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1 Introduction

The modern revival of the conformal bootstrap program [1] has led to remarkable progress

in our understanding of conformal field theories (CFTs) in d > 2 spacetime dimensions. By

studying the constraints of crossing symmetry and unitarity, it is possible to derive rigorous

bounds on the scaling dimensions and operator product expansion (OPE) coefficients of

any CFT. This approach relies on very few assumptions and can thus be used to study

and discover theories without a known Lagrangian description.
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A striking result of the numerical conformal bootstrap is that the bounds can develop

kinks, or singularities, corresponding to known theories. This was observed in the 3D

Ising [2] and O(N) vector models [3] and was correlated with the decoupling of certain

operators. This intuition was further developed in [4]. With the introduction of multiple

correlators and additional assumptions on the number of relevant scalars, small regions

surrounding the known theories can be isolated from other solutions of the bootstrap

equations, i.e. the kinks become islands [5, 6]. Consequently, the known theory is essentially

the unique consistent solution of the crossing equations in a certain region in parameter

space, given certain mild assumptions.

In d = 4 a kink was observed for N = 1 superconformal theories (SCFTs) with a chiral

scalar operator φ [7–9]. More specifically, the scaling dimension bound for the first real

scalar in the φ̄× φ OPE develops a kink as a function of ∆φ at the same point where the

lower bound for the three-point function coefficient cφφφ2 disappears. Similar behavior was

also observed for theories in 2 ≤ d ≤ 4 with four supercharges [10]. In [9] it was conjectured

that there is a 4D superconformal field theory (SCFT) that saturates the bootstrap bounds

at the kink, referred to as the minimal 4D N = 1 SCFT. Based on the position of the kink

and a corresponding local minimum in the lower bound on the central charge, this minimal

theory was predicted to have cminimal = 1
9 and a chiral multiplet with scaling dimension

∆φ = 10
7 , which also satisfies the chiral ring condition φ2 = 0. Various speculations about

this minimal theory have appeared [11, 12]. In these proposals φ2 = 0 is explicitly satisfied,

but the central charge and the critical ∆φ have not been successfully reproduced. As a

result, the identity of this minimal theory remains elusive.

Motivated by this open problem, we study here the mixed correlator bootstrap for

4D N = 1 theories for the system of correlators {〈φ̄φφ̄φ〉, 〈φ̄RφR〉, 〈RRRR〉}, where R is a

generic real scalar and φ is a chiral scalar. We consider both the case where R is the first real

scalar in the φ̄×φ OPE (beyond the identity operator of course), and that where R saturates

the unitarity bound. In the latter case it sits in a linear multiplet, which we will label by

J . The bootstrap equations for the 〈φ̄φφ̄φ〉 correlator were first considered in [7] and for

〈JJJJ〉 in [13], and for 〈RRRR〉 in [14]. Here we present new results for the superconformal

blocks of 〈φ̄RφR〉 and 〈φ̄JφJ〉. To be precise, we find superconformal blocks when the

superconformal primary of the exchanged multiplet appears in a (j, ̄) representation of

SO(3, 1), with j 6= ̄. In this case the corresponding superconformal primary does not

appear in the OPE of the external operators, but some of its superconformal descendants

do. We also compute superconformal blocks of superconformal primaries in integer-spin

representations; our results agree with the literature [14–16].

Our main results are new numerical constraints on 4D N = 1 theories. Studying the

single correlator 〈JJJJ〉, where J corresponds to a U(1) linear multiplet, we improve upper

bounds on the OPE coefficients for 〈JJJ〉 and 〈JJV 〉 where V is the spin-one multiplet

containing the stress-energy tensor Tµν . We also study these bounds as a function of the

first unprotected scalar in the J×J OPE, deriving an upper bound on this operators scaling

dimension and the 〈JJO〉 OPE coefficient. With the mixed correlator system for φ and R,

with R the first real scalar in the φ̄× φ OPE, we will derive stronger lower bounds on the

central charge c and upper and lower bounds on cφφ̄R. In both cases we find interesting

– 2 –
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features near the minimal N = 1 point. Finally, studying the mixed correlator system for

φ and J we will derive new bounds on cφφ̄J and cφ̄J(φJ) where (φJ) is the second scalar

appearing in the φ× J OPE.

In sections 2 and 3 we give the complete set of conformal blocks for the mixed correlator

system involving a generic real scalar multiplet R and the linear multiplet J respectively.

In sections 4 and 5 we give the corresponding crossing relations for R and J . In section 6

we present results for the φ and R system. In section 7 we present results for the φ

and J system. In appendix A we will go over the approximations used in the numerical

implementation of the crossing equations and in appendix B we give some details on the

derivation of the superconformal blocks.

2 Four-point functions, conformal and superconformal blocks

In this section we present our results for the superconformal block decomposition of the

various four-point functions used in our bootstrap analysis. In particular we include re-

sults for the four-point function 〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉, first obtained in [7, 17], and

new results for the four-point function 〈φ̄(x1)R(x2)φ(x3)R(x4)〉, with R a real opera-

tor, in the φ̄ × R channel. In our numerical analysis we also use the four-point function

〈φ̄(x1)R(x2)φ(x3)R(x4)〉 in the φ̄× φ channel, results for which were first obtained in [14]

(see also [16]). This forces us to also consider 〈R(x1)R(x2)R(x3)R(x4)〉, where again we

use results of [14].

Four-point functions can be reduced and computed via the OPE. Consider the four-

point function 〈Oi(x1)Oj(x2)Ok(x3)Ol(x4)〉 where all operators are conformal primary.

We can use the OPEs Oi(x1)×Oj(x2) and Ok(x3)×Ol(x4) to obtain

〈Oi(x1)Oj(x2)Ok(x3)Ol(x4)〉 =
1

r
∆i+∆j

12 r∆k+∆l
34

(
r24

r14

)∆ij
(
r14

r13

)∆kl

×
∑

conformal
primaries
Om

δmncij
mckl

ng
∆ij ,∆kl

∆m, `m
(u, v) ,

(2.1)

where rij = (x 2
ij)

1
2 , xij = xi − xj , ∆ij = ∆i − ∆j and similarly for ∆kl, ∆m, `m is the

scaling dimension and spin of the exchanged operator, and

u =
x 2

12x
2
34

x 2
13x

2
24

= zz̄ , v =
x 2

14x
2
23

x 2
13x

2
24

= (1− z)(1− z̄) (2.2)

are the two independent conformally-invariant cross ratios constructed out of four points in

space. The conformal blocks g
∆ij ,∆kl

∆, ` are functions that account for the sum over conformal

descendants. They are given by [18, 19]1

gγ,δα,β(z, z̄) = (−1)β
zz̄

z − z̄
(
kγ,δα+β(z)kγ,δα−β−2(z̄)− (z ↔ z̄)

)
,

kβ,γα (x) = xα/2 2F1

(
1

2
(α− β),

1

2
(α+ γ);α;x

)
.

(2.3)

1Compared to their original definition we drop a factor of 2−β in gγ, δα,β , i.e. (gγ, δα,β)here = 2β(gγ, δα,β)D&O, by

rescaling appropriately the OPE coefficients in (2.1).

– 3 –
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In N = 1 superconformal theories some of the conformal primaries in the sum in (2.1)

are superconformal descendants, and so their contributions to the four-point function can

also be accounted for by computing “superconformal blocks”. The dimensions of the ex-

changed operators are constrained by unitarity to be [20, 21]

∆ ≥
∣∣∣∣q − q̄ − 1

2
(j − ̄)

∣∣∣∣+
1

2
(j + ̄) + 2 , (2.4)

where (1
2j,

1
2 ̄) is the representation of O under the Lorentz group, viewed here as

SU(2)× SU(2), and q and q̄ give the scaling dimension and R-charge of an operator via

∆ = q + q̄ , R =
2

3
(q − q̄) . (2.5)

2.1 Four-point function 〈φ̄(x1)φ(x2)φ̄(x3)φ(x4)〉

The four-point function 〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉 involving the chiral operator φ and its

complex conjugate can be expressed in terms of 12→ 34 contributions as [7]

〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉 =
1

r
2∆φ

12 r
2∆φ

34

∑
superconformal

primaries
O`∈φ̄×φ

|cφ̄φO` |
2 (−1)`Gφ̄φ; φ̄φ

∆, ` (u, v) , (2.6)

where we used cφ̄φO` = (−1)`c∗
φ̄φO` and

Gφ̄φ; φ̄φ
∆, ` = g∆, ` − c1g∆+1, `+1 − c2g∆+1, `−1 + c1c2g∆+2, ` , gα,β ≡ g0,0

α,β , (2.7)

with

c1 =
∆ + `

4(∆ + `+ 1)
, c2 =

∆− `− 2

4(∆− `− 1)
. (2.8)

The unitarity bound here is ∆ ≥ `+ 2 and, when it is saturated, c2 becomes zero.

If we flip the last two operators and consider 〈φ̄(x1)φ(x2)φ(x3) φ̄(x4)〉, then we can

write, in the 12→ 34 channel,

〈φ̄(x1)φ(x2)φ(x3) φ̄(x4)〉 =
1

r
2∆φ

12 r
2∆φ

34

∑
superconformal

primaries
O`∈φ̄×φ

|cφ̄φO` |
2Gφ̄φ;φφ̄

∆, ` (u, v) , (2.9)

where we used cφφ̄O` = c∗
φ̄φO` and

Gφ̄φ;φφ̄
∆, ` = g∆, ` + c1g∆+1, `+1 + c2g∆+1, `−1 + c1c2g∆+2, ` . (2.10)

The difference between (2.7) and (2.10) is just in the sign of the g∆+1, `±1 contributions.

In this work we will also decompose 〈φ̄(x1)φ(x2)φ(x3) φ̄(x4)〉 in the 14→32 channel [17],

〈φ̄(x1)φ(x2)φ(x3) φ̄(x4)〉 =
1

r
2∆φ

14 r
2∆φ

23

∑
conformal
primaries
Ō`∈φ̄×φ̄

|cφ̄φ̄O` |
2Gφ̄φ̄;φφ

∆, ` (v, u) , (2.11)
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where we used cφφO` = c∗
φ̄φ̄Ō` and

Gφ̄φ̄;φφ
∆, ` = g∆, ` . (2.12)

In this case no superconformal block needs to be computed, but we need to include all

classes of conformal primaries that can appear in the φ × φ OPE. This has been done

in [17] and uses the fact that the product φ× φ is chiral and that the three-point function

〈Φ(z1)Φ(z2)OI(z3)〉 is symmetric under z1 ↔ z2. Here z = (x, θ, θ̄) is a point in superspace,

and the index I denotes Lorentz indices. The contributions we need to include turn out

to be the superconformal primary φ2, protected even-spin operators of the form Q̄O` with

dimension ∆ = 2∆φ + `, and unprotected even-spin operators of the form Q̄2O` with

dimension satisfying ∆ ≥ |2∆φ− 3|+ 3 + `. When ∆φ <
3
2 there is a gap in the dimensions

of the unprotected and protected operators.

