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1 Introduction

Structure constants or OPE coefficients constitute an essential part of data which char-

acterize a conformal field theory. In the case of planar N = 4 Super-Yang-Mills theory

(SYM), it proves to be fruitful to make connection between the structure constant and the

form factors in 2d integrable field theories. This can be most easily done for the heavy-

heavy-light (HHL) three point function [3, 4] where the two heavy operators are regarded

as ‘incoming’ and ‘outgoing’ states and the light operator as an operator sandwiched be-

tween these states. Based on this intuition, Bajnok, Janik and Wereszczynski (BJW) [2]

conjectured that the L-dependence (L is the length of the heavy operators) of HHL struc-

ture constant takes the same form as the volume dependence of the diagonal form factors

in 2d integrable field theories [5] at any coupling. This conjecture was confirmed by some

examples at strong coupling [2] and proved at the leading and one-loop order in the su(2)

sector at weak coupling [6].

Very recently, a non-perturbative method for computing structure constants in N = 4

was proposed by Basso, Komatsu and Vieira (BKV) [1] called the hexagon bootstrap pro-

gram. This approach offers us a powerful tool to investigate the HHL structure constant

at finite coupling and test further the BJW conjecture. In this paper, we initiate a sys-

tematic study of HHL structure constant using the hexagon approach and prove the BJW

conjecture at higher loop orders. The proof is presented for a specific set-up for simplicity,

but our method can be applied to more general cases [7].
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2 The hexagon bootstrap program

We review briefly the proposal by Basso, Komatsu and Vieira [1]. Intuitively, the structure

constant can be represented by a pair of pants either in the spin chain or string theory

description. The main idea of [1] is cutting this pair of pants into two objects called the

hexagons or the hexagon form factors. When cutting the pair of pants, the excitations on

each operator can be attributed to either hexagon and one needs to sum over all the pos-

sible partitions, each partition is associated with certain weight. In addition, gluing back

the two hexagons into a pair of pants requires summing over all possible states living on

the three gluing segments, which can be performed by means of integrating over the mirror

excitations. The calculation of the hexagons can be achieved in two steps. The first step is

to move all excitations on the same edge by performing mirror transformations. The result-

ing object is called fundamental hexagon. It can be denoted as HA1Ȧ1···AN ȦN (u1, · · · , uN ),

where AiȦi are the suL(2|2) ⊗ suR(2|2) bifundamental indices for the i-th excitation and

ui is the corresponding rapidity. The second step is the computation of the fundamental

hexagon itself which is given by the following prescription

H = Hdyn ·Hmat, (2.1)

where

Hdyn =
∏
i<j

h(ui, uj) (2.2)

Hmat = (−1)f 〈χȦNN · · ·χȦ1
1 |S|χ

A1
1 · · ·χ

AN
N 〉,

and the factor (−1)f accommodates for the grading. For our case below, we consider only

scalar excitations and f = 0. The dynamical part is simply a product of the scalar function

h(u, v) given by

h12 =
x−1 − x

−
2

x−1 − x
+
2

1− 1/x−1 x
+
2

1− 1/x+
1 x

+
2

1

σ12
(2.3)

where the variables x±1,2 are defined as x±1 = x(u ± i/2) and x±2 = x(v ± i/2). Here x(u)

is the Zhukowsky variable satisfying x+ 1/x = u/g and σ12 = σ(u, v) is the square root of

BES dressing phase [8].

For the matrix part, χA denotes a state in the fundamental representation of su(2|2)

and S is Beisert’s S-matrix [9, 10]. The matrix part of the hexagon form factor is thus

given by a factorized product of Beisert’s S-matrix elements with the dressing phase set

to 1.

3 Set-up

We study the HHL structure constant with the excitations of the two heavy operators being

the transverse scalar excitations X = Φ11̇ and X̄ = −Φ22̇ and the light operator being the

BPS operator, which is also called the reservoir in [1]:

O3 = tr Z̃2l0 , Z̃ = Z + Z̄ + Y − Ȳ . (3.1)
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Figure 1. Two kinds of wrapping corrections of the structure constant. The blue lines corresponds

to the bridge wrappings and the gray lines corresponds to the state wrappings.

