

Killing spinors are the subclass of such spinors having in addition ζ− = 0. It is a straight-

forward exercise to show that for any conformal Killing spinor ζ+, the spinor bilinear

Ki
ζ = −iζ+Γ̂

i
(0)ζ+, (6.11)

is a conformal Killing vector with Weyl factor

σK = i(ζ+ζ− − ζ−ζ+). (6.12)

In particular, if ζ+ is a Killing spinor, then Ki
ζ is a Killing vector.

In order to determine the Killing spinors that the backgrounds (6.5) admit, it is nec-

essary to first make a choice of vielbein for the background metric, and to specify a basis

for the gamma matrices. In the following we will choose the vielbein components as

e0(0) = dt, e1(0) = dψ +
i

2
∂z̄µdz̄ −

i

2
∂zµdz, e2(0) = e

w
2 (dz + dz̄), e3(0) = −ie

w
2 (dz − dz̄),

(6.13)

12Killing spinors correspond to special supersymmetry transformations and so the radiality of such spinors

is unambiguously determined by the generalized PBH transformations (5.5). Our spinor conventions

therefore differ from other common choices in the literature, and in particular from those in [29].
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and the gamma matrix basis

Γṫ =

(
0 σ0

−σ0 0

)
, Γψ̇ =

(
0 σ1
σ1 0

)
, Γż =

(
0 σ2
σ2 0

)
, Γ

˙̄z =

(
0 σ3
σ3 0

)
, (6.14)

where σa are the Pauli matrices. To avoid potential confusion with the complex conjugate

coordinate z̄, in this section we denote frame indices with a dot rather than an overbar, as

in the rest of the paper. With the above choice of vielbein and gamma matrices, one finds

that the spinor ζ− of any conformal Killing spinor of the background (6.5) is given by

ζ− =
i

8
uΓṫζ+. (6.15)

Solving the conformal Killing spinor condition on a generic background of the form (6.5)

with u 6= 0 we find that there is a unique solution given by

ζ+ =
1√
2
eiγ

′t+iγψ+iλ




0

0

1

−1


 , ζ− =

i

8
√
2
ueiγ

′t+iγψ+iλ




1

−1

0

0


 . (6.16)

Note that these spinors are globally well defined provided γ′ = 0 [29]. With this normal-

ization the corresponding conformal Killing vector (6.11) takes the form

Kζ = −∂t + ∂ψ. (6.17)

In the special case u = 0, however, there are two independent solutions to the conformal

Killing spinor conditions, namely

ζ
(1)
+ =

1√
2
eiγ

′t+iγψ+iλ




0

0

1

−1


 , ζ

(2)
+ =

1√
2
eiγ

′t+iγψ+iλ




1

−1

0

0


 , ζ

(1),(2)
− = 0, (6.18)

both of which are in fact Killing spinors since ζ− = 0. The corresponding Killing vectors are

K
(1)
ζ = −∂t + ∂ψ, K

(2)
ζ = −∂t − ∂ψ. (6.19)

In the following we will focus on the generic case admitting only the conformal Killing

spinor (6.16).

6.2 Supercurrent anomalies and supersymmetric vacua

Restricting the local supersymmetry and superWeyl transformations of the supercurrent

in (5.9) to the conformal Killing spinor (6.16) results in the transformation of the super-
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current under rigid supersymmetry, namely

δζSi=−1

2
T ijΓ̂(0)jζ++

ic2
2(d−2)

Γ̂ijk
(0)

(
Γ̂(0)kl−(d−2)g(0)kl

)
ζ+D(0)j

(
J l− 2c1

κ2
ǫ̂lpqsF(0)pqA(0)s

)

+
ic2
ℓ

(
Γ̂i
(0)l−(d−1)δil

)
ζ−

(
J l− 2c1

κ2
ǫ̂lpqsF(0)pqA(0)s

)

− ℓ2

2(d−2)2κ2
Γ̂ijk
(0) Γ̂

l
(0)D(0)j

[(
Rkl[g(0)]−

1

2(d−1)
R[g(0)]g(0)kl

)
ζ−

]

− ic2
2(d−2)κ2

Γ̂ij
(0)k

(
(d−2)Γ̂k

(0)Γ̂
pq
(0)−(d−1)Γ̂kpq

(0)

)
D(0)j(F(0)pqζ−), (6.20)

where we have used the fact that on a bosonic background the Ward identity (5.4f) implies

that the stress tensor T ij is symmetric, as well as the gamma matrix identity

Γ̂ijk
(0)

(
Γ̂(0)kl − (d− 2)g(0)kl

)
Γ̂(0)j = 2(d− 2)Γ̂i

(0)l − (d− 1)(d− 2)δil , (6.21)

and the conformal Killing spinor relation (6.9). Although all anomalies in the super-

conformal Ward identities (5.4) numerically vanish on the class of supersymmetric back-

grounds (6.5), the anomalous term in the supercurrent transformation (6.20) under rigid

supersymmetry is not vanishing for a generic background of the form (6.5).

The fact that the supercurrent transforms anomalously under rigid supersymmetry on

the backgrounds (6.5) has important implications for the supersymmetric vacua of theo-

ries defined on such backgrounds. As we remarked earlier, the transformations (5.9) of

the supercurrent under local supersymmetry and superWeyl transformations can alterna-

tively be derived from the bulk supersymmetry transformation of the gravitino. It follows

that for supersymmetric vacua, corresponding to supergravity solutions satisfying the bulk

BPS equations, the expectation value of the supersymmetry variation of the supercurrent

vanishes, namely

〈δζSi〉susy = 0. (6.22)

This is commonly used to argue that the linear combination of the stress tensor and the

supercurrent

− 1

2
T ijΓ̂(0)jζ++

ic2
2(d−2)

Γ̂ijk
(0)

(
Γ̂(0)kl−(d−2)g(0)kl

)
ζ+D(0)jJ l+

ic2
ℓ

(
Γ̂i
(0)l−(d−1)δil

)
ζ−J l,

(6.23)

is Q-exact. However, the anomaly in the supercurrent transformation under rigid super-

symmetry invalidates this argument and hence, the operator (6.23) is Q-exact only on the

subclass of backgrounds of the form (6.5) where the supercurrent anomaly is numerically

zero. A sufficient but not strictly necessary condition for the supercurrent anomaly to

vanish is

Rij [g(0)] = 0, F(0)ij = 0, (6.24)

but clearly this is a too restrictive condition. By a careful analysis of the supercurrent

anomaly in (6.20) one can determine the most general subclass of backgrounds of the

form (6.5) for which the supercurrent anomaly vanishes, but we will not address this

question here.
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6.3 The w and µ deformations

The fact that the operator (6.23) is not in general Q-exact due to the supercurrent anomaly

under rigid supersymmetry implies that the argument first presented in [30–32], showing

that the supersymmetric partition function on backgrounds of the form (6.5) is independent

of the functions w and µ, needs revisiting. In this subsection we reexamine this argument

using the anomalous supercurrent transformation (6.20), and we provide a resolution to

an apparent paradox in the recent analysis of [29]. We would like to emphasize that the

subsequent analysis relies only on the superconformal Ward identities and the anomalous

transformation of the supercurrent and, hence, it is applicable to anyN = 1 superconformal

field theory on backgrounds of the form (6.5), irrespectively of whether they admit a

holographic dual.

The general variation (5.7) of the generating functional implies that under a bosonic

variation

δSren =

∫
ddx

√−g(0)

(
− 1

2
T ijδg(0)ij + J iδA(0)i

)
. (6.25)

Since the supersymmetric backgrounds (6.5) are parameterized by the two unconstrained

functions w(z, z̄) and µ(z, z̄), we would like to examine the dependence of the supersym-

metric partition function on these functions. As we now show, the variation of the partition

function under infinitesimal deformations of the functions w(z, z̄) and µ(z, z̄) can be ex-

pressed as a linear combination of different components of the homogeneous part of the

supercurrent transformation (6.20), i.e. the part proportional to the stress tensor and the

R-symmetry current given in (6.23). This observation implies that the transformation of

the supersymmetric partition function under w and µ deformations, for which the total

variation of the supercurrent vanishes due to the identity (6.22), is determined entirely by

the supercurrent anomaly!

The w deformation. An infinitesimal deformation of the function w, keeping µ fixed,

corresponds to the following transformations of the bosonic sources:

δwg(0)zz̄=2ewδw, δwA(0)t=− 1

8
√
3
e−w∂z∂z̄µδw, δwA(0)ψ=

1

4
√
3
e−w∂z∂z̄µδw, (6.26)

δwA(0)z=− i

8
√
3
e−w∂z∂z̄µ∂zµδw+

i

4
√
3
∂zδw, δwA(0)z̄=

i

8
√
3
e−w∂z∂z̄µ∂z̄µδw− i

4
√
3
∂z̄δw,

with the variation of all other components vanishing.

