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1 Introduction

For some time now, we have been able to compute the low-energy effective action of N = 2

supersymmetric gauge theories in four dimensions. In [1, 2], the solution for the low-energy

theory was given in terms of an algebraic curve and an associated differential. Subsequent

works have simplified and clarified many aspects of the Seiberg-Witten solution. The

Seiberg-Witten curves may be intuitively pictured in terms of M-theory five-branes [3],

and this geometric picture has inspired a description of class S theories in terms of punc-

tured Riemann surfaces [4]. In a parallel development, it has also become possible to

compute instanton contributions by invoking the powerful machinery of equivariant local-

ization [5]. Of particular note, the calculation of the gauge theory partition function on

S4 via localization naturally incorporates these instanton sums [6]. All these developments

were key to writing a dictionary between observables in four-dimensional gauge theories

and those in two-dimensional conformal field theories: the 2d/4d correspondence [7].

The 2d/4d correspondence makes it possible to use the technology of conformal field

theory to gain deeper insights into the behavior of N = 2 gauge theories. For instance,

the Ω-deformed gauge theory partition function with a surface operator insertion maps to

the meromorphic solution of a null vector decoupling equation [8–11]. Thus, an analysis

of conformal blocks in two-dimensional conformal field theory yields information about

surface operators in gauge theories. These conformal blocks can be viewed as solutions

to Riemann-Hilbert problems specified by a differential equation with singularities and

associated monodromies [12]. We expect this exact picture to be valid in gauge theory

(and the field theory limit of topological string theory) [13].

In this paper, we study quantum chromodynamics with N = 2 supersymmetry and

gauge group SU(2), and the corresponding Virasoro conformal blocks. In particular, we

study the differential equation that the instanton partition function with surface opera-

tor insertion satisfies. This corresponds to an analysis of null vector decoupling equations

in the presence of irregular blocks. The differential equations satisfied by correlators in-

volving irregular blocks were described in [10, 11, 13–15]. The equations are exact in

the Ω-deformation parameters (ε1, ε2), and provide for a map to standard gauge theory

expressions for the Seiberg-Witten curve, including εi corrections.

We then concentrate on the limit ε2/ε1 → 0 [16], which is a large central charge limit

in the conformal field theory. It has been shown in e.g. [17–19] that a WKB analysis of the

null vector decoupling equations in this semi-classical limit reproduces the non-convergent
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ε1-expansion of the instanton partition function of the gauge theory.1 There is a rich liter-

ature [22–31] on methods which may be used to enhance these results non-perturbatively.

Using the exact WKB analysis, we study the resulting differential equations satisfied by

the (ir)regular conformal blocks (equivalently, the ε1-deformed surface operator partition

function). This allows us to compute the monodromy group of each of the differential

equations as a function of (i) the parameters of the differential equations, and (ii) the

Borel resummed monodromies that are properties of individual solutions. The monodromy

group contains information about the instanton partition function with surface operator

insertion, which is non-perturbative in ε1. In doing so, we provide the underlying exact

picture [12] with a detailed description of how these beautiful and abstract mathematical

constructs reduce to the more hands-on limiting analysis of N = 2 gauge theories to which

we have become accustomed.

In this physical set-up, we apply the theorems of [31], thereby drawing on intuition

from both gauge theory and the mathematical study of singular perturbation theory [29].

As a by-product, we add details to the WKB analysis and provide a calculation of the

monodromy group of the differential equation in terms of deformed gauge theory data.

For instance, we analyze the occurrence of a double flip, consisting of simultaneous single

flips. Two different ways of splitting the double flip into two single flips give the same

monodromy group and Stokes automorphism. Although we demonstrate this result in the

context of Nf = 4 theory, this is a new result in the exact WKB method and we believe it

is valid in a more general context.

In [32], a WKB analysis of the Hitchin systems corresponding to circle compactifica-

tions of undeformed SU(2) gauge theories was undertaken. Our work may be viewed as an

alternative route to the WKB analysis, which is closely related to [32] at zeroth order in ε1.

Our broader goal is to communicate the extreme generality of the correspondence be-

tween ε1-deformed N = 2 gauge theories — specifically, their instanton partition functions

with surface operator insertions — and certain Schrödinger equations amenable to exact

WKB analysis. As a first step, we show the extent to which the program applied to pure

N = 2 super Yang-Mills in [33] generalizes to theories with matter.

We will now briefly present the structure of our paper. In section 2, we present

a derivation of the null vector decoupling equation satisfied by the five-point conformal

block with a light degenerate insertion, which has a null vector at level two. We apply

the collision procedure of [34] to produce irregular conformal blocks and derive the null

vector decoupling equations satisfied by the limit blocks. We then consider the semi-

classical limit (of infinite central charge) of these differential equations. These equations

will be the starting point for the exact WKB analysis of section 3. In this section, we

briefly review the exact WKB approach, and in section 4 apply it to the calculation of

the monodromy groups of our differential equations. We make contact with the standard

undeformed Seiberg-Witten perspective in section 5 and end with comments and future

directions for work in section 6. The appendices collect details regarding the derivation of

the ε2-exact differential equations for the asymptotically free theories, and an independent

1For non-perturbative results in the context of topological strings we refer to [20, 21].
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check of the semi-classical differential equations via the saddle-point analyses of Nekrasov

partition functions [35].

2 The conformal field theory perspective

In this section, we present the null vector decoupling equation satisfied by the five-point

conformal block with one degenerate operator insertion. We then list the corresponding

equations satisfied by irregular blocks that arise when punctures collide [34]. We study

these equations within the framework of conformal field theory, and finally, exploit the fact

that these conformal blocks also capture the εi-deformed instanton partition function of

N = 2 supersymmetric gauge theories in four dimensions with SU(2) gauge group and a

varying number of flavours [5]. We thus lay the groundwork for further analysis of these

partition functions, which will be non-perturbative in the deformation parameter ε1. For

completeness, we provide the details of the derivation of all these equations in appendix A.

We start our analysis by considering regular conformal blocks with four ordinary pri-

mary operator insertions on the sphere and one degenerate operator insertion with a null

vector at level two, which remains light in the limit of large central charge. On the gauge

theory side of the 2d/4d correspondence, this set-up corresponds to the conformal Nf = 4

case. To get asymptotically free (lower Nf ) theories, we sequentially collide primary oper-

ators on the sphere in such a way that they generate irregular conformal blocks [34]. The

case of three flavours will correspond to one irregular block, the case of two flavours can

correspond to either one or two irregular blocks, while a lower number of flavours corre-

sponds to two irregular blocks in the conformal field theory. For all these collision limits,

we give the corresponding null vector decoupling equations.

2.1 The five-point block

We study a conformal field theory with central charge

c = 1 + 6Q2 , where Q = b+ b−1 and b =

√
ε2
ε1
. (2.1)

We consider a five-point chiral conformal block Ψ with four primary operator insertions

Vαi and an insertion of a degenerate field Φ2,1(z) of the Virasoro algebra [9]:

Ψ(zi, z) =
〈

Φ2,1(z) :
4∏
i=1

Vαi(zi) :
〉
. (2.2)

The degenerate field Φ2,1 has conformal dimension ∆2,1

∆2,1 = −1

2
− 3

4

ε2
ε1
, (2.3)

while the conformal dimensions of the generic primaries are denoted ∆αi . We have chosen

the degenerate insertion such that it remains light in the limit of large central charge
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ε2/ε1 → 0. The degenerate field Φ2,1 has a null vector at level two, and consequently

satisfies the null vector condition

ε1
ε2
∂2Φ2,1(z)+ :T (z)Φ2,1(z) : = 0 , (2.4)

where the operator T (z) is the holomorphic stress tensor of the conformal field theory.

Using the operator product expansion between the stress tensor and the primary fields,

the second term can be written as:

〈
:T (z)Φ2,1(z) :

4∏
i=1

Vαi(zi)
〉

=
4∑
i=1

(
∆αi

(z − zi)2
+

1

z − zi
∂

∂zi

) 〈
Φ2,1(z)

4∏
i=1

Vαi(zi)
〉
. (2.5)

Imposing global conformal invariance allows us to express the derivatives with respect to

z1, z3 and z4 in terms of the derivatives at z2 and z. Then, setting the insertions to be at

(z, 0, q, 1,∞), the null vector decoupling equation takes the form

[
ε1
ε2

∂2

∂z2
+

(
∆α2

(z−q)2
+

q(q−1)

z(z−1)(z−q)
∂

∂q

)
− 2z−1

z(z−1)

∂

∂z
+

∆α1

z2
+

∆α3

(z−1)2

−∆2,1+∆α1 +∆α2 +∆α3−∆α4

z(z−1)

]
Ψ(z, q) = 0 (2.6)

The null vector decoupling on the five point conformal block was also studied in [9–11, 36,

37]. The conformal dimensions ∆i of the primary fields Vαi can be written in terms of the

momenta αi as

∆αi = αi(Q− αi) . (2.7)

We further parameterize the momenta αi in terms of the four masses mi:

α1 =
Q

2
+
m1 −m2

2
√
ε1ε2

, α2 =
Q

2
+
m1 +m2

2
√
ε1ε2

,

α3 =
Q

2
− m3 +m4

2
√
ε1ε2

, α4 =
Q

2
− m3 −m4

2
√
ε1ε2

.

(2.8)

As a function of the masses, the conformal dimensions are

∆α1 =
(ε1 + ε2)2 − (m1 −m2)2

4ε1ε2
, ∆α2 =

(ε1 + ε2)2 − (m1 +m2)2

4ε1ε2
,

∆α3 =
(ε1 + ε2)2 − (m3 +m4)2

4ε1ε2
, ∆α4 =

(ε1 + ε2)2 − (m3 −m4)2

4ε1ε2
.

(2.9)

In terms of these variables that are appropriate for comparison to the four dimensional

gauge theory, the null vector decoupling equation for the Nf = 4 theory takes the following

– 4 –
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form:[
−ε21

∂2

∂z2
+

(m1−m2)2

4z2
+

(m1+m2)2

4(z−q)2
+

(m3+m4)2

4(z−1)2
+
m2

1+m2
2+2m3m4

2z(1−z)

− ε21

(
q2−2qz+z2

(
z2−2z+2

)
4(z−1)2z2(q−z)2

)
+ε1ε2

(
q(1−q)

z(z−1)(z−q)
∂

∂q
+

2z−1

z(z−1)

∂

∂z

+
q2
(
−z2+z−1

)
+2qz

(
z2−z+1

)
+z2

(
−2z2+3z−2

)
2(z−1)2z2(q−z)2

)

+ε22

(
q2
(
−3z2+3z−1

)
+2qz

(
3z2−3z+1

)
+z2

(
−4z2+5z−2

)
4(z−1)2z2(q−z)2

)]
Ψ(z, q) = 0 . (2.10)

2.2 The null vector decoupling equations for irregular blocks

We now take limits of the five-point null vector decoupling equation (2.6) in which various

primary operators Vαi collide to form irregular conformal blocks of order one [34]. These

limiting configurations are in direct correspondence with the εi-deformed SU(2) gauge

theories with Nf < 4. We list below the null vector decoupling equations for each of these

cases and refer to appendix A for a detailed derivation. A summary of these equations can

also be found in [10, 13].

Nf = 3. In this case, we have one irregular block of order one with a fourth order pole at

z = 0. In the gauge theory variables, we take q → 0 and m2 →∞, keeping the dynamical

scale Λ3 = q m2 finite. The resulting differential equation is:[
−ε21

∂2

∂z2
+

(m3+m4)2

4(z−1)2
+
m3m4

z(1−z)
+
m1Λ3

z3
+

Λ2
3

4z4
+ε1ε2

(
1−2z

z (1−z)

∂

∂z
+

1−2z

2z(z−1)2

)
+

1

z2 (1−z)

(
−ε1ε2Λ3

∂

∂Λ3
+m2

1+m1(ε1+ε2)

)
− ε21

4(z−1)2
+ε22

(3−4z)

4z(z−1)2

]
Ψ3(z,Λ3) = 0 .

Nf = 2. There are two ways to reach the case with two flavours from the case with three

flavours. One could decouple either the flavour with mass m1 or one of those with masses

m3,4. As shown in [32], these lead to inequivalent Hitchin systems and give rise to distinct

differential equations.

Let us first consider the irregular block of order one with a third order pole at z = 0.