2.2 Four-point function 〈φ̄(x1)R(x2)φ(x3)R(x4)〉

The four-point function 〈φ̄(x1)R(x2)φ(x3)R(x4)〉, involving the chiral operator φ and the

real operator R, can be expanded in the 12→ 34 channel as

〈φ̄(x1)R(x2)φ(x3)R(x4)〉 =
1

r
∆φ+∆R

12 r
∆φ+∆R

34

(
r24

r13

)∆φ−∆R∑
Ō`∈φ̄×R

|cφ̄RO` |
2Gφ̄R ;φR

∆, `,∆φ−∆R
(u, v) ,

(2.13)

where ∆φ,∆R are the scaling dimensions of φ,R respectively, ∆, ` are the scaling dimension

and spin of O, c̄φ̄RO` is the coefficient of the three-point function 〈φ̄(x1)R(x2)OI(x3)〉, and

we use c̄φRŌ` = c̄∗
φ̄RO` . As we will see below the sum in the right-hand side of (2.13)

contains contributions from multiple classes of operators.

In order to compute Gφ̄R ;φR
∆, `,∆φ−∆R

we need the general form of the three-point function

〈Φ̄(z1)R(z2)OI(z3)〉, where OI is a superconformal primary operator. To obtain this we

use the results of [22, 23]. To start, we note that Φ̄ has superconformal weights qΦ̄ = 0 and

q̄Φ̄ = ∆φ, while R has qR = q̄R = 1
2∆R. General superconformal constraints imply that

the three-point function is proportional to a function of X3,Θ3 and Θ̄3 [23],

〈Φ̄(z1)R(z2)OI(z3)〉 =
1

x1̄3
2∆φx2̄3

∆Rx3̄2
∆R

tI(X3,Θ3, Θ̄3) , (2.14)

with the homogeneity property

tI(λλ̄X, λΘ, λ̄Θ̄) = λ2aλ̄2ā tI(X,Θ, Θ̄) ,

a− 2ā = q̄Φ̄ + q̄R − qO , ā− 2a = qΦ̄ + qR − q̄O .
(2.15)

Quantities appearing in (2.14) are defined as

X3 =
x31̄x̃1̄2x23̄

x1̄3
2x3̄2

2
, xαα̇ = σµαα̇x

µ , x̃α̇α = εαβεα̇β̇xββ̇ ,

Θ3 = i

(
1

x1̄3
2
x31̄θ̄31 −

1

x2̄3
2
x32̄θ̄32

)
, Θ̄3 = Θ∗3 ,

(2.16)

– 5 –
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with θ̄ij = θ̄i − θ̄j and the supersymmetric interval between xi and xj defined by

xı̄j = −xjı̄ ≡ xij − iθiσθ̄i − iθjσθ̄j + 2iθjσθ̄i . (2.17)

Let us first assume that OI has q = 1
2(∆ + ∆φ) and q̄ = 1

2(∆ −∆φ), as would be the

case if the zero component of ŌI appeared in the φ̄×R OPE. Then, a = ā, which implies

that tI in (2.14) can only be a function of the product Θ3Θ̄3. Furthermore, the Ward

identity following from the antichirality property of Φ̄ implies that tI cannot be a function

of Θ̄3. Therefore, tI can only be a function of X3 in this case.

With the constraints we just described the operator OI in (2.14) is an integer-spin

traceless-symmetric superconformal primary Oα1...α`; α̇1...α̇` , with the dotted and undotted

indices symmetrized independently of each other, for which we can write

tα1...α`; α̇1...α̇`(X3) = c̄φ̄RO` X3(α1(α̇1
· · ·X3α`)α̇`)X3

∆−`−∆φ−∆R , (2.18)

where the dotted indices are symmetrized independently of the undotted ones. With (2.18)

the θ expansion of both sides of (2.14) can be performed with Mathematica by extending

the code developed for the purposes of [24]. We need the superconformal primary zero-

components of Φ̄ and R, but then the possible contributions to the three-point function

come not only from the zero component of Oα1...α`; α̇1...α̇` , but also from the conformal

primaries in its θθ̄ and θ2θ̄2 components. Taking into account all these contributions and

using results of [24] leads to the superconformal block

Ḡφ̄R ;φR
∆, `,∆φ−∆R

= g
∆φ−∆R

∆, ` + c̄1 g
∆φ−∆R

∆+1, `+1 + c̄2 g
∆φ−∆R

∆+1, `−1 + c̄1c̄2 g
∆φ−∆R

∆+2, ` , gγα,β ≡ g
γ,γ
α,β , (2.19)

with

c̄1 =
(∆ + `−∆φ)(∆ + `+ ∆φ −∆R)2

4(∆ + `)(∆ + `+ 1)(∆ + `+ ∆φ)
,

c̄2 =
(∆− `−∆φ − 2)(∆− `+ ∆φ −∆R − 2)2

4(∆− `− 1)(∆− `− 2)(∆− `+ ∆φ − 2)
.

(2.20)

The unitarity bound on O` that follows from (2.4) is

∆ ≥ ∆φ + `+ 2 . (2.21)

When the unitarity bound (2.21) is saturated, we see from (2.20) that c̄2 = 0 as expected.2

The block Ḡφ̄R ;φR
∆, `,∆φ−∆R

we just computed constitutes merely one of the possible contri-

butions to the right-hand side of (2.13). Further, we note that, in general, R is an operator

exchanged in the φ̄× φ OPE, and so we also need to consider the three-point function

〈Φ̄(z1)R(z2)Φ(z3)〉 =
c̄φ̄Rφ

x1̄3
2∆φx2̄3

∆Rx3̄2
∆R

X3
−∆R . (2.23)

2As an aside we note here that, for a general scalar operator S with superconformal weights qS and q̄S ,

we get an expression similar to (2.19) for the corresponding block Ḡφ̄S;φS̄
∆, `,∆φ−∆S

, with the coefficients

c̄1 =
(∆ + `−∆φ + qS − q̄S)(∆ + `+ ∆φ − qS − q̄S)2

4(∆ + `)(∆ + `+ 1)(∆ + `+ ∆φ − qS + q̄S)
,

c̄2 =
(∆− `−∆φ + qS − q̄S − 2)(∆− `+ ∆φ − qS − q̄S − 2)2

4(∆− `− 1)(∆− `− 2)(∆− `+ ∆φ − qS + q̄S − 2)
.

(2.22)

– 6 –
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Since Φ has q̄ = ̄ = 0, the unitarity bound (2.4) is modified to q ≥ j+1. This implies that

Φ has ∆ ≥ 1. In this case we only need to consider a conformal block g
∆φ−∆R

∆φ,0
. Note that

due to this contribution there is always a gap in the scalar spectrum of the φ̄×R OPE.

We should also consider the case where the zero component of Ō does not contribute

to the φ̄×R OPE. Due to the antichirality property of Φ̄ it is still true that there cannot

be a Θ̄3 in tI , but now both Θ3 and Θ2
3 are allowed.

In the first case, relevant operators are of the form Oα1...α`; α̇α̇1...α̇` for some ` and with

q = 1
2(∆ + ∆φ− 3

2) and q̄ = 1
2(∆−∆φ + 3

2), so that QαŌαα1...α`; α̇1...α̇` is a spin-` conformal

primary that can appear in the φ̄×R OPE.3 In this case

tα1...α`; α̇α̇1...α̇`(X3) = ĉφ̄RO` Θ3
αX3α(α̇X3(α1α̇1

· · ·X3α`)α̇`)X3
∆−`−∆φ−∆R− 3

2 , (2.24)

and a superconformal block computation gives

Ĝφ̄R;φR
∆, `,∆φ−∆R

= ĉ1g
∆φ−∆R

∆+ 1
2
, `

+ ĉ2g
∆φ−∆R

∆+ 3
2
, `+1

, (2.25)

where

ĉ1 =
`+ 2

(`+ 1)
(
2(∆− `−∆φ)− 3

) ,
ĉ2 =

(2∆−3)
(
2(∆+`−∆φ)+5

)(
2(∆+`+∆φ−∆R)+1

)2
4(2∆−1)

(
2(∆+`)+1

)(
2(∆+`)+3

)(
2(∆−`−∆φ)−3

)(
2(∆+`+∆φ)−3

) . (2.26)

The block Ĝφ̄R ;φR
∆, `,∆φ−∆R

is another contribution to (2.13). We should note here that if

the shortening condition Q(βŌαα1...α`); α̇1...α̇` = 0 is satisfied, then O is forced to have

q̄ = −1
2(` + 1) [23]. As a result, the dimension of such O is fixed to be ∆ = ∆φ − ` − 5

2 .

This is below the unitarity bound ∆ ≥ ∆φ + ` + 3
2 for this class of operators, but it

nevertheless provides a check on ĉ2 of (2.26).4

There is another case to consider with a Θ3, i.e. when we have a superconformal

primary of the form Oα1...α`; α̇2...α̇` for some ` ≥ 1, again with q = 1
2(∆ + ∆φ − 3

2) and

q̄ = 1
2(∆−∆φ + 3

2). Unitarity requires ∆ ≥ |∆φ− 2|+ `+ 3
2 . Then, the conformal primary

Q(α1
Ōα2...α`); α̇1...α̇` has spin ` and can contribute to the φ̄×R OPE. Corresponding to (2.14)

we here have

tα1...α`; α̇2...α̇`(X3) = čφ̄RO` Θ3(α1
X3α2(α̇2

· · ·X3α`)α̇`)X3
∆−`−∆φ−∆R+ 1

2 , ` ≥ 1 , (2.28)

and the associated superconformal block is

Ǧφ̄R;φR
∆, `,∆φ−∆R

= č1g
∆φ−∆R

∆+ 1
2
, `

+ č2g
∆φ−∆R

∆+ 3
2
, `−1

, ` ≥ 1 , (2.29)

3The three-point function 〈Φ̄(z1)R(z2)Oα1...α`; α̇α̇1...α̇`(z3)〉 is proportional to Θ3, for (2.15) gives

2(a− ā) = 1.
4For a general scalar operator S we get a block Ĝφ̄S;φS̄

∆, `,∆φ−∆S
similar to (2.25) but with

ĉ1 =
`+ 2

(`+ 1)
(
2(∆− `−∆φ + qS − q̄S)− 3

) ,
ĉ2 =

(2∆−3)
(
2(∆+`−∆φ+qS−q̄S)+5

)(
2(∆+`+∆φ−qS−q̄S)+1

)2

4(2∆−1)
(
2(∆+`)+1

)(
2(∆+`)+3

)(
2(∆−`−∆φ+qS−q̄S)−3

)(
2(∆+`+∆φ−qS+q̄S)−3

) . (2.27)
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with

č1 =
1

2(∆ + `−∆φ) + 1
,

č2 =
(`+1)(2∆−3)

(
2(∆−`−∆φ)+1

)(
2(∆−`+∆φ−∆R)−3

)2
4`(2∆−1)

(
2(∆−`)−1

)(
2(∆−`)−3

)(
2(∆+`−∆φ)+1

)(
2(∆−`+∆φ)−7

) . (2.30)

For operators O of this class such that QαŌαα3...α`; α̇1...α̇` = 0, it follows that O has

q̄ = 1
2(`+ 1) [23]. This implies that the dimension of such O is ∆ = ∆φ + ` − 1

2 , pro-

viding a check on č2 of (2.30).5 Note that this dimension of O is consistent with the

unitarity bound for this class of operators only if ∆φ ≥ 2.