The two heavy operators are made of the scalar fields O1 : {Z,X} and O2 : {Z̄, X̄}.
These are the operators in the so-called su(2) sector. The length of the heavy operators

are L1 = L2 = L. In the heavy-heavy-light three-point function, we have l0 � L. In

this paper, we consider the asymptotic L-dependence of the HHL structure constant. This

means we neglect the wrapping corrections to the states (physical wrapping), which start

to contribute at order O(g2L). However, there are another kind of wrapping corrections,

corrections to the correlator itself (see figure 1), referred to as bridge wrapping in [1]. On

account of the small length of the light operator these corrections contribute at very low

orders and should be taken into account. We postpone this question to future investiga-

tion [7]. In this paper, we assume 1� l0 � L so that we can trust the result up to relatively

high orders without worrying about the wrapping corrections. In this regime, we only need

to consider the physical excitations and we can study the asymptotic L-dependence. We

will see the result confirms the BJW conjecture.

Let us denote the two sets of rapidities of the excitations on O1 and O2 to be {u}N =

{uN , · · · , u1} and {v}N = {v1, · · · , vN}, as is shown in figure 2. The rapidities satisfy the

equations of the asymptotic Bethe ansatz [8]. The structure constant has the following

sum-over-partition expression [1]

C2N =
∑

α∪ᾱ={u}N
β∪β̄={v}N

ω−l(α, ᾱ)ωl(β, β̄)H(α|β)H(β̄|ᾱ), (3.2)

where the two splitting factors are

ω−l(α, ᾱ) =
∏
uj∈ᾱ

e−ilp(uj) ∏
ui∈α
i>j

S(ui, uj)

 (3.3)

ωl(β, β̄) =
∏
vj∈β̄

eilp(vj) ∏
vi∈β
i>j

S(vj , vi)

 .

and l = L − l0 ∼ L. Here H(α|β) and H(β̄|ᾱ) are the hexagon form factors which can be

computed non-perturbatively. Note that we have applied Bethe Ansatz Equations (BAE)

to rewrite the splitting factor in (3.3). Then both splitting factors ω−l and ωl depend on the

– 3 –
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Figure 2. The rapidities for the two heavy operators. Notice that the for O1, the set rapidities is

labeled by uN , uN−1, · · · , u1 while for O2 is labeled by v1, v2, · · · , vN .

large size scale l. This is the origin of the explicit L-dependence of the structure constant.

As we will see later, when we take the diagonal limit {v}N → {u}N , a 0
0 uncertainty

appears, so we will have to take derivatives of the phase factors eilp(v), which leads to the

polynomial dependence of L. Another source of the L-dependence is the phase factors

itself, but, after taking the limit, it can be eliminated by applying BAE.

4 The hexagon form factor

We first analyze the structure of hexagon form factor and show that there are kinematic

poles in the diagonal limit. Each term in the sum-over-partition formula (3.3) contains the

product of two hexagon form factors. In order to perform the computation, one needs to

perform crossing transformations to move all the excitations on the same edge. Here we

choose a −4γ transformation for the first hexagon and a 4γ transformation for the second

one, as is shown in figure 3. The advantage of performing ±4γ transformations is that

they leave the matrix part of the hexagon invariant and the kinematic pole in the diagonal

limit only appears in the dynamical part. Since the dynamical part takes a factorized

form, it is much easier to keep track of the kinematic poles. When performing the crossing

transformation in the spin chain frame, in general an extra phase factor appears. In our

case, if we perform the ±4γ transformation, this phase factor is trivial. The dynamical

parts of the two hexagons are given by

Hdyn({u}n|{v−4γ}n) =
n∏
k=1

uk − vk + i

uk − vk
1

h̃(vk, uk)

∏
i<j h(ui, uj)h(vi, vj)∏

j 6=k h(vi, uj)
, (4.1)

Hdyn({v4γ}n|{u}n) =
n∏
k=1

uk − vk − i
uk − vk

1

h̃(uk, vk)

∏
i<j h(ui, uj)h(vi, vj)∏

j 6=k h(ui, vj)
,

where we have used the fact that h(u, v−4γ) = 1/h(v, u) and h(v4γ , u) = 1/h(u, v) and

1

h(u, v)
=
u− v − i
u− v

1

h̃(u, v)
. (4.2)

Here

h̃(u, v) =
(1− 1/x−1 x

+
2 )2

(1− 1/x−1 x
−
2 )(1− 1/x+

1 x
+
2 )

1

σ12
(4.3)
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Figure 3. Crossing transformation for the excitations of the two hexagons.

is nonzero for coinciding rapidities, namely h̃(u, u) 6= 0. The matrix parts of the two

hexagons are in general complicated functions of S-matrix elements. The Zhukowsky

variables are invariant under ±4γ transformation, hence we have Hmat({u}n|{v−4γ}n) =

Hmat({u}n|{v}n) and Hmat({v4γ}n|{u}n) = Hmat({v}n|{u}n). Finally we notice that when

taking diagonal limit vi → ui, due to the structure of the dynamical parts, poles appear.