This corresponds to decoupling m1. We refer to this as the asymmetric configuration and

the associated null vector decoupling equation becomes:[
−ε21

∂2

∂z2
+

(m3 +m4)2

4(z − 1)2
+

m3m4

z(1− z)
+

Λ2
2

z3
− ε1ε2

2z2(1− z)
Λ2

∂

∂Λ2

+ε1ε2

(
1− 2z

z(1− z)

∂

∂z
+

1− 2z

2z(z − 1)2

)
− ε21

4(z − 1)2
+ ε22

(3− 4z)

4z(z − 1)2

]
Ψ2,A(z,Λ2) = 0 (2.11)

Alternatively, one can consider two irregular blocks of order one, with equal fourth

order poles. This corresponds to decoupling m3 while keeping m1 and m4 finite. We

– 5 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
5

refer to this as the symmetric configuration and the associated null vector decoupling

equation reads:[
−ε21

∂2

∂z2
+

Λ2
2

4z4
+

Λ2m1

z3(z−1)2
− Λ2m4

z(z−1)3
+

Λ2
2

4(z−1)4
+

2−3z

4z(z−1)2
(2ε1ε2+3ε22)

+
1

z2(z−1)2

(
−ε1ε2Λ2

∂

∂Λ2
−2Λ2m1+m2

1+m1(ε1+ε2)

)
+ε1ε2

3z−1

z(z−1)

∂

∂z

]
Ψ2,S(z,Λ2) = 0 .

Nf = 1. We consider two irregular blocks of order one with one fourth order pole and

one third order pole. This corresponds to decoupling m4 and the null vector decoupling

equation takes the form[
− ε21

∂2

∂z2
+

Λ2
1

4z4
+

Λ1m1

z3(z−1)2
− Λ2

1

4z(z−1)3
+

2−3z

4z(z−1)2
(2ε1ε2+3ε22)+ε1ε2

3z−1

z(z−1)

∂

∂z

+
1

z2(z−1)2
(−ε1ε2Λ1

∂

∂Λ1
−2Λ1m1+m2

1+m1(ε1+ε2))

]
Ψ1(z,Λ1) = 0 . (2.12)

Nf = 0. Finally, we consider the case with two irregular blocks of order one with equal

third order poles. All masses have been decoupled and the null vector decoupling equation

becomes[
−ε21

∂2

∂z2
+

Λ2
0

z3(z − 1)2
+

1

z2(z − 1)2

(
−1

2
ε1ε2Λ0

∂

∂Λ0
− 2Λ2

0

)
+

Λ2
0

z(z − 1)3

+ε1ε2
3z − 1

z(z − 1)

∂

∂z
+

2− 3z

4z(z − 1)2
(2ε1ε2 + 3ε22)

]
Ψ0(z,Λ0) = 0 . (2.13)

This completes the list of six differential equations that we refer to throughout.

2.3 The semi-classical limit

In the rest of our paper, we will concentrate on the limit ε2/ε1 → 0, which is a large central

charge limit. We keep the ratio of the mass parameters mi and the deformation parameter

ε1 fixed. In this limit, the primary insertions Vαi are heavy, while the degenerate insertion

Φ2,1 is light. Thus, in this limit, the differential equation (2.6) simplifies, and we can drop

the term proportional to ∂z, while the terms proportional to the conformal dimensions

∆αi grow large. To simplify the equation further, we must specify the leading dependence

of the q-derivative of the five-point block on ε2. To that end, we make the semi-classical

ε2 → 0 ansatz

Ψ(z, q) = exp

(
− F̃ (q,mi, εi)

ε1ε2

)
ψ(z, q) . (2.14)

We suppose that the q-derivative of the remaining function ψ(z, q) is sub-dominant in the

small ε2/ε1 limit, and observe that the leading dependence in ε2 is only on the cross-ratio

q of the heavy operators. We then define the quantity

ũ = q(1− q)∂qF̃ . (2.15)

– 6 –
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The parameter ũ is identified with the Coulomb modulus of the gauge theory up to shifts

that depend on the masses. Substituting this parameterization into the null vector decou-

pling equation and taking the semi-classical limit ε2 → 0 leads to the Schrödinger equation(
−ε21

d2

dz2
+Q(z, ε1)

)
ψ(z, q) = 0 , (2.16)

where the potential function Q has an ε1 expansion which terminates at second order

Q(z) = Q0(z) + ε1 Q1(z) + ε21 Q2(z) . (2.17)

The coefficient functions are

Q0(z) = − ũ

z(z−1)(z−q)
+

(m1−m2)2

4z2
+

(m1+m2)2

4(z−q)2
+

(m3+m4)2

4(z−1)2
+
m2

1+m2
2+2m3m4

2z(1−z)
,

Q1(z) = 0 ,

Q2(z) = − 1

4z2
− 1

4(z−1)2
− 1

4(z−q)2
+

1

2z(z−1)
. (2.18)

2.4 The semi-classical irregular blocks

The same type of ansatz (2.14) can be used in order to obtain the differential equations

for the irregular blocks in the semi-classical ε2 → 0 limit. The variable parameterizing the

Coulomb modulus is now defined as

ũ = ΛNf
∂F̃

∂ΛNf
, (2.19)

where ΛNf is the corresponding strong coupling scale of the Nf < 4 gauge theory. As in the

conformal case, the prepotential of the gauge theory will differ mildly from F̃ . However,

what is of importance to us is the pole structure of the functions Qk(z), and we choose

a parameterization that descends naturally from the conformal theory and that allows for

a simple presentation of the differential equations. In the following, we present all the

asymptotically free cases:

• Nf = 3: the Schrödinger equation which governs the ε1-deformed gauge theory is

given by[
−ε21

∂2

∂z2
+

(m3+m4)2

4(z−1)2
+
m3m4

z(1−z)
+
m1Λ3

z3
+

Λ2
3

4z4
+

ũ

z2(1−z)
− ε21

4(z−1)2

]
ψ3(z,Λ3)=0 .

(2.20)

• Nf = 2 (asymmetric realization): the differential equation in the semi-classical limit

takes the form[
−ε21

∂2

∂z2
+

(m3 +m4)2

4(z − 1)2
+

m3m4

z(1− z)
+

Λ2
2

z3
+

ũ

z2(1− z)
− ε21

4(z − 1)2

]
ψ2,A(z,Λ2) = 0

(2.21)
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• Nf = 2 (symmetric realization):[
−ε21

∂2

∂z2
+

Λ2
2

4z4
+

Λ2m1

z3(z−1)2
− Λ2m4

z(z−1)3
+

Λ2
2

4(z−1)4
+

ũ

z2(z−1)2

]
ψ2,S(z,Λ2) = 0 .

(2.22)

• Nf = 1:[
−ε21

∂2

∂z2
+

Λ2
1

4z4
+

Λ1m1

z3(z − 1)2
− Λ2

1

4z(z − 1)3
+

ũ

z2(z − 1)2

]
ψ1(z,Λ1) = 0 . (2.23)

• Nf = 0: finally, for the pure super Yang-Mills theory, the equation reads[
−ε21

∂2

∂z2
+

Λ2
0

z3(z − 1)2
+

ũ

z2(z − 1)2
+

Λ2
0

z(z − 1)3

]
ψ0(z,Λ0) = 0 . (2.24)

We have thus obtained the differential equations which we analyze in detail in section 4.

3 The exact WKB analysis of differential equations

In this section, we review the exact WKB approach to the analysis of differential equations

and apply it to the null vector decoupling equations in the semi-classical limit. We will

carry out the exact WKB analysis with respect to the small parameter ε1. Our analysis

will therefore be valid to zeroth order in ε2 and non-perturbatively in ε1. Below, we briefly

review the salient features of the exact WKB analysis and refer the reader to [29, 31] for

a more comprehensive treatment of the same.

3.1 The exact WKB method

The differential equations that we study can be written in the form of a Schrödinger

equation: (
−ε21

d2

dx2
+Q(x)

)
ψ(x, ε1) = 0 . (3.1)

We allow the function Q to have an expansion of the form

Q(x) = Q0(x) + ε1 Q1(x) + ε21 Q2(x) + · · · . (3.2)

For the null vector decoupling equations that we study, the only non-zero coefficient func-

tions are Q0, Q1 and Q2. We choose a WKB ansatz for the solution to this differential

equation, which takes the form

ψ(x, ε1) = exp

(∫ x

x0

dx′ S(x′, ε1)

)
, (3.3)

with S(x, ε1) expanded as a formal power series in ε1 as

S(x, ε1) =
1

ε1
S−1(x) + S0(x) + ε1 S1(x) + · · · . (3.4)
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Substituting this ansatz into the differential equation, we get recursion relations governing

the coefficients Sk

S2
−1 = Q0 , (3.5)

2S−1Sn+1 +
∑
k+l=n

SkSl +
dSn
dx

= Qn+2 for n ≥ −1 . (3.6)

We see that the initial conditions governing the system of recursion relations allow for two

possible sets of solutions to these recursion relations, as S−1 = ±
√
Q0. We also note the

crucial feature that the zeroes of Q0, which we call turning points, introduce branch cuts

on the Riemann surface Σ on which our differential equation and its exact solutions live.

Thus, in our exact WKB treatment, we introduce a new manifold Σ̂, which is a double

cover of the Riemann surface, and we move between sheets as we pass branch cuts that

emanate from turning points, or odd order poles. From hereon, we will distinguish the

choice of WKB solution by attaching to it the subscript (±). We also observe that in the

ε1-expansion of S(x, ε1), the sets of odd and even coefficients are dependent. If we define

Sodd =
∑
j≥0

S2j−1 ε
2j−1
1 and Seven =

∑
j≥0

S2j ε
2j
1 , (3.7)

we have the relation

Seven = −1

2

d

dx
logSodd . (3.8)

Putting all this together, we can write down a formal expression for the two linearly

independent solutions to our differential equation:

ψ± =
1√
Sodd

exp

{
±
∫ x

x0

dx′ Sodd

}
. (3.9)

This formal expression should be understood as an analytic function of x multiplying an

asymptotic series in ε1:

ψ± = exp

{
± 1

ε1

∫ x

x0

dx′
√
Q0(x′)

}
ε
1/2
1

∞∑
k=0

εk1 ψ±,k(x) . (3.10)

Borel resummation. In the exact WKB approach, it is convenient to normalize wave-

functions at distinguished points of the differential equation. As mentioned earlier, in

addition to the singularities of the coefficient functions of the differential equations, their

zeros (turning points) also play an important role. We will normalize our solutions with

respect to the turning points, i.e. choose the starting point x0 of the integration path to

be a turning point t,

ψ± =
1√
Sodd

exp

{
±
∫ x

t
dx′ Sodd

}
. (3.11)

Formal WKB solutions are generically divergent. To remedy this, we invoke Borel re-

summation: a technique that constructs an analytic function whose asymptotic expansion

matches the formal WKB series. The Borel transformed series is defined as

ψ(ε1) =

∞∑
k=0

ψk ε
k
1

Borel transform−−−−−−−−−→ ψ̃(y) =

∞∑
k=1

ψk
yk−1

(k − 1)!
. (3.12)
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Next, define the function [31]

Ψ(ε1) = ψ0 +

∫
`θ

dy e−y/ε1ψ̃(y) , (3.13)

where `θ is the line connecting a point at which the series ψ̃(y) converges2 — typically, a

turning point — to the point at infinity at an angle θ. If this integral exists, Ψ(ε1) is the

requisite analytic function, called the Borel sum.

Notice that the Borel sum contains an angular dependence. In order to understand

this better, one must appreciate that Borel sums are typically defined only in regions of the

complex ε1-plane, and not throughout. These regions are bounded by Stokes lines, defined

by the condition

Im

[∫ x

x0

dx′
√
Q0(x′)

]
= 0 , (3.14)

and different Stokes regions are assigned different linear combinations of a given basis of

analytic solutions to the differential equation, arrived at via Borel resummation. One of

the key components of the exact WKB analysis is understanding how solutions in different

Stokes regions are related by analytic continuation; these often go by the name of “con-

nection formulae”. However, before we address this transition behaviour, we will find it

necessary to endow Stokes lines with an orientation. To this end, we adopt the convention

that Stokes lines are oriented away (i.e. the arrow on the Stokes line is pointing away from

a turning point) if

Re

[∫ x

x0

dx′
√
Q0(x′)

]
> 0 (3.15)

along the Stokes line. Else, the arrow points towards the turning point.