The µ deformation. Similarly, an infinitesimal µ deformation, keeping w fixed, corre-

sponds to the source variations

δµg(0)ψz=− i

2
∂zδµ, δµg(0)ψz̄=

i

2
∂z̄δµ, δµg(0)zz=−1

2
∂zµ∂zδµ, δµg(0)z̄z̄=−1

2
∂z̄µ∂z̄δµ, (6.27)

δµg(0)zz̄=
1

4
(∂z̄µ∂zδµ+∂z̄δµ∂zµ), δµA(0)t=

1

8
√
3
e−w∂z∂z̄δµ, δµA(0)ψ=− 1

4
√
3
e−w∂z∂z̄δµ,

δµA(0)z=
i

8
√
3
e−w (∂z∂z̄δµ∂zµ+∂z∂z̄µ∂zδµ), δµA(0)z̄=− i

8
√
3
e−w (∂z∂z̄δµ∂z̄µ+∂z∂z̄µ∂z̄δµ).

We next insert these transformations of the sources in the identity (6.25) and, by

dropping various total derivative terms in the complex coordinates z and z̄, we express
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these variations in terms of certain components of the homogeneous transformation of the

supercurrent under rigid supersymmetry. Specifically, for the w deformation we obtain

δwSren=

∫
d4x

√−g(0) δw

(
−2ewT zz̄− 1

8
√
3
e−w∂z∂z̄µJ t+

1

4
√
3
e−w∂z∂z̄µJ ψ

− i

8
√
3
e−w∂z∂z̄µ(J z∂zµ−J z̄∂z̄µ)−

i

4
√
3
e−w

[
∂z(e

wJ z)−∂z̄(e
wJ z̄)

])

=

∫
d4x

√−g(0) δw

[
−i

√
2ew/2

(
δhomζ Sz

∣∣
1
+ δhomζ Sz

∣∣
2

)
− i

4
√
3
e−w

(
∂z(e

wJ z)+∂z̄(e
wJ z̄)

)]

=

∫
d4x

√−g(0) δw i
√
2ew/2

(
δanomζ Sz

∣∣
1
+ δanomζ Sz

∣∣
2

)
(6.28)

=
1

263κ2

∫
d4x

√−g(0) δw

(
−u2R2d−

1

2
�2du

2+
19

32
u4+

8

9
(γ+2γ′)(2uR2d+2�2du−u3)

)
.

The subscript 1 or 2 in the variations of the supercurrent denotes the relevant spino-

rial component. Moreover, from the second to the third equality we have used the R-

symmetry Ward identity D(0)iJ i = 0, since the R-symmetry anomaly vanishes on the

backgrounds (6.5), as well as the identity (6.22) for the supersymmetric partition function.

In the last step we have evaluated the indicated components of the supercurrent anomaly

in (6.20) on the backgrounds (6.5). Remarkably, the final result agrees completely with that

obtained in eq. (4.35) of [29], provided the “scheme” parameters ς and ς ′ there are set to

zero.13 Since these parameters do not multiply superconformal invariants, they contribute

trivial cocycles to the anomalies, and hence, should be set to zero. As we discussed in sec-

tion 4, the supersymmetric schemes correspond instead to the parameters s1 and s2 in (4.21)

and neither of these affects the supercurrent anomaly, which is scheme independent.

Similarly, the µ variation of the partition function can also be related to a certain

linear combination of the supercurrent variation under rigid superymmetry, namely

δµSren=

∫
d4x

√
−g(0)

[
− i

2

(
T z̄ψ− i

2
T z̄z∂zµ+

i

2
T z̄z̄∂z̄µ− i

8
√
3
e−w∂z(J t−2J ψ)

− 1

8
√
3
e−w(∂zJ z̄)∂z̄µ+

1

8
√
3
e−wJ z̄∂z∂z̄µ+

1

8
√
3
e−w∂z(J z∂zµ)

)
∂z̄δµ+h.c.

]

=

∫
d4x

√
−g(0)

{
−
√
2

[
i

2

(
δhomζ S z̄

∣∣∣
1
− δhomζ S z̄

∣∣∣
2

)
+
1

4
e−

w

2

(
δhomζ St

∣∣∣
1
+ δhomζ St

∣∣∣
2

)]
∂z̄δµ+h.c.

}

=

∫
d4x

√
−g(0)

{√
2

[
i

2

(
δanomζ S z̄

∣∣
1
− δanomζ S z̄

∣∣
2

)
+
1

4
e−

w

2

(
δanomζ St

∣∣
1
+ δanomζ St

∣∣
2

)]
∂z̄δµ+h.c.

}

=
−1

21032κ2

∫
d4x

√
−g(0)

[
e−w∂z

(
24uR2d−19u3+

32

3
(γ+2γ′)(3u2−4R2d)

)
∂z̄δµ+h.c.

]

=
1

2932κ2

∫
d4x

√
−g(0)(e

−w∂z∂z̄δµ)

(
24uR2d−19u3+

32

3
(γ+2γ′)(3u2−4R2d)

)
. (6.29)

Once again, this result agrees with the corresponding expression in eq. (4.36) of [29], after

setting the parameters ς and ς ′ there to zero.

We would like to emphasize that the above argument for the dependence of the super-

symmetric partition function on w and µ is fundamentally different from that in [29]. The

13The only difference is the sign of the term proportional to γ + 2γ′, which can be traced to different

choices for the orientation of the bulk manifold. In [29] the signature of the bulk metric is (−,+,+,+,+),

while we use (+,−,+,+,+). The orientation affects the sign of the Chern-Simons term, which is the origin

of the term proportional to γ + 2γ′.
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derivation in [29] relies exclusively on the bosonic operators and their sources. In particular,

the variation of the supersymmetric partition function is obtained by explicitly evaluating

the bulk on-shell action on supersymmetric supergravity solutions and it is therefore inher-

ently a holographic derivation. The argument we provide above, however, does not require

the evaluation of the partition function at any stage. Instead, by including the supercurrent

in the analysis, we express the w and µ variation of the supersymmetric partition function

in terms of the supercurrent transformation under rigid supersymmetry. This relation is

a direct consequence of the superconformal Ward identities and hence, our argument is in

fact a field theory one! As we stressed a number of times, in our entire analysis we only rely

on holography in order to derive the form of the superconformal Ward identities. These

identities, however, apply more generally to SCFTs, with or without a holographic dual.

An immediate conclusion that follows from the above derivation is that, contrary to

earlier claims, the supersymmetric field theory partition function is in fact not invariant

under w and µ deformations around a generic background of the form (6.5). Moreover,

holographic renormalization reproduces precisely this field theory property. In particular,

the anomalous transformation of the supersymmetric partition function under w and µ de-

formations is scheme independent on both the field theory and holographic sides (provided

the scheme preserves supersymmetry), and, since it is a direct consequence of a non-trivial

supercurrent anomaly, it cannot possibly be removed by a local covariant boundary coun-

terterm. This anomalous transformation is physical and so there is no need to add non-

covariant counterterms as is done in [29], which explicitly break other symmetries of the

theory! As we now explain, these observations also imply that the BPS relation between

the conserved charges on supersymmetric vacua is also anomalous!

6.4 Conserved charges and the BPS relation

The conserved charges are a consequence of the Ward identities (5.4) [41]. The presence

of anomalies in the Ward identities renders the argument leading to the conserved charges

less trivial in general [55], but for the supersymmetric backgrounds (6.5) we are interested

in here these anomalies numerically vanish.

Electric charge. The R-symmetry Ward identity (5.4b) implies that the quantity

Qω
e =

1√
3

∫
dσi

(
〈J i〉+ ω

c1
κ2

ǫ̂ipqsF(0)pqA(0)s

)
, (6.30)

where the integral is over a constant time slice of the geometry (6.5), is conserved for

any background field A(0)i if ω = 1, or for any value of ω if the R-symmetry anomaly is

numerically zero, as is the case for the backgrounds (6.5). Notice that we have introduced

the notation 〈·〉 here in order to emphasize that the charges are associated with a given

state of the theory and so involve the expectation value of the operators in a specific state.

Moreover, the overall factor 1/
√
3 in the definition of the electric charge is included in

order to compensate the normalization of the background gauge field in (6.5) and get a

canonical BPS relation between the charges later on.

The transformations (B.26) of the currents under the local symmetries imply that the

integrand in (6.30) is gauge invariant only when ω = −2. However, the electric charge is
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invariant under small gauge transformations for any value of ω due to the Bianchi identity

D(0)[iF(0)jk] = 0. Notice that for ω = −2 the charge (6.30) is the Maxwell charge, while for

ω = 1 it is the Page charge [56–58]:

Qω=−2
e = QMaxwell

e , Qω=1
e = QPage

e . (6.31)

Conformal Killing charges. The conserved charges associated with conformal Killing

vectors of a bosonic background follow from the diffeomorphism Ward identity (5.4a),

namely

D(0)jT j
i + F(0)ij

(
J j + ω

c1
κ2

ǫ̂jpqsF(0)pqA(0)s

)
=

(ω + 2)c1
κ2

ǫ̂jklpF(0)ijF(0)klA(0)p. (6.32)

Contracting this identity with a conformal Killing vector Ki and utilizing the trace (5.4d)

and R-symmetry (5.4b) Ward identities, one finds that the quantity

Qω[K] = −
∫

dσi

[
〈T i

j 〉 −
(
〈J i〉+ ω

c1
κ2

ǫ̂ipqsF(0)pqA(0)s

)
A(0)j

]
Kj , (6.33)

is conserved provided both the Weyl anomaly AW (0) and AM(0)i vanish numerically, which

is the case for the supersymmetric backgrounds (6.5). Note that these charges are not

gauge invariant except when ω = −2, but they can be made gauge invariant for any ω by

a minor modification [55].