If Θ2
3 appears in tI only the superconformal descendant Q2Oα1...α`; α̇1...α̇` of a supercon-

formal primary Oα1...α`; α̇1...α̇` with q = 1
2(∆ + ∆φ − 3) and q̄ = 1

2(∆−∆φ + 3) needs to be

considered. The associated conformal block we have to include is g
∆φ−∆R

∆+1, ` . The unitarity

bound here is ∆ ≥ |∆φ − 3|+ `+ 2.

To summarize we may write, in (2.13),∑
Ō`∈φ̄×R

|cφ̄RO` |
2Gφ̄R ;φR

∆, `,∆φ−∆R
(u, v) =

∑
Ō`∈φ̄×R

|c̄φ̄RO` |
2 Ḡφ̄R ;φR

∆, `,∆φ−∆R
(u, v)

+
∑

(QŌ)`∈φ̄×R
|ĉφ̄R(Q̄O)`

|2 Ĝφ̄R ;φR
∆, `,∆φ−∆R

(u, v)

+
∑

(QŌ)`∈φ̄×R
|čφ̄R(Q̄O)`

|2 Ǧφ̄R ;φR
∆, `,∆φ−∆R

(u, v)

+
∑

(Q2Ō)`∈φ̄×R
|cφ̄R(Q̄2O)`

|2g∆φ−∆R

∆+1, ` (u, v) ,

(2.32)

with the appropriate unitarity bounds, and with the contribution associated to (2.23)

implicitly included in the first sum on the right-hand side.

Let us finally consider 〈φ̄(x1)R(x2)R(x3)φ(x4)〉 both in the 12→ 34 and the 14→ 32

channel. For the former we have

〈φ̄(x1)R(x2)R(x3)φ(x4)〉 =
1

r
∆φ+∆R

12 r
∆φ+∆R

34

(
r13 r24

r 2
14

)∆φ−∆R

×
∑

Ō`∈φ̄×R
|cφ̄RO` |

2 (−1)`Gφ̄R ;Rφ
∆, `,∆φ−∆R

(u, v) ,

(2.33)

where one contribution comes from

Ḡφ̄R ;Rφ
∆, `,∆φ−∆R

= g̃
∆φ−∆R

∆, ` − c̄1 g̃
∆φ−∆R

∆+1, `+1 − c̄2 g̃
∆φ−∆R

∆+1, `−1 + c̄1c̄2 g̃
∆φ−∆R

∆+2, ` , g̃γα,β ≡ g
γ,−γ
α,β .

(2.34)

5For a general scalar operator S we get a block Ǧφ̄S;φS̄
∆, `,∆φ−∆S

similar to (2.29) but with

č1 =
1

2(∆ + `−∆φ + qS − q̄S) + 1
,

č2 =
(`+1)(2∆−3)

(
2(∆−`−∆φ+qS−q̄S)+1

)(
2(∆−`+∆φ−qS−q̄S)−3

)2

4`(2∆−1)
(
2(∆−`)−1

)(
2(∆−`)−3

)(
2(∆+`−∆φ+qS−q̄S)+1

)(
2(∆−`+∆φ−qS+q̄S)−7

) . (2.31)

– 8 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
9

As before, there are also contributions corresponding to superconformal descendants whose

primary does not appear in the φ̄×R OPE. In particular, corresponding to (2.25) and (2.29)

we have

Ĝφ̄R;Rφ
∆, `,∆φ−∆R

= ĉ1 g̃
∆φ−∆R

∆+ 1
2
, `
− ĉ2 g̃

∆φ−∆R

∆+ 3
2
, `+1

, (2.35)

and

Ǧφ̄R;Rφ
∆, `,∆φ−∆R

= č1 g̃
∆φ−∆R

∆+ 1
2
, `
− č2 g̃

∆φ−∆R

∆+ 3
2
, `−1

, ` ≥ 1 , (2.36)

while we also have the g̃
∆φ−∆R

∆+1, ` conformal block contribution. The unitarity bounds are as

explained above.

In the 14→ 32 channel we can use results of [14] to obtain

〈φ̄(x1)R(x2)R(x3)φ(x4)〉 =
1

r
2∆φ

14 r 2∆R
23

∑
O`∈φ̄×φ
O`∈R×R

(−1)`Gφ̄φ;RR
∆, ` (v, u) , (2.37)

where

Gφ̄φ;RR
∆, ` even = c∗φ̄φO`c

(0)
RRO` g∆, ` −

c∗
φ̄φO`

(
(∆ + `)2c

(0)
RRO` − 8(∆− 1)c

(2)
RRO`

)
16∆(∆− `− 1)(∆ + `+ 1)

g∆+2, ` , (2.38)

and

Gφ̄φ;RR
∆, ` odd = −

c∗
φ̄φO`c

(1)
RRO`

2(∆ + `+ 1)
g∆+1, `+1 −

c∗
φ̄φO`

(
c

(1)
RRO` + `+1

` c
(3)
RRO`

)
2(∆− `− 1)

g∆+1, `−1 . (2.39)

2.3 Four-point function 〈R(x1)R(x2)R(x3)R(x4)〉

In the 12→ 34 channel we can write

〈R(x1)R(x2)R(x3)R(x4)〉 =
1

r 2∆R
12 r 2∆R

34

∑
O`∈R×R

GRR ;RR
∆, ` (u, v) . (2.40)

Here the sum runs over superconformal primaries, but also over just conformal primaries

if a superconformal primary does not contribute but one of its descendants does. Only

even-spin operators can be exchanged in the R × R OPE. These can come from even- or

odd-spin superconformal primaries, so that the sum in (2.40) runs over O`’s with both

even and odd spin. The block GRR ;RR
∆, ` , then, receives separate contributions from even-

and odd-spin superconformal primaries. There are no constraints on R, except that it is a

real operator of dimension ∆ ≥ ` + 2 by unitarity, and so from results of [14] we see that

we cannot fix the coefficients of the conformal block contributions to the superconformal

blocks. The best we can do is write

GRR ;RR
∆, ` even = |c (0)

RRO` |
2g∆, `+

∣∣∣(∆+`)2c
(0)
RRO`−8(∆−1)c

(2)
RRO`

∣∣∣2
16∆2(∆−`−1)(∆−`−2)(∆+`)(∆+`+1)

g∆+2, ` , (2.41)

and

GRR ;RR
∆, ` odd =

|c (1)
RRO` |

2

(∆ + `)(∆ + `+ 1)
g∆+1, `+1 +

∣∣∣c (1)
RRO` + `+1

` c
(3)
RRO`

∣∣∣2
(∆− `− 1)(∆ + `+ 1)

g∆+1, `−1 . (2.42)
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A superconformal primary that is not an integer-spin Lorentz representation can have

superconformal descendant conformal primary components that contribute to (2.40). It

turns out that we only need to consider superconformal primaries of the form Oαα1...α`; α̇2...α̇`

with even ` ≥ 2 and q = q̄ = 1
2∆.6 The relevant operator is then the conformal primary

contained in the superconformal descendant Q̄(α̇1
QαOαα1...α`; α̇2...α̇`), where the undotted

indices are the only ones that are symmetrized with α̇1. The conformal block we need to

include is g∆+1, ` with even ` ≥ 2 and ∆ ≥ `+ 3 by unitarity.

3 Four-point functions with linear multiplets

So far we have analyzed four-point functions including a chiral operator φ, its conjugate

φ̄, and a real field R. The results we have obtained can be easily adapted to the case

where the corresponding real superfield R is a linear multiplet J , containing a U(1) vector

current jµ. Linear multiplets have qJ = q̄J = 1, and appear in theories with global sym-

metries. The superspace three-point function 〈J (z1)J (z2)O(z3)〉 was considered in [25],

where the superconformal blocks for 〈J(x1)J(x2)J(x3)J(x4)〉 were computed. Bootstrap

constraints from 〈J(x1)J(x2)J(x3)J(x4)〉 were obtained in [13]. Our aim here is to obtain

bounds using the system of correlators 〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉, 〈φ̄(x1)J(x2)φ(x3)J(x4)〉,
and 〈J(x1)J(x2)J(x3)J(x4)〉.

The associated superconformal-block decomposition of these four-point functions can

be obtained from the results of section 2, given that J is a particular case of a real

superfield with qJ = q̄J = 1. Since Q2(J) = Q̄2(J) = 0 and Qα(φ̄) = 0, we also need to

make sure that the operators in the right hand side of the φ̄×J OPE are annihilated by Q2.

This last requirement implies that a superconformal primary of the form Oα1...α`; α̇1...α̇` , as

considered around (2.18) above, can only have q̄ = 1 and ` = 0 [23], i.e. it can be a scalar

with ∆ = ∆φ+2. This implies that, analogously to the blocks defined in (2.19) and (2.34),

we only need

Ḡφ̄J ;φJ
∆φ+2,0,∆φ

= g
∆φ−2
∆φ+2,0 , Ḡφ̄J ;Jφ

∆φ+2,0,∆φ
= g̃

∆φ−2
∆φ+2,0 . (3.1)

Without any changes other than ∆R → ∆J = 2 we can define Ĝφ̄J ;φJ
∆, `,∆φ

, Ĝφ̄J ;Jφ
∆, `,∆φ

, Ǧφ̄J ;φJ
∆, `,∆φ

,

and Ǧφ̄J ;Jφ
∆, `,∆φ

using (2.25), (2.35), (2.29), and (2.36), respectively, as well as g
∆φ−2
∆+1, ` with

∆ ≥ |∆φ − 3|+ `+ 2.