Three Stokes lines emanate from a first order zero of Q0(x), which is also referred to

as a simple turning point. Thus one end of any Stokes line is at a turning point. The

other end can either be at a singularity or at a turning point. When both the end points

of a Stokes line in a given Stokes graph terminate at turning points then the corresponding

Stokes graph is called “critical”.3

Connection formulae. We are now in a position to state the connection formulae. For

a Stokes graph which is not critical, consider two regions U1 and U2 separated by a Stokes

curve Γ, and consider Ψj
± to be the Borel sums of WKB solutions in each of the regions

Uj . The connection formulae for the Borel sums in different Stokes domains are given by:

if Re

[∫ x

x0

dx′
√
Q0(x′)

]
< 0 on Γ :

{
Ψ1

+ = Ψ2
+ ,

Ψ1
− = Ψ2

− ± iΨ2
+ ,

(3.16)

if Re

[∫ x

x0

dx′
√
Q0(x′)

]
> 0 on Γ :

{
Ψ1

+ = Ψ2
+ ± iΨ2

− ,

Ψ1
− = Ψ2

− .
(3.17)

2To be precise, this is true for Gevrey-1 series, which in our context corresponds to the following state-

ment. If ψk is the kth coefficient of the asymptotic series then the series is Gevrey-1 type if growth of ψk
is bounded by ψk ≤ ABkk! for some constants A and B. If ψk is a function of a continuous variable, say,

x ∈ C then this condition applies to the supremum of ψk(x) in a compact subset of C.
3The general behaviour of Stokes lines is discussed in [31]. We restrict ourselves to situations that are

relevant in this work.
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In the above connection formulae, there is an ambiguity (±) that is fixed by noting that the

turning point that Γ originates from serves as a point of reference. If the path of analytic

continuation crosses Γ counter-clockwise as seen from the turning point, we pick the (+)

sign, and if this path crosses Γ clockwise, we pick the (−) sign. Later in this section, we

will write down the Stokes matrices that multiply wave-functions; these are equivalent to

the above result.

The global properties of solutions to the differential equations we consider are gov-

erned by the monodromy group and the Stokes phenomena around singular points. The

monodromy group of these differential equations can be expressed entirely in terms of two

sets of quantities: (a) the characteristic exponents at each singular point sk, and (b) the

contour integrals of Sodd around branch cuts. We now parameterize the characteristic

exponents conveniently.

As a system of solutions to our differential equation, we consider the WKB solu-

tions (3.9), and define the characteristic exponents as residues of the differential:

Mk = Res
√
Q0(x)

∣∣∣
x=sk

. (3.18)

From the null vector decoupling equations we derived in the previous section, one can check

that the residues Mk are linear combinations of the mass parameters of the gauge theory.

As the monodromy group computations will use WKB wave-functions (3.9), we relate the

residues of Sodd to our characteristic exponents as4

Res Sodd(x, ε)
∣∣∣
x=sk

=
Mk

ε1

√
1 +

ε21
4M2

k

. (3.19)

Finally, upon exponentiating this contribution, we get the multiplier that affects WKB

wave-functions:

ν±k = exp

[
iπ

(
1±

√
4M2

k

ε21
+ 1

)]
. (3.20)

Notice that ν+
k = 1/ν−k , a fact that we will use repeatedly. Since the base point x0 will

not always be a turning point, the modified connection formulae can be obtained by a

composition of the contour integrals. We find it convenient to use a matrix notation to

exhibit the connection formulae. As an example, let us consider analytically continuing

the Borel resummed wave-functions from Stokes region U1 to Stokes region U2. As shown

in figure 1, there are two distinct possibilities. If the contour crosses a Stokes line that is

directed inwards to a turning point as in figure 1 (A), we find the connection formula:(
Ψ1

+ , Ψ1
−

)
=⇒

(
Ψ2

+ , Ψ2
−

)(1 ±iu−1
i

0 1

)
. (3.21)

In the above equation, we use the notation,

uj = exp

(
2

∫
γj

dx Sodd

)
, (3.22)

4This is true under the assumptions that Re Mk 6= 0.
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(A) (B)

Figure 1. Analytic continuation of wave-functions from U1 to U2.

where γj is an oriented curve from the base point to the turning point tj . Along a contour

that crosses a Stokes line which is directed outwards from a turning point as in figure 1

(B), we have the connection formula:

(
Ψ1

+ , Ψ1
−

)
=⇒

(
Ψ2

+ , Ψ2
−

)( 1 0

±iui 1

)
. (3.23)

In the above, the +(−) sign is chosen for counter-clockwise (clockwise) crossing of the

contour from one Stokes region to the other, with respect to the turning point. For more

complicated contours, it is important to take into account contributions from any branch

cuts and/or singularities enclosed along the closed contour from the base point to the

intersection point, the turning point and then back to the base point. As a simple example

of this phenomenon, let us suppose the contour chosen happens to encircle a branch cut

— say between tj and ti as in figure 2 — counter-clockwise. Here, the curves γi are those

that define the parameter ui. The closed contour γji that encircles the branch cut has a

contribution of the form

uji = exp

(∫
γji

dx′ Sodd

)
, (3.24)

where from the figure it is clear that

uji = u−1
j ui . (3.25)

One can see that although the ui by itself is dependent on the base point, the contour

integral is independent of this choice.

Contour encircling a turning point. Let us make another important preliminary

point regarding the choice of cycles. In order to define the monodromy group, we first

choose a base point and define a basis of closed loops that encircle just the singularities.

In some of the cases we encounter, there are branch cuts between turning points and

singularities. In such cases, we choose the contours to also include these turning points.

In order to prove that this is consistent with the usual definition of the monodromy

group, let us consider a contour that only encircles the turning point, as shown in figure 3.
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Figure 2. Encircling branch cuts.

Figure 3. Contour with base point x0 encircling a turning point t.

If we choose to normalize the wave-functions at x0, the wave-functions undergo the

following transformation as we travel along the path:

Mx0,path =

(
1 0
i
u1

1

)(
0 −i

−i 0

)(
1 0

iu1 1

)(
1 i
u1

0 1

)
(3.26)

=

(
u1 0

0 1
u1

)
(3.27)

Here we have associated the matrix −iσ1 to the branch-cut crossing, which ensures that

we remain on the same sheet of the Riemann surface. It can be easily shown that for any

base point that one may choose, the answer is trivial as above. If we chose the turning

point itself to be the base-point, u1 = 1 and the matrix reduces to the identity matrix.

Since the net result is simply the identity matrix, in order to calculate the monodromy

matrix for the contour that encircles the singularity s, one may just as well compute the

monodromy of the wave-functions around the cycle that encircles both the turning point

t and the singularity s. We will make use of this repeatedly in those cases in which the

branch cut extends between a turning point and a singularity.

It is instructive to square this situation with the solution of a differential equation near

an ordinary point. It is known that any solution of a differential equation can be written as
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Figure 4. Evaluation of Stokes matrices: effect of singularities.

a Taylor series in the neighbourhood of an ordinary point. The radius of convergence of this

solution is at least as much as the distance from the chosen point to the nearest singularity.

The Taylor series solution will clearly have trivial monodromy property. Although the

WKB analysis assigns a special status to turning points, from the differential equation

point of view the turning point is an ordinary point. Clearly, the branch cut and the

Stokes lines emanating from a turning point are artefacts of the WKB approximation and

the insertion of the matrix −iσ1 restores the fact that the turning point is an ordinary

point of the differential equation.

Contours encircling a singular point. Let us now consider the toy example, as shown

in figure 4, where the contour encloses a singularity.5

In figure 4, at the first intersection point A, the contour crosses counter-clockwise a

Stokes line emanating from ti. Thus, the Stokes matrix is(
1 0

+iui 0

)
. (3.28)

In order to determine the Stokes matrix at B, we need to know to which turning point

the Stokes line is connected. Since this is irrelevant to the present discussion, we move

on to consider the third intersection point C. This time the contour crosses a Stokes line

going into ti, and the crossing is clockwise as seen from ti. Further, when this contour is

completed using γj , we see that a singularity is encircled counter-clockwise. Taking this

into account, the Stokes matrix is (
1 −iu−1

i ν−2
k

0 1

)
. (3.29)

Finally, at the fourth intersection point D, the contour crosses the Stokes line clockwise.

In fact, it is very similar to the first intersection, except that now there is a singularity

5This example will illustrate the manner in which the Stokes matrices at each intersection are written

down. The Stokes lines here don’t end at turning points or singularities; the reader is encouraged to think

of the figure as a part of a complete Stokes graph that has been zoomed into.
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encircled. Consequently, the Stokes matrix is(
1 0

−iujν
2
k 0

)
. (3.30)

This concludes our brief review of the exact WKB analysis. We refer the reader to [29, 31]

for a more detailed discussion and further references.

3.2 The applicability of the exact WKB analysis

The application of the exact WKB techniques depends on the precise differential equation

under consideration. Before we apply the exact WKB method to the equations derived

in the previous section, it is important to point out the subtleties in the applicability of

this analysis. In the Schrödinger type differential equations listed in sections 2.3 and 2.4,

the parameter ε1 functions as the Planck’s constant ~ in the WKB approximation scheme.

For our null vector decoupling equations, the potential has zeroth, first and second order

terms in ε1. In order to apply the exact WKB techniques to the solution of the differential

equation, the ε1-deformed potential must satisfy certain conditions. These consistency

conditions not only ensure normalizability of the wave-functions at singularities but also

are useful in proving Borel summability of the WKB wave-functions.

The necessary conditions (eq. (2.8) and (2.9) in [31]) are:

• If the leading coefficient Q0 has a pole of order m ≥ 3, then the order of Qn≥1 at

that pole should be smaller than 1 + m/2.

• If the pole of Q0 (at, say z = z0) is of order m = 2, then Qn 6=2 may have at most a

simple pole there and Q2 should have a double pole:

Q2 = − 1

4(z − z0)2
(1 +O(z − z0)) as z → z. (3.31)

It is easily checked that the potentials that appear in the various Schrödinger type differ-

ential equations in sections 2.3 and 2.4 satisfy these conditions.

3.3 Theorems on Stokes automorphisms

Since all the equations listed in sections 2.3 and 2.4 satisfy the necessary conditions, the

theorems proved in [31] using these conditions can be directly applied to our equations.

There is however, an interesting exception and we will comment on it momentarily. In

particular, the results of [31] include theorems on the Stokes automorphisms that relate

WKB resummed monodromies with a given Borel resummation angle, to monodromies

with another Borel resummation angle.

We will now list the relevant results from these theorems. Consider a closed curve γ

on the double cover Σ̂ of the Riemann surface Σ encircling either a singularity or a turning

point. We then define the Voros symbol eVγ as a formal power series using the integral

Vγ(ε1) =

∮
γ
dz Sodd(z, ε1) . (3.32)
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The Borel sums of the Voros symbol are then defined as S±[eVγ ]. They satisfy the Stokes

automorphism formula

S−[eVγ ] = S+[eVγ ](1 + S+[eVγ0 ])−(γ0,γ) (3.33)

whereby we suppose a simple flip, with the critical Stokes cycle being denoted by γ0, and

(γ0, γ) is the intersection number of the critical cycle with the cycle γ defining the Voros

symbol. The resummations S± are the Borel resummations of the Voros symbol on either

side of (and close enough to) the critical graph. The intersection numbers are defined

using the convention that, if the cycle γ1 has the arrow pointing outwards in the positive

x direction and the cycle γ2, which crosses γ1, with the arrow pointing towards the upper

half-plane, then (γ1, γ2) = +1. When we have Borel sums on either side of a pop rather

than a flip, the Voros symbols (importantly, associated to closed cycles) are trivially related

S−[eVγ ] = S+[eVγ ] . (3.34)

These two theorems govern the transformation of Voros symbols associated to closed cycles.

In the next section we will frequently use results of these theorems to study global properties

of our differential equations.

In the case of the conformal SU(2) gauge theory (with Nf = 4 flavours) however,

the extra assumptions of [31] are not always fully satisfied. In particular, in this case

we find that pairs of Stokes graphs that are related by a simultaneous or double flip,

excluded in [31]. When such a double flip occurs, we show that the formulae for the

Stokes automorphisms derived for single flips compose without change to give the Stokes

automorphism for the double flip. This is an extension of the results of [31]. We will discuss

this case in detail in the next section.

4 The monodromy group

In this section, we study global properties of the differential equations derived in section 2.

The differential equations are second order and hence have two linearly independent global

solutions. The solutions undergo a monodromy as we analytically continue them around a

singular point. The monodromies, defined up to a change of basis, form a group called the

monodromy group. The monodromy group of the differential equations we consider can

be expressed entirely in terms of two sets of quantities: (i) the characteristic exponents

νk at the singular points sk and (ii) the Borel resummed contour integrals of the WKB

differential Sodd around branch cuts, which we denote by uij .

The connection formulae which relate the Borel resummed wave functions in the various

Stokes regions are sufficient to completely determine the monodromy group associated to

the relevant null vector decoupling equation. The Borel resummed exact WKB contour

integrals depend on the Borel resummation angle, (equivalently, on the phase of ε1) and

undergo Stokes automorphisms as a function of these parameters. Thus, the expression

of the monodromy group in terms of the resummed integrals varies, and we determine

the explicit transformation rules as we pass through a critical graph. In this section, we
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calculate the monodromy groups, starting with the simplest case of zero flavours, with no

regular singular points in the differential equation, and we end with the conformal case

(Nf = 4) which has four regular singular points.