Supercharges. Finally, the supercharges associated with a conformal Killing spinor ζ+
are

Q[ζ+] =

∫
dσi ζ+〈Si〉, Q[ζ+] =

∫
dσi 〈Si〉ζ+. (6.34)

These charges are conserved provided the supersymmetry and superWeyl anomalies vanish,

and they are of course zero in a bosonic background.

BPS relation. The transformation of the supercurrent under rigid supersymmetry

in (6.20) leads to the BPS relation between the conserved charges in supersymmetric

vacua. In particular, contracting the identity (6.20) from the left with iζ+ and taking

the expectation value in a supersymmetric vacuum we obtain

0=iζ+〈δζSi〉susy=
1

2
〈T i

j 〉susyKj
ζ+

(d−1)c2
2ℓ

(
〈J i〉susy−

2c1
κ2

ǫ̂ipqsF(0)pqA(0)s

)
(ζ+ζ−+ζ−ζ+)

+
iℓ

2(d−2)κ2
ζ−

(
Γ̂i
(0)g

kl
(0)−g

i(k
(0)Γ̂

l)
(0)

)
ζ−

(
Rkl[g(0)]−

1

2(d−1)
R[g(0)]g(0)kl

)

− (d−1)c2
2κ2ℓ

ζ−Γ̂
ijk
(0)ζ−F(0)jk+D(0)jV ij , (6.35)

where

V ij = − c2
2(d− 2)

ζ+Γ̂
ijk
(0)

(
Γ̂(0)kl − (d− 2)g(0)kl

)
ζ+

(
J l − 2c1

κ2
ǫ̂lpqsF(0)pqA(0)s

)

− iℓ2

2(d− 2)2κ2
ζ+Γ̂

ijk
(0) Γ̂

l
(0)ζ−

(
Rkl[g(0)]−

1

2(d− 1)
R[g(0)]g(0)kl

)

+
c2

2(d− 2)κ2
ζ+Γ̂

ij
(0)k

(
(d− 2)Γ̂k

(0)Γ̂
pq
(0) − (d− 1)Γ̂kpq

(0)

)
ζ−F(0)pq, (6.36)
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and we have used the Killing spinor property (6.9). Moreover, from the conformal Killing

spinor solution (6.16) we determine

A(0)iKi
ζ = − 1√

3

(
3

8
u+ γ − γ′

)
, (6.37)

and

(ζ+ζ− + ζ−ζ+) =
u

4
=

2

3
(−

√
3A(0)i)Ki

ζ −
2

3
(γ − γ′), (6.38)

which allow us to rewrite (6.35) in the form

0 = 〈T i
j 〉susyKj

ζ −
(
〈J i〉susy + ω

c1
κ2

ǫ̂ipqsF(0)pqA(0)s

)(
A(0)iKi

ζ +
1√
3
(γ − γ′)

)
(6.39)

+
iℓ

(d− 2)κ2
ζ−

(
Γ̂i
(0)g

kl
(0) − g

i(k
(0)Γ̂

l)
(0)

)
ζ−

(
Rkl[g(0)]−

1

2(d− 1)
R[g(0)]g(0)kl

)

− (d− 1)c2
κ2ℓ

ζ−Γ̂
ijk
(0)ζ−F(0)jk +

(ω + 2)ℓ

3κ2
δd,4ǫ̂

ipqsF(0)pqA(0)s(ζ+ζ− + ζ−ζ+) + 2D(0)jV ij .

Integrating this identity over a constant time slice of the geometries (6.5) we obtain the

relation

Qω[Kζ ] + (γ − γ′)Qω
e = Qω

anomaly, (6.40)

where,

Qω
anomaly=−

∫
dσi

[
− iℓ

(d−2)κ2
ζ
−

(
Γ̂i
(0)g

kl
(0)−g

i(k
(0) Γ̂

l)
(0)

)
ζ−

(
Rkl[g(0)]−

1

2(d−1)
R[g(0)]g(0)kl

)

+
(d−1)c2

κ2ℓ
ζ
−
Γ̂ijk
(0)ζ−F(0)jk−

(ω+2)ℓ

3κ2
δd,4ǫ̂

ipqsF(0)pqA(0)s(ζ+ζ−+ζ
−
ζ+)

]
. (6.41)

Notice that, as the conformal Killing charges (6.33), the anomaly charge is in general gauge

invariant only for ω = −2. However, the identity (6.40) is gauge invariant and holds for any

ω. Identifying the mass and angular momentum respectively with the conserved charges

Mω = Qω[−∂t], Jω = Qω[∂ψ], (6.42)

leads to the BPS condition

Mω + Jω + (γ − γ′)Qω
e = Qω

anomaly. (6.43)

In particular, the supercurrent anomaly gives rise to an anomaly in the BPS condition!

This observation provides a resolution to another apparent paradox discussed in [29], as

well as the earlier works [33–37], concerning the supersymmetric Casimir energy, which we

will discuss momentarily. Interestingly, the anomalous BPS condition (6.43) seems to be

compatible with the recent conjecture [59] for non-supersymmetric AdS vacua.14

14I thank Gavin Hartnett for suggesting this connection.
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BPS states and Casimir charges. In order to compute the supersymmetric Casimir

charges it is necessary to determine the expectation values of the stress tensor and the R-

current in general supersymmetric vacua. These expectation values must simultaneously

satisfy the supersymmetry condition (6.22), as well as the trace, diffeomorphism and R-

symmetry Ward identities. These conditions together account for 6 + 1 + 4 + 1 = 12

constraints, while the stress tensor and the R-current together have 10+4 = 14 components.

It follows that the general form of the one-point functions for supersymmetric vacua must

be parameterized in terms of two arbitrary functions.

The supersymmetry condition (6.22) and the Ward identities can be solved systemat-

ically to obtain the following general solution for the supersymmetric one-point functions:

〈T tt〉BPS=
1

κ2
Υ(z,z)−i∂zµ〈T ψz〉BPS+i∂zµ〈T ψz〉BPS−

1

4
(∂zµ)

2〈T zz〉BPS−
1

4
(∂zµ)

2〈T zz〉BPS

+(4ew+∂zµ∂zµ)〈T zz〉BPS,

〈T tψ〉BPS=− 1

κ2
Υ(z,z)− 1

3×211κ2

[
28uΦ(z,z)+3u4+16u2R2d+64�2du

2

−2e−w∂z

((
e−w(∂zµ)∂zu

2+14u3−24uR2d

)
∂zµ

)

−2e−w∂z

((
e−w(∂zµ)∂zu

2+14u3−24uR2d

)
∂zµ

)]
,

〈T tz〉BPS=
i

32×26κ2
e−w∂z

(
3uR2d−u3+48Φ(z,z)

)
,

〈T tz̄〉BPS=− i

32×26κ2
e−w∂z

(
3uR2d−u3+48Φ(z,z)

)
,

〈T ψψ〉BPS=
1

κ2
Υ(z,z)+

1

2
∂zµ∂zµ〈T zz̄〉BPS,

〈T ψz〉BPS=− i

2
∂zµ〈T zz〉BPS−

i

3×29κ2
e−w∂z

(
17

3
u3−8uR2d+e−w(∂zµ)∂zu

2+64Φ(z,z)

)
,

〈T ψz̄〉BPS=
i

2
∂zµ〈T zz〉BPS+

i

3×29κ2
e−w∂z

(
17

3
u3−8uR2d+e−w(∂zµ)∂zu

2+64Φ(z,z)

)
,

〈T zz〉BPS=− 1

3×28κ2
e−w∂z(e

−w∂zu
2),

〈T z̄z̄〉BPS=− 1

3×28κ2
e−w∂z(e

−w∂zu
2),

〈T zz̄〉BPS=
1

3×28κ2
e−w

(
�2du

2+2u2R2d−
19

16
u4−16uΦ(z,z)

)
, (6.44)

and

〈J i〉BPS =





2c1
κ2 ǫ̂

ipqsF(0)pqA(0)s +
1√
3 κ2Φ(z, z), i = t,

2c1
κ2 ǫ̂

ipqsF(0)pqA(0)s, i 6= t.

(6.45)

As anticipated, these supersymmetric expectation values are parameterized by the two

arbitrary functions Υ(z, z) and Φ(z, z).

This solution for the supersymmetric one-point functions can be generalized further

by replacing

〈T i
j 〉BPS → 〈T i

j 〉BPS + ν〈T i
j 〉loc, 〈J i〉BPS → 〈J i〉BPS + ν〈J i〉loc, (6.46)
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where ν is an arbitrary constant and

〈T i
j 〉loc=

ℓ3

24κ2

(
Di

(0)D(0)jR[g(0)]−3�(0)R
i
j [g(0)]+

1

2
�(0)Rδij+6Ri

k[g(0)]R
k
j [g(0)]−2R[g(0)]R

i
j [g(0)]

− 3

2
Rk

l [g(0)]R
l
k[g(0)]δ

i
j+

1

2
R2[g(0)]δ

i
j−6W i

kjl[g(0)]R
kl[g(0)]

)

+
ℓ

κ2

(
F i
(0)kF(0)j

k− 1

4
F(0)klF

kl
(0)δ

i
j

)
,

〈J i〉loc=− ℓ

κ2
D(0)jF

ji
(0), (6.47)

whereW(0)ijkl is the Weyl tensor of the metric g(0)ij , which for backgrounds of the form (6.5)

satisfies the identity

W iklm
(0) W(0)jklm − 2

ℓ2
F kl
(0)F(0)klδ

i
j = 0. (6.48)

The expressions (6.47) correspond respectively to the derivative of

∫
d4x

√−g(0) W2
(0), (6.49)

where W2
(0) is the supersymmetric Weyl squared density defined in eq. (4.19), with respect

to the metric g(0)ij and the gauge field A(0)i. Notice that although W2
(0) vanishes on the

backgrounds (6.5), its derivatives 〈T i
j 〉loc and 〈J i〉loc are not generically zero. However, it

can be shown that they only contribute total derivative terms to the one-point functions of

the currents, and so do not affect the value of the conserved charges. This fact also implies

that the conserved charges are independent of the choice of supersymmetric renormalization

scheme, parameterized by the two parameters s1 and s2 in (4.21).