For the blocks defined in (2.38), (2.39), (2.41), and (2.42) we need to use relations that

exist between c
(2)
JJO` and c

(0)
JJO` , as well as between c

(3)
JJO` and c

(1)
JJO` , namely [14]

c
(2)
JJO` = −1

8
(∆ + `)(∆− `− 4)c

(0)
JJO` , c

(3)
JJO` = −2(∆− 2)

∆ + `
c

(1)
JJO` . (3.2)

Using this we can define, in the 14→ 32 channel,

〈φ̄(x1)J(x2)J(x3)φ(x4)〉 =
1

r
2∆φ

14 r 4
23

∑
O`∈φ̄×φ
O`∈J×J

c∗φ̄φO`cJJO` (−1)`Gφ̄φ;JJ
∆, ` (v, u) , (3.3)

6The three-point function 〈R(z1)R(z2)OI(z3)〉 is symmetric under z1 ↔ z2, something that restricts

the possible non-integer-spin superconformal primary operators we can consider. We thank Ran Yacoby

for discussions on this point.
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where

Gφ̄φ;JJ
∆, ` even = g∆, ` −

(∆− 2)(∆ + `)(∆− `− 2)

16∆(∆− `− 1)(∆ + `+ 1)
g∆+2, ` , (3.4)

and

Gφ̄φ;JJ
∆, ` odd = − 1

2(∆ + `+ 1)
g∆+1, `+1 +

(`+ 2)(∆− `− 2)

2`(∆ + `)(∆− `− 1)
g∆+1, `−1 . (3.5)

Finally, in the 12→ 34 channel we can write

〈J(x1)J(x2)J(x3)J(x4)〉 =
1

r 4
12 r

4
34

∑
O`∈J×J

|cRRO` |
2GJJ ;JJ

∆, ` (u, v) , (3.6)

with

GJJ ;JJ
∆, ` even = g∆, ` +

(∆− 2)2(∆ + `)(∆− `− 2)

16∆2(∆− `− 1)(∆ + `+ 1)
g∆+2, ` , (3.7)

and

GJJ ;JJ
∆, ` odd =

1

(∆ + `)(∆ + `+ 1)
g∆+1, `+1 +

(`+ 2)2(∆− `− 2)

`2(∆ + `)2(∆− `− 1)
g∆+1, `−1 . (3.8)

We should also mention here that there are conformal primary superconformal de-

scendant operators that contribute to the four-point functions involving J , but whose

corresponding superconformal primaries do not. This type of operators has been analyzed

in detail in [13]. The result is that in order to account for these operators we need to

include g∆+1, ` with even ` ≥ 2 and ∆ ≥ `+ 3 by unitarity.

4 Crossing relations

Using the results of section 2 we can now write down the crossing equations that we use in

our numerical analysis. It is well-known that from 〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉 we obtain three

crossing relations [8]. We get another three from 〈φ̄(x1)R(x2)φ(x3)R(x4)〉 (for these we

will assume that 1 ≤ ∆φ < 2), and a final crossing relation from 〈R(x1)R(x2)R(x3)R(x4)〉.
In total we have seven crossing relations.

4.1 Chiral-chiral and chiral-antichiral

From 〈φ̄(x1)φ(x2) φ̄(x3)φ(x4)〉 we find the crossing relations [8]

∑
O`∈φ̄×φ

|cφ̄φO` |
2


F φ̄φ;φφ̄

∆, `,∆φ
(u, v)

Hφ̄φ;φφ̄
∆, `,∆φ

(u, v)

(−1)`F φ̄φ; φ̄φ
∆, `,∆φ

(u, v)

 +
∑
Ō`∈φ̄×φ̄

|cφ̄φ̄O` |
2


F φ̄φ̄;φφ

∆, `,∆φ
(u, v)

−H φ̄φ̄;φφ
∆, `,∆φ

(u, v)

0

 = 0 , (4.1)

where

F φ̄φ;φφ̄
∆, `,∆φ

(u, v) = u−∆φG φ̄φ;φφ̄
∆, ` (u, v)− (u↔ v) ,

Hφ̄φ;φφ̄
∆, `,∆φ

(u, v) = u−∆φG φ̄φ;φφ̄
∆, ` (u, v) + (u↔ v) ,

F φ̄φ; φ̄φ
∆, `,∆φ

(u, v) = u−∆φG φ̄φ; φ̄φ
∆, ` (u, v)− (u↔ v) ,

F φ̄φ̄;φφ
∆, `,∆φ

(u, v) = u−∆φg∆, `(u, v)− (u↔ v) ,

H φ̄φ̄;φφ
∆, `,∆φ

(u, v) = u−∆φg∆, `(u, v) + (u↔ v) .

(4.2)
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4.2 Chiral-real

From 〈φ̄(x1)R(x2)R(x3)φ(x4)〉 we find∑
Ō`∈φ̄×R

|c̄φ̄RO` |
2 (−1)` F̄ φ̄R ;Rφ

∆, `,∆φ,∆R
+

∑
(QŌ)`∈φ̄×R

|ĉφ̄R(Q̄O)`
|2 (−1)` F̂ φ̄R ;Rφ

∆, `,∆φ,∆R

+
∑

(QŌ)`∈φ̄×R
|čφ̄R(Q̄O)`

|2 (−1)` F̌ φ̄R ;Rφ
∆, `,∆φ,∆R

+
∑

(Q2Ō)`∈φ̄×R
|cφ̄R(Q̄2O)`

|2 (−1)`F φ̄R ;Rφ
∆, `,∆φ,∆R

+
∑
O`∈φ̄×φ

c∗φ̄φO`cRRO` (−1)`F φ̄φ;RR
∆, `,∆R

= 0 ,

(4.3)

and ∑
Ō`∈φ̄×R

|c̄φ̄RO` |
2 (−1)` H̄φ̄R ;Rφ

∆, `,∆φ,∆R
+

∑
(QŌ)`∈φ̄×R

|ĉφ̄R(Q̄O)`
|2 (−1)` Ĥφ̄R ;Rφ

∆, `,∆φ,∆R

+
∑

(QŌ)`∈φ̄×R
|čφ̄R(Q̄O)`

|2 (−1)` Ȟφ̄R ;Rφ
∆, `,∆φ,∆R

+
∑

(Q2Ō)`∈φ̄×R
|cφ̄R(Q̄2O)`

|2 (−1)`H φ̄R ;Rφ
∆, `,∆φ,∆R

−
∑
O`∈φ̄×φ

c∗φ̄φO`cRRO` (−1)`Hφ̄φ;RR
∆, `,∆R

= 0 ,

(4.4)

where

F̄ φ̄R ;Rφ
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R) Ḡφ̄R ;Rφ
∆, `,∆φ−∆R

(u, v)− (u↔ v) ,

H̄φ̄R ;Rφ
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R) Ḡφ̄R ;Rφ
∆, `,∆φ−∆R

(u, v) + (u↔ v) ,
(4.5)

and similarly for F̂ , Ĥ, F̌ , Ȟ, using Ĝ, Ǧ,

F φ̄R ;Rφ
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R) g̃φ̄R ;Rφ
∆, `,∆φ−∆R

(u, v)− (u↔ v) ,

H φ̄R ;Rφ
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R) g̃φ̄R ;Rφ
∆, `,∆φ−∆R

(u, v) + (u↔ v) ,
(4.6)

and, if ` is even, cRRO` = c
(0)
RRO` and

F φ̄φ;RR
∆, `,∆R

(u, v) = u−∆R Gφ̄φ;RR
∆, ` even(u, v)− (u↔ v) ,

Hφ̄φ;RR
∆, `,∆R

(u, v) = u−∆R Gφ̄φ;RR
∆, ` even(u, v) + (u↔ v) ,

(4.7)

while, if ` is odd, cRRO` = c
(1)
RRO` and

F φ̄φ;RR
∆, `,∆R

(u, v) = u−∆R Gφ̄φ;RR
∆, ` odd(u, v)− (u↔ v) ,

Hφ̄φ;RR
∆, `,∆R

(u, v) = u−∆R Gφ̄φ;RR
∆, ` odd(u, v) + (u↔ v) .

(4.8)

Note that in (4.7) and (4.8) the superconformal blocks of (2.38) and (2.39) have been

rescaled by c∗
φ̄φO`c

(0)
RRO` and c∗

φ̄φO`c
(1)
RRO` , respectively.
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The crossing relation arising from 〈φ̄(x1)R(x2)φ(x3)R(x4)〉 is∑
Ō`∈φ̄×R

|c̄φ̄RO` |
2 F̄ φ̄R ;φR

∆, `,∆φ,∆R
+

∑
(QŌ)`∈φ̄×R

|ĉφ̄R(Q̄O)`
|2F̂ φ̄R ;φR

∆, `,∆φ,∆R

+
∑

(QŌ)`∈φ̄×R
|čφ̄R(Q̄O)`

|2F̌ φ̄R ;φR
∆, `,∆φ,∆R

+
∑

(Q2Ō)`∈φ̄×R
|cφ̄R(Q̄2O)`

|2F φ̄R ;φR
∆, `,∆φ,∆R

= 0 ,
(4.9)

where

F̄ φ̄R ;φR
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R) Ḡφ̄R ;φR
∆, `,∆φ−∆R

(u, v)− (u↔ v) ,

F φ̄R ;φR
∆, `,∆φ,∆R

(u, v) = u−
1
2

(∆φ+∆R)g
∆φ−∆R

∆, ` (u, v)− (u↔ v) ,
(4.10)

and similarly for F̂ , F̌ .

4.3 Real-real

From 〈R(x1)R(x2)R(x3)R(x4)〉 we find the crossing relation∑
O`∈R×R

|cRRO` |
2F RR ;RR

∆, `,∆R
+

∑
(QO)`∈R×R

|cRR(QO)` |
2F RR;RR

∆, `,∆R
= 0 , (4.11)

with

F RR ;RR
∆, `,∆R

(u, v) = u−∆RGRR ;RR
∆, ` (u, v)− (u↔ v) ,

F RR ;RR
∆, `,∆R

(u, v) = u−∆Rg∆, `(u, v)− (u↔ v) ,
(4.12)

and for ` even we define cRRO` = c
(0)
RRO` and use (2.41) rescaled by |c(0)

RRO` |
2, while for `

odd we define cRRO` = c
(1)
RRO` and use (2.42) rescaled by |c(1)

RRO` |
2.