We stress the fact that there is a dictionary between the Borel resummation angle

θ, and the phase of the zeroth order differential which is determined by the phase of ε1
in our set-up. (See e.g. [31] for the details, which follow from the definition of the Borel

sum.) We see that this dictionary is given a natural home in ε1-deformed N = 2 gauge

theories. The formal dependence on the Borel resummation angle that induces the Stokes

automorphism, has a physical counterpart in the dependence of all non-perturbatively

resummed monodromies on the phase of the deformation parameter ε1.

A brief summary of our analysis. Throughout this section, we perform the calculation

of the monodromy group in a strong coupling regime. In all the examples, we will plot

the Stokes graphs emphasizing the connectivity of the graphs and the choice of branch

cuts; we refer to [32] for various possible sequences of Stokes graphs. To illustrate the

detailed coding of the monodromy group in terms of the characteristic exponents and the

resummed monodromies, as well as the ambiguity of their formal expression in terms of

the monodromies, we calculate the monodromy groups associated to two distinct Stokes

graphs. Equating the invariants constructed from the monodromy groups of the two graphs

gives us the Stokes automorphism relating the variables in each description. We will thus

find concrete descriptions of the monodromy group, as well as the Stokes automorphisms

that the exact WKB parameters undergo. The Stokes automorphisms must satisfy the

theorems of [31] and this fact serves as a consistency check of our analysis.

4.1 Pure super Yang-Mills

The semi-classical null vector decoupling equation corresponding to the case of pure super

Yang-Mills theory has been discussed in detail in [33]. The description was mostly in

terms of variables that resulted after mapping the sphere onto a cylinder, such that the

differential equation became the Mathieu equation, and the monodromy group was coded

in the Floquet exponent. Below, we perform an equivalent analysis on the sphere, which

will prepare us to include flavours. A WKB analysis of the Mathieu equation can be found

in [38, 39] and further in [40] in the context of exact WKB and the 2d/4d correspondence.

The Stokes graph only depends on the leading potential term Q0(z). For the pure

N = 2 super Yang-Mills theory, the zeroth order term is given by (2.24)

Q0(z) =
Λ2

0

z3(z − 1)2
+

ũ

z2(z − 1)2
+

Λ2
0

z(z − 1)3
. (4.1)

In figure 5, we exhibit various Stokes graphs in the strong coupling region of the pure

super Yang-Mills theory.6 We first draw the critical graph 5 that has a finite WKB line

6Using the form of the Nf = 0 differential as in [32], we are within the strong coupling region if we make

the choice Λ = 1 and u = 1/2. A series of conformal transformations and rescalings relate the differential

presented here and the one presented in [32]. At the end of this series of transformations, we are led to the

choice of parameters presented in the caption of figure 5.
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critical graph

(A) (B)

Figure 5. The two Stokes graphs of the Nf = 0 case that are related by a simple flip. We also

exhibit the contour used to calculate the monodromy matrix. These graphs were obtained with the

parameters Λ0 = e−i π4 and ũ = −1 + i, with the critical graph observed at θ = π.

connecting the turning points t1 and t2. The Stokes graphs we work with are related by a

flip [32] about this finite WKB line.

The monodromy group. In this case, there is a single independent generator of the

monodromy group and we choose the contour enclosing the singularity s1 and the turning

point t1 to be it. Consider first the Stokes graph 5(A). The contour intersects two Stokes

lines; the monodromy matrix is given by

MA,s1 =

(
x 0

0 x−1

)(
1 0

−iu2 1

)(
1 +iu−1

1

0 1

)
. (4.2)

Note that the matrices are written from right to left as we go around the branch cut. The

final matrix encodes the overall normalization factor as we return to the base point x0.

The variable x which appears there is identified with the overall monodromy around the

branch cut connecting s1 and t1.

We now turn to the second Stokes graph 5(B). We see that the contour intersects four

Stokes lines, including two lines arising from the flip. The monodromy matrix is given by

MB,s1 =

(
x̃ 0

0 x̃−1

)(
1 0

−iũ2 1

)(
1 −iũ−1

2

0 1

)(
1 0

+iũ1 1

)(
1 +iũ−1

1

0 1

)

=

(
x̃(ũ1+ũ2)

ũ2
ix̃
ũ1

−i ũ2x̃
ũ2
x̃ũ1

)
.

(4.3)

We have denoted the variables in Stokes graph 5(B) by variables with tildes since they

correspond to a different Borel resummation. The monodromy matrix MA,s1 must be

equivalent to the monodromy matrix calculated on the basis of graph (B), since the mono-

dromy (equivalence class) is a property of the exact solutions on the Riemann surface Σ.
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The Stokes automorphism. Above, we have the explicit expressions for the mon-

odromy matrices for the two Stokes graphs. The independent Stokes variables are given

by x and u21 in graph 5(A) and the tilde-variables in graph 5(B). Using this notation, we

calculate the conjugation invariant traces of the two monodromy matrices:

Tr (MA,s1) = x+
1

x
+

1

u21x
(4.4)

Tr (MB,s1) = x̃+ ũ21x̃+
1

ũ21x̃
. (4.5)

Requiring that the traces of the two monodromy matrices match leads to the map between

the parameters appearing in the two graphs:

u21 = ũ21

x = x̃(1 + ũ21) . (4.6)

This agrees with the Stokes automorphisms derived in [33]. This is also consistent with the

general analysis in [31]. Let us expand on this briefly: the two Stokes graphs lie on either

side of the t1 − t2 flip in the critical graph 5. Since the t1 − t2 cycle corresponding to u12

has zero intersection number with itself, the variable u12 is unaffected by the flip. However,

the x variable changes because the contour around the branch cut has intersection number

1 with the t1 − t2 cycle.

4.2 One flavour

The Stokes graphs corresponding to the differential in the case of one flavour are determined

by the corresponding zeroth order differential (2.23):

Q0(z) =
Λ2

1

4z4
+

Λ1m1

z3(z − 1)2
− Λ2

1

4z(z − 1)3
+

ũ

z2(z − 1)2
. (4.7)

From the form of the differential, one can see that in the z-plane, there are three turning

points and two irregular singularities (at z = 0 and z = 1). The WKB triangulations are

given in figure 61 of [32]. We consider a particular pair that are separated by a flip7 and

draw only the corresponding Stokes graphs. The two Stokes graphs correspond to a flip

about the t2 − t3 finite Stokes line in the critical graph (see figure 6).

The monodromy group. We proceed to calculate the monodromy group for both the

Stokes graphs. There are two irregular singularities in the graphs and one expects two

independent generators of the monodromy group. We choose the two corresponding gener-

ators of the monodromy group as shown in figure 6. The contour around the singularity s2

is treated in much the same way as the irregular singular point in the Nf = 0 case, while

the singularity s1 behaves slightly differently.

7These are the first and the third out of the six triangulations given in figure 61 of [32].
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critical graph

(A) (B)

Figure 6. The critical graph, the pair of Stokes graphs related by a flip and the contours that

define the monodromy group for the Nf = 1 case. The parameters chosen were Λ1 = 2, ũ = −1/2,

and m1 = 1, and the critical graph was observed at θ = π.

Let us first consider Stokes graph 6(A) and calculate the monodromy matrices; we find

MA,s1 =

(
ν1 0

0 1
ν1

)(
1 0

−iu1 1

)(
1 − i

u1

0 1

)(
1 − i

u2

0 1

)(
1 − i

u3

0 1

)(
1 0

−iu3 1

)
,

MA,s2 =

(
x 0

0 1
x

)(
1 0

iu3x
2 1

)(
1 i

u3x2

0 1

)(
1 0

−iu2x
2 1

)(
1 − i

u2x2

0 1

)(
1 − i

u1u212x
2

0 1

)
.

(4.8)

The matrix element on the extreme left in the second monodromy matrix is the naive WKB

monodromy around the branch cut connecting t3 and s2. This contribution x satisfies

the relation,

xu12ν1 = 1 . (4.9)

Let us now turn to the Stokes graph 6(B). The monodromy matrices are given by

MB,s1 =

(
ν1 0

0 1
ν1

)(
1 0

−iũ1 1

)(
1 − i

ũ1

0 1

)(
1 − i

ũ2

0 1

)(
1 0

−iũ2 1

)(
1 0

−iũ3 1

)
,

MB,s2 =

(
x̃ 0

0 1
x̃

)(
1 0

iũ3x̃
2 1

)(
1 −i

ũ2x̃2

0 1

)(
1 −i

ũ1ũ212x̃
2

0 1

)
.

(4.10)

As before, we define x̃ = 1
ũ12ν1

.
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The Stokes automorphism. Now that we have the two sets of monodromy matrices,

we calculate the traces of the two sets and obtain

Tr (MA,s1) = −ν1

(
u3

u1
+
u3

u2

)
− 1

ν1

(
u1

u2
+
u1

u3

)
,

Tr (MA,s2) =
1

ν1
(u31 + u21) + (u13 + u23)ν1 ,

Tr (MB,s1) = −ν1

(
ũ2

ũ1
+
ũ3

ũ2
+
ũ3

ũ1

)
− 1

ν1

u1

u2
,

Tr (MB,s2) =
1

ν1
(ũ21) + (ũ12 + ũ13 + ũ23)ν1 .

(4.11)

Substituting u13 = u12u23, and equating the expressions for the traces in powers of ν1

(where we use the fact that the characteristic exponents are true invariants of the differential

equation), we can extract the Stokes automorphism formulae for the independent contour

integrals u21 and u23, namely:

ũ23 = u23 ,

ũ21 = u21(1 + u32) . (4.12)

Since there is more than one generator of the monodromy group, one can calculate higher-

order invariants by calculating traces of products of the matrices. Using the Stokes auto-

morphism, one can check that the trace of the products also coincide, thus confirming the

identification of the monodromy group.

4.3 Two flavours

In this section, we consider the SU(2) gauge theory with two flavours. We concentrate on

the asymmetric configuration. The zeroth order potential function is given by (2.21)

Q0(z) =
(m3 +m4)2

4(z − 1)2
+

m3m4

z(1− z)
+

Λ2
2

z3
+

ũ

z2 − z3
. (4.13)

In the z-plane, the quadratic differential has three singularities, and three turning points.

One of these is an irregular singularity at z = 0. As before, we work in a strong coupling

limit, where ũ� Λ2
2. We consider the critical graph (see figure 7), and by a flip about the

t1−t3 finite WKB line, obtain the two Stokes graphs, as shown in the figure. An important

difference from the earlier cases is that we have regular singularities at s1 and s2.

The monodromy group. In order to calculate the monodromy group, we first consider

the Stokes graph 7(A) and determine the generators

MA,s1 =

(
ν1 0

0 1
ν1

)(
1 − i

u2ν21

0 1

)(
1 0

−iu2ν
2
1 1

)(
1 0

−iu3ν
2
1 1

)(
1 0

−iu1ν
2
1 1

)(
1 i
u2

0 1

)
,

MA,s2 =

(
ν2 0

0 1
ν2

)(
1 0

−iu3u
2
32 1

)(
1 0

−iu2 1

)
,

MA,s3 =

(
x 0

0 1
x

)(
1 − i

u2x2

0 1

)(
1 0

iu1ν
2
1x

2 1

)(
1 − i

u3ν21x
2

0 1

)
.

(4.14)

– 21 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
5

critical graph

(A) (B)

Figure 7. The critical graph and the Stokes graphs for the Nf = 2 case. While plotting the figures,

we used a potential that is conformally equivalent to (4.13). We set Λ2 → i, ũ→ 1
2 ,m3 → 0,m4 →

−2. The two Stokes graphs presented were observed at θ = 2π
3 and θ = 3π

4 .

In the above, x is the naive WKB monodromy around the branch cut connecting t1 and

s3. This contribution satisfies the relation,

u23 ν1 ν2 x = 1 . (4.15)

A similar calculation for Stokes graph 7(B), gives us the following monodromy matrices for

circling the singularities

MB,s1 =

(
ν1 0

0 1
ν1

)(
1 − i

ũ2ν21

0 1

)(
1 0

−iũ2ν
2
1 1

)(
1 0

−iũ3ν
2
1 1

)(
1 i
ũ2

0 1

)
,

MB,s2 =

(
ν2 0

0 1
ν2

)(
1 0

−iũ1ũ
2
32 1

)(
1 0

−iũ3ũ
2
32 1

)(
1 0

−iũ2 1

)
,

MB,s3 =

(
x̃ 0

0 1
x̃

)(
1 − i

ũ2x̃2

0 1

)(
1 − i

ũ3ν21 x̃
2

0 1

)(
1 0

iũ1ν
2
1 x̃

2 1

)
.