The general solution (6.44) and (6.45) for the supersymmetric one-point functions

allows us to compute explicitly the conserved charges in terms of the functions Υ(z, z) and

Φ(z, z). We find

Mω=− 1

3×29κ2

∫
vol3

(
3×29Υ+26uΦ+

11

6
u4

)

+
γ′

32κ2

∫
vol3

(
3Φ−(ω+2)

(
1

3
γR2d−

1

24
(u3−4uR2d)

))

+
(ω+2)

32×23κ2

∫
vol3

(
u

(
1

3
γR2d−

1

24
(u3−4uR2d)

)
− 1

24
(2γu3+u2R2d)

)
,

Jω=− 1

3×28κ2

∫
vol3

(
23

24
u4−6u2R2d−25uΦ−3×28Υ

)

− γ

32κ2

∫
vol3

(
3Φ−(ω+2)

(
1

3
γR2d−

1

24
(u3−4uR2d)

))

+
(ω+2)

32×22κ2

∫
vol3

(
u

(
1

3
γR2d−

1

24
(u3−4uR2d)

)
− 1

24
(2γu3+u2R2d)

)
,

Qω
e =

1

32κ2

∫
vol3

(
3Φ−(ω+2)

(
1

3
γR2d−

1

24
(u3−4uR2d)

))
,
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Qω
anomaly=

1

29κ2

∫
vol3

(
4u2R2d−

5

4
u4

)

+
(ω+2)

3×23κ2

∫
vol3

(
u

(
1

3
γR2d−

1

24
(u3−4uR2d)

)
− 1

24
(2γu3+u2R2d)

)
. (6.50)

As expected, these charges satisfy the BPS relation (6.43) for any value of the parameter

ω and for arbitrary functions Υ(z, z) and Φ(z, z). Moreover, they apply to any BPS state,

including states corresponding to supersymmetric black holes in the bulk.

We would now like to evaluate the conserved charges (6.50) explicitly in the global

supersymmetric vacuum of the theory. This vacuum corresponds to a smooth horizonless

geometry in the bulk, which allows one to determine the functions Υvac(z, z) and Φvac(z, z)

explicitly. As was pointed out in [29], for smooth horizonless bulk solutions the Page

R-charge vanishes identically, i.e. Qω=1
e = 0, which implies that the time component of

〈J i〉vac +
c1
κ2

ǫ̂ipqsF(0)pqA(0)s, (6.51)

is a total derivative. This condition, together with the general supersymmetric solu-

tion (6.45), determines the function Φ(z, z) to be

Φvac(z, z) =
1

3
γR2d −

1

24
(u3 − 4uR2d). (6.52)

In order to determine the function Υ(z, z) in the global supersymmetric vacuum we

need an additional condition. In [29] this additional condition was that the Ricci potential

be a globally defined one-form in the bulk. However, physically this condition is equivalent

to requiring that the entropy vanishes, which is not a priori obvious how to express as a

condition on the one-point functions of the stress tensor and the R-current. To circumvent

this, below we determine the function Υvac(z, z) by requiring the value of the free energy

to agree with that computed in [29] (without the “new counterterms”) through the global

Ricci potential condition. We then manage to express the value of Υvac(z, z) as a condition

on the one-point functions of the stress tensor and the R-current. The resulting condition

provides an expression for the supersymmetric entropy in terms of the local one-point

functions. For the sake of presentation, however, we find it convenient to start with the

zero entropy condition in terms of the one-point functions, and justify it a posteriori by

the fact that it leads to the correct value of Υvac(z, z).

In order to write down an expression for the entropy, or to be able to relate the free

energy to the conserved charges, we need to identify the timelike Killing vector that would

become null on the Killing horizon. The form of the graviphoton in (6.5) implies that for

generic u(z, z) the null generator of the horizon is uniquely determined to be

χ = ∂t +
1

2
∂ψ, (6.53)

so that

A(0)iχ
i = − 1

2
√
3
(γ + 2γ′), (6.54)
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is constant. Given this timelike Killing vector, we conjecture that the entropy of any

supersymmetric state can be expressed in terms of the expectation values of the stress

tensor and the R-current as

SBPS ∝
∫

Cχ
⊥

dσi

[(
〈T i

j 〉+
(
〈J i〉+ c1

κ2
ǫ̂ipqsF(0)pqA(0)s

)
A(0)j

)
χj − (γ2 + 2γ′2)

9
√
3κ2

R2dχ
i
⊥

]
,

(6.55)

where

χi
⊥ = − 1√

3
(1, 2), χ⊥ iχ

i
⊥ = 1, χ⊥iχ

i = 0, (6.56)

is the unit vector orthogonal to χ. Notice that the integral is done over the surface orthog-

onal to χ⊥ and the relative sign between the stress tensor and the R-current is opposite

that appearing in the conserved charges (6.33). Obtaining a first principles derivation of

this expression is highly desirable, but here we will be content with the fact that it gives

the correct expression for Υvac(z, z).

In particular, demanding that

SBPS| vac = 0, (6.57)

determines

Υvac(z, z) = − 1

32 × 29

(
3× 26uΦvac(z, z) +

59

12
u4 + 4u2R2d + 32�2du

2

)

− 1

27
(γ + 2γ′)

(
Φvac(z, z)−

1

3
(γ + 2γ′)R2d

)
− 2

34
(γ2 + 2γ′2)R2d.

(6.58)

In the next subsection we will see that this expression for Υvac(z, z) leads to the free energy

obtained in [29] (without the “new counterterms”).

Having determined the functions Υvac(z, z) and Φvac(z, z) for the supersymmetric vac-

uum, we can evaluate explicitly the charges (6.50), which in this case are identified with

the Casimir charges:

Mω=
1

32×29κ2

∫
vol3

(
4u2R2d−

7

12
u4

)
+

1

27κ2

∫
vol3

(
(γ+2γ′)Φvac+

1

3
γ(γ−4γ′)R2d

)

+
(1−ω)γ′

32κ2

∫
vol3Φvac+

(ω+2)

32×23κ2

∫
vol3

(
uΦvac−

1

24
(2γu3+u2R2d)

)
,

Jω=
1

32×24κ2

∫
vol3

(
u2R2d−

1

3
u4

)
− 1

27κ2

∫
vol3

(
(γ+2γ′)Φvac+

1

3
γ(γ−4γ′)R2d

)

− (1−ω)γ

32κ2

∫
vol3Φvac+

(ω+2)

32×22κ2

∫
vol3

(
uΦvac−

1

24
(2γu3+u2R2d)

)
,

Qω
e =

(1−ω)

32κ2

∫
vol3Φvac,

Qω
anomaly=

1

29κ2

∫
vol3

(
4u2R2d−

5

4
u4

)
+

(ω+2)

3×23κ2

∫
vol3

(
uΦvac−

1

24
(2γu3+u2R2d)

)
. (6.59)

6.5 Supersymmetric partition function

We conclude with some remarks regarding the value of the supersymmetric partition func-

tion. On general grounds, the Euclidean partition function I is proportional to the Gibbs
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free energy, namely

I = β(M − β−1S − ΩJ − ΦeQe), (6.60)

where β is the perimeter of the Euclidean time circle, Ω is the angular velocity, and Φe is the

electric potential. This relation applies to both supersymmetric and non-supersymmetric

vacua and is renormalization scheme independent. In particular, the scheme dependence

of the partition function compensates that of the mass M , while the remaining charges are

scheme independent. This relation applies to any field theory, independently of whether

it admits a holographic dual, but a general holographic proof was provided in [41] by

combining the Noether current approach to entropy [60] and the holographic definition of

the conserved charges.

In order to evaluate the supersymmetric partition function we use the Casimir

charges (6.59) and set S = 0. Moreover, from the Killing vector (6.53) follows that the

angular momentum and electric potential are given respectively by

Ω =
1

2
, Φe = −

√
3A(0)iχ

i =
1

2
(γ + 2γ′). (6.61)

Using these expressions we obtain

Ivac=β

(
Mω− 1

2
Jω− 1

2
(γ+2γ′)Qω

e

)
(6.62)

=
β

32×211κ2

∫
vol3

(
19u4−48u2R2d−

128

3
(γ+2γ′)(u3−4uR2d)

)
+
β(γ−γ′)γ

27κ2

∫
vol3R2d.