4.4 System of crossing relations

The crossing relations (4.1), (4.3), (4.4), (4.9) and (4.11) can now be written in the form

∑
O`∈φ̄×φ
O`∈R×R

(
c∗
φ̄φO` c

∗
RRO` c

′ ∗
RRO`

)
~V∆, `,∆φ,∆R

cφ̄φO`cRRO`
c ′RRO`

 +
∑
Ō`∈φ̄×φ̄

|cφ̄φ̄O` |
2 ~W∆, `,∆φ

+
∑

Ō`∈φ̄×R
|c̄φ̄RO` |

2 ~̄X∆, `,∆φ,∆R
+

∑
(QŌ)`∈φ̄×R

|ĉφ̄R(Q̄O)`
|2 ~̂X∆, `,∆φ,∆R

+
∑

(QŌ)`∈φ̄×R
|čφ̄R(Q̄O)`

|2 ~̌X∆, `,∆φ,∆R
+

∑
(Q2Ō)`∈φ̄×R

|cφ̄R(Q̄2O)`
|2 ~Y∆, `,∆φ,∆R

+
∑

(QO)`∈R×R
|cRR(QO)` |

2 ~Z∆, `,∆R
= 0 ,

(4.13)
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where the seven-vector ~V∆, `,∆φ,∆R
contains the 3× 3 matrices

V 1
∆, `,∆φ

=

F
φ̄φ;φφ̄
∆, `,∆φ

0 0

0 0 0

0 0 0

 , V 2
∆, `,∆φ

=

H
φ̄φ;φφ̄
∆, `,∆φ

0 0

0 0 0

0 0 0

 ,

V 3
∆, `,∆φ

=

(−1)`F φ̄φ; φ̄φ
∆, `,∆φ

0 0

0 0 0

0 0 0

 ,

V 4
∆, `,∆R

=


0 1

2 (−1)`F φ̄φ;RR
1,∆, `,∆R

1
2 (−1)`F φ̄φ;RR

2,∆, `,∆R

1
2 (−1)`F φ̄φ;RR

1,∆, `,∆R
0 0

1
2 (−1)`F φ̄φ;RR

2,∆, `,∆R
0 0

 ,

V 5
∆, `,∆R

=


0 1

2 (−1)`+1H φ̄φ;RR
1,∆, `,∆R

1
2 (−1)`+1H φ̄φ;RR

2,∆, `,∆R

1
2 (−1)`+1H φ̄φ;RR

1,∆, `,∆R
0 0

1
2 (−1)`+1H φ̄φ;RR

2,∆, `,∆R
0 0

 ,

V 6 =

0 0 0

0 0 0

0 0 0

 , V 7
∆, `,∆R

=

0 0 0

0 F RR ;RR
1,∆, `,∆R

0

0 0 F RR ;RR
2,∆, `,∆R

 , (4.14)

and the remaining vectors are given by

~W∆, `,∆φ
=



F φ̄φ̄;φφ
∆, `,∆φ

−H φ̄φ̄;φφ
∆, `,∆φ

0
...

0


, ~̄X∆, `,∆φ,∆R

=



0

0

0

(−1)` F̄ φ̄R ;Rφ
∆, `,∆φ,∆R

(−1)` H̄φ̄R ;Rφ
∆, `,∆φ,∆R

F̄ φ̄R ;φR
∆, `,∆φ,∆R

0


, (4.15)

with definitions for
~̂
X and ~̌X similar to that for ~̄X but involving F̂ , Ĥ, F̌ , Ȟ, and

~Y∆, `,∆φ,∆R
=



0

0

0

(−1)`F φ̄R ;Rφ
∆, `,∆φ,∆R

(−1)`H φ̄R ;Rφ
∆, `,∆φ,∆R

F φ̄R ;φR
∆, `,∆φ,∆R

0


, ~Z∆, `,∆R

=


0
...

0

F RR;RR
∆, `,∆R

 . (4.16)
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We should note here that the entries of ~V∆, `,∆φ,∆R
are 3× 3 matrices because (2.38),

(2.39), (2.41), and (2.42) do not contain their conformal block contributions with fixed rel-

ative coefficients. The subscripts 1 and 2 in the functions F and H of V 4
∆, `,∆R

, V 5
∆, `,∆R

and

V 7
∆, `,∆R

denote the first and second part of the corresponding F and H functions defined

in (4.7), (4.8) and (4.12), as obtained when the blocks (2.38), (2.39), (2.41) and (2.42) are

used and the coefficient c ′RRO` is appropriately defined. For example, for even ` we have

F φ̄φ;RR
2,∆, `,∆R

= − 1
16∆(∆−`−1)(∆+`+1) g∆+2, ` and c ′RRO` = (∆ + `)2c

(0)
RRO` − 8(∆ − 1)c

(2)
RRO` as

follows from (2.38). Note that we can neglect ~Z∆, `,∆R
for its contributions are already

contained in V 7
∆, `,∆R

.

The crossing relation (4.13) can be used with the usual numerical methods. This

requires polynomial approximations for derivatives of the various functions that partici-

pate. We describe the required results in appendix A. For numerical optimization we use

SDPB [26]. The functional search space is governed by the parameter Λ, where each compo-

nent αi of a seven-functional ~α is a linear combination of 1
2

⌊
Λ+2

2

⌋ (⌊
Λ+2

2

⌋
+ 1
)

independent

nonvanishing derivatives, αi ∝
∑

m,n a
i
mn∂

m
z ∂

n
z̄

∣∣
1/2,1/2

with m + n ≤ Λ. For example, for

Λ = 17, a common choice in the plots below, the search space is 315-dimensional.

5 Crossing relations with linear multiplets

The crossing relations obtained in this case can be brought to the form

∑
O`∈φ̄×φ
O`∈J×J

(
c∗
φ̄φO` c

∗
JJO`

)
~V∆, `,∆φ

(
cφ̄φO`
cJJO`

)
+
∑
Ō`∈φ̄×φ̄

|cφ̄φ̄O` |
2 ~W∆, `,∆φ

+
∑
Ō∈φ̄×J

|c̄φ̄JO|2 ~̄X∆,0,∆φ
+

∑
(QŌ)`∈φ̄×J

|ĉφ̄J(Q̄O)`
|2 ~̂X∆, `,∆φ

+
∑

(QŌ)`∈φ̄×J
|čφ̄J(Q̄O)`

|2 ~̌X∆, `,∆φ

+
∑

(Q2Ō)∈φ̄×J
|cφ̄J(Q̄2O)|2 ~Y∆, `,∆φ

+
∑

(QO)`∈J×J
|cJJ(QO)` |

2 ~Z∆, ` = 0 , (5.1)

where ~̄X∆,0,∆φ
goes over just two scalar operators with dimension ∆φ and ∆φ + 2. Due

to the determined coefficients in the superconformal blocks (3.4), (3.5), (3.7), and (3.8),

the seven-vector ~V∆, `,∆φ
contains 2× 2 matrices now, contrary to the case in (4.13) where

~V∆, `,∆φ,∆R
contained 3× 3 matrices. Here, ~V∆, `,∆φ

contains the matrices

V 1
∆, `,∆φ

=

(
F φ̄φ;φφ̄

∆, `,∆φ
0

0 0

)
, V 2

∆, `,∆φ
=

(
Hφ̄φ;φφ̄

∆, `,∆φ
0

0 0

)
,

V 3
∆, `,∆φ

=

(
(−1)`F φ̄φ; φ̄φ

∆, `,∆φ
0

0 0

)
, V 4

∆, `=

 0 1
2 (−1)`F φ̄φ;JJ

∆, `
1
2 (−1)`F φ̄φ;JJ

∆, ` 0

,
V 5

∆, `=

 0 1
2 (−1)`+1Hφ̄φ;JJ

∆, `
1
2 (−1)`+1Hφ̄φ;JJ

∆, ` 0

, V 6 =

(
0 0

0 0

)
, V 7

∆, `=

(
0 0

0 F JJ ;JJ
∆, `

)
,

(5.2)
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and the remaining vectors are given by

~W∆, `,∆φ
=



F φ̄φ̄;φφ
∆, `,∆φ

−H φ̄φ̄;φφ
∆, `,∆φ

0
...

0


, ~̄X∆, `,∆φ

=



0

0

0

F̄ φ̄J ;Jφ
∆,0,∆φ

H̄ φ̄J ;Jφ
∆,0,∆φ

F̄ φ̄J ;φJ
∆,0,∆φ

0


,

~̂
X∆, `,∆φ

=



0

0

0

(−1)` F̂ φ̄J ;Jφ
∆, `,∆φ

(−1)` Ĥφ̄J ;Jφ
∆, `,∆φ

F̂ φ̄J ;φJ
∆, `,∆φ

0


,

(5.3)

with a similar definition for ~̌X, and

~Y∆, `,∆φ
=



0

0

0

(−1)`F φ̄J ;Jφ
∆, `,∆φ

(−1)`H φ̄J ;Jφ
∆, `,∆φ

F φ̄J ;φJ
∆, `,∆φ

0


, ~Z∆, ` =


0
...

0

F JJ ;JJ
∆, `

 . (5.4)

The various functions F,F and H,H here are defined similarly to the analogous functions

defined in section 4, using the superconformal blocks of section 3. We note that contrary

to the case in section 4, the contributions of ~Z∆, ` are not identical to those in V 7
∆, `, and

so ~Z∆, ` needs to be included in our numerical analysis.

6 Bounds in theories with φ and R

6.1 Using only the chiral-chiral and chiral-antichiral crossing relations

A bound on the dimension of the first unprotected scalar operator R in the φ̄ × φ OPE

using just (4.1) was first obtained in [8] and recently reproduced in [9]. This bound, for

Λ = 21 and Λ = 29, is shown in figure 1, and displays a mild kink at ∆φ ≈ 1.4. The bound

for Λ = 21 was first obtained in [8]. Here we provide a slightly stronger bound at Λ = 29.

If we assume that φ2 = 0, then the allowed region on the left of the kink disappears [9, 10],

turning the kink into a sharp corner. The precision analysis of [9] suggests that the kink

is at ∆φ = 10
7 , although this relies on extrapolation.

Using (4.1) we can also obtain a lower bound on the central charge. This is shown

in figure 2 for Λ = 25. The corresponding bound for Λ = 21 first appeared in [8], and

was later improved in [9]. The bound contains a feature slightly to the right of the kink

of figure 1. Close to the origin the bound sharply falls just below the free chiral multiplet

value of c = 1
24 in our normalization [7]. We may further assume that ∆R lies on the
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
2

3

4

∆R
= 2∆φ

∆φ

∆R

Figure 1. Upper bound on the dimension of the operator R as a function of ∆φ using only (4.1).

The generalized free theory dashed line ∆R = 2∆φ is also shown. The shaded area is excluded. In

this plot we use Λ = 21 for the thin and Λ = 29 for the thick line.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.04

0.06

0.08

0.1

∆φ

c

Figure 2. Lower bound on the central charge as a function of ∆φ. The shaded area is excluded.