(4.16)

Again we have the relation,

u23 ν1 ν2 x̃ = 1 . (4.17)
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Stokes automorphisms. We now compare the traces of the generators of the mon-

odromy group:

TrMA,s1 = TrMB,s1 = ν1 +
1

ν1
,

TrMA,s2 = TrMB,s2 = ν2 +
1

ν2
,

TrMA,s3 =
1

ν1ν2
u32 +

ν1

ν2
u21u32 + ν1ν2

(
u21 +

1

u32

)
,

TrMB,s3 =
1

ν1ν2
ũ32(ũ21ũ32 + 1) +

ν1

ν2
ũ21ũ32 + ν1ν2

1

ũ32
.

(4.18)

These equations illustrate a recurring feature: the traces of the monodromy matrices around

regular singular points will always be given by the critical exponents, with no uij mon-

odromy factors entering the expression. This is because the Stokes lines are either all going

in or coming out at such regular singular points. As a result, the relevant Stokes matrices

are all either upper triangular or lower triangular, respectively. This leads to the trivial

nature of the trace. The irregular singularity, on the other hand, has non-trivial structure

even at the level of the simple traces.

Matching the traces between the graphs 7(A) and 7(B) leads to the Stokes automorphism

relations,

u31 = ũ31 ,

u32 = ũ32(1 + ũ31) ,

u21 = ũ21(1 + ũ31)−1 .

(4.19)

This is once again as expected from the general results of [31] and the intersection numbers

between the various cycles. As a consistency check on the monodromy matrices, we have

also computed the traces of products of matrices, and a similar analysis as above confirms

the Stokes automorphisms (4.19).

4.4 Three flavours

We move on to the SU(2) theory with three flavours. The Seiberg-Witten differential is

Q0(z) =
(m3 +m4)2

4(z − 1)2
+

m3m4

z(1− z)
+
m1Λ3

z3
+

Λ2
3

4z4
+

ũ

z2 − z3
. (4.20)

There are four turning points and three singularities on the z-plane. The two Stokes graphs

in figure 8 are related by a flip about the t2 − t3 finite line in the critical graph.

The monodromy group. For Stokes graph 8(A), we find the generators of the mon-

odromy group:

MA,s1 =

(
ν1 0

0 1
ν1

)(
1 0

iu3ν
2
1 1

)(
1 − i

u4ν21ν
2
2

0 1

)(
1 − i

u1

0 1

)(
1 − i

u2

0 1

)(
1 − i

u3

0 1

)(
1 0

−iu3 1

)
,

MA,s2 =

(
ν2 0

0 1
ν2

)(
1 0

−iu4ν
2
2 1

)(
1 0

−iu3 1

)
,

– 23 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
5

critical graph

(A) (B)

Figure 8. The critical graph and the Stokes graphs for the Nf = 3 case. While plotting the

figures, we used a potential that is conformally equivalent to (4.20). We set Λ3 → 1, ũ→ 2,m1 →
−1,m3 → 0,m4 → −2. The two Stokes graphs presented were observed at θ = π

2 and θ = 7π
12 .

MA,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iu3ν
2
3 1

)(
1 i
u3ν23

0 1

)(
1 0

−iu2ν
2
3 1

)(
1 − i

u2ν23

0 1

)(
1 − i

u1ν23u
2
12

0 1

)

×

(
1 0

−iu1ν
2
3u

2
12 1

)(
1 0

−iu4u
2
43 1

)(
1 0

−iu3 1

)(
1 − i

u3

0 1

)(
1 0

−iu3 1

)
.

(4.21)

For the Stokes graph 8(B), a similar calculation yields:

MB,s1 =

(
ν1 0

0 1
ν1

)(
1 0

iũ3ν
2
1 1

)(
1 0

iũ2ν
2
1 1

)(
1 − i

ũ4ν21ν
2
2

0 1

)(
1 − i

ũ1

0 1

)(
1 − i

ũ2

0 1

)

×

(
1 0

−iũ2 1

)(
1 0

−iũ3 1

)
,
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MB,s2 =

(
ν2 0

0 1
ν2

)(
1 0

−iũ4ν
2
2 1

)(
1 0

−iũ2 1

)(
1 0

−iũ3 1

)
,

MB,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iũ3ν
2
3 1

)(
1 − i

ũ2ν23

0 1

)(
1 − i

ũ1ν23 ũ
2
12

0 1

)

×

(
1 0

−iũ1ν
2
3 ũ

2
12 1

)(
1 0

−iũ4ũ
2
43 1

)(
1 0

−iũ3 1

)(
1 − i

ũ3

0 1

)(
1 0

−iũ3 1

)
.

(4.22)

The Stokes automorphism. As in the previous examples, the Stokes automorphism

can be obtained by comparing the invariants built out of the monodromy matrices. The

trace of the monodromy around the irregular singular point s3 is non-trivial and it is

important that we express it in terms of independent Stokes variables. The variables are

constrained by the relation

u12u34ν1ν2ν3 = 1 , (4.23)

and similarly for the ũ variables. We solve for u34 using this relation and choose the

independent variables to be u12 and u23. In terms of these variables, we find that

TrMA,s3 = −ν3u12 − ν1ν2u23(1 + u12)− 1

ν3 u12
(1 + u23 + u12u23) . (4.24)

Similarly, from the monodromy around s3 in Stokes graph 8(B) we find

TrMB,s3 = −ν3ũ12

(
1

ũ23
+ 1

)
− ν1ν2(ũ12 + ũ23 + ũ12ũ23)− ũ23

ν3ũ12
(1 + ũ12) . (4.25)

Matching the traces leads to the Stokes automorphisms:

u23 = ũ23 ,

u12 = ũ12

(
1 +

1

ũ23

)
. (4.26)

As a check of our monodromy matrices, we computed the traces of the products of the

monodromy matrices. These imply the same Stokes automorphism as above.

4.5 The conformal theory

We consider Stokes graphs in a strong coupling region of the conformal SU(2) theory. The

zeroth order potential has four regular singular points and four turning points.

In particular, we consider the Stokes graphs corresponding to two out of the six trian-

gulations in figure 74 of [32] (see figure 9(A) and (C)).8 It can be seen that the two Stokes

graphs are related by a double flip, a simultaneous flip about the t1 − t3 and t2 − t4 finite

WKB lines in the critical graph. We realize the double flip as two alternative sequences

of two single flips. We provide the corresponding intermediate graphs after the single flips

and perform the calculation we have familiarized ourselves with by now.

Let us first consider the flip from Stokes graph 9(A) to 9(B′) via the t1 − t3 flip.

The relevant Stokes graphs and contours that generate the monodromy group are given in

figure 10.

8Our graphs are topologically equivalent to those appearing in [32].
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(B)

(B')

(C)

critical graph

Figure 9. The critical graph and a pair of Stokes graphs for the conformal SU(2) theory. A double

flip relates one graph to the other. We refer the reader to B.1 for details.
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(A) (B')

Figure 10. The two Stokes graphs related by the t1 − t3 flip.

The monodromy group. For Stokes graph 9(A), using the contours as shown in fig-

ure 10(A), the monodromy matrices are given by

MA,s1 =

(
ν1 0

0 1
ν1

)(
1 0

iu4ν
2
1 1

)(
1 −i
u1u213ν

2
1

0 1

)(
1 − i

u4

0 1

)(
1 0

−iu4 1

)
, (4.27)

MA,s2 =

(
ν2 0

0 1
ν2

)(
1 0

iu4ν
2
2 1

)(
1 i
u4ν22

0 1

)(
1 0

−iu1u
2
13ν

2
1ν

2
2 1

)(
1 0

−iu3u
2
13ν

2
1ν

2
2 1

)

×

(
1 0

−iu2u
2
24 1

)(
1 0

−iu4 1

)(
1 − i

u4

0 1

)(
1 0

−iu4 1

)
, (4.28)

MA,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iu4ν
2
3 1

)(
1 0

iu1u
2
13ν

2
3 1

)(
1 0

iu3ν
2
3 1

)(
1 −i
u2ν23ν

2
4

0 1

)

×

(
1 − i

u3

0 1

)(
1 0

−iu3 1

)(
1 0

−iu1u
2
13 1

)(
1 0

−iu4 1

)
, (4.29)

MA,s4 =

(
ν4 0

0 1
ν4

)(
1 0

−iu2ν
2
4 1

)(
1 0

−iu3 1

)(
1 0

−iu1u
2
13 1

)(
1 0

−iu4 1

)
. (4.30)

Next we consider the Stokes graph 9(B′) and move along the contours Ck around the

singularities as shown in figure 10(B′). We compute the monodromy matrices:

MB′,s1 =

(
ν1 0

0 1
ν1

)(
1 0

iũ4ν
2
1 1

)(
1 −i
ũ3ν21

0 1

)(
1 −i
ũ1ũ213ν

2
1

0 1

)(
1 − i

ũ4

0 1

)(
1 0

−iũ4 1

)
,

MB′,s2 =

(
ν2 0

0 1
ν2

)(
1 0

iũ4ν
2
2 1

)(
1 i
ũ4ν22

0 1

)(
1 0

−iũ1ũ
2
13ν

2
1ν

2
2 1

)

×

(
1 0

−iũ2ũ
2
24 1

)(
1 0

−iũ4 1

)(
1 − i

ũ4

0 1

)(
1 0

−iũ4 1

)
,
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(C)(B')

Figure 11. The t2 − t4 flip and the contours around the singularities.

MB′,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iũ4ν
2
3 1

)(
1 0

iũ3ν
2
3 1

)(
1 −i
ũ2ν23ν

2
4

0 1

)

×

(
1 −i
ũ1

0 1

)(
1 − i

ũ3

0 1

)(
1 0

−iũ3 1

)(
1 0

−iũ4 1

)
,

MB′,s4 =

(
ν4 0

0 1
ν4

)(
1 0

−iũ2ν
2
4 1

)(
1 0

−iũ3 1

)(
1 0

−iũ4 1

)
. (4.31)

We now implement the t2−t4 flip to go from Stokes graph 9(B′) to graph 9(C). The relevant

Stokes graphs and contours are given in figure 11. Notice that the base point of the contours

in figure 11 is different from that used in figure 10, however, this is irrelevant because the

monodromy group is independent of the choice of a base point. The monodromy matrices

for the (B′) graph are given by

MB′,s1 =

(
ν1 0

0 1
ν1

)(
1 −i
u3ν21

0 1

)(
1 −i
u1u213ν

2
1

0 1

)(
1 − i

u4

0 1

)
,

MB′,s2 =

(
ν2 0

0 1
ν2

)(
1 i
u4ν22

0 1

)(
1 0

−iu1u
2
13ν

2
1ν

2
2 1

)(
1 0

−iu2u
2
24 1

)(
1 0

−iu4 1

)(
1 −i
u4

0 1

)
,

MB′,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iu3ν
2
3 1

)(
1 −i
u2ν23ν

2
4

0 1

)(
1 −i
u1

0 1

)(
1 −i
u3

0 1

)(
1 0

−iu3 1

)
,

MB′,s4 =

(
ν4 0

0 1
ν4

)(
1 0

−iu4ν
2
4 1

)(
1 0

−iu2ν
2
4 1

)(
1 0

−iu3 1

)
.

(4.32)
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Finally, we consider Stokes graph 9(C) and calculate the generators of the mono-

dromy group

MC,s1 =

(
ν1 0

0 1
ν1

)(
1 −i
ũ3ν21

0 1

)(
1 −i
ũ1ũ213ν

2
1

0 1

)(
1 −i
ũ2ũ224

0 1

)(
1 − i

ũ4

0 1

)
,

MC,s2 =

(
ν2 0

0 1
ν2

)(
1 i
ũ4ν22

0 1

)(
1 i
ũ2ũ224ν

2
2

0 1

)(
1 0

−iũ1ũ
2
13ν

2
1ν

2
2 1

)(
1 0

−iũ2ũ
2
24 1

)

×

(
1 −i
ũ2ũ224

0 1

)(
1 −i
ũ4

0 1

)
,

MC,s3 =

(
ν3 0

0 1
ν3

)(
1 0

iũ3ν
2
3 1

)(
1 −i
ũ4ν23ν

2
4

0 1

)(
1 −i
ũ2ν23ν

2
4

0 1

)(
1 −i
ũ1

0 1

)(
1 −i
ũ3

0 1

)(
1 0

−iũ3 1

)
,

MC,s4 =

(
ν4 0

0 1
ν4

)(
1 0

−iũ4ν
2
4 1

)(
1 0

−iũ3 1

)
. (4.33)

The Stokes automorphism for the double flip. The monodromy matrices obtained

above by encircling the singularities in both the pairs of graphs in the sequence of flips

have standard traces, since all the singularities are regular. Hence, in order to compute

the transformation of Voros symbols, we compute the traces of products of monodromy

matrices. We express the traces in terms of the variables u13 and u34 in the t1−t3 flip and in

terms of the variables u42 and u21 in the t2−t4 flip. Since the entries of the matrices are a bit

cumbersome, we merely present the results; here the variables in a given Stokes graph are

denoted with the appropriate superscript: this gives us the Stokes automorphism relations.

uA13 = uB
′

13 , uA34 = uB
′

34 (1 + uB
′

13 ) (4.34)

uB
′

42 = uC42, uB
′

21 = uC21(1 + uC42) (4.35)

Upon composing the Stokes relations from the two single flips, we obtain the desired Stokes

relation for the double flip from Stokes graph (A) to (C). If we consider a counter-clockwise

loop encircling both the branch cuts and the four singularities in graphs (A), (B′) and (C),

we get the relation,

u13u42ν1ν2ν3ν4 = 1 (4.36)

There is an analogous condition that is given by

u43u12ν1ν2ν3ν4 = 1 . (4.37)

Using these and the Stokes automorphisms for the sequence of flips, we obtain the following

relations for the independent variables of the Stokes graphs (A) and (C):

uA13 = uC13

uA34 = uC34

1 + uC13

1 + uC42

. (4.38)
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(A) (B)

Figure 12. The two Stokes graphs related by a pop. We refer the reader to B.2 for details.