This result is independent of the value of ω and of the choice of supersymmetric renor-

malization scheme. Moreover, it agrees with the free energy obtained in [29] (without the

“new counterterms” and with opposite sign for the term proportional to (γ + 2γ′), due to

our different orientation conventions, as discussed in footnote 13).
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A Conventions and radial ADM decomposition

In this appendix we define our conventions and collect several identities that are extensively

used in this paper.

A.1 Indices and orientation

The following table summarizes the different sets of indices we use to denote bulk and

boundary coordinates, as well as the corresponding frame bundle indices.
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µ, ν, ρ, . . . 1, . . . , d+ 1 bulk coordinate idices

α, β, γ, . . . 1̄, . . . , d+ 1 bulk frame indices

i, j, k, . . . 1, . . . , d boundary coordinate indices

a, b, c, . . . 1̄, . . . , d̄ boundary frame indices

An overline, as in r̄ or t̄, will be used to denote the frame indices associated with the

corresponding coordinates, respectively r and t in this example. We take the Minkowski

metric ηαβ on the frame bundle to be η = diag (1,−1, 1, . . . , 1), where ηt̄t̄ = −1. Accord-

ingly, we choose the orientation of the bulk manifold such that the Levi-Civita symbol

εµνρ... = ±1 satisfies εr,t,... = 1. The corresponding Levi-Civita tensor is defined as usual

by ǫµνρ... =
√−g εµνρ....

A.2 Gamma matrix conventions and identities

The Gamma matrices Γα with flat frame bundle indices satisfy the Clifford algebra

{Γα,Γβ} = 2ηαβ . (A.1)

The Gamma matrices with coordinate indices are defined using the inverse vielbein Eµ
α as

Γµ = Eµ
αΓ

α, (A.2)

and satisfy

{Γµ,Γν} = 2gµν . (A.3)

We do not need the explicit matrix representation of the Clifford algebra here, except

for the calculation in section 6, where we specify the gamma matrix representation used

in (6.14). As in [46], we will assume that the representation is Hermitian so that

Γα† = Γt̄ΓαΓt̄, Γµ† = Γt̄ΓµΓt̄. (A.4)

We also adopt the standard notation for totally antisymmetric products of Gamma

matrices

Γµ1µ2...µn ≡ Γ[µ1Γµ2 · · ·Γµn], (A.5)

where the indices are antisymmetrized with weight one. Several identities these products

satisfy in D-dimensions can be found e.g. in section 3 of [46]. Some of the identities that
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we utilize here are

Γµνρ =
1

2
{Γµ,Γνρ}, (A.6a)

Γµνρσ =
1

2
[Γµ,Γνρσ], (A.6b)

ΓµνΓρσ = Γµν
ρσ + 4Γ[µ

[σδ
ν]
ρ] + 2δ[µ[σδ

ν]
ρ], (A.6c)

ΓµΓ
ν1...νp = Γµ

ν1...νp + pδ[ν1µ Γν2...νp], (A.6d)

Γν1...νpΓµ = Γν1...νp
µ + pΓ[ν1...νp−1δ

νp]
µ , (A.6e)

ΓµνρΓστ = Γµνρ
στ + 6Γ[µν

[τδ
ρ]
σ] + 6Γ[µδν [τδ

ρ]
σ], (A.6f)

ΓµνρσΓτλ = Γµνρσ
τλ + 8Γ[µνρ

[λδ
σ]

τ ] + 12Γ[µνδρ[λδ
σ]

τ ], (A.6g)

ΓµνρΓστλ = Γµνρ
στλ + 9Γ[µν

[τλδ
ρ]
σ] + 18Γ[µ

[λδ
ν
τδ

ρ]
σ] + 6δ[µ[λδ

ν
τδ

ρ]
σ], (A.6h)

Γµ1...µrν1...νsΓνs...ν1 =
(D − r)!

(D − r − s)!
Γµ1...µr , (A.6i)

ΓµρΓρν = (D − 2)Γµ
ν + (D − 1)δµν , (A.6j)

ΓµνρΓρσ = (D − 3)Γµν
σ + 2(D − 2)Γ[µδν]σ, (A.6k)

ΓµνλΓλρσ = (D − 4)Γµν
ρσ + 4(D − 3)Γ[µ

[σδ
ν]
ρ] + 2(D − 2)δ[µ[σδ

ν]
ρ], (A.6l)

ΓµρΓ
ρστΓτν = (D − 4)2Γµ

σ
ν + (D − 4)(D − 3) (Γµδ

σ
ν − Γσgµν)

+ (D − 3)(D − 2)δσµΓν − (D − 3)ΓσΓµν , (A.6m)

ΓρΓ
µ1µ2...µpΓρ = (−1)p(D − 2p)Γµ1µ2...µp . (A.6n)

A.3 Radial ADM decomposition

The radial ADM decomposition of the dynamical variables consists in choosing a suitable

radial coordinate r emanating from the conformal boundary and describing the bulk space

as a foliation by constant r-slices, which we denote by Σr. Accordingly, all fields with

tensor indices are decomposed along the radial and transverse directions as

ds2 = gµνdx
µdxν = (N2 +N iNi)dr

2 + 2Nidrdx
i + γijdx

idxj ,

A = adr +Aidx
i, Ψ = Ψrdr +Ψidx

i, (A.7)

where γij , Ai and Ψi are dynamical induced fields on the slices Σr, while N , Ni, a and Ψr,

are non-dynamical Lagrange multipliers conjugate to first class constraints.

Fefferman-Graham gauge. Since N , Ni, a and Ψr, are non-dynamical Lagrange mul-

tipliers, once the corresponding first class constraints have been derived, we can set them

to any fixed value that is convenient. A choice that is particularly useful for reading off

the holographic dictionary is the Fefferman-Graham (FG) gauge

N = 1, N i = 0, a = 0, Ψr = 0. (A.8)

Whenever we gauge-fix the Lagrange multipliers in this paper we adopt this choice of gauge.
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Vielbein and gamma matrices. The vielbeins compatible with the ADM metric (A.7)

can be expressed in terms of a (d+ 1)-vector nα and a (d+ 1)× d matrix eαj as

Eα =
(
Nnα +N jeαj

)
dr + eαj dx

j , (A.9)

so that

gµν = Eα
µE

β
ν ηαβ , γij = eαi e

β
j ηαβ , nαe

α
i = 0, ηαβn

αnβ = 1. (A.10)

The inverse vielbeins are then given by

Er
α =

1

N
nα, Ei

α = eiα − N i

N
nα, (A.11)

and satisfy the orthogonality relation

eiαe
β
i + nαn

β = δβα. (A.12)

In order to simplify the calculations we sometimes choose a convenient vielbein frame so

that

nα = (1, 0), eiα = (0, eia), eαi = (0, eai ), (A.13)

and eai becomes the vielbein on the slice Σr.

Gamma matrix decomposition and radiality. The decomposition of the vielbein

allows us to decompose the gamma matrices in radial and transverse components as follows:

Γr = ΓαEr
α =

1

N
nαΓ

α ≡ 1

N
Γ, Γi = ΓαEα

i = Γ̂i − N i

N
Γ, Γ̂i ≡ Γαeiα. (A.14)

These relations imply that

Γri1i2...in = E r
α1
E i1

α2
· · ·E in

αn+1
Γα1α2...αn+1

=
1

N
nα1

(
e i1
α2

− N i1

N
nα2

)
. . .

(
e in
αn+1

− N in

N
nαn+1

)
Γα1α2...αn+1

=
1

N
Γ Γ̂i1i2...in . (A.15)

Moreover, the Hermiticity property (A.4) translates into the identities

Γ† = ΓtΓ Γt̄, Γ̂i† = ΓtΓ̂iΓt̄, (A.16)

while the Clifford algebra (A.3) becomes

{Γ̂i, Γ̂j} = 2γij , {Γ̂i,Γ} = 0. (A.17)

The fact that Γ anticommutes with all gamma matrices Γ̂i allows us to introduce the

radiality projectors and the corresponding radially projected spinors [42]

Γ± ≡ 1

2
(1± Γ) , ψ± ≡ Γ±ψ. (A.18)

Note that the radiality projectors are independent of the spacetime dimension, but coincide

with the usual chirality projectors for oddD = d+1. Moreover, splitting the spinors accord-

ing to their radiality is necessary not only for formulating a consistent Hamiltonian descrip-

tion of the fermion dynamics [43], but also in order to construct the asymptotic Fefferman-

Graham expansions, since fermions of different radiality have different asymptotic behavior.
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Levi-Civita tensor. The Levi-Civita tensor in the (d+ 1)-dimensional bulk is given by

ǫµ1···µd+1 = Eµ1
α1

· · ·Eµd+1
αd+1ǫ

α1···αd+1 . (A.19)

In the coordinate system (A.7) it takes the form

ǫri1···id =
1

N
nα0

(
ei1α1

− N i1

N
nα1

)
· · ·

(
eidαd

− N id

N
nαd

)
ǫα0···αd =

1

N
ǫ̂i1···id , (A.20)

where ǫ̂i1···id is the Levi-Civita tensor on Σr and

ǫ̂α1···αd ≡ nα0ǫ
α0···αd . (A.21)

The Levi-Civita tensor is related with the antisymmetric products of the gamma ma-

trices through the identity

Γµ1µ2...µD ∝ ǫµ1µ2...µD . (A.22)