But since the structure constant is a well-defined object in diagonal limit, these poles

necessarily cancel.

5 The diagonal form factor

In this section, we take the diagonal limit of the structure constant as discussed in the pre-

vious section. Let us denote the structure constant in the sum-over-partition formula (3.2)

as C2N ({u}N |{v}N ). Taking the diagonal limit we can define

CHHL({u}N ) = lim
εi→0
C2N ({ui}N |{ui + εi}N ). (5.1)

We also define a quantity

F({u}N ) = lim
εi→0
C′2N ({ui}N |{ui + εi}N ), (5.2)

where by prime we mean that before taking the limit, we replace all the factors eip(vi)l by

eip(ui)l. In both cases, after taking the diagonal limit, we apply BAE in order to eliminate

the l-dependence due to the phase factors eip(ui)l.

The main result of our paper is the proof of the following statement:

Theorem 1. The heavy-heavy-light symmetric structure constant has the following L-

dependence

CHHL({ui}N ) =
1∏N

i=1 h̃(ui, ui)

∑
α∪ᾱ={u}N

F s(α)ρsL(ᾱ), (5.3)

where L is the length of the heavy operator.

Here ρsL is the Jacobian in the symmetric scheme [5] which is defined as

Φj = pjL− i
∑
k 6=j

logS(uj , uk), (5.4)

ρsL({u}N ) = det
j,k

∂Φk

∂uj
.

– 5 –
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For subsets ᾱ ⊂ {u}N , ρsL(ᾱ) is defined with respect to the rapidities uj ∈ ᾱ. The S-matrix

S(u, v) is the all-loop S-matrix in the su(2) sector, and

F s(α) =
∑

β∪β̄=α

F(β)ρs−l0(β̄). (5.5)

5.1 The factorization property

In order to prove the theorem, it is important to know the behavior of the hexagon form

factor when two rapidities on the two edges coincide with each other. In this case, the

resulting hexagon form factor is proportional to the hexagon form factors with less excita-

tions. We will refer to these kind of relations as the factorization properties. In our case it

can be summarized as the follows

Hmat(u, {u}n|{v}n, u) = −Hmat({u}n|{v}n), (5.6)

Hmat(?, u, v, ?|?) = S(u, v)
h(v, u)

h(u, v)
Hmat(?, v, u, ?|?),

Hmat(?|?, u, v, ?) = S(u, v)
h(v, u)

h(u, v)
Hmat(?|?, v, u, ?).

Note that here the relations only concern the matrix part. The first relation is a reformu-

lation of the decoupling condition in [1] where the authors performed a 2γ transformation.

The scattering of a particle and its anti-particle gives rise to the singlet state [9] which

scatters trivially with any other excitations and thus can be factorized. This statement is

equivalent to (5.6) in the −4γ transformation. The remaining two equations can be derived

simply from the prescription for computing the matrix part and using the fact that the

su(2) S-matrix at all loop is given by

S(u, v) = A(u, v)2h(u, v)

h(v, u)
, (5.7)

where A(u, v) is one of Beisert’s S-matrix element [9].

5.2 A recursion relation

As we mentioned above, the explicit L-dependence of the structure constant appears due to

taking derivatives of the phase factor eilp(vi). This implies that the polynomial l dependence

always come within the quantity zi = lp′(ui). Instead of studying directly the dependence

on L, it is more convenient to consider the dependence on zi’s.

Using the factorization property, we first prove the following lemma.

Lemma 1 (Recursion relation). The dependence of CHHL on zk is linear and satisfies

the following relation

∂

∂zk
CHHL({u}N ) = ak Cmod

HHL({u}N/uk), (5.8)

– 6 –
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where by the set {u}N/uk we mean that the rapidity uk is excluded from the initial set and

ak =
1

h̃(uk, uk)
, (5.9)

and the index “mod” stands for the following replacement

zi → zmod
i = zi + ϕ(ui, uk). (5.10)

ϕ(u, v) is defined as ϕ(u, v) = −i ∂∂u logS(u, v).