Because the double flip is composed of single flips, each taking place within their own

arena, the final result for the double flip is a composition of the result for single flips [31].

So far, we have implemented the double flip via a sequence of two single flips, (A)→
(B′)→ (C) as in figure 9. The double flip can equivalently be implemented by a different

sequence of two single flips, (A)→ (B)→ (C) as shown in figure 9. We have checked that this

results in the same Stokes automorphism relations as were arrived at earlier. This is further

confirmation of the rules for computing the monodromy groups and of our resolution of

the double flip into two single flips.

Pops. Finally, we consider two Stokes graphs that are related by a pop rather than a

flip, in the conformal gauge theory. We concentrate on the situation depicted in figure 12

(see appendix B for more details). This corresponds to the degenerate triangulations in

figure 74 of [32]. The pop is expected to give rise to a trivial Stokes automorphism for our

closed loop Voros symbols. We first consider graph 12(A) and calculate the generators of

the monodromy group. As the closed contour goes around s1 counter-clockwise,

MA,s1 =

(
ν1 0

0 1
ν1

)(
1 − i

u4ν21

0 1

)(
1

iν22
u2u221

0 1

)(
1 −iu1
0 1

)(
0 i

i 0

)(
1 0

− iν22
u1

1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
1 − i

u2

0 1

)
.

(4.39)
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Next we compute the monodromy matrix as we traverse a closed contour that goes around

the singularity s2

MA,s2 =

(
ν2 0

0 1
ν2

)(
1 i
u2ν22

0 1

)(
0 i

i 0

)(
1 0
i
u1

1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
0 i

i 0

)(
1 iu1

0 1

)(
0 −i
−i 0

)

×

(
0 i

i 0

)(
1 0
−iν22
u1

1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
1 − i

u2

0 1

)
.

(4.40)

Around the singularity s3 and s4, we find

MA,s3 =

(
ν3 0

0 1
ν3

)(
1 0

−iu2ν
2
3 1

)(
1 0

iu4u234
ν24

1

)(
1 0

−iu3 1

)

×

(
0 i

i 0

)(
1 −iu3

ν24

0 1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
1 0

−iu4 1

)
,

MA,s4 =

(
ν4 0

0 1
ν4

)(
1 0

iu4ν
2
4 1

)(
0 i

i 0

)(
1 iu3

0 1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
0 i

i 0

)(
1 0
i
u3

1

)(
0 −i
−i 0

)

×

(
0 i

i 0

)(
1 −iu3

ν24

0 1

)(
0 −i
−i 0

)
︸ ︷︷ ︸

(
1 0

−iu4 1

)
.

(4.41)

In the above, the set of matrices clubbed together by an underbrace gives the rule for

crossing a Stokes line that runs through a branch cut into the other sheet and approaches

the turning point. We repeat the above exercise for Stokes graph 12(B) and the monodromy

matrices around the singularities in this case are given by

MBs1
=

(
ν1 0

0 1
ν1

)(
1 −i
u4ν21

0 1

)(
1

iν22
u2u221

0 1

)(
1
−iν22
u1

0 1

)(
1 −iu1
0 1

)(
1 −iu2
0 1

)
,

MBs2
=

(
ν2 0

0 1
ν2

)(
1 i
u2ν22

0 1

)(
0 i

i 0

)(
1 −iu1ν

2
2

0 1

)(
1 0
i
u1

1

)(
1 0

iu1 1

)(
0 −i
−i 0

)(
1 −iu2
0 1

)
,

MBs3
=

(
ν3 0

0 1
ν3

)(
1 0

−iu2ν
2
3 1

)(
1 0

iu4u234
ν24

1

)(
1 0
−iu3
ν24

1

)(
1 0

−iu3 1

)(
1 0

−iu4 1

)
,

MBs4
=

(
ν4 0

0 1
ν4

)(
1 0

iu4ν
2
4 1

)(
0 −i
−i 0

)(
1 0
−i
u3ν24

1

)(
1 iu3

0 1

)(
1 0
i
u3

1

)(
0 i

i 0

)(
1 0

−iu4 1

)
.

(4.42)

Again, it can be checked that the monodromy matrices have standard traces in both the

graphs. Similarly it can be checked that the product of matrices from both the graphs

have the same traces. Thus, we have a consistency check on our calculation, which is the

triviality of the Stokes automorphism acting on the Voros symbols of graphs related by a

pop (3.34).

– 31 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
5

5 The gauge theory perspective

We have computed the monodromy groups associated to the differential equations gov-

erning the instanton partition function with surface operator insertion in terms of the

exponents νi characterizing the singularities, and the Borel resummed monodromies uij .

The characteristic exponents are readily calculated in terms of the masses of the gauge

theory using the explicit expression of the differential equation. In this section, we further

relate the exact WKB parameters uij with the Seiberg-Witten periods a and aD, which

are leading order approximations. As a result, we obtain the monodromy groups in terms

of the (deformed, resummed) gauge theory data. Next, we present ideas on how to exploit

this information to obtain non-perturbative corrections in ε1 to the prepotential.

5.1 The Seiberg-Witten variables

We start by relating the monodromies uij to more standard Seiberg-Witten data. In the

following figures, we mark only the turning points and the singularities on the Riemann

surface, and identify the α̂ and β̂ cycles of the genus one Seiberg-Witten curve. For the

conformal case [37], the cycles are identified as in figure 13. The cycles have a smooth limit

when the masses are set to zero, i.e. when the turning points coincide with the singularities.

Further, in [37], it was explicitly checked that the prepotential of the conformal theory,

obtained by calculating the period integrals with this choice of cycles, matches the results

from equivariant localization methods. Once this identification is made, it is possible to go

down in the number of flavors sequentially, each time identifying the α̂ and β̂ cycles, until

we finally reach the Nf = 0 theory, where we obtain agreement with the results of [33].

The conformal theory. From figure 13, we read off the identification

u13ν1ν3 = ea, u34ν3ν4 = eaD . (5.1)

The Stokes automorphisms we have derived for the conformal theory then imply the fol-

lowing relations for the gauge theory variables between the Stokes graphs 9(A) and 9(C):

(ea)A = (ea)C ,

(eaD)A = (eaD)C

[
1 + ν−1

1 ν−1
3 (ea)C

1 + ν−1
2 ν−1

4 (e−a)C

]
. (5.2)

We will comment on the meaning of these relations after we list the cycles and appropriate

gauge theory variables for the asymptotically free cases.

Three flavours. From figure 14, for the three flavours case, we find the relation

u12ν1ν2 = ea, u23ν2ν3 = eaD . (5.3)

As before we can write the Stokes automorphisms in terms of the gauge theory variables

but we suppress these details and only give the choice of cycles in our subsequent examples.
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Figure 13. Nf = 4 cycles.

Figure 14. Nf = 3 cycles.

Figure 15. Nf = 2 cycles.

Two flavours. For two flavours, from figure 15 we have,

u23ν1ν2 = ea, u31ν1 = eaD . (5.4)

One flavour. When we are left with a single flavour, we find from figure 16

u12ν1 = ea, u23 = eaD . (5.5)

Pure super Yang-Mills. Finally, for pure super Yang-Mills, we have from figure 17

u21 = eaD , x = ea . (5.6)
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Figure 16. Nf = 1 cycles.

Figure 17. Nf = 0 cycles.

The Stokes automorphisms derived in section 4.1 can then be reinterpreted in terms of the

gauge theory variables as a relation between a and aD,

eaD = eãD ,

ea = eã(1 + eãD) . (5.7)

One can check that these precisely coincide with the Stokes automorphisms obtained for

the pure super Yang-Mills case in [33].

5.2 The non-perturbative prepotential

In this subsection, we restrict ourselves to some preliminary remarks on how to exploit the

results we have obtained on the monodromy group to find non-perturbative corrections in

ε1 to the prepotential (parameterized in terms of the given exact WKB monodromy data).

We note that the expressions ea(ε1) and eaD(ε1) used above (where we have now rendered

explicit the ε1 dependence) refer to the exact WKB, Borel resummed ε1 perturbation series.

At leading order in ε1, the first term in the expansion matches the Seiberg-Witten periods

a(0) and aD(0). In the ε1-deformed theory, these are corrected as a perturbation series in

ε1. In the exact WKB approach, these perturbation series are Borel resummed, but the

result depends on the region of Borel resummation, and the resummed expressions ea(ε1)

depend on the phase of Borel resummation, or equivalently, on the phase of ε1. Thus, the

above identifications undergo the Stokes automorphisms of which we have discussed many

an example. Note that when we refer to such expressions, we have in mind that they are

valid with a given resummation angle.

The monodromy group itself, and in particular the gauge invariant traces of products

of monodromy matrices, are exact invariants of the solution to the differential equations.
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In [33], it was proposed in the context of the theory with zero flavours to solve the equation

for the Borel resummed period a(ε1) in terms of the invariant quantity aexact, determined

by the exact periodicity (or Floquet exponent, or monodromy) of the exact solution to the

(Mathieu) differential equation. This solution is valid at a particular resummation angle,

and a is identified with aexact, up to non-perturbative corrections. Near a point in moduli

space where a perturbative expansion is possible, like the weak, magnetic or dyonic point,

we can then solve the relation in terms of a transseries [30]. On the other hand, since in this

case aD(ε1) is independent of the Borel resummation angle, we can posit aexact
D = aD(ε1)

(independently of the specification of the resummation angle). The variable u determining

the derivative of the prepotential is known as a function of a, and therefore as a function

of aexact. Inverting this relation and calculating the dual period integrals allows one to

calculate non-perturbative corrections in ε1 to the prepotential F .

Thus, one application of the identifications above is to attempt to integrate up the non-

perturbative relation between the period a and the parameters coding the exact monodromy

group, towards non-perturbative corrections to the prepotential F . The encompassing case

in which to execute this program is the conformal Nf = 4 theory.

6 Conclusions

In our work, we filled in many details of the connection between conformal field theory

and four-dimensional gauge theory which was made handily available starting from the

matching of partition functions and correlators in [9]. We applied the technology devel-

oped in [10, 13–15, 34] to study in greater detail SU(2) super Yang-Mills theories with a

varying number of flavours. We thus provided a complete list of εi-deformed differential

equations satisfied by the five-point conformal block with surface operator insertion, in the

irregular conformal block limit. Subsequently, we took a semi-classical limit and analyzed

the resulting differential equations with exact WKB methods. We used this technology

to give a detailed parameterization of the monodromy groups in terms of Voros symbols

and external conformal dimensions or, in the language of gauge theory, in terms of Borel

resummed ε1-deformed Seiberg-Witten periods and masses. The Borel resummed variables

depend intrinsically on the resummation angle (and the phase of ε1), and we illustrated

how to bridge this ambiguity using Stokes automorphisms, with at least one illustration

for each number of flavours.

The Stokes automorphisms we obtained are consistent with the general theorems

proved in [31]. The one subtlety arose in the case of the conformal gauge theory: in

this case, we analyzed a pair of Stokes graphs that were related by a simultaneous flip

along two independent finite WKB lines. In such a case, we showed that the resulting

Stokes automorphisms could be obtained by treating the double-flip as a sequence of single

flips. We demonstrated consistency of this approach by checking that the final Stokes au-

tomorphisms between the Stokes graphs were independent of the order in which the single

flips were taken.