In particular, for D = d+ 1 with d even (see (3.31) in [46])

Γ̂i1i2...id = id/2+1ǫ̂i1i2...idΓ. (A.23)

It follows that

Γri1i2...id =
1

N
ΓΓ̂i1i2...id =

id/2+1

N
Γ2ǫ̂i1i2...id =

id/2+1

N
ǫ̂i1i2...id = id/2+1ǫri1i2...id , (A.24)

and hence

Γµ1µ2...µD = id/2+1ǫµ1µ2...µD , D = d+ 1 odd. (A.25)

Radial decomposition of the Christoffel and spin connections. We further need

the ADM decomposition of the Christoffel symbol and of the spin connection. A straight-

forward calculation using the metric (A.7) determines the bulk Christoffel symbol:

Γr
rr = N−1(Ṅ+N i∂iN−N iN jKij),

Γr
ri = N−1

(
∂iN−N jKij

)
,

Γr
ij = −N−1Kij ,

Γi
rr = −N−1N iṄ−NDiN−N−1N iN j∂jN+Ṅ i+N jDjN

i+2NN jKi
j+N−1N iNkN lKkl,

Γi
rj = −N−1N i∂jN+DjN

i+N−1N iNkKkj+NKi
j ,

Γk
ij = Γk

ij [γ]+N−1NkKij , (A.26)

where

Kij =
1

2N
(γ̇ij −DiNj −DjNi), (A.27)

is the extrinsic curvature of the radial slice Σr and K ≡ γijKij .

The torsion free spin connection is expressed in terms of the vielbein as

ωµαβ = Eνα∂µE
ν
β + Γρ

µνEραE
ν
β . (A.28)

– 44 –



J
H
E
P
0
7
(
2
0
1
7
)
0
3
8

Using the above decompositions of the vielbein and of the Christoffel symbol we determine

the components of the spin connection (see also (88) and (89) in [43]):

ωrαβ = EναĖβ
ν + Γρ

rνEραEβ
ν

= Erα∂rEβ
r + Eiα∂rEβ

i + Γr
rrErαEβ

r + Γr
riErαEβ

i + Γi
rrEiαEβ

r + Γi
rjEiαEβ

j

= n[αṅβ] + ei[αėβ]
i + 2n[αeβ]

i
(
∂iN −N jKji

)
−DiNje[α

ieβ]
j , (A.29a)

ωiαβ = Eνα∂iEβ
ν + Γρ

iνEραEβ
ν

= Erα∂iEβ
r + Ejα∂iEβ

j + Γr
irErαEβ

r + Γr
ijErαEβ

j + Γj
irEjαEβ

r + Γk
ijEkαEβ

j

= nα∂inβ + ejα∂ieβ
j + Γk

ij [γ]ekαeβ
j + 2Kj

i ej[αnβ]. (A.29b)

Choosing the convenient frame (A.13), these identities allow us to write

ωiab = eja∂ie
j
b + Γk

ij [γ]ekae
j
b ≡ ω̂iab, (A.30a)

ωiαβΓ
αβ = ω̂iabΓ

ab + 2Kjie
j
αnβΓ

αβ = ω̂iabΓ
ab + 2KjiΓ̂

jΓ, (A.30b)

ωrαβΓ
αβ = eiαė

i
βΓ

αβ + 2ΓΓ̂i
(
∂iN −N jKji

)
− Γ̂ijDiNj . (A.30c)

It follows that the components of the covariant derivative acting on the gravitino take the

form

∇iΨj=DiΨj+
1

2
KliΓ̂

lΓΨj+
1

N
Kij(Ψr−NkΨk), (A.31a)

∇iΨr=DiΨr+
1

2
KjiΓ̂

jΓΨr−Γj
irΨj−Γr

irΨr, (A.31b)

∇rΨi=Ψ̇i+
1

4

(
eaiė

i
bΓ

ab+2ΓΓ̂j(∂jN−N lKlj)−Γ̂jlDjNl

)
Ψi−Γj

irΨj−Γr
irΨr, (A.31c)

where

DiΨj = ∂iΨj +
1

4
ω̂iabΓ

abΨj − Γk
ij [γ]Ψk, (A.32a)

DiΨr = ∂iΨr +
1

4
ω̂iabΓ

abΨr, (A.32b)

are the covariant derivatives of, respectively, a vector and a scalar spinor on the radial slice

Σr.

B Generalized PBH transformations

Penrose-Brown-Henneaux (PBH) transformations [52–54] are bulk diffeomorphisms that

preserve the Fefferman-Graham gauge (A.8). In addition to diffeomorphisms, the super-

gravity action (2.1) is invariant under local supersymmetry and U(1) gauge transforma-

tions. Moreover, local SO(1, d) frame rotations not only leave the action (2.1) invariant, but

also automatically preserve the FG gauge (A.8). However, as we discussed in appendix A,

it is particularly useful to make a specific choice of frame defined by the conditions (A.13).

In combination with the FG gauge (A.8), these conditions amount to requiring that

E r̄
r = 1, Ea

r = 0, E r̄
i = 0, a = 0, Ψr = 0. (B.1)
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We will refer to this gauge fixing condition as the strong Fefferman-Graham gauge. It is

equivalent to the FG gauge (A.8), but also partially gauge fixes the frame rotations. In

the remaining of this appendix we will determine the most general local bulk transforma-

tions that preserve the gauge conditions (B.1). Such transformations generalize the PBH

diffeomorphisms and have a central role in constructing the holographic dictionary, and in

particular, in determining how supersymmetry acts on the boundary.

We start by considering the transformation of all bulk fields under infinitesimal dif-

feomorphisms ξµ, frame rotations λαβ = −λβα, U(1) gauge transformations θ, as well

as local supersymmetry transformations ǫ. The transformation of the fields under local

supersymmetry transformations is given in (2.6). Under bulk diffeomorphisms

δξE
α
µ = ξν∂νE

α
µ + (∂µξ

ν)Eα
ν , δξAµ = ξν∂νAµ + (∂µξ

ν)Aν , δξΨµ = ξν∂νΨµ + (∂µξ
ν)Ψν ,

(B.2)

while under local frame rotations

δλE
α
µ = −λα

βE
β
µ , δλAµ = 0, δλΨµ = −1

4
λαβΓαβΨµ, (B.3)

and under U(1) gauge transformations

δθE
α
µ = 0, δθAµ = ∂µθ, δθΨµ = −igθΨµ. (B.4)

Requiring that the total transformation of all the fields preserves the conditions (B.1) leads

to the following set of differential equations for the local parameters:

ξ̇r = 0, (B.5a)

ξ̇ieai − λa
r̄ = 0, (B.5b)

(∂iξ
r)− λr̄

be
b
i +

1

2

(
ǫΓΨi −ΨiΓǫ

)
= 0, (B.5c)

ξ̇iAi + θ̇ = 0, (B.5d)

ξ̇iΨi + ǫ̇+
1

4
eiaė

i
b Γ̂

abǫ+ ic4

(
ΓΓ̂ijFij − 2(d− 2)Γ̂iȦi

)
ǫ− 1

2ℓ
Γǫ = 0. (B.5e)

The last equation can be simplified by decomposing the gravitino and the spinor parameter

ǫ using the radiality projectors (A.18), namely

Ψ±i ≡ Γ±Ψi, ǫ± ≡ Γ±ǫ. (B.6)

This leads to the two spinor equations

ξ̇iΨ+i + ǫ̇+ +
1

4
eiaė

i
b Γ̂

abǫ+ + ic4

(
Γ̂ijFijǫ+ − 2(d− 2)Γ̂iȦiǫ−

)
− 1

2ℓ
ǫ+ = 0, (B.7a)

ξ̇iΨ−i + ǫ̇− +
1

4
eiaė

i
b Γ̂

abǫ− − ic4

(
Γ̂ijFijǫ− + 2(d− 2)Γ̂iȦiǫ+

)
+

1

2ℓ
ǫ− = 0. (B.7b)

Moreover, combining the second and third equations in (B.5) using λr̄
b = −λa

r̄ηab, gives

∂iξ
r + γij ξ̇

j +
1

2

(
ǫΓΨi −ΨiΓǫ

)
= 0. (B.8)
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The above equations can be solved to determine the general form of the local transfor-

mations preserving the strong FG gauge conditions (B.1). The general solution contains a

number of integration functions and takes the form (see also section C of [49])

ξr=σ(x), (B.9a)

ξi=ξio(x)−
∫ r

dr′γij(r′,x)

(
∂jσ+

1

2

(
ǫ−Ψ+i−ǫ+Ψ−i−Ψ−iǫ++Ψ+iǫ−

))
, (B.9b)

λa
r̄=−eai γ

ij

(
∂jσ+

1

2

(
ǫ−Ψ+i−ǫ+Ψ−i−Ψ−iǫ++Ψ+iǫ−

))
, (B.9c)

λa
b=λa

ob(x)+··· , (B.9d)

θ=θo(x)−
∫ r

dr′γij(r′,x)

(
∂jσ+

1

2

(
ǫ−Ψ+i−ǫ+Ψ−i−Ψ−iǫ++Ψ+iǫ−

))
Ai(r

′,x), (B.9e)

ǫ+=Ξ+ǫo+(x)+Ξ+i

√
d−2

2(d−1)

∫ r

dr′Ξ−1
+ (r′,x)

(
Γ̂iȦiǫ−+O(Ψ2)

)
, (B.9f)

ǫ−=Ξ−ǫo−(x)+Ξ−i

√
d−2

2(d−1)

∫ r

dr′Ξ−1
− (r′,x)

(
Γ̂iȦiǫ++O(Ψ2)

)
, (B.9g)

where

Ξ± = exp

∫ r

dr′
(
± 1

2ℓ
− 1

4
eiaė

i
b Γ̂

ab ∓ i√
8(d− 2)(d− 1)

Γ̂ijFij +O(Ψ2)

)
, (B.10)

and σ(x), ξio(x), λ
a
ob(x), θo(x), and ǫo±(x) are arbitrary functions of the transverse coordi-

nates only.