In this plot we use Λ = 25.

bound of figure 1, and that R is the first scalar after the identity operator in the φ̄ × φ
OPE. The lower bound on the central charge obtained in this case is shown in figure 3.

As we see, these extra assumptions strengthen the bound globally, but have the weakest

effect around the free theory and ∆φ ≈ 1.4. At that ∆φ, which coincides with the position

of the kink, we observe a local minimum of the lower bound on c. This result has also

been discussed in [10], and is similar to the corresponding bound obtained in d = 3 in [2],

although the free theory of a single chiral operator in our case has a lower c than the

minimum in figure 3. The assumption φ2 = 0 excludes the region to the left of ∆φ ≈ 1.4.

Therefore, we may conjecture that the putative theory that lives on the kink minimizes c

among N = 1 superconformal theories that have a chiral operator φ that satisfies φ2 = 0.
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c

Figure 3. The thick line is the lower bound on the central charge as a function of ∆φ, assuming

that ∆R lies on the bound of figure 1. The thin line is the bound of figure 2. The shaded area is

excluded. In this plot we use Λ = 25.

Such theories were obtained recently [11, 12] from deformations of N = 2 Argyres-Douglas

theories [27–29], but they appear to have larger c than the one obtained for the minimal

theory in [9], namely cminimal = 1
9 after extrapolating to Λ→∞.

6.2 Using the full set of crossing relations involving φ and R

We will now explore bootstrap constraints using the full system of crossing relations (4.13).

The virtue of considering mixed correlators is that they allow us to probe a larger part

of the operator spectrum, e.g. we can obtain bounds on operator dimensions and OPE

coefficients of operators in the φ̄ × R OPE. In this subsection we assume that ∆R lies on

the (stronger) bound of figure 1. We also impose cφ̄Rφ = cφ̄φR — the implementation of

this follows [6], i.e. we add a single constraint for ~V∆R,0,∆φ,∆R
+ ~̄X∆φ,0,∆φ,∆R

⊗diag(1, 0, 0)

to our optimization problem. Finally, we introduce a gap of one between the dimension of

R and that of the next unprotected real scalar in the spectrum, R′. We have found that

for low values of this gap the bounds below are not sensitive to the choice of the gap.

First we would like to obtain a bound on the OPE coefficient of the operator φ̄ in the

φ̄ × R OPE. We can obtain both an upper and a lower bound; they are both shown in

figure 4. As we see there is a minimum of the upper bound slightly to the right of ∆φ ≈ 1.4.

Note that the bound of cφ̄Rφ at the minimum is lower than the free theory value which is

equal to one.

Using mixed correlators we can also obtain a bound on the central charge similar to

that of figure 3, i.e. assuming that ∆R saturates its bound. The bound is shown in figure 5.

As we see, even though we use the mixed correlator crossing relations the bound obtained

is very similar to the corresponding bound in figure 3. The bound of figure 5 is weaker

than that of figure 3 due to the lower Λ used in the former.
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0.85

0.9

0.95

1

1.05

∆φ

cφ̄Rφ

Figure 4. Upper and lower bounds on the OPE coefficient of the operator φ̄ in the φ̄ × R OPE

as a function of ∆φ, assuming ∆R lies on the bound of figure 1 and demanding cφ̄Rφ = cφ̄φR. We

also impose a gap equal to one between ∆R and ∆R′ . The shaded area is excluded. In this plot

we use Λ = 17.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.04

0.06

0.08

0.1

0.12

∆φ

c

Figure 5. Lower bound on the central charge as a function of ∆φ, assuming that ∆R lies on the

bound of figure 1 and demanding cφ̄Rφ = cφ̄φR. We also impose a gap equal to one between ∆R

and ∆R′ . The shaded area is excluded. In this plot we use Λ = 17.

With the inclusion of the crossing relations (4.3), (4.4) and (4.9) we can attempt to

constrain scaling dimensions of operators with R-charge equal to that of φ̄. In particular, we

can attempt to find a bound on the dimension of the first scalar superconformal primary af-

ter φ̄ in the φ̄×R OPE, called φ̄ ′, assuming that ∆R lies on the (stronger) bound of figure 1.

Numerically, this turned out to be a hard problem. For Λ = 11 a bound on ∆φ′

did not arise for any value of ∆φ. With the assumption that there are no Q-exact scalar

operators in the φ̄×R OPE, i.e. neglecting the
~̂
X and ~Y scalar contributions in (4.13), we
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Figure 6. Upper bound on ∆φ′ as a function of ∆φ, assuming that ∆R lies on the bound of figure 1

and imposing cφ̄Rφ = cφ̄φR. Here we neglect
~̂
X and ~Y scalar contributions in (4.13), and impose a

gap equal to one between ∆R and ∆R′ . The shaded area is excluded. In this plot we use Λ = 11.

managed to obtain a bound on ∆φ′ but only for ∆φ . 1.12, after which point the bound

was abruptly lost. This bound is shown in figure 6. Increasing our functional search space

by taking Λ = 13, Λ = 17 and Λ = 19 we find a bound on ∆φ′ up to ∆φ ≈ 1.27, ∆φ ≈ 1.32

and ∆φ ≈ 1.34, respectively. At the corresponding ∆φ the bound is again abruptly lost.

Note that for these results we do not actually obtain the bound, but rather we ask if the

spectrum with φ̄ as the only scalar in the φ̄ × R OPE is allowed or not. We believe that

numerical analysis for higher Λ will yield bounds on ∆φ′ for higher ∆φ, but it is puzzling

that in going from Λ = 17 to Λ = 19 we have a very small gain in the ∆φ up to which a

bound on ∆φ′ can be obtained.

The various features we have seen in plots of this section indicate the existence of a

CFT with a chiral operator of dimension ∆φ ≈ 1.4, or ∆φ = 10
7 based on the analysis of [9].

Unfortunately the mixed correlator analysis has not allowed us to isolate this putative CFT

from the allowed region around it, particularly from the allowed region for higher ∆φ. We

remind the reader that the region for ∆φ <
10
7 can be excluded by imposing that φ2 = 0

as a primary [9, 10]. The set of conditions that isolate this putative CFT from solutions to

crossing symmetry with higher ∆φ have not been found in this paper. We hope that future

work will be able to identify these conditions, or uncover a physical reason for their absence.

7 Bounds in theories with global symmetries

7.1 Using the crossing relation from 〈JJJJ〉

Bootstrap bounds arising from the four-point function 〈J(x1)J(x2)J(x3)J(x4)〉 were ob-

tained recently in [13]. In fact, [13] considered the more complicated nonabelian case. Here

we will consider just the Abelian case, where J carries no adjoint index, and obtain some

further bounds that have not appeared before.
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Figure 7. Upper bound on the OPE coefficient of J in the J×J OPE as a function of the dimension

of the first unprotected scalar in the J × J OPE. The region to the right of the dotted vertical line

at ∆O = 5.246 is not allowed. In this plot we use Λ = 29.

Since the dimension of J is fixed by symmetry, no external operator dimension can be

used as a free parameter. For the plots in this section we will instead use the dimension

of the first unprotected operator O in the J × J OPE as the parameter in the horizontal

axis. Note that there is an upper bound to how large that dimension can get, and so our

plots will not extend past that bound. This bound is found here by looking at the value

for which the square of the plotted OPE coefficient turns negative.

First, we obtain an upper bound on the OPE coefficient of J in the J × J OPE. The

bound is shown in figure 7. It contains a plateau that eventually breaks down, leading to a

violation of unitarity past ∆O = 5.246. This is a reflection of the fact that the dimension of

the first unprotected scalar in the J×J OPE cannot be larger than ∆O = 5.246 consistently

with unitarity. The J × J OPE also contains contributions arising from the dimension-

three vector multiplet that contains the stress-energy tensor. We can obtain a bound on

the OPE coefficient cV of these contributions; see figure 8. A lower bound on the central

charge c can then be derived from these results, since c2
V = 1

90c in our conventions. Close

to the origin we get c & 0.00064, a bound much weaker than that in figure 2.

The bounds in figures 7 and 8 were obtained using Λ = 29.7 We can also obtain bounds

for other values of Λ. We do this here letting O saturate its unitarity bound, i.e. choosing

∆O = 2. The plots are shown in figure 9. As Λ gets larger we see observe an approximately

linear distribution of the bounds, which we then fit and extrapolate to the origin. The fits

are given by

c
(fit)
J = 3.311 +

39.412

Λ
, c

(fit)
V = 2.256 +

56.279

Λ
. (7.1)

The limit Λ→∞ gives us an estimate of the converged optimal bound that can be obtained.

7For lower values of Λ, e.g. Λ = 21, we do not find an upper bound on ∆O, i.e. c2J and c2V never turn

negative. The upper bounds for cJ and cV in those cases converge to values that do not change with ∆O
no matter how large ∆O becomes.
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Figure 8. Upper bound on the OPE coefficient of the contributions to the J ×J OPE arising from

the leading vector superconformal primary V as a function of the dimension of the first unprotected

scalar in the J × J OPE. The region to the right of the dotted vertical line at ∆O = 5.246 is not

allowed. In this plot we use Λ = 29.
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Figure 9. The upper bounds on cJ and cV with ∆O = 2 as functions of the inverse cutoff 1/Λ,

and linear extrapolations of the six points closest to the origin.

Finally, we also find an upper bound on the OPE coefficient of O as a function of the

dimension of O; see figure 10.

7.2 Using the full set of crossing relations involving φ and J

Similarly to subsection 6.2 we can here obtain constraints on operators that appear in the

φ̄×J OPE. One such operator is φ̄ itself, and we can obtain a bound on its OPE coefficient.

This OPE coefficient is equal to that of J in the φ̄ × φ OPE, and its meaning has been

analyzed in [7], where it was denoted by τIJT
I
11̄
T J

11̄
. The bound is shown in figure 11. One

application of this bound is in SU(Nc) SQCD with Nf flavors Qi and Q̃ı̃. Mesons in this

theory have scaling dimension ∆M = 3(1−Nc/Nf ), which can be close to one at the lower

end of the conformal window, Nf ∼ 3
2Nc. This was considered first in [7], where the meson

M1
1 was taken as the chiral operator and the relation

τIJT
I
11̄T

J
11̄ = 2

Nf − 1

3Nc
2

(7.2)

– 22 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
9

2 2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

8

∆O

cO

Figure 10. Upper bound on the OPE coefficient of the first unprotected scalar operator in the

J × J OPE as a function of its dimension. The region to the right of the dotted vertical line at

∆O = 5.246 is not allowed. In this plot we use Λ = 29.
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cφ̄Jφ

Figure 11. Upper bound on the OPE coefficient of the operator φ̄ in the φ̄× J OPE as a function

of ∆φ, demanding cφ̄Jφ = cφ̄φJ . In this plot we use Λ = 17.

was obtained for the contributions of the flavor currents of the symmetry group SU(Nf )L×
SU(Nf )R of SQCD. This satisfies our bound in figure 11 comfortably. For example, for

Nc = 3 and Nf = 5, in which case ∆M = 1.2, we have τIJT
I
11̄
T J

11̄
≈ 0.3 with the bound

constraining this to be lower than approximately one. Even with these numerical results

we are far away from saturating the bound with SQCD, although we can hope that by

pushing the numerics further we will get much closer in the near future.