We believe it is instructive to develop these most elementary of N = 2 models in still

further detail. There are many avenues to explore. As was mentioned in the previous
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section, it should be possible to calculate non-perturbative corrections in ε1 to the pre-

potential, by suitably generalizing the analysis that was done for the case of pure super

Yang-Mills [33]. Similarly, it should be informative to match the cluster algebra description

of Stokes automorphisms of [31] to the cluster algebra description of the spectrum of BPS

states [41]. (See also e.g. [31, 42, 43].)

In the present work, we studied general properties of the Borel resummed wave-

functions of the null vector decoupling equations in the semi-classical limit, without fo-

cusing on the specific form of the wave-function. An interesting direction would be to

study in greater detail the dependence of the five-point conformal block on the insertion

point of the degenerate operator. This should yield non-trivial information about the

gauge theory in the presence of a surface operator. Most interestingly, perturbative and

non-perturbative corrections in ε2 can now be studied from the differential equation point

of view.

All these projects have straightforward extensions, both to the N = 2? theory, where

the Riemann surface is of genus one [7], as well as to higher rank conformal gauge theo-

ries, the simplest of which is super Yang-Mills theory with SU(N) gauge group and 2N

fundamental flavours. As explained in section 5, one not only needs the description of

the monodromy group, but also requires a local expansion of the period integrals in terms

of the Coulomb moduli in order to carry out the goal of calculating corrections to the

prepotential that are non-perturbative in ε1. For the N = 2? theory with gauge group

SU(2), the null vector decoupling equation for the toroidal block has been well studied in

the semi-classical limit (see e.g. [18, 44, 45]) and the instanton series for the prepotential

has been resummed in terms of modular functions [46]. One can therefore attempt to

study the monodromy group along the lines of the present paper and hope to carry out the

proposal put forward in section 5. For higher rank N = 2? theories, there has been much

progress on the gauge theory side in resumming the instanton expansion for the prepo-

tential using modular anomaly equations in deformed gauge theories with arbitrary gauge

group [47, 48]. It remains an open problem to reproduce these successes using conformal

field theory methods and to do the corresponding WKB analysis.

For the higher rank (and undeformed) SQCD theories, the instanton series has been

resummed in a special locus with ZN symmetry [49, 50]. From the CFT approach to the

problem, one has to work with Toda theory [51] and the corresponding null vector decou-

pling equations in Toda have been analyzed recently in [52]. In the semi-classical limit,

such differential equations can also be derived using a saddle point analysis of the Nekrasov

integrand [35] and the resulting deformed Seiberg-Witten curve. It would be interesting

to analyze these higher order differential equations using exact WKB methods and make

contact with the general approach to these systems using spectral networks [53, 54].
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A The null vector decoupling with irregular blocks

In this section, we derive in detail the null vector decoupling equations that involve irregular

conformal blocks. These equations were summarized in different forms in [10, 13]. Our

final results are listed in section 2.

A.1 One irregular puncture

The case of Nf = 4 is standard and is described in section 2 in sufficient detail. We turn to

the conformal block involving an irregular puncture. This involves rendering one flavour

very massive.

A.1.1 Nf = 3

From the gauge theory point of view, the flavour decoupling is carried out by taking

the limit:

m2 →∞ q → 0 with Λ3 = q m2 finite . (A.1)

The parameter Λ3 has mass-dimension one and is the strong coupling scale of the SU(2)

gauge theory with Nf = 3. As shown in [15], in the conformal field theory this involves

a collision of the regular conformal block at z = q and z = 0 and leads to an irregular

conformal block at z = 0. We now consider the four point conformal block with the

insertion of the degenerate field Φ2,1(z):

〈Vα4(∞)Vα3(1)I(4)(0) Φ2,1(z)〉 . (A.2)

The Ward identity for this chiral conformal block can be obtained by considering the five

point block relevant for the conformal Nf = 4 and scaling the wave-function in the following

way [13, 15]:

Ψ(z, q) = q−2α1α2 ψ3(z,Λ3) . (A.3)

On the rescaled wave-function ψ3(z), the q-derivative is traded for a Λ3-derivative. Com-

bining these, and taking the decoupling limit, we obtain the null vector decoupling equation

for the Nf = 3 theory:[
− ε21

∂2

∂z2
+

(m3+m4)2

4(z−1)2
+
m3m4

z(1−z)
+
m1Λ3

z3
+

Λ2
3

4z4
− ε21

4(z−1)2
+ε22

(3−4z)

4z(z−1)2
(A.4)

+
1

z2−z3

(
−ε1ε2Λ3

∂

∂Λ3
+m2

1+m1 (ε1+ε2)

)
+ε1ε2

(
1−2z

z−z2

∂

∂z
+

1−2z

2z(z−1)2

)]
ψ3(z,Λ3)=0.

The quartic pole at z = 0 in the OPE between the stress tensor and the irregular block

explains our notation: we denote such an irregular block by I(4)(0).
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A.1.2 Nf = 2: asymmetric realization

One can take a further limit in which we decouple the mass m1:

m1 →∞ Λ3 → 0 with Λ2
2 = m1Λ3 finite . (A.5)

Simultaneously, we rescale the wave-function by

ψ3(z,Λ3) = Λ
1

ε1ε2
(m2

1+m1(ε1+ε2))

3 ψ2(z,Λ2) . (A.6)

From the conformal field theory perspective, this amounts to tuning the coefficient of the

quartic pole to zero, leaving behind only a cubic pole. This corresponds to the four point

conformal block

〈Vα4(∞)Vα3(1)I(3)(0) Φ2,1(z)〉 . (A.7)

The null vector decoupling equation takes the form:[
−ε21

∂2

∂z2
+

(m3 +m4)2

4(z − 1)2
+

m3m4

z(1− z)
+

Λ2
2

z3
− ε1ε2

2(z2 − z3)
Λ2

∂

∂Λ2

+ε1ε2

(
1− 2z

z − z2

∂

∂z
+

1− 2z

2z(z − 1)2

)
− ε21

4(z − 1)2
+ ε22

(3− 4z)

4z(z − 1)2

]
ψ2(z,Λ2) = 0 . (A.8)

The equation exhibits a cubic pole at the irregular singularity z = 0.

A.2 Two irregular punctures

Let us begin with the five point conformal block in which we have regular conformal

primaries at zi, with i ∈ {1, 2, 3, 4} and the degenerate field at z. In equation (2.5), we

have obtained the null vector decoupling equation for this case. We now set z1 = 0, z2 = q

and z4 = 1 and consider the simultaneous collision of punctures such that q → 0 and

z3 → 1. We rescale the wave-function as in [15]

Ψ(zi) = q−2α1α2(z3 − 1)−2α3α4ψ(z,Λ, Λ̃) . (A.9)

In order to get finite results, we take the limit

m2 →∞ , q → 0 with Λ = q m2 finite ,

m3 →∞ , (z3 − 1)→ 0 with Λ̃ = (z3 − 1)m3 finite . (A.10)

Note that this introduces two independent scales in the problem. The conformal block we

are considering is a three point function, with two irregular punctures of quartic order and

a degenerate field Φ2,1(z):

〈I(4)(1)I(4)(0) Φ2,1(z)〉 . (A.11)

The parameters Λ and Λ̃ respectively represent the quartic pole coefficient at z = 0 and

z = 1. After the wave-function rescaling and the decoupling limits, we obtain the null
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vector decoupling equation for such a conformal block with two such irregular singularities

and the degenerate field:[
− ε21

∂2

∂z2
+

Λ2

4z4
+

Λm1

z3(z−1)2
+

Λ̃m4

z(z−1)3
+

Λ̃2

4(z−1)4
+ε1ε2

3z−1

z(z−1)

∂

∂z
+

(2ε1ε2+3ε22)(2−3z)

4z(z−1)2

+
1

z2(z−1)2

(
−ε1ε2Λ

∂

∂Λ
−2Λm1+m2

1+m1(ε1+ε2)

)]
ψ2(z,Λ, Λ̃) = 0 . (A.12)

We can tune the two scales suitably in order to obtain the null vector decoupling equations

for the remaining gauge theories of our focus.

A.2.1 Nf = 2: symmetric realization

We set Λ = −Λ̃ = Λ2, in which case we obtain the null vector decoupling equation:[
− ε21

∂2

∂z2
+

Λ2
2

4z4
+

Λ2m1

z3(z−1)2
− Λ2m4

z(z−1)3
+

Λ2
2

4(z−1)4
+ε1ε2

3z−1

z(z−1)

∂

∂z
+

(2ε1ε2+3ε22)(2−3z)

4z(z−1)2

+
1

z2(z−1)2

(
−ε1ε2Λ2

∂

∂Λ2
−2Λ2m1+m2

1+m1(ε1+ε2)

)]
ψ2(z,Λ2) = 0 . (A.13)

A.2.2 Nf = 1

We set Λ = Λ1 and Λ̃→ 0 such that Λ̃m4 = −Λ2
1

4 is a finite combination. In other words,

the relevant conformal block of interest is

〈I(3)(1)I(4)(0) Φ2,1(z)〉 . (A.14)

The coefficient of the cubic pole at z = 1 is tuned and related to that of the quartic pole

at z = 0. Such a conformal block satisfies the null vector decoupling equation:[
− ε21

∂2

∂z2
+

Λ2
1

4z4
+

Λ1m1

z3(z−1)2
− Λ2

1

4z(z−1)3
+ε1ε2

3z−1

z(z−1)

∂

∂z
+

2−3z

4z(z−1)2
(2ε1ε2+3ε22)

+
1

z2(z−1)2

(
−ε1ε2Λ1

∂

∂Λ1
−2Λ1m1+m2

1+m1(ε1+ε2)

)]
ψ1(z,Λ1) = 0 . (A.15)

A.2.3 Nf = 0

As for the earlier case with Nf = 2 in the asymmetric realization, in order to obtain finite

results, one has to rescale the wave-function

ψ(z,Λ, Λ̃) = Λ
1

ε1ε2
(m2

1+m1(ε1+ε2))
ψ0(z,Λ0) . (A.16)

We set Λ→ 0 and Λ̃→ 0 such that the combinations m1Λ = Λ2
0 and m4Λ̃ = Λ2

0 are equal

and finite. The relevant conformal block is given by

〈I(3)(1)I(3)(0) Φ2,1(z)〉 . (A.17)
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This satisfies the null vector decoupling equation:[
− ε21

∂2

∂z2
+

Λ2
0

z3(z − 1)2
+

Λ2
0

z(z − 1)3
+ ε1ε2

3z − 1

z(z − 1)

∂

∂z
+

2− 3z

4z(z − 1)2
(2ε1ε2 + 3ε22)

+
1

z2(z − 1)2

(
− 1

2
ε1ε2Λ0

∂

∂Λ0
− 2Λ2

0

)]
ψ0(z,Λ0) = 0 .

(A.18)

B Stokes graphs

In this section, we plot actual machine-generated Stokes graphs for the Nf = 4 theory as

representative examples. The Stokes lines are defined by the condition

Im

[∫ x

x0

dx′
√
Q0(x′)

]
= 0 . (B.1)

The red dots indicate singularities, and the blue dots indicate turning points. It is impor-

tant to remember that what is relevant for the monodromy calculations is the topology of

the Stokes graph. The cartoons in the body of the paper abstract away from graphs given

in this appendix.

B.1 The double flip

The potential we use to plot these Stokes graphs has a convenient Z4 symmetric form [32]

Q0(z) =
z4 − u

(
z4 − 1

)
(z4 − 1)4 , (B.2)

where the singularities are at z1 = 1, z2 = i, z3 = −1, and z4 = −i. This potential is arrived

at via an SL(2,C) transformation of (2.18) that maps all singularities to finite points for

ease of plotting. The masses of the fundamental hypermultiplets are ma = 1
4za. We have

made the choice u = 1
2 for plotting the double flip Stokes graphs in figure 18.

B.2 The pop

We continue to work with the potential (B.2) and, in order visualize the pops in figure 19,

we have made the choice u = 1
2exp

(
3
10 iπ

)
.

C The saddle point analysis

We discussed regular (irregular) conformal blocks associated to two-dimensional conformal

field theories that, via the 2d/4d correspondence, are dual to four-dimensional Ω-deformed

conformal (respectively, asymptotically free) gauge theories. The null vector decoupling

equations together with the conformal Ward identities allow us to arrive at Schrödinger

equations that govern an integrable system related to the Ω-deformed gauge theory. While

these analyses are exact in ε2, it is enlightening to see how the ε2 → 0 limit of these
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(c) The critical graph.

Figure 18. Sequence of Stokes graphs related by a double flip about the critical graph.
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Figure 19. Sequence of Stokes graphs related by a pop about the critical graph.
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differential equations are derived from purely gauge-theoretic considerations. This will

serve as a consistency check of the 2d/4d correspondence, and our calculations.