Note that in determining the solution for λa
r̄ and ǫ± we used the leading asymptotic

form of the fields for a general asymptotically locally AdSd+1 background, namely

eai ∼ er/ℓea(0)i(x), Ai ∼ A(0)i(x), Ψ±i ∼ e±r/2ℓΨ(0)±i(x). (B.11)

In particular, although the gauge fixing conditions (B.1) allow λa
r̄(r, x) to be arbitrary,

preserving the asymptotic form of the vielbein eai requires that λa
r̄(r, x) ∼ λa

or̄(x), up to

subleading terms that remain arbitrary, but do not affect any physical observable. More-

over, the expressions for ǫ± look formal since ǫ± enter on the r.h.s. of the last two equations

in (B.9) as well. However, this dependence on the r.h.s. is asymptotically subleading, and so

are the last two terms in the expression for Ξ± in (B.10). The expressions for ǫ±, together

with that for Ξ± in (B.10), therefore, allow one to recursively determine the asymptotic

solution of the spinors ǫ±. To leading order asymptotically the general solution (B.9) takes

the form

ξr = σ(x), ξi ∼ ξio(x), λa
b ∼ λa

ob(x), θ ∼ θo(x), ǫ± ∼ e±r/2ℓǫo±(x), (B.12)

with

λa
r̄ ∼ −e−r/ℓea(0)ig

ij
(0)

(
∂jσ(x) +

1

2

(
ǫo−Ψ(0)+i − ǫo+Ψ(0)−i −Ψ(0)−iǫo+ +Ψ(0)+iǫo−

))
.

(B.13)
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Notice that each local transformation is sourced by an arbitrary function of the transverse

coordinates. As is discussed in the main part of the paper, these parameters correspond to

the local symmetries of the dual field theory in a background of arbitrary sources. To deter-

mine how the local sources transform under these local symmetries we next consider how the

generalized PBH transformations act on the induced fields on Σr, in the limit that r → ∞.

Under local bulk transformations that preserve the strong FG gauge (B.1) the induced

fields on the radial slices Σr transform as

δξ,λ,θ,ǫe
a
i = σėai + ξj∂je

a
i + (∂iξ

j)eaj − λa
be

b
i +

1

2
(ǫΓ̂aΨi −ΨiΓ̂

aǫ), (B.14a)

δξ,λ,θ,ǫAi = σȦi + ξj∂jAi + (∂iξ
j)Aj + ∂iθ + ic3

(
Ψiǫ− ǫΨi

)
, (B.14b)

δξ,λ,θ,ǫΨi = σΨ̇i + ξj∂jΨi + (∂iξ
j)Ψj −

1

4
λαβΓαβΨi +Diǫ+

1

2
KjiΓ̂

jΓǫ− 1

2ℓ
Γ̂iǫ

+ ic4

(
[Γ̂i

jk − 2(d− 2)Γ̂kδji ]Fjk − 2[Γ̂i
j − (d− 2)δji ]ΓȦj

)
ǫ− igθΨi, (B.14c)

where

Di ≡ Di + igAi. (B.15)

Using the leading asymptotic form of the induced fields in eq. (B.11), and of the local

symmetry parameters in eq. (B.12), we find that to leading order asymptotically

δξ,λ,θ,ǫe
a
i ∼

σ

ℓ
eai +ξjo∂je

a
i +(∂iξ

j
o)e

a
j−λa

obe
b
i+

1

2
(ǫ+Γ

aΨ+i−Ψ+iΓ
aǫ+), (B.16a)

δξ,λ,θ,ǫAi∼ξjo∂jAi+(∂iξ
j
o)Aj+∂iθo+ic3

(
Ψ+iǫ−+Ψ−iǫ+−ǫ+Ψ−i−ǫ−Ψ+i

)
, (B.16b)

δξ,λ,θ,ǫΨ+i∼
σ

2ℓ
Ψ+i+ξjo∂jΨ+i+(∂iξ

j
o)Ψ+j−

1

4
λab
o ΓabΨ+i+Diǫ+−

1

ℓ
Γ̂iǫ−−igθoΨ+i. (B.16c)

Taking the limit r → ∞, these expressions result in the transformations of the field theory

sources given in eq. (5.5). Finally, projecting the gravitino transformation in (B.14) with

the P− radiality projector gives

δξ,λ,θ,ǫΨ−i ∼ − σ

2ℓ
Ψ−i + ξjo∂jΨ−i + (∂iξ

j
o)Ψ−j −

1

4
λab
o Γ̂abΨ−i

+Diǫ− +
1

2
K(2)jiΓ̂

jǫ+ + ic4(Γ̂i
jk − 2(d− 2)Γ̂kδji )Fjkǫ+ − igθoΨ−i, (B.17)

where

K(2)ij =
ℓ

d− 2

(
Rij [γ]−

1

2(d− 1)
R[γ]γij

)
+O(Ψ2). (B.18)

From eq. (3.16) follows that this corresponds to the leading asymptotic transformation of

the canonical momentum πi
Ψ
.

B.1 Ward identities as generators of generalized PBH transformations

In section 5 we argued that the generalized PBH transformations are directly related with

the Ward identities (5.4), which were obtained from the first class constraints (3.13). Specif-

ically, varying the renormalized on-shell action (4.22) with respect to arbitrary PBH trans-

formations of the form (5.5) provides an alternative derivation of the Ward identities. As
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we now demonstrate, the connection between the Ward identities and generalized PBH

transformations admits an elegant formulation on the symplectic space of sources and lo-

cal operators, which can be employed in order to obtain the transformations of the local

operators under PBH transformations.

Inserting the Fefferman-Graham expansions in the symplectic form associated with the

bulk action (2.1) [61, 62], it can be shown that the field theory sources and the correspond-

ing operators defined through (5.1) parameterize a symplectic manifold equipped with the

symplectic 2-form

Ω =

∫
ddx

(
δeai (0) ∧ δΠi

a + δA(0)i ∧ δΠi + δΨ(0)+i ∧ δΠi
Ψ
+ δΠi

Ψ ∧ δΨ(0)+i

)
, (B.19)

where

Πi
a = −√−g(0) T i

a , Πi
a =

√−g(0) J i, Πi
Ψ
=

√−g(0) Si, Πi
Ψ =

√−g(0) S
i
.

(B.20)

The symplectic form (B.19) allows us to introduce the Poisson bracket [63]

{A,B}PB =

∫
ddx

(
δA
δea(0)i

δB
δΠi

a

+
δA

δA(0)i

δB
δΠi

+ B
←−
δ

δΠi
Ψ

δA
δΨ(0)+i

+A
←−
δ

δΨ(0)+i

δB
δΠi

Ψ

−A ↔ B
)
,

(B.21)

for any functions A and B on the space of sources and local operators. It should be

emphasized that, although this result is obtained here holographically from the bulk theory,

it applies to any local quantum field theory where the local operators are defined as in the

local renormalization group [50]. Indeed, the subsequent analysis in this appendix applies to

any local quantum field theory [47], independently of whether it admits a holographic dual.

The Ward identities (5.4) imply that the local functions

WMi=D(0)j(e
a
(0)iΠ

j
a+Πj

ΨΨ(0)+i+Ψ(0)+iΠ
j

Ψ
)−Πj

ΨD(0)iΨ(0)+j−Ψ(0)+j
←−D(0)iΠ

j

Ψ
−F(0)ijΠ

j

+
√−g(0)AM(0)i, (B.22a)

WR=D(0)iΠ
i+ig(Πi

ΨΨ(0)+i−Ψ(0)+iΠ
i
Ψ
)−√−g(0)AR(0), (B.22b)

WS=D(0)iΠ
i
Ψ
− 1

2
Πi

aΓ
aΨ(0)+i−

ic2
2(d−2)

Πi(Γ̂(0)ij−(d−2)g(0)ij)Γ̂
jpq
(0)D(0)pΨ(0)+q

−√−g(0)AS(0), (B.22c)

WW =
1

ℓ

(
−ea(0)iΠ

i
a−

1

2
Ψ(0)+iΠ

i
Ψ
− 1

2
Πi

ΨΨ(0)+i−
√−g(0)AW (0)

)
, (B.22d)

WsW =
1

ℓ

(
−Γ̂(0)iΠ

i
Ψ
+
i(d−1)c2

2
ΠiΨ(0)+i+

√−g(0)AsW (0)

)
, (B.22e)

Wab
L =−e

i[a
(0)Π

b]
i +

1

4
(Πi

ΨΓ
abΨ(0)+i−Ψ(0)+iΓ

abΠi
Ψ
), (B.22f)

vanish identically on the symplectic space of sources and local operators. It is straightfor-