We should also note here that very close to ∆φ = 1 our bound appears to be converging

to a value for cφ̄Jφ below one, thus excluding the free theory of a free chiral operator charged

under a U(1). While we have not been able to obtain a bound very close to one, i.e. 10−15

or so away from it, we believe that the bound abruptly jumps right above one as ∆φ → 1 in

order to allow the free theory solution. This behavior of the bound has also been seen in [8].
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Figure 12. Upper bound on the OPE coefficient of the operator φ̄J in the φ̄×J OPE as a function

of ∆φ, demanding cφ̄Jφ = cφ̄φJ . In this plot we use Λ = 17.

As we have already seen the second scalar in the φ̄×J OPE has dimension ∆φ+2. We

will call it φ̄J . We can obtain a bound on its OPE coefficient, again imposing cφ̄Jφ = cφ̄φJ .

The bound is seen in figure 12, and is strongest close to ∆φ = 1 where it approaches the

expected value of cφ̄J(φJ) = 1.

8 Discussion

This work is the first numerical bootstrap study of mixed correlator systems in SCFTs with

four supercharges. In this paper we focused on 4D N = 1 SCFTs and used the crossing

symmetry and positivity in the {〈φ̄φφ̄φ〉, 〈φ̄RφR〉, 〈RRRR〉} system, where R is a generic

real scalar and φ is a chiral scalar. We also studied the special case with R → J , where

J is the superconformal primary in a linear multiplet that contains a conserved global

symmetry current. In all these cases we computed all necessary superconformal blocks,

obtaining some new results.

We found new rigorous bounds on 4D N = 1 SCFTs that are stronger than those

previously obtained. The features of our results strongly suggest the existence of a minimal

4D N = 1 SCFT with a chiral operator of dimension ∆φ ≈ 1.4. Nevertheless, further

studies are needed in this system of crossing relations. In particular, we did not find

an isolated island of viable solutions to the crossing equations similar to that obtained

in [5, 6]. We believe that in order to address this more definitively we need to overcome the

current practical limits on the dimension of the functional search space we can use with

the available computational resources. When that becomes possible, we expect certain

dimension bounds to become much more constraining. However, this will likely require a

new level of both algorithmic efficiency and computational power. We expect to return to

this system when such resource becomes available.
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A Polynomial approximations

In this work we consider crossing relations for four-point functions involving operators with

different scaling dimensions ∆1 and ∆2, e.g.∑
O
|c|2F∆, `,∆1,∆2(u, v) = 0 , (A.1)

where F∆, `,∆1,∆2(u, v) = u−(∆1+∆2)/2G∆, `,∆1,∆2(u, v)− (u↔ v), with G a superconformal

block. The superconformal block contains ordinary conformal blocks defined in (2.3). In

order to use semidefinite programming techniques we have to approximate derivatives on

F and F ′ as positive functions times polynomials [8]. Here we explain how we do this for

expressions like (A.1), assuming first that F contains a single conformal block. To signify

this we will use F instead of F .8

From (2.3) and using u = zz̄ and v = (1− z)(1− z̄) we have

(z−z̄)F∆, `,∆1,∆2(z, z̄) = (−1)`
(
uβ,γ,δ∆+` (z)uβ,γ,δ∆−`−2(z̄)+uβ,γ,δ∆+` (1−z)uβ,γ,δ∆−`−2(1−z̄)

)
−(z ↔ z̄) ,

(A.2)

where β and γ can here be either ∆1−∆2 or ∆2−∆1 depending on the four-point function

we are considering, δ = 1
2(∆1 + ∆2), and

uβ,γ,δα (z) = z1−δkβ,γα (z) . (A.3)

The constants α, β, γ, δ have specific relations to ∆, `,∆1,∆2 when appearing in (A.2), but

below we will keep them general. As we see the crossing relation (A.1) takes a convenient

form in terms of the function uβ,γ,δα (z). For our bootstrap analysis we now need to compute

derivatives of uβ,γ,δα with respect to z or z̄, and evaluate them at z = z̄ = 1
2 . An easy way to

do this is to use a power series expansion. Indeed, the function uβ,γ,δα (z) can be expanded as

uβ,γ,δα (z) =

∞∑
n=0

C n
α,β,γ,δ

1

n!

(
z − 1

2

)n
, (A.4)

8Polynomial approximations of conformal blocks corresponding to four-point functions involving opera-

tors with different scaling dimensions were recently considered in [30].
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with

C n
α,β,γ,δ = 2n−

1
2
α+δ−1 Γ

(
1
2(α− 2δ + 4)

)
Γ
(

1
2(α− 2δ + 4− 2n)

)
× 3F2

(
1

2
(α− β),

1

2
(α+ γ),

1

2
α− δ + 2;α,

1

2
α− δ + 2− n ;

1

2

)
.

(A.5)

C n
α,β,γ,δ as given in (A.5) is nonpolynomial and thus not appropriate for our analy-

sis. Hence, we take an alternate route here, based on that suggested in [7]. Using the

hypergeometric differential equation it is easy to verify that uβ,γ,δα satisfies the differential

equation(
z2(1− z)

d2

dz2
+

1

2
z
(
(β − γ − 4δ + 2)z + 4(δ − 1)

) d
dz

+
1

4

(
(β − 2δ + 2)(γ + 2δ − 2)z − (α− 2δ + 2)(α+ 2δ − 4)

))
uβ,γ,δα (z) = 0 .

(A.6)

If we use (A.4), then taking n− 2 derivatives on (A.6) and evaluating at z = 1
2 we find the

recursion relation

C n
α,β,γ,δ = −(2n+ β − γ + 4δ − 10)C n−1

α,β,γ,δ

+
(
4n(n− β + γ − 3)

+ 2α(α− 2)− β (γ + 2δ − 10) + γ (2δ − 10)− 4δ (δ − 4)− 4
)
C n−2
α,β,γ,δ

+ 2(n− 2)(2n− β + 2δ − 8)(2n+ γ + 2δ − 8)C n−3
α,β,γ,δ .

(A.7)

This allows us to write

C n
α,β,γ,δ = Pn(α, β, γ, δ)2δ−1kβ,γα

(
1

2

)
+Qn(α, β, γ, δ)2δ−1 (kβ,γα )′

(
1

2

)
, (A.8)

where (kβ,γα )′ is the z-derivative of kβ,γα and the polynomials P and Q can be determined

from (A.7).

In order to be able to use semidefinite programming we need to further express ap-

propriately the right-hand side of (A.8), for it still involves the nonpolynomial quantities

kβ,γα and (kβ,γα )′ evaluated at 1
2 . To proceed, we perform a series expansion around z = 0

of kβ,γα (ρ) and (kβ,γα )′(ρ), where we use the coordinate ρ = z/
(
1 +
√

1− z
)2

[31]. The

expansion in ρ converges faster than that in z. We perform this expansion to a fixed order

w for kβ,γα and w − 1 for (kβ,γα )′, so that both expressions have the same poles in α, and

then we substitute ρ = ρ(1
2) = 3− 2

√
2. Then, in the right-hand side of (A.8) we can pull

out a positive factor equal to
(
2−

1
2
ααDw(α)

)−1
,9 where Dw(α) is the denominator of the

power series expansion of kβ,γα evaluated at ρ(1
2). Doing so we can bring (A.8) to the form

C n
α,β,γ,δ → C n

α,β,γ,δ,w ≈ 2δ+
1
2
α−1 1

αDw(α)
Rn,w(α, β, γ, δ) , αDw(α) > 0 for α > −1 ,

(A.9)

9Since α is here ∆ + ` or ∆ − ` − 2 we may have α = −1, in which case αD(α) = 0. This corresponds

to the case where the exchanged operator is a free scalar.
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where Rn,w(α, β, γ, δ) is polynomial in its arguments, given by

Rn,w(α, β, γ, δ) = N1,w(α, β, γ)Pn(α, β, γ, δ) +N2,w(α, β, γ)Qn(α, β, γ, δ) , (A.10)

where N1,w is 2−
1
2
αα times the numerator of the power series expansion of kβ,γα evaluated

at ρ(1
2), and N2,w is the power series expansion of (kβ,γα )′ multiplied with 2−

1
2
ααDw(α).

The approximation to C n
α,β,γ,δ in (A.9) becomes better as we increase the order w of the

power series expansion of (A.8).10 For the remainder of this appendix we will ignore the

label w.

Using (A.2), (A.4) and (A.9), derivatives of (z−z̄)F∆, `,∆1,∆2(z, z̄) evaluated at z= z̄= 1
2

can now be written as

∂mz ∂
n
z̄

(
(z − z̄)F∆, `,∆1,∆2(z, z̄)

)∣∣
z=z̄= 1

2
≈ χ(∆, `, δ)Um,n(∆, `, β, γ, δ) , (A.11)

where

χ(∆, `, δ) =
22(δ−1)+∆

(∆ + `)(∆− `− 2)D(∆ + `)D(∆− `− 2)
(A.12)

is positive in unitary theories, and

Um,n(∆, `, β, γ, δ) =
1

2
(1+(−1)m+n)(−1)`

(
Rm(∆+`, β, γ, δ)Rn(∆−`−2, β, γ, δ)−(m↔ n)

)
(A.13)

is a polynomial in ∆, `, β, γ, δ. In the case of H instead of F we find an expression similar

to (A.11) but instead of the overall factor of 1 + (−1)m+n in (A.13) we have the factor

1− (−1)m+n.