In this section, we explain how to derive differential equations starting from saddle-

point difference equations, valid for any SU(N) theory with Nf = 2N fundamental hyper-

multiplets. We specialize to the case of the conformal SU(2) theory (Nf = 4) and consider

various decoupling limits that give asymptotically free theories with fewer fundamental

hypermultiplets.

Our analysis begins with the Nekrasov partition function, and considers its saddle-

points in the limit ε2 → 0, with ε1 held constant and finite [35, 55–57]. The result of this

analysis is the ε1-deformed Seiberg-Witten equation:

y (x) + q
M (x− ε1)

y (x− ε1)
= (1 + q)P (x) . (C.1)

Here, q is the instanton counting parameter. The gauge polynomial P (x) is of degree N

and encodes the Coulomb moduli of the gauge theory. The flavour polynomial M(x) is of

degree 2N , and we choose to factorize it into two pieces:

M(x) = A(x)D(x) , (C.2)

where A(x) and D(x) are degree N polynomials. As should be evident, this decomposition

is far from being unique. Different decompositions can be mapped to the different ways in

which the flavour symmetry is realized in the type II construction using two NS5 branes

and a stack of D4 branes. One can associate the number of semi-infinite D4 branes on each

side of the NS5 branes with the degree of the polynomials A(x) and D(x). We now peel

off a factor of A(x) from the function y(x) and express the remainder as the ratio of some

rational function Q(x) as

y(x) = A(x)
Q(x)

Q(x− ε1)
. (C.3)

There are other ways to perform the split but this one will reduce, in the ε1 → 0 limit,

to the correct M-theory curve. The result of these decompositions gives us the Baxter

TQ-relation

A(x)Q(x) + qD(x− ε1)Q(x− 2ε1)− (1 + q)P (x)Q(x− ε1) = 0. (C.4)

We now trade Q(x) for its Fourier transform [35]

Ψ(t) =
∑
x∈Γ

Q(x) e−x/ε1 , (C.5)

and arrive at the differential equation of order N :[
A(x) + qD(x− ε1) t−2 − (1 + q)P (x) t−1

]
Ψ(t) = 0, (C.6)

where in the above equation, the Fourier transform effectively sends x 7→ −ε1t∂t.
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C.1 Nf = 4

We specialize to the case of the conformal SU(2) gauge theory, with Nf = 4. The matter

polynomials we start with are

D(x) =
(
x−m1 +

ε1
2

)(
x−m2 +

ε1
2

)
, (C.7)

A(x) =
(
x−m3 +

ε1
2

)(
x−m4 +

ε1
2

)
. (C.8)

The gauge polynomial is

P (x) = x2 − q
(
m1 +m2 +m3 +m4

1 + q

)
x− uS

1 + q
. (C.9)

Substituting this into the difference equation and taking the Fourier transform as

described earlier leads to a second order differential equation. We would like this differential

equation to be of the Schrödinger form, i.e. with no linear derivative terms. This may be

achieved by peeling off an appropriate factor.9 The resulting differential equation is[
−ε21

∂2

∂t2
+Q(t, ε1)

]
Ψ(t) = 0, (C.10)

where the potential term Q(t, ε1) has an expansion in powers of ε1. In addition, we further

shift of the Coulomb modulus uS ,

uS = −ũ+
q − 1

2

(
m2

1 +m2
2

)
+ q

[
m1m2 +m3m4 +

1

2
(m1 +m2) (m3 +m4)

]
+
ε21
4

(1 + q)

(C.11)

Denoting the order εm1 coefficient in the potential by Qm(t), we obtain the non-zero poten-

tial terms:

Q0(t) = − ũ

t(t−1)(t−q)
+

(m1−m2)2

4t2
+

(m1+m2)2

4(t−q)2
+

(m3+m4)2

4(t−1)2
+
m2

1+m2
2+2m3m4

2t(1−t)
,

(C.12)

Q2(t) = − 1

4t2
− 1

4(t−1)2
− 1

4(t−q)2
+

1

2(t−1)(t−q)
. (C.13)

This matches the potentials in the text obtained from the null vector decoupling equa-

tions (2.18).

C.2 Nf = 3

The Nf = 3 case is obtained by decoupling one of the masses; we choose here to send

m2 → ∞, while simultaneously sending q → 0 such that the combination Λ3 = q m2

remains finite: we identify Λ3 to be the strong coupling scale in the SU(2) gauge theory

with Nf = 3. The difference equation takes the form

A(x)Q(x)− Λ3D(x− ε1)Q(x− 2ε1)− P (x)Q(x− ε1) = 0. (C.14)

9The terms we peel off are proportional to the products of square roots of eigenfunctions of the mon-

odromy at 0, 1 and q.
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The polynomial functions are given by

D(x) =
(
x−m1 +

ε1
2

)
, (C.15)

A(x) =
(
x−m3 +

ε1
2

)(
x−m4 +

ε1
2

)
, (C.16)

while the gauge polynomial is

P (x) = x2 − Λ3x− uS . (C.17)

The differential equation can be obtained in a similar fashion as in the conformal case by

taking the Fourier transform as in (C.5). The analysis leading to the Schrödinger type

equation can be repeated as before and we obtain the differential equation:[
−ε21

∂2

∂t2
+

2∑
m=0

Qm(t)εm1

]
Ψ(t) = 0 . (C.18)

The uS we use in the saddle-point analysis must be shifted in order to make contact with

the form of the potential in the text (2.20) and the shift is given by

uS = ũ− Λ3

2
(2m1 +m3 +m4) +

ε21
4
. (C.19)

The shift of the Coulomb modulus is accompanied by a global rescaling m1 → m1
2 and

Λ3 → Λ3
2 . After these shifts and rescalings, the non-zero potential functions Qm(t) are

given by

Q0(t) =
(m3 +m4)2

4(t− 1)2
+

m3m4

t(1− t)
+
m1Λ3

t3
+

Λ2
3

4t4
+

ũ

t2(1− t)
, (C.20)

Q2(t) = − 1

4(t− 1)2
. (C.21)

which match the potential in equation (2.20).

C.3 Nf = 2: asymmetric realization

There are two distinct cases to be considered when Nf = 2. These correspond to the

fashion in which we decouple fundamental matter. We first consider the case when

m1 →∞ and Λ3 → 0 with Λ2
2 = m1Λ3 finite . (C.22)

The difference equation takes the form

A(x)Q(x) + Λ2
2Q(x− 2ε1)− P (x)Q(x− ε1) = 0. (C.23)

The polynomials are given by

A(x) =
(
x−m3 +

ε1
2

)(
x−m4 +

ε1
2

)
, (C.24)
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while the gauge polynomial is

P (x) = x2 − uS . (C.25)

The differential equation is once again given as in (C.18), and after the shift

uS = ũ− Λ2 +
ε21
4
, (C.26)

We find that the non-zero potential functions Qm(t) are

Q0(t) =
(m3 +m4)2

4(t− 1)2
+

m3m4

t(1− t)
+

Λ2
2

t3
+

ũ

t2(1− t)
, (C.27)

Q2(t) = − 1

4(t− 1)2
. (C.28)

which matches the potential in (2.21).

C.4 Nf = 2: symmetric realization

An inequivalent way to realize the Nf = 2 theory is to start from the Nf = 3 differential

equation and consider the limit

m3 →∞ and Λ3 → 0 with Λ2
2 = m3Λ3 finite . (C.29)

The difference equation takes the form

Λ2A(x)Q(x) + Λ2D(x− ε1)Q(x− 2ε1)− P (x)Q(x− ε1) = 0. (C.30)

The polynomial A(x) is given by

D(x) =
(
x−m1 +

ε1
2

)
, (C.31)

A(x) =
(
x−m4 +

ε1
2

)
, (C.32)

while the gauge polynomial is given by (C.25). The differential equation still takes the

Schrödinger form (C.18).

Finally, in order to match with the form of the differential in the text (2.22), we need

to perform a conformal transformation
(
t→ z−1

z

)
. We choose to shift away the O(ε21) term

by redefining of the Coulomb modulus:

uS = ũ+m1Λ2 −
Λ2

2
+
ε21
4
. (C.33)

After this, the differential matches the form in (2.22), with

Q0(z) =
Λ2

2

4z4
+

Λ2m1

z3(z − 1)2
− Λ2m4

z(z − 1)3
+

Λ2
2

4(z − 1)4
+

ũ

z2(z − 1)2
. (C.34)
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C.5 Nf = 1

We start with the symmetric realization of the Nf = 2 case and take the limit

m4 →∞ and Λ2 → 0 with Λ3
1 = m4Λ2

2 finite . (C.35)

The difference equation in this case takes the form

Λ2
1Q(x) + Λ1D(x− ε1)Q(x− 2ε1)− P (x)Q(x− ε1) = 0. (C.36)

The gauge polynomial is once again given by (C.25), and the flavour polynomial D(x) is

given by

D(x) =
(
x−m1 +

ε1
2

)
. (C.37)

While the differential equation in this case also takes the form of a Schrödinger equation,

with the potential (after shifting uS so as to set Q2(t) to zero for convenience)

Q0(t) =
Λ2

1

4t4
− m1Λ1

t3
+
uS
t2

+
Λ2

1

t
, (C.38)

its form requires a series of conformal transformations and rescalings before it can be easily

compared with the form in (2.23); for convenience, we reproduce the transformations below:

t −→ 1

z

uS −→ 24/3 (ũ+m1Λ1)

m1 −→ −22/3m1

z −→ 22/3w

w −→ 1− z
z

.

(C.39)

After this sequence of transformations, we get the form of the potential as in (2.23):

Q0(z) =
Λ2

1

4z4
+

Λ1m1

z3(z − 1)2
− Λ2

1

4z(z − 1)3
+

ũ

z2(z − 1)2
. (C.40)

C.6 Nf = 0

The pure super Yang-Mills case is obtained by starting with the Nf = 1 case and taking

the limit,

m1 →∞ and Λ1 → 0 with Λ4
0 = m1Λ3

1 finite . (C.41)

The difference equation takes the form:

Λ2
0Q(x) + Λ2

0Q(x− 2ε1)− P (x)Q(x− ε1) = 0. (C.42)

While the differential equation in this case also takes the form of a Schrödinger equation,

with the potential (after shifting uS so as to set Q2(t) to zero for convenience)

φ2(t) =
Λ2

0

t3
+
uS
t2

+
Λ2

0

t
, (C.43)
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its form requires a series of conformal transformations and rescalings before it can be

literally compared with the form in (2.24); for convenience, we reproduce these transfor-

mations below:

t −→ iw

uS −→ −
(
ũ+ Λ2

0

)
Λ0 −→ eiπ

4 Λ0

w −→ 1− z
z

.

(C.44)

After this sequence of transformations, we get the potential as in the bulk of the pa-

per (2.24):

Q0(z) =
Λ2

0

z3(z − 1)2
+

ũ

z2(z − 1)2
+

Λ2
0

z(z − 1)3
. (C.45)

Thus, we completed the derivation of the null vector decoupling equations (at ε2 = 0) from

the purely gauge theoretic instanton partition function.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.

References

[1] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[2] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

[3] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[4] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[5] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[6] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[7] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from

Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[8] N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and

Liouville Theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

[9] L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators

in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113

[arXiv:0909.0945] [INSPIRE].

– 47 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408099
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703166
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
http://dx.doi.org/10.1007/JHEP02(2010)057
http://arxiv.org/abs/0909.1105
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1105
http://dx.doi.org/10.1007/JHEP01(2010)113
http://arxiv.org/abs/0909.0945
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0945


J
H
E
P
0
7
(
2
0
1
6
)
1
1
5

[10] K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville

Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].

[11] A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator

Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203

[arXiv:1011.4491] [INSPIRE].

[12] J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization of Mflat and

conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].

[13] H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a Surface

Operator, Irregular Conformal Blocks and Open Topological String, Adv. Theor. Math. Phys.

16 (2012) 725 [arXiv:1008.0574] [INSPIRE].

[14] H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro

Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].

[15] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas

type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

[16] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

[17] A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals,

JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

[18] V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014

[arXiv:0912.0504] [INSPIRE].

[19] A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03

(2013) 133 [arXiv:1212.0722] [INSPIRE].

[20] Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the

refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].

[21] J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, Annales Henri
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[arXiv:1501.05671] [INSPIRE].

[41] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants

and cluster transformations, arXiv:0811.2435 [INSPIRE].

[42] D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17

(2013) 241 [arXiv:1006.0146] [INSPIRE].

[43] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, N = 2 quantum

field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27

[arXiv:1112.3984] [INSPIRE].

[44] M. Piatek, Classical torus conformal block, N = 2∗ twisted superpotential and the accessory
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