Proof. Let’s first consider C2N ({u}N |{v}N ) and its dependence on zN after taking the limit

vN → uN . Among the terms in the sum-over-partition formula, the terms leading to the

zN dependence have the factor

e−ilp(uN )+ilp(vN )

h(uN , vN )
× · · · . (5.11)

These are the terms with uN ∈ ᾱ and vN ∈ β̄ (both of the corresponding excitations are

located on the second hexagon), which take the following form (begining from here and

till the end of the subsection 5.2 we redefine the sets ᾱ, β̄ as follows ᾱ → uN ∪ ᾱ and

β̄ → β̄ ∪ vN )

t(α, β, uN ∪ ᾱ, β̄ ∪ vN ) = ω−l(α, uN ∪ ᾱ)ωl(β, β̄ ∪ vN ) ×H(α|β)H(β̄, vN |uN , ᾱ). (5.12)

For the splitting factor, we have

ω−l(α, uN ∪ ᾱ)ωl(β, β̄ ∪ vN )

ω−l(α, ᾱ)ωl(β, β̄)
= e−ilp(uN )+ilp(vN ). (5.13)

For the dynamical part of the hexagon form factor, we have

Hdyn(β̄, uN |uN , ᾱ)

Hdyn(β̄|ᾱ)
=
h(β̄, uN )

h(uN , β̄)

h(uN , ᾱ)

h(ᾱ, uN )

1

h(uN , vN )
. (5.14)

For the matrix part, we can use the factorization property (5.6)

Hmat(β̄, uN |uN , ᾱ)

Hmat(β̄|ᾱ)
= −A(β̄, uN )2A(uN , ᾱ)2. (5.15)

Combining the results (5.13), (5.14) and (5.15), one can derive that

∂

∂zN
t(α, β, uN ∪ ᾱ, β̄ ∪ uN + εN )

∣∣
εN→0

= aN
S(β̄, uN )

S(ᾱ, uN )
t(α, β, ᾱ, β̄), (5.16)

where aN is given in (5.9) and does not depend on the partition. We can combine S(ᾱ, uN )

and S(β̄, uN ) with the splitting factors ω−l(α, ᾱ) and ωl(β, β̄) respectively. This leads to a

modification of the momenta

e−ilp(ᾱk) → e−ilp
mod(ᾱk) = e−ilp(ᾱk)S(uN , ᾱk), (5.17)

eilp(β̄k) → eilp
mod(β̄k) = eilp(β̄k)S(β̄k, uN ).

– 7 –
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with the form of the splitting factor (3.3) unchanged. Therefore we can write

∂

∂zN
t(α, β, uN ∪ ᾱ, β̄ ∪ uN + εN )

∣∣
εN→0

= aN t(α, β, ᾱ, β̄)mod, (5.18)

where again the index “mod” implies the replacement (5.17). Summing over partitions

we get

∂

∂zN
lim
εN→0

C2N ({u}N |{v}N )|vN=uN+εN = aN Cmod
2N−2({u}N/uN |{v}N/vN ). (5.19)

After taking the limit vi → ui for the rest of the rapidities we get

∂

∂zN
CHHL({u}N ) = aN Cmod

HHL({u}/uN ). (5.20)

Finally, since the structure constant is symmetric with respect to the rapidities, we proved

the lemma 1.

5.3 Proof of the theorem

Now we are ready to prove the main theorem (5.3). For a given partition α ∪ ᾱ = {u}N ,

let us define

KN =
1∏N

k=1 h̃(uk, uk)
ρsl (ᾱ). (5.21)

First we prove that

CHHL({u}N ) =
∑

α∪ᾱ={u}N

F(α)KN (ᾱ) ≡ WN ({u}N ). (5.22)

Noticing that

∂

∂zk
ρsl ({u}N ) = ρs,mod

l ({u}N−1), (5.23)

with the modification rule (5.10), we have

∂

∂zk
WN ({u}N ) = akWmod

N−1({u}N/uk). (5.24)

We prove (5.22) by induction. The case n = 1 can be verified easily by explicit computation.