– 49 –



J
H
E
P
0
7
(
2
0
1
7
)
0
3
8

ward to show that the Poisson bracket of the generating function

C[σ, ξo, θo, λo, ǫo+, ǫo−] =

∫
ddx

(
σWW + ξioWMi + θoWR + λo abWab

L

+ ǫo+WS + ǫo−WsW +WSǫo+ +WsW ǫo−

)
, (B.23)

with the field theory sources reproduces the PBH transformations (5.5). Specifically, one

finds

{C[σ, ξo, θo, λo, ǫo+, ǫo−], e
a
i (0)}PB = − δC

δΠi
a

= δξo,λ′
o,θ

′
o,ǫoe

a
i (0), (B.24a)

{C[σ, ξo, θo, λo, ǫo+, ǫo−], A(0)i}PB = − δC
δΠi

= δξo,λ′
o,θ

′
o,ǫoA(0)i, (B.24b)

{C[σ, ξo, θo, λo, ǫo+, ǫo−],Ψ(0)+i}PB = − δC
δΠi

Ψ

= δξo,λ′
o,θ

′
o,ǫoΨ(0)+i, (B.24c)

where

λ′ab
o = λab

o − ξkoω
ab
(0)k, θ′o = θo −A(0)kξ

k
o . (B.25)

It follows that the Ward identities are first class constraints on the space of sources

and local operators generating the corresponding local symmetries through the Poisson

bracket (B.21).

This observation can be utilized in order to determine the transformation of the local

operators,15 which are given by the Poisson brackets

δσ,ξo,λ′
o,θ

′
o,ǫo+,ǫo−Π

i
a = {C[σ, ξo, θo, λo, ǫo+, ǫo−],Π

i
a}PB =

δC
δea(0)i

, (B.26a)

δσ,ξo,λ′
o,θ

′
o,ǫo+,ǫo−Π

i = {C[σ, ξo, θo, λo, ǫo+, ǫo−],Π
i}PB =

δC
δA(0)i

, (B.26b)

δσ,ξo,λ′
o,θ

′
o,ǫo+,ǫo−Π

i
Ψ
= {C[σ, ξo, θo, λo, ǫo+, ǫo−],Π

i
Ψ
}PB =

δC
δΨ(0)+i

. (B.26c)

Since these transformations are obtained by evaluating the functional derivatives of the

generating function (B.23) with respect to the sources, they get contributions from the

anomalies! In particular, the anomalous contributions to the operator transformations are

given by

δAσ,ξo,λ′
o,θ

′
o,ǫo

T i
a =

−1

e(0)

δCA

δea(0)i
, δAσ,ξo,λ′

o,θ
′
o,ǫo

J i =
1

e(0)

δCA

δA(0)i
, δAσ,ξo,λ′

o,θ
′
o,ǫo

Si =
1

e(0)

δCA

δΨ(0)+i

,

(B.27)

15The transformation of the local operators can also be obtained by using the explicit form of the

Fefferman-Graham expansions as in [54], but the Poisson bracket derivation has the advantages that it

applies to any local field theory, since it only requires knowledge of the Ward identities, and it is practically

simpler.
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where e(0) ≡
√−g(0) and

CA[σ, ξo, θo, ǫo+, ǫo−] =

∫
ddx

√−g(0)

(
− σ

ℓ
AW (0) − θoAR(0) (B.28)

− ǫo+AS(0) +
1

ℓ
ǫo−AsW (0) −AS(0)ǫo+ +

1

ℓ
AsW (0)ǫo−

)
.

These anomalous contributions to the transformation of the local operators are central to

the analysis of the symmetries preserved by the quantum field theory vacua.

Finally, the Poisson bracket of the generating functions (B.23) can be used to determine

the infinite dimensional superalgebra of generalized PBH transformations, as is done e.g. in

eq. (3.2.35) of [63] for local Weyl transformations and diffeomorphisms. However, in order

for the algebra to close in the present context, it is necessary to know the bulk supergravity

action and the corresponding supersymmetry transformations to all orders in the gravitino.

C Supersymmetry transformation of the bulk action

In this appendix we show that the supersymmetry variations (2.6) leave the action (2.1)

invariant up to boundary terms that we determine explicitly. We emphasize again that

throughout our analysis we keep terms up to quadratic order in the gravitino only. For the

purpose of this appendix it is convenient to keep the constants c1, c2, c3, c4 and g in the

action (2.1) and in the supersymmetry transformations (2.6) arbitrary. As we shall see,

invariance of (2.1) under the supersymmetry transformations (2.6) determines all these

parameters, up to an overall sign. It is also useful to note that, since there is no torsion,

the Christoffel symbol in the gravitino covariant derivative in (2.1) can be omitted, thus

simplifying the calculation.

Bosonic terms. The supersymmetry variation of the bosonic terms in the action (2.1) is:

δ
(√−g 2Λ

)
=

√−g ΛǫΓµΨµ + h.c., (C.1a)

δ
(√−gR

)
= −√−g(Rµν −

1

2
Rgµν)ǫΓ

µΨν

+ ∂µ

(√−g∇ν(ǫΓ
(µΨν))−√−g∇µ(ǫΓνΨν)

)
+ h.c., (C.1b)

δ
(√−gF 2

)
=

√−g

(
1

2
F 2gµν − 2FµρF ν

ρ

)
ǫΓµΨν − 4ic3

√−g Fµν∇µ(ǫΨν) + h.c.,

(C.1c)

ǫµνρσλδ (FµνFρσAλ) = −ic3ǫ
µνρσλ (3FµνFρσǫΨλ + 4∇µ(FρσAλǫΨν)) + h.c.. (C.1d)

Fermionic terms. The variation of the fermionic terms requires extensive use of the

gamma matrix identities (A.6). After some algebra these variations take the form

δ
(√−gΨµΓ

µνρ←→∇ νΨρ

)
=
√−g δΨµΓ

µνρ∇νΨρ−
√−g∇ν(δΨµ)Γ

µνρΨρ+h.c.

=2
√−g δΨµΓ

µνρ∇νΨρ−∂ν(
√−g δΨµΓ

µνρΨρ)+h.c.

=∂µ(2
√−g ǫΓµνρ∇νΨρ−

√−g δΨνΓ
νµρΨρ)+

(d−1)

ℓ

√−g ǫΓµν∇µΨν
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−√−g (Rµν−
1

2
Rgµν)ǫΓ

µΨν−2ig
√−gAµǫΓ

µνρ∇νΨρ

+2(d−1)ic4
√−gF στ ǫ(−Γτσ

νρ+2δ[τ
[ρδσ]

ν])∇νΨρ+h.c., (C.2a)

δ(
√−gΨµΓ

µνΨν)=∂µ(
√−g ǫΓµνΨν)−

√−g ǫΓµν∇µΨν+
d

2ℓ

√−g ǫΓµΨµ (C.2b)

−ig
√−gAµǫΓ

µνΨν+ic4
√−gF στ ǫ((d−2)Γστ

ν−2Γσδ
ν
τ )Ψν+h.c.,

δ(
√−gΨµΓ

µνρAνΨρ)=∂µ(
√−g ǫΓµνρAνΨρ)−

1

2

√−gFµνǫΓ
µνρΨρ+

√−g ǫΓµνρAµ∇νΨρ

+
d−1

2ℓ

√−g ǫΓµνAµΨν

+i(d−1)c4
√−gF στ ǫ(−Γτσ

νρ+2δ[τ
[ρδσ]

ν])AνΨρ+h.c., (C.2c)

δ(
√−gFµνΨµΨν)=

√−gFµν(ǫ
←−∇µ)Ψν+

1

2ℓ

√−gFµνǫ(Γµ−2iℓgAµ)Ψν

+ic4
√−gFµνFρσǫ

(
Γσρ

µ−2(d−2)δρµΓ
σ
)
Ψν+h.c., (C.2d)

δ
(√−gΨµΓ

µνρσΨνFρσ

)
=∂µ(

√−g ǫΓµνρσΨνFρσ)−
√−g ǫΓµνρσ(∇µΨν)Fρσ

+
d−2

2ℓ

√−g ǫΓνρσΨνFρσ−ig
√−g ǫΓµνρσΨνAµFρσ (C.2e)

−ic4
√−g ǫ(dΓλκ

νρσ+2δνκΓλ
ρσ−6(d−2)δ[νκ δρλΓ

σ])ΨνFρσF
κλ+h.c..

Combining these transformations we find that the total supersymmetry variation is a

pure boundary term provided the constants c1, c2, c3, c4 take the values

c1 =
∓2ℓ

3
√
3
δd,4, c2 =

±ℓ√
2(d− 1)(d− 2)

, c3 = ±
√

d− 1

8(d− 2)
, c4 =

±1√
8(d− 1)(d− 2)

,

(C.3)

while the gauge coupling is given by

g = ±1

ℓ

√
(d− 1)(d− 2)

2
. (C.4)

The signs in these expressions are correlated so that there are only two possible choices:

either the upper sign or the lower sign must be chosen for all constants. Choosing the

upper sign leads to the action (2.1) and the supersymmetry variations (2.6). Note also

that the constant c1 is non-zero only for d = 4, i.e. for D = 5.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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