Finally, let us consider derivatives of the function F∆, `,∆1,∆2(z, z̄) at z = z̄ = 1
2 . Here

we will focus on F̄ φ̄R ;φR
∆, `,∆φ−∆R

(z, z̄) of (4.10), but other F ’s can be treated similarly. We

can again multiply with z − z̄ as in (A.2), and then it is straightforward to obtain

∂mz ∂
n
z̄

(
(z − z̄)F̄ φ̄R ;φR

∆, `,∆φ−∆R
(z, z̄)

)∣∣
z=z̄= 1

2
≈ χ(∆, `, δ)

×

[
Um,n(∆, `, β, γ, δ)

+ 4ρ

(
1

2

)
c̄1

(∆ + `)D̃(∆ + `)

(∆ + `+ 2)D̃(∆ + `+ 2)
Um,n(∆ + 1, `+ 1, β, γ, δ)

+ 4ρ

(
1

2

)
c̄2

(∆− `− 2)D̃(∆− `− 2)

(∆− `)D̃(∆− `)
Um,n(∆ + 1, `− 1, β, γ, δ)

+ 16ρ2

(
1

2

)
c̄1c̄2

(∆ + `)(∆− `− 2)D̃(∆ + `)D̃(∆− `− 2)

(∆ + `+ 2)(∆− `)D̃(∆ + `+ 2)D̃(∆− `)
Um,n(∆ + 2, `, β, γ, δ)

]
,

(A.14)

where β = γ = ∆φ − ∆R, δ = 1
2(∆φ + ∆R), c̄1 and c̄2 are given by (2.20), and D̃(α) =(

2ρ(1
2)
) 1

2
α
D(α) is polynomial in α. Now, since D̃(α) is a polynomial of degree w of the

10In this work we have typically used w around 20.
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form α(α+ 1) · · · (α+ w − 1), it is

αD̃(α)

(α+ 2)D̃(α+ 2)
=

α2(α+ 1)

(α+ 2)(α+ w)(α+ w + 1)
. (A.15)

As a result, (A.14) can be written as

∂mz ∂
n
z̄

(
(z − z̄)F̄ φ̄R ;φR

∆, `,∆φ−∆R
(z, z̄)

)∣∣
z=z̄= 1

2
≈ χ(∆, `, δ)

f(∆ + `)f(∆− `− 2)

×
[
f(∆ + `)f(∆− `− 2)Um,n(∆, `, β, γ, δ)

+ c̄1g(∆ + `)f(∆− `− 2)Um,n(∆ + 1, `+ 1, β, γ, δ)

+ c̄2f(∆ + `)g(∆− `− 2)Um,n(∆ + 1, `− 1, β, γ, δ)

+ c̄1c̄2g(∆ + `)g(∆− `− 2)Um,n(∆ + 2, `, β, γ, δ)
]
,

(A.16)

where

f(α) = (α+2)(α+w)(α+w+1)(α+∆φ) , g(α) = 4ρ

(
1

2

)
α2(α+1)(α+∆φ) . (A.17)

The quantity χ(∆, `, δ)/f(∆+`)f(∆−`−2) is positive in unitary theories since w > 1. Fur-

thermore, the factors in the denominators of c̄1 and c̄2 are also contained in the correspond-

ing g that multiplies them in (A.16). Therefore, the right-hand side of (A.16) is of the form

of a positive quantity times a polynomial and so it can be used in our bootstrap analysis.

B On the derivation of superconformal blocks

In this appendix we briefly describe the method we used to compute the superconfor-

mal blocks of section 2. Despite significant developments on N = 1 superconformal

blocks [7, 13–16, 25], blocks that arise from superdescendants whose corresponding pri-

maries do not contribute have not been treated systematically. An example has been

worked out in [25], while, in the case of interest for this paper, namely regarding the

φ̄×R OPE, an example is the superconformal primary Oα̇, which cannot appear because

it does not have integer spin, but whose descendants Q̄α̇Oα̇ and (the primary component

of) Q̄2QαOα̇ may both appear and form a superconformal block.

As mentioned in section 2, there are two types of such operators for the four-point

function we are interested in. The first has ̄ = j + 1, that is, it has one more dot-

ted than undotted index. The superconformal primary Oα1...α`; α̇α̇1...α̇` has zero three-

point function with two scalars because it does not have integer spin. The superdescen-

dant QαŌαα1...α`; α̇1...α̇` has spin ` and the primary component of the superdescendant

Q2Q̄(α̇Ōαα1...α`; α̇1...α̇`) has spin ` + 1. These two superdescendants have nonzero three-

point function with φ̄ and R if the weights of the associated superconformal primary

Oα1...α`; α̇α̇1...α̇` satisfy q = 1
2(∆ + ∆φ − 3

2) and q̄ = 1
2(∆−∆φ + 3

2).

There is a second class of operators Oα1...α`; α̇2...α̇` , ` ≥ 1, that has one more undot-

ted index. When q = 1
2(∆ + ∆φ − 3

2) and q̄ = 1
2(∆ − ∆φ + 3

2), the superdescendant

Q(α1
Ōα2...α`); α̇1...α̇` and the primary component of Q2Q̄α̇Ōα2...α`; α̇α̇2...α̇` have nontrivial

three-point functions with φ̄ and R.
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In this appendix we summarize the calculation of such superconformal blocks in four-

dimensional N = 1 SCFTs. We focus on the contribution of an exchanged superconformal

multiplet in the φ̄ × R channel of the four-point function 〈φ̄RφR〉. In d ≥ 3 dimensions,

a superconformal multiplet includes a finite number of conformal multiplets. Therefore,

the superconformal block is a linear combination of conformal blocks with coefficients fixed

by supersymmetry. For each conformal primary component O of the supermultiplet, this

coefficient is given by cφ̄ROcφRŌ/cŌO, where cφ̄RO and cφRŌ are the three-point function

coefficients and cŌO is the two-point function coefficient. The construction of primary

components and their two-point function coefficients cŌO for any 4D N = 1 supercon-

formal multiplet has been worked out in [24]. The form of the superfield three-point

function was originally worked out in [22, 23], and reproduced for the cases of interest here

in (2.14), (2.24) and (2.28). Using the Mathematica package developed in [24], we expand

these three-point functions in θ and θ̄. Using the explicit construction of the superfield at

each θ, θ̄ order worked out in [24], we match the result of the expansion of the superfield

three-point functions to the expected form of conformal three-point functions and solve for

the three-point function coefficients cφ̄RO.

As an illustration, we elaborate more on this calculation for the first class of operators

mentioned above. Expanding (2.14) with (2.24) to first order in θ̄3, we have

〈Φ̄(z1)R(z2)O(z3, η, η̄)〉θ̄3 = −i 1

r
2∆φ

13 r 2∆R
23

(Z3
2)

1
2

(∆−`+ 1
2
−∆φ−∆R) (ηZ3η̄)` η̄θ̄3 , (B.1)

where rij = (x 2
ij)

1
2 , Zµ3 = −xµ13/x

2
13 + xµ23/x

2
23, Z3αα̇ = Z3µσ

µ
αα̇, Z3

2 = x 2
12/x

2
13x

2
23, and we

have used bosonic auxiliary spinors η and η̄ to saturate all free spinor indices on O:

O(z, η, η̄) ≡ 1

(`!)2
ηα1 · · · ηα` η̄α̇1 · · · η̄α̇`Oα1...α`; α̇1...α̇` . (B.2)

Note that the x-dependence on the right-hand side of (B.1) has exactly the form of

a three-point function of conformal primaries. It corresponds to the contribution from

Q̄α̇Oα1...α`; α̇α̇1...α̇` in the three-point function. Using the superfield structure worked out

in [24],

eiθQ+i θ̄Q̄O`, `+1|θ̄ = iθ̄Q̄O`, `+1 = i θ̄∂η̄(Q̄O)`, `+2 + i
`+ 1

`+ 2
θ̄η̄ (Q̄O)`, ` . (B.3)

Here (Q̄O)`, `+2 and (Q̄O)`, ` are the two conformal primaries obtained from symmetrizing

or antisymmetrizing the index of Q̄ with the dotted indices of the superconformal primary

O. Only the later can appear in the three-point function with scalars because it has integer

spin. Plugging (B.3) into the left-hand side of (B.1) we find that the three-point function

coefficient of 〈φ̄R(Q̄O)`, `〉 is

cφ̄R(Q̄O) =
`+ 2

`+ 1
. (B.4)
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To get the three-point function coefficient for the Q̄2QO descendant, we first work out the

θ-expansion of the superfield three-point function. The result is

〈Φ̄(z1)R(z2)OI(z3, η, η̄)〉θ3θ̄ 2
3

=
1

r
2∆φ

13 r 2∆R
23

(Z3
2)

1
2

(∆−`+ 1
2
−∆φ−∆R)(ηZ3η̄)`

θ̄ 2
3

(
(∆φ − `− 2)

1

x 2
13

θ3x13η̄

− 1

4

(
2(∆ + 3`−∆φ −∆R) + 9

)
θ3Z3η̄

)
.

(B.5)

This does not take the form of a three-point function involving conformal primaries. This is

expected since at this order in θ and θ̄ the three-point function also contains contributions

from conformal descendants. In particular, following notation of [24], we have

eiθQ+iθ̄Q̄O`, `+1

∣∣
θθ̄2 = − i

4
θ̄2 θ∂η

(
(Q̄2QO)η`+1, `+1;p + 2ic̄5 ∂η̄∂xη (Q̄O)`, `+2;p

−2ic̄6
`+ 1

`+ 2
η∂xη̄ (Q̄O)`, `;p

)
+
i

4

`+ 1

`+ 2
θ̄2 θη

(
(Q̄2QO)`−1, `+1;p + 2ic̄7 ∂η∂x∂η̄ (Q̄O)`, `+2;p

−2ic̄8
`+ 1

`+ 2
η̄∂x∂η (Q̄O)`, `;p

)
,

(B.6)

and we see that two different descendants have integer spins and can contribute to the

three-point function with φ̄ and R. The relevant coefficients can be obtained from [24]:

c̄6 = −2
∆φ − 2

(`+ 1)
(
2(∆ + `) + 1

) , c̄8 = −2
∆φ − `− 3

`(2∆− 1)
. (B.7)

Removing these contributions from the superfield correlator we indeed get a conformal

primary three-point function with coefficient

cφ̄R(Q̄2QO)p = i

(
2(∆−∆φ + `) + 5

)(
2(∆ + ∆φ −∆R + `) + 1

)
(`+ 1)

(
2(∆ + `) + 1

) . (B.8)

Finally, using the two-point function coefficient derived in [24], we get the results (2.25)

and (2.26). For the second class of operators we carried out a similar procedure and

obtained (2.29) and (2.30).

Although we will not present the details here, this calculation is easily generalized to

cases where the operator R is not real and carries an R-charge. The relevant results can

be found in (2.27) and (2.31). More generally, for other scalar N = 1 superconformal four-

point functions, there may be intermediate operators of this type that do not correspond

to (2.24) or (2.28). We have not calculated such superconformal blocks, but our method

should apply straightforwardly to such cases. Indeed, this method is a feasible way of

computing any N = 1 scalar superconformal block in a case by case basis.
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