Assume that the (5.22) is true for n ≤ N − 1. From (5.8) and (5.24), we find that the

zi dependencies of CHHL({u}N ) and WN ({u}N ) are the same. In order to prove (5.22) we

simply need to show that the terms which are independent of z’s are equal. Putting zi → 0

in (5.22), all the ρsl vanish and we have

WN ({u}N )|zi→0 = F({u}N ). (5.25)

On the other hand, from the definition of FN ({u}N ), we first put eilp(vi) to eilp(ui) and

then take the diagonal limit. This prevents the appearance of zi = lp′(ui) dependent

terms. Thus we have shown that

CHHL({u}N ) =
1∏N

i=1 h̃(ui, ui)

∑
α∪ᾱ={u}N

F(α)ρsl (ᾱ). (5.26)

– 8 –
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Finally we go from ρsl to ρsL, which can be done by the following relation:

ρsl1+l2({u}N ) =
∑

α∪ᾱ={u}N

ρsl1(α)ρsl2(ᾱ). (5.27)

Taking l1 = L and l2 = −l0, we have

CHHL({u}N ) =
1∏N

i=1 h̃(ui, ui)

∑
α∪ᾱ={u}N

F s(α) ρsL(ᾱ), (5.28)

where

F s(α) =
∑

β∪β̄=α

F(β)ρs−l0(β̄). (5.29)

This proves the theorem.

The expansion (5.3) can also be written in the so-called connected scheme (see [5])

CHHL({u}N ) =
1∏N

i=1 h̃(ui, ui)

∑
α∪ᾱ={u}N

F c(α) ρcL(ᾱ), (5.30)

where ρcL(α) is defined to be the diagonal minor of the Jacobian ρcL({u}N ) and hence

depends on all the rapidities. The relations between F c and F s can be worked out explic-

itly [5].

Finally it is worth mentioning that h̃(u, u) = 1
µX(u) , where µX(u) is the measure

introduced in [1]. It means that by normalizing the structure constant with the norm of

the heavy operator we can get rid of these factors. The normalized structure constant is

given by

CHHL({u}N ) =
1

ρsL({u}N )

∑
α∪ᾱ={u}N

F s(α) ρsL(ᾱ). (5.31)

6 Coefficients F s

According to the original proposal of [5] the coefficients in the finite volume expansion are

identified with the infinite volume form factors. We find it might be important to keep this

identification in mind in the case of N = 4 SYM as well.

Using the hexagon approach, we compute these coefficients at all loops. We expand

the results at weak coupling and compare with the ones computed in [6] at tree level. We

compare the results in the connected scheme for the case l0 = 1 for a few magnons and

obtain a perfect match. At tree level, these coefficients of N excitations are conjectured to

take the following form

F c(0)({u}N ) =σ
(0)
1 ϕ

(0)
12 ϕ

(0)
23 · · ·ϕ

(0)
N−1,N + permutations, (6.1)

where

σ(0)(u) =
1

u2 + 1/4
, ϕ(0)(u, v) =

2

(u− v)2 + 1
. (6.2)

– 9 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
0

Interestingly, one loop computation indicates that the form still holds with the following

corrections

σ(1)(u) =
1

u2 + 1/4
+

8g2 u2

(u2 + 1/4)3
, (6.3)

ϕ(1)(u, v) =
2

(u− v)2 + 1
+

4g2(u2 − v2)

(u2 + 1/4)(v2 + 1/4)((u− v)2 + 1)
, (6.4)

which we checked analytically up to three magnons and numerically up to four magnons. It

is possible that the same ansatz will hold at even higher orders with proper modifications.

If this is the case, it will simplify a lot the computation of these coefficients. We leave this

interesting problem for the future investigation. It would also be interesting to understand

better the physical meaning of these coefficients in the context of N = 4 SYM.

7 Conclusion and discussions

We studied the symmetric heavy-heavy-light structure constant within the hexagon ap-

proach and proved that its asymptotic L-dependence, where L is the length of the heavy

operators, is given by the expansion (5.3). This study is for the special case where the

excitations of the heavy operators are the transverse scalar excitations X,X̄ and the light

operator being the rotated BMN vacuum. However, the methods of the present paper can

be generalized straightforwardly to the cases where the excitations on the heavy operator

are transverse derivatives or the longitudinal excitations and the light operator being non-

BPS operator. Finally, in order to have a complete proof of the BJW conjecture within

the hexagon approach, we also need to consider the bridge wrapping. All these issues will

be treated in more detail in the forthcoming paper [7].
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